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We report a reliable method to estimate the disorder broadening parameter from the scaling of the gaps of
the even and major odd denominator fractional quantum Hall states of the second Landau level. We apply
this technique to several samples of vastly different densities and grown in different molecular beam epitaxy
chambers. Excellent agreement is found between the estimated intrinsic and numerically obtained energy gaps
for the ν = 5/2 fractional quantum Hall state. Furthermore, we quantify the dependence of the intrinsic gap at
ν = 5/2 on Landau-level mixing.
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Disorder plays an important role in the formation of the
fractional quantum Hall states (FQHSs) observed in the two-
dimensional electron gas (2DEG).1,2 While qualitative aspects
of the effect of the disorder have been appreciated early on,1

the quantitative effect of the disorder on the properties such as
the energy gap of the FQHSs remains poorly understood.

Currently significant effort is focused on the FQHS at
the Landau-level (LL) filling factor ν = 5/2.3–22 This state
does not belong to the sequence of FQHSs described by the
theory of weakly interacting composite fermions (CFs)23,24

and, therefore it may have exotic quantum correlations which
are not of the Laughlin type.23,25 It is believed that the ν = 5/2
FQHS arises from a p-wave pairing of the CFs described
by either the Pfaffian26–29 or the anti-Pfaffian30–32 wave
function.

Agreement between the measured energy gap �meas
5/2 and

that from numerical studies is a necessary condition for an
identification of the ν = 5/2 FQHS with the Pfaffian wave
function.33–41 Gaps in numerical studies are always calculated
in the absence of any disorder and they must be therefore
compared to the measured gaps extrapolated to zero disorder,
also called the intrinsic gap �int. While the effect of disorder
on the gap is small for the most prominent FQHS at ν = 1/3,42

it is quite large at ν = 5/2.4 Hence a quantitative knowledge
of the gap suppression by the disorder and of the intrinsic gap
plays a significant role in the identification of the nature of the
exotic FQHSs in the second LL.

Three different methods have been used so far to obtain
the intrinsic gap at ν = 5/2 but, to date, they have not
yielded consistent results. A scaling of the measured gaps
of the even denominator FQHSs (Ref. 35) and an estima-
tion using the quantum lifetime13 found good agreement
between experimental and numerical intrinsic gaps. However,
extrapolations of �meas

5/2 to infinite mobility15,18 and a recent
estimation from the quantum lifetime17 found an intrinsic
gap three times smaller than expected. This situation calls
for a reexamination of the extraction of �int

5/2 from the
measurements.

We adopt the method of quantifying the effect of the
disorder using the even denominator FQHS (Ref. 35) and
propose a method using the two odd denominator FQHSs at
ν = 2 + 1/3 and 2 + 2/3. We find that, within experimental
error, these two methods give consistent results in samples of
very different densities and grown in different molecular beam
epitaxy (MBE) chambers. The intrinsic gaps �int

5/2 found are
in excellent agreement with gaps calculated from numerics
which include the effects of Landau-level mixing (LLM) and
finite extent of the wave function. Our results strongly indicate
that the paired-state Pfaffian is the correct description of the
ν = 5/2 FQHS. We also show that �int

5/2 cannot be reliably
obtained from the quantum lifetime or from extrapolation of
�meas

5/2 to infinite mobility. From the dependence of the intrinsic
gap of the ν = 5/2 FQHS on LLM we find that the ν = 5/2
FQHS becomes unstable beyond a threshold value of the LLM
parameter κth = 2.9.

There are two GaAs quantum-well samples used in this
study. Sample A grown at Princeton has a well width of 56
nm, a density n = 8.30 × 1010 cm−2, and mobility μ = 12 ×
106 cm2/V s. Sample B grown in a newly built MBE chamber
at Purdue has a width of 30 nm, a density n = 2.78 ×
1011 cm−2, and mobility μ = 11 × 106 cm2/V s. Both wells
are flanked by Al0.24Ga0.76As barriers with the Si donors placed
symmetrically from the well at 320 and 78 nm, respectively.
Samples are mounted in a 3He immersion cell described in
detail in Ref. 43.

Figure 1 shows the longitudinal Rxx and transverse Rxy

resistances as function of the magnetic field B in the second LL
(i.e., for 2 < ν < 3) for the two samples. The ν = 5/2 FQHS is
fully quantized in both samples; this state in sample A occurs,
to the best of our knowledge, at the lowest magnetic field of
1.37 T yet reported.15–17 Other FQHSs also develop. Notably,
sample B has a fully quantized 2 + 2/5 FQHS and an incipient
2 + 3/8 FQHS, hallmarks of the highest-quality samples.6,14

We note that the mobility of sample B is approximately a
factor of 3 lower than that of other samples exhibiting similar
higher-order FQHSs.6,14
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FIG. 1. (Color online) Magnetotransport data in the region of the
upper spin branch of the second Landau level. We mark the filling
factors ν of the observed FQHSs and the reentrant integer quantum
Hall states (RIQHSs). Note the vastly different densities of the two
samples.

Figure 2 shows the Arrhenius plots of Rxx for selected
FQHSs observed in the second LL of sample A. The �meas

extracted using Rxx ∝ exp (−�meas/2T ) are shown in Table I.
Since in this work we will analyze the gaps of the ν =
5/2, 7/2, 2 + 1/3, and 2 + 2/3 FQHSs, in Table I we
also consider samples for which the gaps for these four
FQHSs are available.14,15 For the sample in Ref. 14. �meas

7/2 =
240 mK.

In order to estimate the intrinsic gap �int
5/2 for the ν = 5/2

FQHS, an extrapolation of �meas
5/2 to infinite mobility has been

used recently.15,18 We argue that such an extrapolation is
inherently inaccurate. Indeed, our sample B shows unusually
large gaps in spite of a modest mobility μ = 11 × 106 cm2/V s
and, therefore, it is quite a bit off from the extrapolation
done in Refs. 15 and 18. We conclude that, as previously
noted,17–21 the intrinsic gap does not directly correlate with the
mobility.

The influence of the disorder on the gaps can be understood
within the framework of a widely used phenomenological
model44 according to which the quantized energy levels of the
2DEG are broadened by the disorder into bands of localized
states of width �. In this model the disorder broadening

FIG. 2. (Color online) Arrhenius plots used for the extraction of
the activation gaps in sample A.

TABLE I. Energy gaps �meas in units of mK for our samples.

Sample �meas
5/2 �meas

7/2 �meas
2+1/3 �meas

2+2/3

A 88 10 81 27
B 446 120 497 240

parameter � relates the measured and the intrinsic gaps

�int = �meas + �. (1)

This model was instrumental in the analysis of the gaps of the
FQHS in the lowest LL42,45–47 in terms of Laughlin’s wave
function25 and Jain’s CF theory23 and we will use it for the
FQHSs of the second LL.

We turn our attention to an independent extraction of � from
the measured data. As mentioned above, � has been estimated
from the quantum lifetime τq . The B-field dependence of the
envelope of the Shubnikov-de Haas oscillations at a fixed
temperature contains the exp(−π/ωCτq) multiplicative factor
from which τq and �SdH = h̄/τq is extracted.48 Here ωC is
the cyclotron frequency. The values found are summarized in
Table II.

� can also be found from a scaling of �meas of the even
denominator FQHS at ν = 5/2 and 7/2 with the Coulomb
energy EC = e2/εlB .35 Here lB = √

h̄/eB is the magnetic
length. Particularly, by assuming that the intrinsic gap of
the 5/2 and 7/2 is affected by LLM the same way, �int =
δintEC was found with the same adimensional intrinsic gap
δint. Therefore �even is extracted from �meas = δintEC − �even

equation as the negative intercept of the measured gaps of 5/2
and 7/2 FQHS versus EC . Such an analysis is shown in Fig. 3.
As seen in Table II and discussed in Ref. 15, �even obtained
this way may differ significantly from �SdH, by as much as one
order of magnitude.

In order to resolve this discrepancy we introduce a third
method of extracting � from the gaps of the odd denominator
states ν = 2 + 1/3 and 2 + 2/3. Recently we reported that the
equation �meas = h̄e|Beff|/meff − �odd describes the gaps of
the ν = 2 + 1/3 and 2 + 2/3 FQHSs in the second LL.14 Here
Beff = 5(B − Bν=5/2) is the effective magnetic field after flux
attachment from the CF theory.23,24 This result was interpreted
as being suggestive of Laughlin-correlated ν = 2 + 1/3 and
2 + 2/3 FQHSs.14 We use the equation above to extract �odd

for the four analyzed samples. Fits to the data are shown in
Fig. 3. �odd is the intercept of the fits and the vertical scale and
its values are listed in Table II.

We found that the disorder broadening terms �odd and
�even have similar values in each sample. Typical errors in
�meas of ±5% for gaps above 100 mK and of ±10% below

TABLE II. Parameters of samples considered. n is in units of
1010/cm2, � and �int

5/2 are in Kelvin.

Sample n w/lB �SdH �even �odd �int
5/2 δint

5/2

A 8.3 2.56 0.24 0.42 0.35 0.47 0.0080
B 27.8 2.52 2.04 1.65 1.55 2.04 0.019
Ref. 14 30 2.61 1.55 1.50 1.62 2.12 0.019
Ref. 15 16 2.55 0.23 1.16 1.01 1.33 0.016
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FIG. 3. (Color online) Comparison of the two methods of esti-
mating the disorder paramater � for the four analyzed samples. The
measured gaps of the even denominator FQHSs extrapolate to �even

at EC = 0, while those of the ν = 2 + 1/3 and 2 + 2/3 FQHSs to
�odd at the vanishing absolute value of Beff . The gray shadow is the
estimated error for �’s.

100 mK result in measurement errors in �, shown as a shadow
in Fig. 3, of ±12%. We conclude therefore that, within the
errors, the even denominator FQHSs at ν = 5/2 and 7/2 and
the two strongest odd denominator FQHSs at 2 + 1/3 and
2 + 2/3 yield the same disorder broadening in samples grown
in different chambers and covering a wide range of densities
and mobilities. We note that the same disorder broadening for
the above FQHSs described by different theories is possible
as they all originate from the same type of CFs. Indeed, the
2 + 1/3 and 2 + 2/3 FQHSs can be understood from motion
of flux-two CFs at a finite Beff , while the 5/2 and 7/2 are due
to paired flux-two CFs at Beff = 0.

�SdH and �odd determined from odd denominator FQHSs
in the second LL are not equal. This shows that level
broadening is governed by different mechanisms for the
low-field Shubnikov-de Haas oscillations and for the high-field
second LL physics. �SdH is therefore not expected to be
relevant in determining the intrinsic gaps of FQHS in the
second LL, including the ν = 5/2 FQHS. A similar conclusion
has also been reached for the FQHS of the lowest LL centered
around ν = 1/2.45–47

The experimentally derived �int
5/2 estimated from Eq. (1), to-

gether with the corresponding adimensional δint
5/2 = �int

5/2/EC ,
are found in Table II. For � we used the average of �even and
�odd. The comparison of the experimental and numerically
estimated intrinsic gaps must be performed at the same extent
of the LLM35–37 and of finite sample width38–41 as quantified by
the LLM parameter κ = EC/h̄ωC (Ref. 49) and adimensional
width of the quantum well w/lB , respectively. We find that
δint

5/2 = 0.019 listed in Table II for sample B and that from
Ref. 15 is only 19% larger than 0.016, the value calculated
from exact diagonalization for similar sample parameters.35

Also, δint
5/2 =0.0080, 0.019, 0.019, and 0.016, the values we

FIG. 4. (Color online) Intrinsic gaps at ν = 5/2 as function of the
LLM parameter κ . The dotted line is a linear fit through the data.

find in samples A and B and Refs. 14 and 15, compare well
with the values 0.014, 0.018, 0.018, and 0.016 we extract from
a recent exact diagonalization study.17 We note that, while
sample A and that from Ref. 15 do not have the same width
as that in Ref. 17, the previous comparison is meaningful
because of the relatively small contributions of finite width
effects.17 We conclude that the intrinsic gaps we find are in
excellent agreement with the numerically obtained gaps for
four samples of very different densities and mobilities, and
which were grown in different MBE chambers. These exper-
imental results, when combined with numerical results,33–41

strongly support the Pfaffian description of ν = 5/2
FQHS.

The data shown in Table II allows us to study the
dependence of the intrinsic gap obtained from measurements
on LLM. For a meaningful comparison of gaps in Fig. 4 we
plot δint

5/2 as function of the LLM parameter κ . The four samples
listed in Table II have different widths w, but have very similar
adimensional widths w/lB at ν = 5/2, and therefore the gap
suppression seen in Fig. 4 is solely due to LLM. We find a
decreasing δint

5/2 with an increasing κ , which is consistent with
expectations.17,36 By assuming a linear dependence for the
limited range of κ accessed we find δint

5/2(κ = 0) = 0.032 at no
LLM. This value compares well with ≈0.030, the numerically
obtained gap in the ideal 2D limit.17,33–35,39

From our data we also see that δint
5/2 extrapolates to zero

at κth = 2.9 threshold. We conclude that the ν = 5/2 FQHS
should not develop for κ > κth or, equivalently, for electron
densities lower than nth = 4.4 × 1010 cm−2 even in the limit
of no disorder. This result could explain the absence of the
ν = 5/2 FQHS in 2D hole samples50–52 in which, due to the
enhanced effective mass of the holes, values of κ lower than 3
have not been achieved.

Finally we note that the dependence of �meas
5/2 on the

density in an undoped heterojunction insulated gate field
effect transistor (HIGFET) sample has recently been fitted
to �meas

5/2 = αEC − �̃, where α and �̃ are variables.21 The
equation is very similar to the one we used and one could
mistakenly think that α is the intrinsic gap. However, in Ref. 21,
α is forced to be a constant of the fit. As discussed earlier and
also shown in Fig. 4, δint

5/2 is a strong function of LLM and,
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therefore, EC .17,36,37,49 The intrinsic gap is therefore expected
to change with the density. We conclude that, based on the
theory, the density-independent constant α = 0.004 26 is not
expected to be the intrinsic gap of the ν = 5/2 FQHS and that
�̃ is not the same disorder broadening as � we found in this
Rapid Communication.

In summary, we have demonstrated that the disorder
broadening can be reliably extracted from �meas of the
four major FQHSs at ν = 5/2, 7/2, 2 + 1/3, and 2 + 2/3
for samples over a wide range of densities and grown in

different MBE chambers. The obtained intrinsic gap of the
ν = 5/2 FQHS was found to be in an excellent agreement
with numerical results, lending therefore strong support to the
Pfaffian description of the ν = 5/2 FQHS.
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