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We demonstrate that the in-plane thin film heat transport can be accurately mapped via confocal anti-

Stokes fluorescence imaging using fluorescent dye probes and nanoheaters. We employ 3D finite

elements analysis to evaluate the thermal conductivity of a control sample and to assess the validity

of a point heat source approximation. We have found that this approximation is adequate with use of

a tightly focused laser beam, providing a robust means for determining the thermal conductivity of a

sample under investigation. VC 2011 American Institute of Physics. [doi:10.1063/1.3606429]

I. INTRODUCTION

Thermoelectric materials constitute an important class of

engineered materials with many civilian and military applica-

tions. Reliable and reproducible characterization of thermal

transport in these materials is, therefore, of extreme impor-

tance for correct assessment of thermoelectric figure-of-merit.

Traditional methods of measuring the thermal conductivity of

bulk and film specimens include steady-state and transient

techniques1–7 based on monitoring the temperature difference

between two spaced points in the studied material or over a

time interval at a certain point, respectively. In this report, we

demonstrate a novel non-contact technique based on anti-

Stokes fluorescence confocal 3D imaging.8,9 The anti-Stokes

fluorescence technique is particularly suitable for micro- and

sub-micro characterization of in-plane thermal transport in

thin films and allows for both transient as well as steady-state

regimes of characterization. The sub-microscale length re-

gime, falling between sub-continuum and continuum trans-

port physics, is of particular importance, as recent work has

shown that material processing to create domain sizes in this

regime offers substantial, though highly complex, improve-

ments in thermoelectric performance.10 It should be noted,

that when applied to polymeric thin films, for average phonon

Mean Free Path (MFP) in the range of 1 nm,11 the optical re-

solution will not be able to capture the features of ballistic

phonon transport, and therefore “sub-microscale” would sim-

ply mean the transport on the length-scale of the optical reso-

lution of our setup (~500 nm).

An alternative method of micro-Raman spectroscopy

confocal technique allows for the non-contact measurements

of microscale thermal properties of materials. It does not

require any staining of the sample and has been already suc-

cessfully used for measurements of temperature gradients in

semiconductor microchips.12–14 However, in comparison to

anti-Stokes fluorescence method, Raman signal intensity is

usually several orders of magnitude lower, which requires

longer image acquisition time (from several minutes to an

hour) and, therefore, Raman technique can only be used in

steady-state regime when equilibrium is well established.

Raman temperature technique based on the measurements of

wavelength shift of specific spectral peak requires sophisti-

cated spectral equipment with extremely high spectral resolu-

tion of�0.1 cm�1 (or higher) to reach temperature

sensitivity�10 �C. In addition, for Raman technique, temper-

ature sensitivity does not depend on the excitation wave-

length. In contrast, in case of thermal measurement by

anti-Stokes fluorescence, the excitation wavelength can be

tuned to an appropriate spectral region with respect to the flu-

orescence maximum of the probe to reach a temperature sen-

sitivity of less than 1.0 �C.

Conventional Stokes fluorescence is related to the opti-

cal excitation of fluorophore molecules from the lower

densely populated vibrational levels of the ground elec-

tronic state and subsequent radiative decay from the excited

to the ground state. Under stationary conditions and low ex-

citation power, Stokes fluorescence intensity is weakly

dependent on the temperature. In case of the anti-Stokes lu-

minescence (ASL), the optical excitation is caused by

absorption of photons with lower energy from thermally

populated vibrational-rotational states of the ground elec-

tronic state. Since the population of the upper vibrational

levels of the ground state is temperature dependent (based

on Boltzmann distribution), the ASL intensity is extremely

temperature dependent15 (exponential dependence), as

represented by the following equation: IðTÞ � A exp

ð�DE=kBTÞ, where I(T) is the ASL intensity of the dye so-

lution at temperature T, A is a proportionality coefficient,

kB is the Boltzmann constant, and DE is the energy required

to thermally populate a vibrational level. A detailed physi-

cal description and applications of the ASL for measuring

local temperature variations can be found elsewhere.15–18

In our method, a probe dye and a heating agent -

absorbing nanoparticles (NPs) with efficient non-radiative

relaxation - are embedded into a film to be characterized.

a)Author to whom correspondence should be addressed. Electronic mail:

pnprasad@buffalo.edu.
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Absorption and emission wavelength bands of the dye

(probe) and the heating agent (pump) are chosen to be spec-

trally separated from each other. Afterwards, the local heat-

ing generated by resonant pump absorption of nanoparticles

creates a flow of heat through the film, both transverse and

in-plane. In other words, we use the heating agent and

absorbed energy of the pump to generate non-radiatively

dissipated thermal field coupled to longitudinal acoustic

phonons of the film matrix. At the same time, the probe

beam (wavelength tuned to the red wing of the excitation

spectrum) laterally scans the area nearby the heat source,

which results in anti-Stokes fluorescence of the probe dye

that is confocally detected. The rate and absolute value of

thermal population, leading to anti-Stokes fluorescence,

depend on the group velocity of phonons in the medium and

the distance between the fluorophore and the source of pho-

nons. Therefore, a mesoscopic thermal map can be created

and certain important characteristics of local thermal trans-

port in the medium can be extracted.

II. THEORY AND MODEL

The three-dimensional heat equation for a homogeneous

medium reads

@u

@t
� ar2u ¼ q; a ¼ j

qcp
; (1)

where u is the temperature, a is the thermal diffusivity, j is

the thermal conductivity, q is the density, cp is specific heat,

and q is the rate of heat generated in the medium per unit vol-

ume divided by the product of mass density and specific heat.

Numerical solution to this equation with initial and boundary

conditions results in temporal and spatial distribution of the

temperature of a sample, provided the macroscopic quantities

j, q, and cp are known together with the parameters of the

heat source. The inverse problem can be solved by fitting the

solution of Eq. (1) to a temperature distribution created by a

known volumetric heating field q. It has to be noted though

that, according to Fourier’s law taken in its integral form, the

heat flux for a homogeneous isotropic medium through its

surface is proportional to the negative temperature difference

between the two points in one-dimensional case, where the

proportionality coefficient is the thermal conductivity divided

by the distance between the points. Moreover, if there is a

steady supply of heat from a point source inside the volume,

the solution of the Poisson’s equation results in the width of

the temperature distribution independent of the material pa-

rameters.19 Therefore, if two samples that have absorbed, via

embedded local heat sources, the same amount of energy

have the same temperature difference over a length span, one

can say, without loss of generality, that these two samples

have the same thermal conductivity. This notion, in principle,

makes numerical fitting unnecessary if two samples are meas-

ured and one of them has a known value of thermal conduc-

tivity. However, if the heat source is extended, numerical

solution can give an additional insight into the problem. It

should also be noted that, since nanoparticles absorption and/

or non-radiative conversion can depend on the host medium,

our assumption about the same amount of heat, produced in

two different samples, is only true to a certain extent. We

tried to circumvent this potential problem by using a thin

layer of deposited NPs instead of NPs, dispersed in the bulk

of the sample (see the description below).

To validate our premises, we used the COMSOL Multi-

physics Finite Elements (FE) solver. It should be noted, that

a semi-analytical solution could be used as well to solve the

continuous heat equation assuming that the heat source is

point-like. Here, we used FE to justify the validity of our

point-like heat source assumption for adequate interpreta-

tion of our experimental results. In our numerical simula-

tions FE analysis permits us to model the heat source by an

extended cylinder-shaped solid heater with the geometry

close to the experimental (focused Gaussian beam with lat-

eral and axial focal waist size). Moreover, we have consid-

ered in our FE simulation the functional dependence of the

amount of heat, generated inside the heater that followed the

focused Gaussian beam intensity. Since the ratio of the tem-

perature difference (between the peak value and the flat

background) of the simulated temperature distributions

turned out equal to the inverted ratio of the thermal conduc-

tivities of two polymeric samples probed in our study, we

concluded that our heat source can be considered point-like.

Furthermore, the numerical solution, obtained with FE anal-

ysis, resulted in the same ratio as obtained from solution of

the Poisson’s equation with a point source. In addition, FE

model is more general and we could study more specific

heat transfer phenomena, e.g. the effect of medium change

near nanoparticles or anisotropic thermal properties (for

very thin films), which will be the subject of our future stud-

ies. Details of the model are as follows. The computational

domain spans 225 lm in the direction of laser beam propa-

gation (z-axis) and 4 mm in both the x and y directions.

Since the focused laser beam was used for heating a spot

inside the sample, we modeled the heat source by a solid

cylinder with the radius w0

ffiffiffi

2
p

and height h, where w0¼ 1

micron is Gaussian beam waist and h¼ 500 nm is the thick-

ness of nanoparticles (NPs) layer used as a heat source in

our experimental design (see the experiment details below).

The heat distribution within the source volume was defined

to functionally follow the intensity distribution of the beam,

since the excitation rate is proportional to the intensity and

only absorbing NPs can generate heat due to non-radiative

internal conversion. With the sample size much larger than

the Gaussian spot size, this is an adequate approximation of

a point heat source. We applied heat flux boundary condi-

tions with convective cooling, n � ðjrTÞ ¼ hðTamb � TÞ, to

all external boundaries and found a thermal transient time of

approximately 1 second for reaching steady state, in accord

with experimental observations. The ambient temperature,

Tamb, was set to 298 K. The numerical FEA model com-

prised 178 906 quadratic vector elements with 266 266

degrees of freedom.

III. EXPERIMENTAL SETUP AND SAMPLE
PREPARATION

A simplified schematic for the imaging set-up is shown

in Fig. 1. A 632.8 nm He-Ne laser (Meredith Instruments)

033512-2 Kuzmin et al. J. Appl. Phys. 110, 033512 (2011)
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with the output power of 20 mW and a 543.5 nm He-Ne laser

(Melles Griot, 5mW) co-axially coupled to the same input

microscope port were used as light sources to excite the anti-

Stokes and the Stokes fluorescence, correspondingly, in a

probe dye (Rhodamine 640) dispersed in a sample. A Nikon

inverted microscope (Eclipse TE-2000-S) with the 60�NA

¼ 1.2 Nikon objective lens was employed as a base for confo-

cal microscopy to focus the pump and probe beams onto a

sample. A picosecond optical parametric oscillator (Levante

Emerald, APE) pumped by Nd:YVO4 laser (picoTRAIN IC-

10000/532-4000, HighQ Laser) was served as a pump source

at 980 nm. The pump beam with the power of�10 mW was

coupled by a dichroic mirror into the same input microscope

port, together with the 543.5 and 632.8 nm laser beams.

The anti-Stokes and the reference Stokes fluorescence

signals were collected in the backward direction through the

microscope objective lens and directed to the PMT by the

spectrally separating dichroic mirror. The notch and the bar-

rier filters extract the ant-Stokes fluorescence signal from the

laser and other radiation backgrounds. The confocal micro-

scopy mode was realized by the use of a pinhole of diameter

�70 lm in the focal plane of the focusing lens of the PMT

detection system. A computer controlled XY galvano-scanner

(GSI Lumonics), a Z stage (Piezosystem Jena), together with

the detection system and a custom made software interface

enabled for generation of optical image with the speed of 1

frame per second and with a resolution of 500� 500 pixels.

This experimental setup allowed in-plane (x, y) scanning the

sample by the probe beam to obtain confocal imaging in the

region near the stationary positioned IR pumped beam, within

the area chosen by user through the software interface

between 10� 10 lm2 and 290� 290 lm2. The probe beam

waist diameter was estimated to be Ø0.8 lm, while the diam-

eter of the pump beam waist was measured to be �2 lm.

Therefore, the in-plane resolution of obtained images was

close to the wavelength of scanning laser beam ~0.6 lm. Due

to the oblong shape of the probe beam in the Z-direction, the

focal spot of the pump laser was aligned to be axial shifted to

2 lm 6 0.25 backward to the scanning plane of the probe

beam.

Solid film samples were prepared from the solution of

either polymethyl methacrylate (PMMA) or polystyrene (PS)

in chloroform. Rhodamine 640 was dissolved in chloroform

with a concentration of about 0.15 M and then was added to

polymer solution and stirred for�2 hs. The next step of the

sample preparation was the embedding YbLiF4 nanoparticles

(NPs), which played the role of nanoheaters, in the film. Two

techniques were used for preparation of the polymer films

with the NPs. A 0.1 wt% chloroform dispersion of�10 nm

diameter NPs was added to the polymer/dye solution and

dispersed uniformly; then a composite film of thickness

�25 lm was formed by drying the mixture on a glass sub-

strate (microscope coverslip) of 22� 22� 0.17 mm3

(PMMA-UDNP and PS-UDNP samples). Alternatively, a

coverslip was coated by a thin layer of aggregated NPs

(� 500 nm) by evaporation of water from the aqua disper-

sion of the NPs encapsulated in a phospholipid micelle;20

then the dye doped polymer solution was spin-coated on the

top of the NP layer to form a layered structure (PMMA-LNP

and PS-LNP samples). The second type of the sample, with a

thin layer of deposited NPs, was used for experimental mod-

eling of near-point heat source and ASL thermal imaging,

having in mind that the pump beam focused onto the plane

of NP layer will be absorbed by a tiny volume of NPs (� Ø2

lm� 0.5 lm) limited by the pump beam waist, which is at

least 5 times smaller than in-plane size of generated thermal

field (Fig. 2A). Correspondingly, this volume can be attrib-

uted to that of the source of local heating.

FIG. 2. Anti-Stokes images of heated area of polystyrene films with dis-

persed Rh640 as a probe dye and YbLiF3 nanoheaters as a heating agent:

(A) is an image of sample with layered structure; (B) is a picture obtained

for film containing uniformly distributed NPs. The size of images: (A)

35� 35 lm, (B) 200� 200 lm. Dark background corresponds to the room

temperature (� 25 �C) ASL (C) and (D) are the layouts of LNP (C) and

DUNP (D) samples and the corresponding schemes of laser induced heating.

FIG. 1. Experimental setup. M1, M4, and M5 are dichroic mirrors; M2, M3,

and M6 are mirrors; O1 is the objective lens; L1-L3 are lenses; T1-T3 are

telescopes; PH is a pinhole, NF is a notch filter at 632 nm; F1 is a band filter

for 535-650 nm.
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IV. RESULTS AND DISCUSSION

Our experiments with a small size (mass) of the sample

of the polymer films showed that a distinct temperature gra-

dient appears after a lapse of several seconds following the

turn-on of the heat source, when the transition processes are

already over, but the average temperature of the sample has

not increased significantly. Usually, this time interval lasts

about 1-3 seconds and could be interpreted as a quasi steady-

state.

Typical pictures of thermal images of the samples

(described in Sec. II) acquired in the anti-Stokes fluorescence

mode with local heating by a pump laser focused on the bor-

der of substrate and polymer film are shown in Fig. 2. To

minimize the temperature image distortion caused by the

local dye concentration inhomogeneity, the anti-Stokes

images where normalized to the Stokes images, performed

by 543.5 nm laser scanning. The thermal gradients generated

by the same pump beam in the samples prepared by two dif-

ferent techniques (Fig. 2(A) presents the PS-LNP sample

with thin NP layer; Fig. 2(B) - PS-UDNP sample with uni-

formly dispersed NP) demonstrate different slopes. A broad

temperature distribution in the sample with uniformly dis-

persed YbLiF3 nanoheaters (Fig. 2(B)) can be explained by

non-localized absorption of the pump laser beam (Fig. 2(D)).

In contrast to the spatially confined absorption in the thin

layer of NPs, which corresponds to localized heating (Fig.

2(A,C)), uniformly dispersed NPs absorb the pump emission

far away from the pump beam focus and the scanning plane,

resulting in a cone like heating source. Most likely, this non-

localized heating in the volume of the film produces a broad

temperature distribution in the plane of confocal imaging

(Fig. 2(B)).

Temperature distributions in the PMMA and PS films

(prepared in the same technological conditions and pumped

by the equal laser power) in the area near the heating source,

obtained from 2D sections of the ASL in-plane images of lay-

ered samples, are shown in Fig. 3. Temperature calibration

was performed by controlled uniform external heating of the

samples.

The results of our modeling, based on numerical solu-

tion of Eq. (1), are presented in Fig. 4 and are superimposed

with the experimental curves. For our fitting, we assumed

that the mass density and specific heat of our material (poly-

styrene and PMMA) are known (1.05 g/cm3 and 1.18 g/cm3;

1.3 kJ/kg�K and 1.46 kJ/kg�K, correspondingly).21,22

We also assumed that the heating layer did not change

thermal properties of the PS and PMMA samples.23 The tem-

perature distributions in (x,y) plane were recorded at 2

microns above the substrate, which corresponds to the focal

plane of the scanning beam. For the thermal conductivities

of polystyrene (0.08 W/m�K) and PMMA (0.15 W/m�K),21,22

the ratio of temperature differences (differences are taken

between 0 and 20 microns) agreed well with the experimen-

tal data obtained with the NPs layer as the heat source (see

Figs. 3 and 4). At the same time, the amount of heat required

to generate a temperature rise of 18 �C for the PS-LNP and

10 �C for the PMMA-LNP samples was found to be <1 mW

from our fitting (heat density integrated over the volume of

the heating body), which is in good agreement with transmis-

sion of both PS-LNP and PMMA-LNP samples at 980 nm

(�1 mW). A comparison of the simulated temperature distri-

bution for PS-LNP and PMMA-LNP samples with the exper-

imental profile (Fig. 4) revealed an extra broadening of

simulated distribution. The reason for this is the experimen-

tal uncertainty (6 0.25 lm) in the height of the scanning

beam focal plane and the thickness of the NPs layer.

It is worthwhile to note that it would be beneficial to use

a nonlinear mechanism of absorption (e.g., two-photon

absorption) for excitation of our heat source. The advantage

of nonlinear process is that, due to a higher power depend-

ence on the excitation intensity, the excitation occurs in a

spatially confined condition, which adequately corresponds

to a sub-microscale heat transport process in approximation

of a thermal point source. In principle, with our experimental

technique, one can thermally excite different sites of a

FIG. 3. Temperature distributions in the PMMA and PS films in the area

near the heating source obtained by ASL imaging of the layered samples.

LNP is the layered structure of NPs; UDNP is the uniformly dispersed NPs

in the polymer film. Standard deviation for the experimental curves is shown

as an error bar in left lower corner.

FIG. 4. Temperature distributions obtained with FE modeling vs experimen-

tal data.
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sample and study the transient behavior of the temperature at

a point separated by a few hundred nanometers from the heat

source to monitor phonon transport in nanostructured materi-

als, which is a subject of our future work. This is the key

innovation of our work that could have an important impact

for new developments in the area of high-efficient thermo-

electric materials. Especially, this technology is very promis-

ing if different tag molecules are used to study temperature

distribution in sub-hundred nanometers range, which is well

below the diffraction limit of optical measurements. The

concentration of nanoheaters in this case should be not more

than one per micron squared.

IV. CONCLUSIONS

A novel non-contact technique for meso-scale charac-

terization of phonon transport in thin film samples has been

demonstrated. A point heat source has been realized experi-

mentally and employed for a comparative study of thermal

conductivities of two polymeric films. The ratio of thermal

conductivities obtained in the experiment agreed well

with that predicted by simulations. Potential application of

anti-Stokes fluorescence technique to characterization of

nano-scale thermal transport has been discussed. Having

established the foundational for thermal applicability of this

technique for the first time in the present work, we believe

that its extension to the study of mesoscopic thermoelectric

materials is readily achievable. The ability to create quanti-

fiable and controlled local temperature gradients will enable

the study of electrically functionalized thermoelectric films,

for which thermal and thermoelectric property mapping can

occur simultaneously.
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3K. E. Goodson, O. W. Kädling, M. Rösler, and R. Zachai, J. Appl. Phys.

77, 1385 (1995).
4A. Rosencwaig and A. Gersho, J. Appl. Phys. 47, 64 (1976).
5S. Govorkov, W. Ruderman, M. W. Horn, R. B. Goodman, and M. Roths-

child, Rev. Sci. Instrum. 68, 3828 (1997).
6N. O. Birge and S. R. Nagel, Rev. Sci. Instrum. 58, 1464 (1987).
7D. G. Cahill and T. H. Allen, Appl. Phys. Lett. 65, 309 (1994).
8A. V. Kachynski, A. N. Kuzmin, H. E. Pudavar, and P. N. Prasad, Appl.

Phys. Lett. 87, 023901 (2005).
9A. V. Kachynski, A. N. Kuzmin, H. E. Pudavar, and P. N. Prasad, U.S.

Patent 7,413,341 (August 19, 2008).
10B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang,

A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z.

Ren, Science 320, 634 (2008).
11C. L. Choy, Polymer 18, 984 (1977).
12T. Batten, A. Manoi, M. J. Uren, T. Martin, and M. Kuball, J. Appl. Phys.

107, 074502 (2010).
13T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano,

Rev. Sci. Instrum. 78, 061301 (2007).
14J. Christofferson, K. Maize, Y. Ezzahri, J. Shabani, X. Wang, and A.

Shakouri. J. Electron. Packag. 130, 041101 (2008).
15J. L. Clark, P. F. Miller, and G. Rumbles, J. Phys. Chem. A 102, 4428

(1998).
16B. I. Stepanov and V. P. Gribkovskii, Theory of Luminescence (Iliffe

Books Ltd., London, 1968).
17M. S. Chang, S. S. Elliott, T. K. Gustafson, C. Hu, and R. K. Jain, IEEE J.

Quantum Electron. 8, 527 (1972).
18J. L. Clark and G. Rumbles, Phys. Rev. Lett. 76, 2037 (1996).
19H. S. Carslaw and J. C. Jaeger. Conduction of Heat in Solids (Oxford Uni-

versity Press, London, 1959).
20M. Nyk, A. Kuzmin, P. N. Prasad, W. Strek, and C. B. de Araújo, Opt.
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