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ABSTRACT 
 
The influence of very high heat fluxes (105 to 106 W/m²) on the boiling behavior of R404A are investigated. By 
using a new evaporator design it is possible to change the evaporating effects even at these high heat fluxes to bulk 
boiling. This paper focusses on the experimental analysis of the new evaporator by varying the parameters 
geometry, mass flux, subcooling and fluid velocity. The results are compared with experimental works and 
mathematical models at lower heat fluxes. The results show, that fluid velocity, mass flux and geometry have 
high  influence on the transferred heat  flow, while  the subcooling of the  liquid phase has only a small 
effect. 
 

1. INTRODUCTION 
 
Plastics are one of the most important material groups for engineering. In 2009 the worldwide volumetrically 
amount of manufactured plastics was in the same scale to the amount of manufactured steel. Witt (2006) showed 
that most of the manufactured plastics are processed in molds. The cycle time of molding is mostly determined by 
the cooling time (Johannaber, 2007; Menning, 2008). To reduce the cooling time, molds are cooled with water 
flowing through cooling channels. Steinko (2008) pointed out that water cooling is not possible for geometries like 
small cylindrical objects due to the required minimum cooling channel diameter of 8 mm. These areas in molds are 
called hot-spots and they dominate the cycle time (Menges and Michaeli, 2007). 
 
Several methods have been developed to cool hot-spots in molds. The most recent development is to cool the hot-
spots by refrigerant. There are two methods published of refrigerant-cooling: Cooling with R744 in an open loop or 
cooling with R404A in a closed-loop (Knipping, 2010). Both methods allow minimum cooling channel diameters of 
0.001 m. Challenging effects of using refrigerants in molds are high temperatures (up to 300 °C), geometrical 
influences (expansion valve about 0.2 – 1 m away from evaporator, surface topology), occurring high heat fluxes 
(up to 106 W/m²) and the design of the evaporator (redirectioning of the refrigerant flow in the small evaporator by 
180°). 
 
Boiling of refrigerants has been investigated by several authors exemplarily shown in table 1. The refrigerants are 
either pure HFC refrigerants or ternary HFC mixtures. Although several studies have been performed, none of them 
investigates heat fluxes as they appear in molds for plastic parts. To realize low molding cycle times the energy of 
the hot plastic parts has to be removed as fast as possible until the wall temperature of the processed plastic part is 
dropping below the removal temperature. Within the hot-spots the only way to accelerate the cooling time is to rise 
refrigerant mass flux. Within the test loop mass fluxes of 4800 kg/m²s and higher have been observed. Heat transfer 
at mass fluxes higher than 4000 kg/m²s have not been published so far. 
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Table 1: Recent exemplary studies of boiling refrigerants 
author year refrigerant mass flux heat 

flux 
work boiling 

behavior 
   kg/m²s kW/m²   

Greco et al. 2004 R-404A, R-410A 290-1100 11-39 experimental flow boiling 

Kim et al 2005 R-134a 285-1300 40-200 experimental flow boiling 

Sindhuja et al. 2008 R-407C 200-2000 5-80 experimental flow boiling 

Davide 2010 R-134a, R-125 200-600 9-53 analytical  

El-Nakla et al. 2011 R-134a 500-4000 50-90 experimental film boiling 

Chen et al. 2011 R-134a 60-480 6-90 experimental flow boiling 

 
To achieve quick response times of the expansion valve a magnetic expansion valve is used. After the magnetic 
expansion valve, the pre-expanded refrigerant is passed through a capillary tube to realize small cooling channel 
diameters. Depending on the inner diameter of the capillary and the occurring pressure loss, this section could nearly 
be described as a short tube orifice. Chen et al. (2004), Choi et al. (2004) and Nilpueng and Wongwises (2011) 
exemplarily investigated the behavior of refrigerant flow through short tube orifices, but none of them describes an 
expanded and (depending on the level of subcooling) partly evaporated refrigerant as working fluid. 
 
Surface topology is an important criterion for the critical heat flux. The influence of surface topology on initial 
nucleation sites has been described by Luke and Gorenflo (2000) and Sarwar et al. (2007) for a wide range of 
roughnesses and materials. In technical applications, such as cooling hot-spots in molds the surface of the evaporator 
is manufactured either by deep hole drilling or with electrical discharge drilling (EDM drilling). Both manufacturing 
processes generate characteristically surface topologies which haven’t been discussed so far. 
 
The present work focusses on investigating the effects taking place within a refrigerant-cooled hot-spot in molds. 
The refrigerant R404A is chosen because of the reachable low temperatures of evaporation at pressures between 0.1 
to 0.5 MPa. The steel used for molds usually has very low heat conductivity so low temperatures of the coolant are 
helpful to reach processable heat transfer rates and cycle times. It has to be noted that this work doesn’t focus on the 
detailed investigation of every effect inside the evaporator but to give a general introduction into this new kind of 
evaporator design for spot cooling and the industrial use of refrigerants in molds. 
 

2. EXPERIMENTAL SETUP 
 
2.1 Flow loop 
Figure 1 (top) shows a schematic diagram of the test setup used to investigate heat transfer at high heat fluxes. The 
test setup consists of a hermetically sealed circuit with a continuously working compressor, a condenser, the test 
section assembly in which the refrigerant evaporates, several valves to regulate the flow, a mass flow meter and 
instrumentation. Subcooling is adjusted by a separate closed loop with a heater and an evaporator linked to the test 
loop through a heat exchanger. The water-heated post-evaporator is installed to make sure that only gaseous, 
superheated refrigerant is sucked by the compressor. The thermostatic expansion valve is used to regulate the 
evaporation pressure. The phase of the refrigerant can be checked by sight glasses installed at several positions. 
 
Figure 1 (bottom) shows the state points of the loop in a pressure-enthalpy diagram. The refrigerant is compressed 
using a compressor (state point 1 to 2). To remove most of the refrigeration oil out of the loop an oil-separator is 
installed. The temperature of the compressed and uncondensed refrigerant is detected with a thermocouple (cp. 
figure 1 (top). The condenser is of a forced-convective type cooling the refrigerant from state point 2 to 3. The phase 
of the refrigerant (bubble-freeness) is checked by a sight glass. Pressure and temperature are measured at the shown 
positions of the loop. The refrigerant then passes a liquid-cooled subcooler to control the subcooling of the liquid 
refrigerant (state point 3 to 4). After that a Coriolis-type mass flow meter detects the density, the temperature and the 
mass flow of the liquid refrigerant. Before entering the test-section the pressure and temperature of the liquid 
refrigerant are measured to detect pressure drop. To control the mass flow a magnetic expansion valve is used. State 
variables of state point 5 could not be measured precisely due to the test section assembly. 



 
 2586, Page 3 

 

International Refrigeration and Air Conditioning Conference at Purdue, July 16-19, 2012 

To prevent evaporation inside the fluid line it is mounted concentrically inside the suction line. This is necessary 
because of temperatures between 60 °C and 150 °C during the molding process. To generate realistic results this 
design was also used for the test-section. Because of the concentricity the temperature at the fluid line outlet could 
not be measured. The pressure drop inside the capillary tube is depending on its diameter (0.5 to 1.5 mm) and length 
and can’t be measured due to the concentricity of the tubes as well. Leaving the test section, pressure and 
temperature of the evaporated refrigerant are measured and the vapor quality of the refrigerant is observed by a sight 
glass.  
 
The enthalpy of state point 6 is calculated by subtracting the enthalpy difference of the post-evaporator from the 
enthalpy difference between the points 4 and 1. The enthalpy difference of the post evaporator is calculated by an 
energy balance, measuring the water flux with a flow meter and two thermocouples detecting the difference of the 
water at inlet and outlet of the post-evaporator. The pressure in the suction-line is controlled by a thermostatic 
expansion valve working as a bypass line to the test-section. 
 

 

 
 

Figure 1: Experimental setup for heat transfer investigation at high heat fluxes. Top: Schematic of the test loop. 
Bottom: Pressure-enthalpy diagram (produced with CoolPack (Skovrup (2010)) 
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Figure 2 shows the assembly of the test-section referring to the components located within the dashed line in figure 
1. It contains of the evaporator, a heating element, fluid and suction line and the adiabatic housing. The housing is 
made of polypropylene covered with a thin film of aluminum to reduce radiation heat transfer. The evaporator 
consists of aluminum and is insulated with Polytetrafluoroethylene (PTFE) to reduce thermal conduction. Heat flux 
changes are realized by varying the diameter of the evaporators and the power of the heating element. The heating 
element is an electrical heater and covers the aluminum cylinder at the perimeter. 
 

 
Figure 2: Test-section assembly with the components (A) magnetic expansion valve, (B) fluid line, (C) data 

acquisition for thermocouples, (D) thermocouples (4 pieces), (E) suction line, (F) heating element, (G) evaporator 
and (H) adiabatic housing made of polypropylene (top part removed for photography) 

 
2.2 Data acquisition and uncertainties 
12 temperature and 5 pressure sensors are installed in the experimental setup (cp. figure 1). Each reported 
measurement is obtained as an average of approximately 1200 points obtained over 10 minutes of steady-state 
conditions. The electrical power to the AC heating elements within the test section is measured using a combined 
voltage and current measurement system which has an uncertainty of 0.5 % of full scale. The refrigerant mass flow 
is measured with a Coriolis-type mass flow meter with an uncertainty of 0.1 % of the reading within the 
measurement range of 0 to 0.025 kg/s. Pressures at different points in the loop are measured using absolute pressure 
transducers with a range of 3.5 MPa and an uncertainty of 0.05 % of full scale. All temperatures are measured using 
calibrated J-type thermocouples with an uncertainty of ±1 K. 
 
2.3 Experimental procedure 
The refrigerant used for the experiments is R404A; the oil circulation ratio (OCR) is less than 1 %. The mass flux is 
varied from 0.0014 to 0.0111 kg/s (5 to 40 kg/h). The pressure of the fluid is varied from 1.35 to 1.80 MPa, the 
suction line pressure is varied from 0.2 to 0.5 MPa. The different spot evaporators used for the experiments with 
their corresponding areas are listed in table 2. The electrical power of the heating element is adjustable from 0 to  
200 W. 
 

Table 2: List of used spot evaporators (cylindrical design) 
diameter in

mm 
length in  

mm 
area in 
m² · 10-4 

diameter 
in mm 

length in 
mm 

area in 
m² · 10-4 

1.50 41.83 1.99 4.30 32.99 4.60 

2.50 42.26 3.37 5.60 33.92 6.21 

3.00 37.47 3.60 5.70 35.11 6.54 

3.20 42.16 4.32 6.20 33.78 6.88 

3.50 42.33 4.75 6.60 33.07 7.20 

4.30 41.59 5.76 7.00 33.69 7.79 
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To identify the process, numerous preliminary tests have been performed. Chen et al. (2004) and Marcel et al. 
(2009) observed that fluid-to-fluid modeling is sustainable while observing the critical heat flux of refrigerants and 
water. Corresponding on the works by El Nakla (2011) fluid-to-fluid modeling is also possible for lower heat fluxes 
and boiling phenomena. Thus it is assumed, that the well-known Nukiyama-diagram for water is also negotiable to 
refrigerants. 
 
To achieve the presented results two different measurement methods have been performed. To determine the critical 
heat flux (CHF) measurement starts at subcritical heat flux with constant mass flux. Heat flux is then increased until 
wall temperature suddenly rises (ΔTCHF). To determine the Leidenfrost heat flux (LHF) measurement starts at 
supercritical heat flux with constant mass flux. Heat flux is then decreased until wall temperature suddenly drops 
(ΔTLHF) (figure 3). 
 
The second measurement method is used to map the industrial process: Within the molds the heat flux is always 
constant. The only variable to force bulk or film boiling is the mass flux of the refrigerant. Thus heat flux is held 
constant during the second experiments and mass flux is varied until temperature drops or rises according to the 
described methods above. 
 
The graph for wall temperatures is always characteristically formed: starting at wall temperatures of about 300 °C 
the wall is cooled by evaporating refrigerant. A characteristically phenomena of all experiments is the sudden rise of 
temperature derivation at 55 - 60 °C. Combined with the evaporation temperature of -25 °C this means wall-
superheat of 80 K according to the Nukiyama-diagram. At this temperature wall superheat is assumed to drop below 
the Leidenfrost-Point and bulk boiling is starting. The sudden drop of temperature could be explained following the 
lower dotted line in figure 3. According to the Nukiyama-diagram wall temperature has to drop immediately which 
could not be observed during the experiments (figure 4). The reason for this could be the position of the 
thermocouple (about 1 mm behind the surface) and the inertia of the surrounding material (aluminum). 
 

Figure 3: Nukiyama-diagram (schematic) with proceeded 
 measurement runs 

Figure 4: Characteristic graph 
 (experimental data) for 
 wall-temperatures  
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3. EXPERIMENTAL RESULTS 
 
3.1 Mass flux, critical heat flux and Leidenfrost heat flux 
In order to identify the influence of the mass flux on CHF and LHF a curve was constructed from the measured data 
as shown in figure 5. It is shown that CHF and LHFs derivation is much higher in the area of 0 to 5000 kg/m² s than 
in higher mass flux areas. The reason for this can possibly be found in the design of the spot cooling evaporator. 
High mass fluxes have only been reached with small evaporator diameters. Small evaporator diameters mean, that 
the area ratio between capillary and suction line is 2.5 (compared to more than 30 at larger evaporator diameters). It 
can also be observed, that LHF is always lower than CHF even at high mass fluxes and heat fluxes. According to the 
Nukiyama-diagram this means, that the characteristic form is also sustainable for high heat and mass fluxes. 
 
As shown in figure 6 the cooling time τ (cp. figure 4) strongly depends on the refrigerant mass flux. To get these 
results the aluminum cylinder has been charged with an amount of energy (40 kJ) which is estimated to be a typical 
amount of energy for a hot-spot in molds. The higher the mass flux and thereby the possible enthalpy of the 
refrigerant, the less time is needed to cool down the aluminum cylinder. The graph also shows that cooling time 
depends on evaporators’ diameter. The reason for this phenomenon is both, the bigger evaporator volume and the 
smaller heat flux due to the bigger heat exchanger area. Depending on the assumption, that in the regime of film 
boiling heat transfer is mainly of the convective type, a bigger heat exchange area also accelerates cooling. 
 

Figure 5: CHF and LHF as a function of mass flux Figure 6: Cooling time as a function of mass flux 
 
3.2 Subcooling 
The influence of subcooling is shown in figure 7. It can be stated, that subcooling has only a little effect on the 
critical heat flux at given geometries. At the same time, mass flux is ascending with rising level of subcooling. This 
effect can be explained looking at the experimental setup and the thermo physical properties of the refrigerant. After 
the magnetic expansion valve the liquid, non-evaporated refrigerant is lead through a capillary tube. This causes a 
loss of pressure and the refrigerant partly evaporates. Thus there is a mixture of liquid and evaporated refrigerant 
inside the capillary tube. It is assumed, that the liquid refrigerant covers the whole hydraulic diameter of the 
capillary due to inner atomic van-der-Waals forces. This leads to the conclusion that the evaporating refrigerant 
“behind” causes an acceleration of the liquid in the capillary tube. 
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Figure 6: Influence of subcooling on CHF and mass  flux 
 at different diameters of the evaporator 

Figure 7: Influence of nozzle diameter on spraying 
 behavior  

 
3.3 Spraying behavior 
Calculating the CHF using the method of Preusser (1979) for ternary mixtures and comparing it to the experimental 
data at given values of wall-superheat it can be stated that the experimental results are always above the calculated. 
Especially at low rates of subcooling this effect takes place. The reason for this can be the new evaporator design 
which forces bulk boiling even at high heat fluxes. 
 
As mentioned in chapter 1 the capillary tube could nearly be described as a short tube orifice or aperture causing a 
spray of refrigerant. Wozniak (2003) and Richter (2012) showed that spraying behavior of an aperture is strongly 
depending on Reynolds number of the fluid. The fluid velocity is the main parameter taking influence to the 
Reynolds number. As mentioned in section 3.2 fluid velocity rises due to accelerating evaporation effects in the 
capillary tube while having only low rates of subcooling. Thus the spraying behavior of the aperture changes from 
Rayleigh’s regime into atomization as shown in figure 7. Within the regime of atomization the diameter of the fluid 
drops are smaller than in Rayleigh’s regime. At the same time the velocity of the flying drops is rising following 
conservation of momentum. 
 
Within the field of film boiling a layer of evaporated refrigerant covers the heating area. Due to convective flow 
effects this layer has a reset force avoiding fluid drops to reach the hot surface. With increasing fluid drop velocity 
the drops are able to pass this layer and reach the hot surface changing the heat transfer effects from film boiling to 
bulk boiling. 
 

4. CONCLUSIONS 
 
To reduce the cycle time of molded plastic parts, evaporating refrigerants can be used for cooling. To analyze the 
influence of high heat fluxes (105 to 106 W/m²) a new evaporator design has been developed. This design forces the 
heat transfer even at this heat fluxes from film boiling to bulk boiling. The measured critical heat flux was higher 
than the calculated due to this effect. During the experiments, the mass flux was varied from 1000 to 22000 kg/m²s 
corresponding to flow rates of 0.0014 to 0.0111 kg/s (5 to 40 kg/h). The discharge pressure of the refrigerant was 
varied from 1.35 to 1.80 MPa, the suction line pressure was varied from 0.2 to 0.5 MPa, corresponding to an 
evaporation temperature of -31 to -6 °C. The subcooling of the liquid refrigerant was varied from 0 to 25 K. 
 
It was shown that mass flux has strong influence on critical heat flux and Leidenfrost heat flux, while subcooling has 
no effect on these. Subcooling has effect on evaporation of refrigerant inside the capillary tube and therefore at the 
fluid velocity. Fluid velocity influences the spraying behavior and the heat transfer mechanisms due to changing 
Reynolds numbers. 
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NOMENCLATURE 
 
EDM electrical discharge machining (-) 
PI pressure transducer (-) 
TI temperature transducer (-) 
M motor (-) 
PTFE Polytetrafluoroethylene (-) 
AC alternate current (A) 
OCR oil circulation ratio (%) 
CHF critical heat flux (W/m²) 
LHF Leidenfrost heat flux (W/m²) 
T temperature (K) 
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