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The Seebeck coefficient (S) of composite nano-structures is theoretically explored within a

self-consistent electro-thermal transport simulation framework using the non-equilibrium Green’s

function method and a heat diffusion equation. Seebeck coefficients are determined using numerical

techniques that mimic experimental measurements. Simulation results show that, without energy

relaxing scattering, the overall S of a composite structure is determined by the highest barrier within

the device. For a diffusive, composite structure with energy relaxation due to electron-phonon

scattering, however, the measured S is an average of the position-dependent values with the weighting

factor being the lattice temperature gradient. The results stress the importance of self-consistent

solutions of phonon heat transport and the resulting lattice temperature distribution in understanding

the thermoelectric properties of a composite structure. It is also clarified that the measured S of a

composite structure reflects its power generation performance rather than its cooling performance.

The results suggest that the lattice thermal conductivity within the composite structure might be

engineered to improve the power factor over the bulk by avoiding the conventional trade-off between

S and the electrical conductivity. VC 2011 American Institute of Physics. [doi:10.1063/1.3619855]

I. INTRODUCTION

When a temperature difference, DT, is applied across a

material sample, an open-circuit voltage, Voc, can be

induced, generating an electric field that opposes the temper-

ature gradient. This is called the Seebeck effect,1 and the

proportionality constant is the Seebeck coefficient (or ther-

mopower) S, which gives Voc ¼ �SDT. The Seebeck coeffi-

cient can be looked on as the entropy transport per charged

particle,2 and S > 0 for hole conduction and S < 0 for elec-

tron conduction. The Seebeck effect is central to thermoelec-

tric (TE) operation, and S is a key parameter in the

thermoelectric figure of merit ZT ¼ S2rT=j that represents

the efficiency of thermoelectric energy conversion,1 where r
is the electrical conductivity, T is the absolute temperature,

and j is the thermal conductivity. For a homogeneous mate-

rial, S can be calculated using the Boltzmann transport equa-

tion (BTE)3,4 or Landauer formalism5,6 in an integral form

as

S ¼ 1

qT

Ð
dEN Eð Þ E� EFð Þ �@f0=@Eð ÞÐ

dEN Eð Þ �@f0=@Eð Þ ; (1)

where q is the elementary charge (q¼ –e for electrons and

q¼ e for holes), E is the energy, EF is the Fermi level, and f0

is the Fermi-Dirac distribution. The kernel N Eð Þ is called the

transport distribution function (in the BTE approach)3,4 or

the transmission function (in the Landauer approach).5–7 It

includes the band structure information and the effect of car-

rier scattering. If the band structure is simple (e.g., parabolic

bands) and the scattering mechanism can be represented in a

simple way, such as the power-law form,8 then the S of a ho-

mogeneous material can be expressed in a simple analytical

form.9–11

For realistic devices, however, Eq. (1) may not be used

because the device structure may be inhomogeneous. For

example, nanowire (NW) devices usually have metal contacts

at the ends,12–14 which introduce Schottky barriers. The poten-

tial barriers at the channel ends produce a non-uniform poten-

tial profile along the channel, which may affect the overall S
of the NW device, making it different than that of a homoge-

neous NW calculated from Eq. (1). Understanding the See-

beck coefficient of a non-uniform, composite structure is

becoming more relevant as the nano-engineered structures,

such as superlattices15 and nano-composites,16 are attracting

much attention as a promising way to further improve ZT.

In this paper, we explore the Seebeck coefficient of

composite nano-structures within a self-consistent quantum

transport simulation framework. The key questions to be

addressed are: 1) What determines the overall S of a compos-

ite nano-structure? 2) What roles do the length scales (e.g.,

energy relaxation length kE, the grain size d, etc.) play? 3)

How does the measured S relate to the cooling or power gen-

eration performance of a composite TE material? 4) Is there

a way to use the composite structure to modify the S versus

r trade-off1 and improve the power factor S2r? We use sim-

ple model structures and scattering mechanisms and restrict

our attention to one-dimensional (1D) structures, but we

expect that the general understanding established in this pa-

per will be broadly applicable.

This paper is organized as follows: in Sec. II, we

describe the simulation framework for the self-consistent

electro-thermal transport in a 1D composite nano-structure.

We also explain the techniques to numerically “measure” S

a)Author to whom correspondence should be addressed. Electronic mail:

kim369@purdue.edu.
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in our simulation. In Sec. III, simulation results are presented

for ballistic and diffusive transport, and the results are

related to a simple electrical-thermal circuit model. The role

of kE on the measured S is also clarified. In Sec. IV, we dis-

cuss the meaning of the measured S regarding the TE per-

formance. Possibilities to modify the S versus r trade-off

and improve the power factor in a composite structure are

also discussed. Conclusions follow in Sec. V.

II. APPROACH

Figure 1(a) shows the schematic of our model device.

We assume a 1D NW with the doping densities varying

along the transport (x) direction. In Fig. 1(a), Lw is the length

of the well region, Lb is the barrier thickness, Nw is the dop-

ing density in the well, and Nb is the doping density in the

barrier. The wire ends are connected to contact 1 and contact

2, which are ideal reservoirs maintained under equilibrium.7

To convert the three-dimensional (3D) doping densities to

1D and solve the Poisson equation, we assume a circular

cross-section with a diameter D. In all following simulation

results, we use Nw¼ 3� 1019 cm�3 (heavily doped),

Nb¼ 1� 1016 cm�3 (essentially undoped), and D¼ 3 nm.

The model structure is intended to represent a potential bar-

rier (grain boundary) between two doped regions (grains). In

a realistic nano-composite material, the potential barrier

comes from a charge at the grain boundary due to point

defects, etc.17

The simulation framework for the self-consistent elec-

tro-thermal transport is summarized in Fig. 1(b). The

“electron part” treating the carrier transport and electrostatics

is solved self-consistently with the “phonon part” that

describes the lattice heat conduction. Within the electron

part, the carrier transport is treated using the 1D non-equilib-

rium Green’s function (NEGF) method considering three

transport models, i.e., ballistic transport, elastic scattering,

and inelastic scattering. Most of the previous theoretical

studies on nano-composite materials adopt the BTE

approach,18,19 treating the effect of grain boundaries as

another scattering mechanism with some relaxation time, s.

As the grain size gets smaller and approaches the electron

wavelength,16,20 however, a quantum transport simulation

framework, such as the NEGF,21,22 is required to better

understand the electron transport in nano-composites. As

shown in Fig. 1(b), the electrostatics are captured by solving

the 1D Poisson equation, and the self-consistent solutions for

the NEGF and the Poisson equation give the carrier density n
and potential profile V along the x-direction. More details of

the 1D NEGF and Poisson schemes are discussed in the

Appendix.

The simulation framework for the electron part

described so far is widely used for conventional electronic

device simulations, assuming a constant lattice temperature

TL.23 In this work, we add another branch, i.e., the phonon

part, to treat the power dissipation P from the electron to the

phonon bath21,22 and calculate TL by solving a heat transport

equation, which again affects the electron part, as shown in

Fig. 1(b). In our simulation, we solve a 1D heat diffusion

equation, assuming some lattice thermal conductivity, jL.

More details are discussed in the Appendix. The self-consist-

ent scheme between the electron and phonon parts is essen-

tial to treat the electro-thermal transport phenomena, such as

thermoelectrics and self-heating of the device.24–26

Next, we discuss how to determine the overall S. We

first review the coupled current equation1,5

I ¼ GDV þ SGDT; Iq ¼ �TSGDV � K0DT ; (2)

where I is the electrical current, G is the electrical conduct-

ance, DV is the voltage difference, Iq is the heat current, and

K0 is the electronic thermal conductance for zero DV. Alter-

natively, Eq. (2) can be expressed as

DV ¼ I=G� SDT; Iq ¼ PI � KeDT ; (3)

where P is the Peltier coefficient and Ke is the electronic

thermal conductance for zero current. Note that the Kelvin

relation gives P ¼ TS. Figure 2 shows the two possible con-

figurations for the Seebeck coefficient measurement. First, S
can be determined by measuring electrical currents, as shown

in Fig. 2(a). From Eq. (2), I ¼ GDV for a finite

DV ¼ V2 � V1 and DT ¼ T2 � T1¼ 0, where V1 (V2) and T1

(T2) are the voltage and temperature applied to contact 1

(contact 2), respectively. For DV¼ 0 and a finite DT, we

obtain I ¼ SGDT and then the Seebeck coefficient can be

calculated from the ratio of the two coefficients as

S ¼ SG=G. Another way to determine S is to measure the

open circuit voltage DV for a DT, as shown in Fig. 2(b), and

use the relation S ¼ �DV=DT from Eq. (3). Note that the

approach in Fig. 2(b) is widely used for experimental devi-

ces.12–14 In Sec. III, we use the two approaches to numeri-

cally “measure” the Seebeck coefficient of a composite

nano-sturcture and compare the results. For the approach in

FIG. 1. (Color online) (a) Schematic of the 1D NW model device. Lw is the

length of the well region, Lb is the barrier thickness, Nw is the doping density

in the well, Nb is the doping density in the barrier (Nw > Nb), D is the wire

diameter, and x is the transport direction. The device is connected to ideal

reservoirs: contact 1 and contact 2. (b) Simulation framework for the self-

consistent electro-thermal transport. The “electron part” calculates the

self-consistent carrier density n and electric potential V, and the “phonon

part” is solved for the self-consistent solutions for the power dissipation P
and the lattice temperature TL.
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Fig. 2(a) (current measurement), we simply apply DV or DT
and calculate the terminal electrical currents. For the

approach in Fig. 2(b) (open-circuit voltage measurement),

we first apply DT and then increase DV until there is no net

electrical current flow. Under all DV and DT conditions,

simulations are carried out self-consistently, as described in

Fig. 1(b).

III. RESULTS

In this section, we present simulation results for ballistic

transport, elastic scattering, and inelastic scattering and

explore how carrier scattering affects the measured S of a

composite nano-structure. Figure 3(a) shows the ballistic

transport simulation results for the energy- and position-

resolved electrical current I E; xð Þ for Lb¼ 10 nm, Lw¼ 10

nm, DV¼ 1 mV, T1¼T2¼ 300 K, and jL¼ 150 W/m-K,

which is the bulk Si value.12 The Fermi level of contact 1

(EF1) lies at 0 eV; EF1¼EF¼ 0 eV. There is no carrier scat-

tering within the device, so I E; xð Þ is uniform along the x-

direction, and the average energy of the current flow Eh i is

constant. We numerically measure S using the two

approaches described in Fig. 2, and the results are S¼ –346

lV=K for the current measurement approach and S¼ –348

lV=K for the voltage measurement approach. The two

results are consistent and can be verified in the following

way. From the constant Eh i in Fig. 3(a), we can calculate

the Peltier coefficient of the device as P ¼ E� EFh i=q
¼ –0.103 V, and the Kelvin relation gives S ¼ P=T¼ –344

lV=K, which is consistent with the numerical measurement

results. Also note that, for a 1D ballistic conductor, S can be

calculated analytically as5

S1D ¼
kB

q

F0 gFð Þ
F�1 gFð Þ

� gF

� �
; (4)

where Fj gFð Þ is the Fermi-Dirac integral of order j,27

gF ¼ EF � ECð Þ=kBT, kB is the Boltzmann constant, and EC

is the conduction bandedge. For gF¼ –3.04, which is

extracted from the simulation result at the top of the barrier

in Fig. 3(a), we obtain S¼ –351 lV=K, which is again con-

sistent with the numerically measured S values.

Figure 3(b) shows the simulation results for I E; xð Þ for

elastic scattering with a deformation potential of D0¼ 0.01

eV2. (The meaning of D0 within the NEGF framework7 and

its relation to the conventional expressions in the BTE

approach28 are discussed in the Appendix.) All other param-

eters in Fig. 3(b) are the same as those of Fig. 3(a). Still, the

two approaches in Fig. 2 give consistent results as S¼ –317

lV=K. Note that carrier scattering broadens energy levels,7

which results in a smaller Eh i than that of the ballistic case

in Fig. 3(a). Although elastic scattering relaxes momentum

and reduces G, it does not relax energy so that I E; xð Þ and

Eh i are still uniform along the x-direction. Therefore, we can

calculate the overall P of the device as P¼ E� EFh i=q
¼ –0.0945 V, and the Kelvin relation gives S¼ –315 lV=K,

which is consistent with the numerical measurement results.

As discussed so far, when there is no energy relaxation

within the device, S is determined by the potential barrier.

Phase or momentum breaking scattering broadens the levels,

effectively lowering the barrier height, as shown in Fig.

3(b),7 but still the overall S is determined by the barrier

region unless there is energy relaxing scattering. In these

cases, P is uniform along the device, so we can define an

overall P of the device, and the S obtained from the Kelvin

relation is consistent with the numerically measured S.

FIG. 2. (Color online) Configurations for Seebeck coefficient measurement.

(a) S from current measurements. I ¼ GDV for a finite DV(DT¼ 0) and

I ¼ SGDT for a finite DT (DV¼ 0) and S ¼ SG=G. (b) S from the voltage

measurement. For an open circuit voltage DV for a DT, S ¼ �DV=DT.

FIG. 3. (Color online) (a) Ballistic transport simulation results for I E; xð Þ
for Lb ¼Lw¼ 10 nm, DV¼ 1 mV, and T1¼T2¼ 300 K. I E; xð Þ and the aver-

age E of the current flow Eh i are uniform along the x-direction. Using the

approaches in Fig. 2, S is determined to be –346 lV=K (from current meas-

urements) and –348 lV=K (from the voltage measurement). The Kelvin

relation gives S¼P=T¼ E� EFh i=qT¼ –344 lV=K, which is consistent

with the numerical measurement results. (b) Simulation results for I E; xð Þ
for elastic scattering with D0¼ 0.01 eV2. I E; xð Þ and Eh i are still uniform.

The two approaches in Fig. 2 give consistent results of S¼ –317 lV=K. The

Kelvin relation gives S¼P=T¼ E� EFh i=qT¼ –315 lV=K, which is con-

sistent with the numerical measurements.
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Next, we introduce energy relaxing scattering and see

how the results change. Figure 4(a) shows the simulation

result for I E; xð Þ with DV¼ 1 mV and T1¼T2¼ 300 K for

optical phonon scattering with D0¼ 0.01 eV2 and �hxo¼ 20

meV, where �h is the reduced Planck constant and xo is the

frequency of the optical phonon. All other parameters are the

same as those in Fig. 3. Unlike the results in Fig. 3 without

energy relaxation, I E; xð Þ and Eh i are non-uniform along the

x-direction and we cannot define a constant P for the overall

device. For example, the Peltier coefficient near contact 1 is

P1¼ –0.0702 V while it is higher in magnitude in the barrier

region, where Pb¼ –0.0893 V in Fig. 4(a). The two

approaches to measure S (recall Fig. 2) give consistent

results as S¼ –245 lV=K. Note that the measured S is nei-

ther P1=T¼ –234 lV=K nor Pb=T¼ –298 lV=K, but a

value somewhere in-between.

To understand the measured S of the composite nano-

structure with energy relaxing scattering, we re-visit the

coupled current equations in Eq. (2). Note that the T in Eq.

(2) actually means the electron temperature Te as

I ¼ GDV þ SGDTe; Iq ¼ �TeSGDV � K0DTe : (5)

In the contacts, electrons are in equilibrium with the phonon

bath, so Te1¼TL1¼T1 and Te2¼TL2¼T2, where Te1 (Te2)

and TL1 (TL2) are the electron and lattices temperatures for

contact 1 (contact 2), respectively. When there is no energy

relaxation (e.g., ballistic transport), Te is not well-defined

within the device,8 but the transport properties, such as S, are

well-defined across the terminals. In Fig. 3, for example, car-

riers injected from the contacts with Te1¼T1 and Te2¼ T2

only see the highest potential barrier and that determines the

overall S of the device, regardless of the potential profile in

the well region. When the carrier energy is relaxed by elec-

tron-phonon (e-ph) scattering, however, Te follows TL.8 As

discussed in more detail in the Appendix, the lattice heat

transport model gives TL xð Þ, which determines the carrier

energy relaxation rate due to e-ph interaction along the

x-direction. This results in the carrier distribution with Te xð Þ
� TL xð Þ, and Te xð Þ governs the coupled current equations in

Eq. (5) within the device.

To understand the measured S of a diffusive composite

structure in a simple way, we consider a model composite

structure in Fig. 5. Two dissimilar regions with different S and

G (S1 and G1 for region 1, S2 and G2 for region 2) are con-

nected in series, and we measure the overall S using the two

approaches in Fig. 2. Using a simple electrical-thermal circuit

model (see Appendix for details) for the two configurations in

Fig. 5, we obtain the same expression for the overall S as

S ¼ S1DTL1 þ S2DTL2

DT
; (6)

where DTL1 (DTL2) is the lattice temperature difference

across region 1 (region 2) and DTL1þDTL2¼DT. Equation

(6) shows that the overall S of a diffusive composite structure

is a weighted average of its component S values, and the

weighting factor is the temperature difference across each

component.29,30 More generally, Eq. (6) can be expressed in

an integration form as

S ¼
Ð

dxS xð ÞdTL xð Þ=dx

DT
; (7)

where S xð Þ is the x-dependent Seebeck coefficient. In Figs.

4(b)–4(c), we show simulation results for S xð Þ¼ Eh i=qT
(DV¼ 1 mV, T1¼T2¼ 300 K) and TL xð Þ (DT¼ 1 K,

DV¼ 0) for the model device in Fig. 4(a). From Eq. (7) we

obtain S¼ –243 lV=K, which is consistent with the numeri-

cal measurement result, –245 lV=K.

FIG. 4. (Color online) (a) Simulation results for I E; xð Þ (DV¼ 1 mV,

T1 ¼T2 ¼ 300 K) for optical phonon scattering with D0 ¼ 0.01 eV2 and

�hxo¼ 20 meV. I E; xð Þ and Eh i are non-uniform along the x-direction. The

two approaches in Fig. 2 give consistent results as S¼ –245 lV=K. Simula-

tion results for (b) S xð Þ¼ Eh i=qT (DV¼ 1 mV, T1¼T2¼ 300 K) and (c)

TL xð Þ (DT¼ 1 K, DV¼ 0). From Eq. (7), we obtain S¼ –243 lV=K, which

is consistent with the numerical measurement result.

FIG. 5. (Color online) Seebeck coefficient measurement of a composite

structure with region 1 (S1 and G1) and region 2 (S2 and G2). The device is

assumed to be diffusive with energy relaxation due to e-ph scattering. (a)

Open-circuit voltage measurement. (b) Current measurements. A simple

electrical-thermal circuit analysis gives S¼ S1DTL1 þ S2DTL2ð Þ=DT for both

cases, where DTL1 and DTL2 are the DTL values applied across region 1 and

region 2 and DTL1 þDTL2¼DT.
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To derive Eq. (6) or Eq. (7), we assumed that Te¼TL,

which holds in the strong scattering limit. In general, how-

ever, it may be hard to define Te xð Þ in the device, because

electron energy may not be fully relaxed by e-ph scattering,

so that electrons and phonons are not fully in equilibrium.8

Our results above, however, show that the assumption works

quite well when analyzing the simulation results, where we

numerically “measure” S across the terminals and do not

define or assume any Te xð Þ within the device.

As demonstrated in Fig. 4(c), for a constant jL, the heat

diffusion equation gives a linear TL xð Þ for a finite DT. In

such cases, Eq. (7) can be simplified as

S�
ð

dxS xð Þ=L; (8)

where L is the total length of the device. Equation (8) implies

that, for a uniform jL, the overall S of a composite structure

is dominated by the region with a longer length. Figure 6(a)

shows the simulation results for Eh i versus x for our model

device with optical phonon scattering (D0¼ 0.01 eV2,

�hxo¼ 20 meV) for various Lw values with Lb¼ 10 nm

(DV¼ 10 mV, T1¼T2¼ 300 K). The maximum Eh i in the

barrier region remains the same, but Eh i in the well region

decays more as Lw increases. The energy relaxation length

kE is estimated to be about 30 nm in our model device, and

we expect that, as Lw becomes much longer than kE, Eh i
deep in the well region will approach the value of a wire

with a uniform doping density of Nw. We numerically mea-

sure the overall S using the approaches in Fig. 2, and the

results are shown in Fig. 6(b). Note that the results from the

two approaches are still consistent. For Lw <� kE, the carrier

energy is not fully relaxed in the well region, so that the

overall S is more dominated by the barrier, resulting in a

higher Sj j. As Lw increases, however, carrier energy is

relaxed more in the well region, as shown in Fig. 6(a), and

the overall S is more dominated by Lw and approaches the

measured S of a wire with a uniform, high doping density Nw

(no potential barrier). Note that the values of S for bulk wires

in Fig. 6(b) are consistent with experimental results reported

for heavily doped NWs.13,14

In summary, for a composite structure with no energy

relaxation or L� kE, the overall S is determined by the

highest barrier within the device. For a diffusive composite

structure with energy relaxation, however, the overall S is an

average of its constituent S values, with the weighting factor

being the lattice temperature drop across each region. For a

simple case of a constant jL, TL xð Þ is linear for a finite DT,

and the overall S is the average of S xð Þ over the device

length. In Sec. IV, we discuss the meaning of the measured S
of a composite structure in the context of TE performance,

explore the effect of a x-dependent jL, and suggest possible

ways to improve the TE performance by using the composite

nano-structures.

IV. DISCUSSION

A. Measured S and TE performance

As shown in the previous section, the two approaches to

measure S in Fig. 2 give consistent results. Note that this

measured S directly reflects the power generation perform-

ance of a TE device.29,30 In Fig. 2(a), the measured S is

related to the open circuit voltage generated by a temperature

difference as DV¼�SDT or, equivalently in Fig. 2(b), it rep-

resents the device’s ability to drive an electrical current for a

given temperature difference as I¼ SGDT. For a homogene-

ous structure with a uniform S, the same S also determines

the cooling performance. The cooling performance is deter-

mined by the heat current Iq taken away from contact 1, i.e.,

Iq x ¼ 0ð Þ for DV> 0 in Fig. 1(a), and this is related to the P
near the contact as Iq x ¼ 0ð Þ¼P x ¼ 0ð ÞI, where I is uni-

form along the device. For a composite structure without

energy relaxation, P xð Þ is uniform, as shown in Fig. 3, and

the uniform Seebeck coefficient from S¼P=T determines

both the cooling and power generation performances. For a

composite structure with energy relaxing scattering, how-

ever, P xð Þ is non-uniform, as shown in Figs. 4 and 6, and

cooling and power generation performances are represented

by different S values. The measured overall S, which is

related to the power generation performance, is an average

of the non-uniform S xð Þ¼P xð Þ=T, and the weighting factor

is the temperature gradient, as discussed in Sec. III. In the

case of a constant jL (a uniform temperature gradient), the

measured S can be related to the average Peltier coefficient

FIG. 6. (Color online) (a) Simulation results for Eh i vs x with optical pho-

non scattering (D0 ¼ 0.01 eV2, �hxo ¼ 20 meV) for various Lw values, with

Lb ¼ 10 nm and jL¼ 150 W/m-K (DV¼ 10 mV, T1 ¼T2 ¼ 300 K). The

maximum Eh i in the barrier region remains the same, but Eh i in the well

region decays more as Lw increases. (b) Simulation results for the overall S
vs Lw for the composite structure and bulk wire with no potential barriers.

Two approaches in Fig. 2 still give consistent results (solid lines: open-cir-

cuit voltage measurements; dashed lines: current measurements). As Lw

increases, the overall S is more dominated by Lw and approaches the value

of a wire with a uniform doping density.
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(Pavg) as S ¼ Pavg=T, where Pavg ¼
Ð

dxP xð Þ=L. The cool-

ing performance, however, is more related to the local value

at the contact end, S x ¼ 0ð Þ¼P x ¼ 0ð Þ=T.

B. Effects of a non-uniform jL

In Sec. III, we discussed simulation results for a constant

jL, which gives a linear TL xð Þ for a finite DT. For a compos-

ite structure, jL may vary within the device, which alters

TL xð Þ and may affect the measured S. Figure 7(a) shows the

simulation results for TL xð Þ (DT¼ 1 K, DV¼ 0) for the two

model devices, where one of them has a constant jL of 150

W/m-K (device 1) and the other one has a much lower jL of

1.5 W/m-K in the barrier region (device 2). Both devices are

assumed to be diffusive with optical phonon scattering

(D0¼ 0.01 eV2, �hxo¼ 20 meV). For a constant jL (device

1), TL xð Þ is linear, as already shown in Sec. III. When jL xð Þ
is non-uniform (device 2), however, a large portion of DT is

applied across the barrier region, which has a smaller jL.

Figure 7(b) shows simulation results for G versus Lw for the

two model devices (DV¼ 1 mV, T1¼T2¼ 300 K). Note that

all the parameters are the same for devices 1 and 2 except

for jL, so they give similar G values. In Fig. 7(c), however,

we see a significant difference for the measured S. As shown

in Eq. (7), the temperature gradient dTL xð Þ=dx is the weight-

ing factor in calculating the average of S xð Þ. This means that

the region with a larger DT dominates in determining the

overall S. As shown in Fig. 7(a), for device 2 (a lower jL in

the barrier region), most of DT is applied across the barrier,

which has a high S xð Þj j, as shown in Fig. 6(a). Therefore, as

shown in Fig. 7(c), the overall Sj j is dominated by the barrier

region and remains high even for Lw > kE for device 2. For

device 1 (a uniform jL), however, the overall S is more

dominated by the well region as Lw increases, as discussed in

Eq. (8), so Sj j decreases and approaches the value of a uni-

form wire with a high doping density Nw, as shown in Figs.

6(c) and 7(c). These results suggest that, for a properly

designed composite structure, it may be possible to alter the

S versus G characteristic from its value in the bulk.

C. Improving the power factor

The effect of non-uniform jL on the measured S may

open up new possibilities to improve the thermoelectric

power factor S2r. It has been suggested that the power fac-

tor can be improved by using composite nano-structures

composed of grains and grain boundaries,17,31,32 where the

grain is a doped crystalline region and grain boundaries are

thought of as potential barriers that can result in the so-

called “energy filtering” effect.33 The basic idea is the fol-

lowing: first, if the grain size d is much longer than the mo-

mentum relaxation length kp, then introducing grain

boundaries within the device may not decrease r much,

because the device is already in the diffusive limit. Note

that the potential barriers at the grain boundaries filter out

low energy carriers. If d is shorter or comparable to the

energy relaxation length kE, then the carrier energy is not

fully relaxed within the grain, so Sj j increases, as also

shown in our simulation results in Fig. 6. Note that kE is

usually significantly longer than kp,8 so, by engineering d
as kp < d< kE, S may improve, while not hurting r much,

which may result in a net improvement in S2r over a bulk

material. If d is very large, as d� kE, then one may expect

that the composite structure will behave similarly to the

bulk material. If the jL is non-uniform and specifically low

in the barrier region, however, Sj j may remain high even for

d� kE, due to the non-uniform TL-distribution, as shown in

Fig. 7. This suggests that the use of polycrystalline materi-

als may enhance S and the power factor, even for large

grain sizes, if the grain boundaries highly impede phonon

transport.34,35 A detailed quantitative study of the power

factor enhancement in composite nano-structure is beyond

the scope of this paper, but our results show that it is essen-

tial to treat the electron transport and phonon heat transport

self-consistently to clearly understand the TE properties of

composite structures and explore possible ways to improve

the power factor performance.

V. CONCLUSIONS

In this work, we computationally explored the Seebeck

coefficient of composite nano-structure within a self-consistent

electro-thermal transport simulation framework. Quantum

transport of electrons was treated using the non-equilibrium

Green’s function method coupled with the Poisson equation,

and electron transport was solved self-consistently with the lat-

tice heat diffusion equation. We numerically “measured”

Seebeck coefficients using the techniques that mimic experi-

mental methods and explored the effects of energy relaxing

FIG. 7. (Color online) (a) Simulation results for TL vs x (DT¼ 1 K, DV¼ 0)

for the two model devices (Lw¼ 50 nm, Lb ¼ 10 nm), where “device 1” has

a constant jL of 150 W/m-K and “device 2” has a lower jL of 1.5 W/m-K in

the barrier region. Both devices are diffusive with optical phonon scattering

(D0¼ 0.01 eV2, �hxo ¼ 20 meV). For device 1, TL xð Þ is linear, and for device

2, a large portion of DT is applied across the barrier region. (b) Simulation

results for G vs Lw for the two model devices (DV¼ 1 mV, T1¼T2 ¼ 300

K). They give similar G values, because all the parameters are the same

except for jL. (c) Simulation results for the measured S vs Lw (from open-

circuit voltage measurements). The measured S is significantly higher for de-

vice 2 and stays high even for Lw > kE, because it is dominated by the barrier

region with a large DT, as shown in Fig. 7(a), and the barrier has a high

S xð Þj j, as shown in Fig. 6(a).
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scattering and coupling with phonon heat transport. Simulation

results show that, without energy relaxing scattering, the over-

all S of a composite structure is determined by the highest bar-

rier within the device. For a diffusive composite structure with

energy relaxation due to e-ph interaction, however, Peltier and

Seebeck coefficients are position-dependent. The measured

overall S is an average of the position-dependent values, and

the weighting factor is the carrier temperature gradient, which

follows the lattice temperature gradient due to e-ph interaction.

Therefore, self-consistent simulations of the phonon heat trans-

port and the resulting lattice temperature distributions are very

important to understand the TE properties of a diffusive com-

posite structure.

We also clarified the meaning of the measured S regard-

ing the TE performance. For a diffusive composite structure,

the measured S directly reflects the electrical power genera-

tion performance, but it is less related to the cooling per-

formance. Our simulations also suggest that jL-distribution

within the composite structure may be engineered to modify

the S versus r trade-off and improve the power factor. For

example, by making jL smaller in the region with a high

local Seebeck coefficient (e.g., grain boundaries), we can

apply a larger temperature gradient across that region and

improve the overall S while not decreasing r. Note that this

idea may work even for a large grain size of d> kE.

In this work, we used a simple 1D model and a classical

heat diffusion model to treat the lattice heat transport, but we

believe that the general understanding established in this pa-

per should be useful in exploring nano-composite structure

as a promising TE material. For future work, a more

advanced phonon transport model34,35 may be required to

better treat non-equilibrium phonon transport in nanoscale

devices and explore its effect on electron transport. While

we assumed potential barriers with smooth interfaces where

lateral momentum is conserved,36 interface roughness scat-

tering37 may result in different thermoelectric properties. It

will be also important to understand carrier transport in the

network of 3D grains to address issues in realistic, bulk

nano-composite materials.
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APPENDIX: DEVICE MODELS

1.1D Poisson

The 1D Poisson equation along the x-direction is solved as

A
Vj�Vjþ1

a � A
Vj�1�Vj

a ¼ q �n1DþAN3Dð Þa
eSe0

; 2 < j < N � 1 ;

(A1a)

V1 ¼ V2; VN�1 ¼ VN ; (A1b)

where A is the cross-sectional area of the wire, Vj is the elec-

tric potential at the jth grid point, a is the grid size, N is the

total number of grid points, eS is the dielectric constant

(eS¼ 10 for our model device), e0 is the vacuum permittivity,

N3D is the 3D doping density (Nw or Nb), and n1D is the 1D

carrier density, which is obtained from the 1D NEGF, as dis-

cussed in Subsection Appendix B. For numerical stability,

we adopt the non-linear Poisson technique38 when solving

Eq. (A1a). Equation (A1b) represents the boundary condi-

tions at the device ends.

2.1D NEGF

The general model for dissipative quantum transport is7

G Eð Þ ¼ EI� H � U � R Eð Þ½ ��1; (A2a)

Gn Eð Þ ¼ G Eð ÞRin Eð ÞGþ Eð Þ; (A2b)

A Eð Þ ¼ i G Eð Þ � Gþ Eð Þ½ �; C Eð Þ ¼ i R Eð Þ � Rþ Eð Þ½ � ;
(A2c)

where G Eð Þ is the retarded Green’s function, I is the identity

matrix, H is the device Hamiltonian, and U ¼ �eV is the

self-consistent potential energy obtained from the Poisson

scheme in Eq. (A1). In Eq. (A2), R Eð Þ is the self-energy,

Gn Eð Þ is the electron correlation function, Rin Eð Þ is the in-

scattering, A Eð Þ is the spectral function, and C Eð Þ is the

broadening, which are all N � N matrices. For our model de-

vice, H is constructed using the effective mass approach7

with m� ¼ 0.25m0 and a¼ 0.25 nm, where m0 is the free

electron mass. The matrices, R and Rin, describe the effects

of contacts and carrier scattering as R ¼ R1 þ R2 þ Rs and

Rin ¼ Rin
1 þ Rin

2 þ Rin
s , where the subscripts 1, 2, and s repre-

sent contact 1, contact 2, and scattering, respectively.

In this work, we consider three transport models, i.e.,

ballistic transport, elastic scattering, and inelastic scattering.

For ballistic transport, Rs and Rin
s are all zero in Eq. (A2).

Elastic scattering can be treated as7

Cs Eð Þ ¼ D0A Eð Þ; Rin
s Eð Þ ¼ D0Gn Eð Þ ; (A3)

where Rs Eð Þ ¼ �iCs Eð Þ=2 and D0 is the deformation poten-

tial. For acoustic phonon scattering with elastic approxima-

tion, D0 in Eq. (A3) can be related to the acoustic phonon

deformation potential DA as28

D0 ¼ D2
AkBTF= qt2

Sa3
� �

; (A4)

where F is the wavefunction overlap,8 q is the mass density,

and tS is the sound velocity. In Eq. (A4), DA is given in eV

and frequently appears in the conventional BTE approach.8

For Si bulk parameters,39 Eq. (A4) gives D0� 0.002 eV2 for

a cylindrical NW with D¼ 3 nm and intraband transition

within the ground state (F ’ 2:66a2=D2). In Sec. III, we use

D0¼ 0.01 eV2 for elastic scattering, which gives kp� 6.5 nm

for our model device.

For inelastic scattering, we consider optical phonon with

a single frequency xo as7
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Cs Eð Þ ¼D0 Nxo
þ 1ð Þ Gp E� �hxoð Þ þ Gn Eþ �hxoð Þ½ �

þ D0Nxo
Gn E� �hxoð Þ þ Gp Eþ �hxoð Þ½ �;

(A5a)

Rin
s Eð Þ ¼ D0 Nxo

þ 1ð ÞGn Eþ �hxoð Þ þ D0Nxo
Gn E� �hxoð Þ;

(A5b)

Nxo
¼ 1= exp �hxo=kBTLð Þ � 1ð Þ; (A5c)

where Nxo
is the Bose-Einstein factor and Gp Eð Þ is the hole

correlation function, which gives A Eð Þ ¼ Gn Eð Þ þ Gp Eð Þ.
Note that, in Eq. (A5c), we assume an equilibrium occupa-

tion factor for phonons, but TL is position-dependent. We

can also relate D0 in Eq. (A5) to the optical phonon deforma-

tion potential Do as28

D0 ¼ �hD2
oF= 2qxoa3
� �

; (A6)

where Do is given in eV=cm. For a cylindrical NW with

D¼ 3 nm and Si bulk parameters (LO mode),39 we obtain

D0� 0.01 eV2. In Sec. III, we use this typical value of

D0¼ 0.01 eV2 for optical phonon scattering, which gives

kp� 4.5 nm and kE� 30 nm for our model device.

Once the solutions for G Eð Þ and Gn Eð Þare obtained,

physical quantities at the jth grid point can be calculated as7,23

n1D;j ¼
ð

dEGn
j; j Eð Þ=ðpaÞ; (A7a)

Ij!jþ1¼
e

p�h

ð
dE �Im Hj; jþ1Gn

jþ1; j Eð Þ�Hjþ1; jG
n
j; jþ1 Eð Þ

h i� �
;

(A7b)

where Ij!jþ1 is the electrical current flow from the jth to the

(jþ 1)th grid points. Note that the spin degeneracy of 2 is

included in Eq. (A7). The n1D in Eq. (A7a) is again an input

to the Poisson scheme in Eq. (A1), and the process is repeated

until the self-consistent solutions for n1D and V are obtained.

3. Lattice heat transport

To treat the heat conduction due to phonons, we solve a

1D heat diffusion equation as21,25

d
dx �jL

dTL

dx

� �
¼ P; P ¼ �dIE=dx ; (A8a)

TL x ¼ 0ð Þ ¼ T1; TL x ¼ Lð Þ ¼ T2 ; (A8b)

where IE is the energy current by electrons, which is calcu-

lated from Eq. (A7b) with e substituted by E. As shown in

Eq. (A8b), we use fixed boundary conditions at the device

ends. As described in Fig. 1(b), TL is calculated by solving

Eq. (A8) for a given P from the electron part, and the

updated TL again affects the electron part by changing the

phonon scattering rates in Eq. (A5). The process is repeated

until we obtain converged results for TL.

4. Diffusive composite structure: Electrical-thermal
circuit model

Under the open-circuit condition in Fig. 5(a), Eq. (5)

gives

I1 ¼ G1DV1 þ S1G1DTe1 ¼ 0; (A9a)

I2 ¼ G2DV2 þ S2G2DTe2 ¼ 0; (A9b)

DT ¼ DTe1 þ DTe2; (A9c)

Te ¼ TL; (A9d)

where I1 (I2) is the electrical current along the region 1

(region 2), DV1 (DV2) is the voltage across the region 1

(region 2), and DTe1 (DTe2) is the electron temperature dif-

ference across the region 1 (region 2). As discussed in Sec.

III, Eq. (A9d) comes from the carrier energy relaxation due

to e-ph scattering, and TL is given from the lattice heat con-

duction model in Eq. (A8). Equation (A9) gives the solutions

for the four variables, i.e., DV1, DV2, DTe1, and DTe2, and

then the overall S becomes

S ¼ �DV

DT
¼ �DV1 þ DV2

DT
¼ S1DTL1 þ S2DTL2

DT
: (A10)

Equation (A10) means that the overall S of a diffusive com-

posite structure is the average of the S values of its constitu-

ent materials weighted by the temperature difference applied

in each region.29,30 For the current measurement configura-

tion in Fig. 5(b), we first apply a finite DV and then Eq. (5)

and the current continuity condition give

I ¼ G1DV1 ¼ G2DV2; (A11a)

DV ¼ DV1 þ DV2: (A11b)

And then, by defining I 	 GDV, we obtain the overall G as

G ¼ G1G2= G1 þ G2ð Þ; (A12)

which implies that the region with a smaller G dominates.36

Next, we apply a finite DT and DV¼ 0. Here, we should be

careful not to use the current continuity condition, as

I¼ S1G1DTe1¼ S2G2DTe2. For a diffusive device with

energy relaxation due to e-ph interaction, Te follows TL, not

being determined by the current continuity condition. The

correct equations to be solved are

I ¼ S1G1DTe1 þ G1DV1 ¼ S2G2DTe2 þ G2DV2; (A13a)

DT ¼ DTe1 þ DTe2; (A13b)

DV1 þ DV2 ¼ 0; (A13c)

Te ¼ TL: (A13d)

Note the additional GjDVj terms (j¼ 1, 2) in Eq. (A13a) and

the condition for DV¼ 0 in Eq. (A13c). And then, by defin-

ing I 	 SGDT, we obtain the overall SG as

SG ¼ G1G2 S1DTL1 þ S2DTL2ð Þ
G1 þ G2ð ÞDT

; (A14)

and the overall S is calculated from Eqs. (A12) and (A14)

as

S ¼ SG

G
¼ S1DTL1 þ S2DTL2

DT
: (A15)
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Note that Eq. (A15) is the same as Eq. (A10), which means

that the two approaches to measure S in Fig. 2 give consist-

ent results for composite structures, as has been demon-

strated in simulation results in Sec. III.
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