
Purdue University
Purdue e-Pubs
International Refrigeration and Air Conditioning
Conference School of Mechanical Engineering

2012

Enhancement of Round Tube and Flat Tube-
Louver Fin Heat Exchanger Performance Using
Deluge Water Cooling
Yunho Hwang
yhhwang@umd.edu

Sahil Popli

Reinhard Radermacher

Follow this and additional works at: http://docs.lib.purdue.edu/iracc

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Hwang, Yunho; Popli, Sahil; and Radermacher, Reinhard, "Enhancement of Round Tube and Flat Tube-Louver Fin Heat Exchanger
Performance Using Deluge Water Cooling" (2012). International Refrigeration and Air Conditioning Conference. Paper 1264.
http://docs.lib.purdue.edu/iracc/1264

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/12982686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Firacc%2F1264&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1264&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1264&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Firacc%2F1264&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


 
 2331, Page 1 

 

International Refrigeration and Air Conditioning Conference at Purdue, July 16-19, 2012 

 
Enhancement of Round Tube-Louver Fin Heat Exchanger Performance  

Using Deluge Water Cooling 
 

Sahil POPLI, Yunho HWANG*, Reinhard RADERMACHER 
 

Center for Environmental Energy Engineering 
Department of Mechanical Engineering, University of Maryland 
4164 Glenn L. Martin Hall Bldg., College Park, MD 20742, USA 

 
* Corresponding Author Tel: (301) 405 5247, E-mail: yhhwang@umd.edu 

 
 

ABSTRACT 
 
An experimental study has been conducted to evaluate the performance of a compact round-tube louver-fin 
condenser, each with frontal areas of 0.25 m2 in both dry and wet conditions. Deluge water cooling is achieved by 
incorporating a perforated bottom plate-type water distributor on top of the round tube heat exchanger. Water is used 
as a refrigerant, and enters the heat exchanger tubes at 35°C temperature. Ambient air and deluge cooling water are 
both maintained at 22°C temperature. Heat exchanger capacity and air-side pressure drop are measured with the heat 
exchanger angle set at 0° and 21° from vertical, with a frontal air velocity of 1.4 m/s and 3.5 m/s without deluge 
water cooling, and a frontal air velocity of 1.4 m/s with deluge water cooling.  For both heat exchangers, the 
capacity was significantly enhanced with the use of deluge water cooling and with the heat exchanger angle set at 
21° from vertical. 
 

1. INTRODUCTION 
 
Compact round tube heat exchangers with plain plate or louver fin geometry are widely used as condensers and 
coolers in power generation, air-conditioning, refrigeration and process cooling applications. Typically air flows 
over the tube bundle through fin-side of the heat exchanger and condenses or cools the heat transfer fluid circulating 
through tube-side. Since heat transfer in such heat exchangers is constrained on air-side due to high thermal 
resistance, enhanced fin surfaces are typically utilized to increase fin-tube heat exchanger performance (Wang et al., 
1999). Extended surfaces are often incorporated with a series of flow interruptions such as louvers and off-strips that 
induce turbulent mixing of air flow and prevent growth of thermal boundary layer from leading edge (Chang and 
Wang, 1997). Due to low manufacturing cost louver fins are more commonly used to enhance heat transfer in fin 
tube heat exchangers.  

 
However, at high ambient air-conditions air-cooled even louvered fin round-tube heat exchangers do not provide 
sufficient cooling capacity and higher condenser temperature reduces thermodynamic cycle efficiency by up to 1% 
for every degree increase in condensing temperature (Leidenfrost et al., 1979). In addition, further increase in fin 
density provides marginal increase in capacity at the cost of considerable increase in air-side pressure drop. One way 
to enhance heat transfer in louvered fin round-tube heat exchangers is to utilize deluge or spray water cooling (Yank 
and Clark, 1975). The water forms a thin film over heat exchanger tubes which enhances air-side heat transfer 
through latent heat of evaporation at the interface and forced convection in liquid film. This forms the objective of 
work presented in this paper which experimentally evaluates round tube louver-fin heat exchanger performance as 
hybrid condenser in dry conditions and wet conditions using deluge water cooling. Condenser capacity of round tube 
heat exchanger has been experimentally evaluated in dry conditions by several authors in the past including, Rich 
(1973), Elmahdy and Biggs (1979),  Senshu et al. (1981), Gray and Webb (1986), Kang et al. (1994), Wang et al. 
(1996),  and Yan and Sheen (2000). Rich (1973) experimentally tested a four row heat exchanger and found that 
both heat transfer and friction factor to be independent of fin pitch. It was also found that heat exchanger capacity 
reduces with increase in number of tube rows at low Re and increases slightly for high Re numbers.  
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Elmahdy and Biggs (1979) presented an empirical correlation of dry case heat transfer in flat plate round tube 
condenser with multi-row staggered tube valid over 200 to 2,000 air side Re.  Senshu et al. (1981) conducted 
experiments on two-row round tube heat exchanger and found the effect of longitudinal and transverse fin pitch on 
heat transfer coefficient to be insignificant. Wang et al. (1996) found the effect of fin spacing on heat transfer 
capacity and effect of fin thickness on both heat transfer capacity and air-side pressure drop to be negligible. Yan 
and Sheen (2000) reported an increase in both heat exchanger capacity and air-side pressure drop for heat 
exchangers with smaller fin pitch. Therefore, there is an agreement that smaller fin pitch increases air-side pressure 
drop while heat transfer capacity is relatively unaffected. Kang et al. (1994) experimentally determined effect of fin 
spacing and geometry on condenser heat transfer and air-side pressure drop for slotted plain fin, wavy fin and plain 
plate fin heat exchangers with 2.0, 2.6 and 3.2 mm fin spacing for all fin geometries. Highest and lowest dry case 
condenser capacity was obtained for slotted plain fin and plain plate fin configuration, respectively.  
 
In comparison to condenser performance data of round tube heat exchanger in dry conditions, published 
experimental studies in wet conditions is limited in the open literature. Yank and Clark (1975) experimentally 
investigated the effect of spray cooling 1.26 to 2.52 ml/s water and ethylene glycol mixture on heat transfer capacity 
and air-side pressure drop of plain-finned, louvered, and perforated fin heat exchangers with 3.94 copper fins per 
cm. It was found that spray cooling does not affect pressure drop and heat transfer coefficient is enhanced by 
approximately 40% and 45% for air Reynold numbers of 1,000 and 500, respectively. The authors attributed a lower 
enhancement in condenser capacity at higher Reair=1,000 to break up of liquid film on fin surface.  Furthermore as 
spraying both water and ethylene glycol provided similar improvement in heat exchanger condenser capacity, it was 
concluded that thin film formation contributes more towards condenser capacity enhancement than latent heat of 
vaporization. 
 
COP enhancement and energy saving of approximately 211% and 58% was reported by Vrachopoulos et al. (2007) 
for typical refrigeration systems utilizing spray cooled round tube heat condensers. Leidenfrost et al. (1979) 
developed a mathematical model to evaluate condenser capacity of evaporative cooled plate-fin round-tube heat 
exchanger at different air and wetting water flow rates. It was found that the condenser capacity could be increased 
by a factor of approximately three and five for saturated inlet air and low inlet air humidity respectively in wetting 
conditions and refrigeration cycle COP could be increased by up to 37%. 
 
Therefore, it is established that deluge or spray water cooling could enhance heat transfer capacity of fin tube heat 
exchangers that could enhance power plant efficiency, refrigeration cycle COPs and offer substantial energy 
savings. However, there is no experimental study which focuses on condenser performance of compact round tube 
louver fin heat exchangers in hybrid conditions. Therefore, the objective of this paper is to experimentally evaluate 
condenser heat transfer capacity and air-side pressured drop for round tube louver fin heat exchangers in both dry 
and wet conditions and investigate the effect of wetting on heat exchanger heat transfer louvered-fin surfaces. 
  

2. EXPERIMENTAL FACILITY OVERVIEW 
 
This section describes the experimental facility presented in Figure 1 used for testing the condenser performance of 
round-tube louvered-fin heat exchanger in dry and wet conditions. The experimental setup mainly consists of air-
side, refrigerant-side and wetting-water side loop which are discussed in Sections 2.1, 2.2 and 2.3, respectively. 
Table 1 presents the specifications for off-the-shelf round-tube louvered-fin test heat exchanger which is mounted in 
the test section of the experimental setup shown in Figure 1. 
 
2.1 Air-side Loop 
The schematic of air-side loop in experimental facility which is a typical calorimetric wind-tunnel consisting of an 
axial fan, nozzles, air-mixer, guide vanes, visualization section, heat exchanger and wetting water drain is presented 
in Figure 2. Variable frequency drive (VFD) controlled the speed of axial fan, which drives the air-flow out of the 
wind tunnel at the desired test case velocity. Heat exchanger was installed in the wind-tunnel with a provision of 
varying angle of inclination of heat exchanger with vertical from approximately 0° to 60° as shown in Figure 2. 
Relative humidity (RH) and temperature of air were recorded at inlet and outlet of heat exchanger using a PT 100 
RH sensor and a 3x3 T-type thermocouple grid respectively. Air mixer, guide vane and settling means were installed 
to ensure uniform flow and accurate measurement of RH and temperature measurement at the outlet.  
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Figure 1: Experimental facility used for testing the condenser performance of round-tube louvered-fin heat 
exchanger in dry and wet conditions. 

 
 

Table 1: Specifications for round tube heat exchanger. 

Parameter Value 
Tube Configuration Staggered Divergent 

Number of Tube Banks 4 
Number of Tubes per Bank 20 

Tube Length (mm) 454 
Tube Outer Diameter (mm) 10.6 

Tube Thickness (mm) 0.35 
Tube Horizontal Spacing (mm) 17.8 

Tube Vertical Spacing (mm) 22.9 
Fins per Inch 16 

Fin Thickness (mm) 0.18 
Heat Exchanger Length (mm) 406 
Heat Exchanger Width (mm) 101 

 

 
 

Figure 2: Schematic of air-side loop in experimental facility 
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The differential pressure across the heat exchanger and nozzles was measured using differential pressure transducer 
in accordance with ASHRAE Standard 41.2 (1987). The differential pressure across the nozzles was then used to 
calculate the air velocity and flow rate. Heat exchanger was sealed at the walls of test section to prevent bypass of 
air-flow and entire air-side loop is closed to minimize energy-losses. 

 
2.2 Refrigerant Loop 
Schematic of refrigerant-side loop in experimental facility is presented in Figure 3. Hot water used as heat transfer 
fluid enters the test heat exchanger at 35°C and is cooled by air flowing through louver fins across the condenser 
tubes in dry case tests. When wetting water was used a two-phase flow of air and wetting water cools the heat 
transfer fluid flowing through condenser tubes. Temperature of hot water was measured at inlet and outlet of test 
exchanger using high precision PT 100 resistance temperature detector (RTD). Tap water was used as hot water 
fluid. Valve V2 provided water used for priming the centrifugal pump prior to start-up. A 0.75 kW VFD controlled 
centrifugal pump drives flow through hot-water loop which consists of a water filter placed before turbine flow 
meter. The desired temperature at test exchanger inlet was maintained using heat supplied by a typical R-22 heat 
pump cycle using 4 kW fixed speed compressor, and a 4 kW auxiliary heater. Heat pump cycle was incorporated 
with a bypass valve between the compressor outlet and evaporator outlet, which enabled reducing the capacity of 
test heat exchanger condenser without changing the speed of the compressor by allowing certain amount of 
refrigerant to bypass from the compressor discharge line back to suction line. A 15 kW water chiller was utilized to 
cool overheated water and serves as additional temperature control along with bypass and temperature control 
valves.  
 

 
 

Figure 3: Schematic of hot water loop in experimental facility 
 
2.3 Wetting-Water Loop 
Figure 4 presents the schematic of hot water and wetting water loop in experimental facility. Deluge water required 
for testing condenser performance in wet conditions was distributed evenly over test round tube heat exchanger 
using a perforated bottom tray-type applicator shown in Figure 5 which was designed to allow 0.16 l/s wetting water 
to fall over heat exchanger tubes. Tap water was used as wetting water fluid. Valve V6 provided water used for 
priming the centrifugal pump prior to start-up. Temperature of wetting water was measured at inlet and outlet of test 
exchanger using high precision PT 100 RTD. A 0.25 kW fixed speed centrifugal pump drives flow through wetting-
water loop which also consists of a turbine flow meter. The wetting water flow can be controlled using ball-valve 
V7 shown in Figure 4. Wetting water can be cooled or kept at a constant inlet temperature using a 15 kW vapor 
compression water chiller.  
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Figure 4: Schematic of hot water and wetting water loop in experimental facility 
 
 

                                                        
 

Figure 5: Perforated bottom plate-type water distributor on top of round tube heat exchanger 
 

 
2.4 Test Conditions and Measuring Instruments 
Experimental test matrix, and air, refrigerant and wetting water parameters for testing round-tube louver-fin heat 
exchanger are summarized in Tables 2 and 3, respectively. Dry case tests were performed at 1.4 m/s and 3.5 m/s air 
velocity with heat exchanger at 0° and 21° angle, and at 1.4 m/s with heat exchanger at 0° and 21° angle for wet 
case.  Heat exchanger was not tested at higher air velocity as wetting water was blown out of the condenser.  Table 4 
summarizes the systematic error of each instrument used in the experimental analysis.  
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Table 2: Experimental test matrix for round-tube louver-fin heat exchanger 

Test No. Case Air Velocity (m/s) Angle1  
1 Dry 1.4 0° 
2 Dry 3.5 0° 
3 Wet 1.4 0° 
4 Dry 1.4 21° 
5 Dry 3.5 21° 
6 Wet 1.4 21° 

                    Note: 1. Angle of heat exchanger with the vertical. 
 

Table 3: Air, refrigerant and wetting water parameters for testing round-tube louver-fin heat exchanger 

Parameter Average Value Unit 
Air Parameters 

Inlet temperature 294.5 to 295.1 K 

Heat exchanger frontal air velocity 
1.2 m/s 
3.5 m/s 

Heat exchanger angle with vertical 0°, 21° degrees 
Refrigerant Parameters 

Inlet temperature 308 to 308.4 K 
Mass flow rate 2.9 m3/s*(104) 

Wetting-Water Parameters 
Inlet temperature 294.5 to 295.1 K 
Mass flow rate 1.6 m3/s*(104) 

 
Table 4: The systematic error of each instrument used in the experiment 

Instrument Type Range 
Systematic 
Uncertainty 

Unit 

Water mass flow meter Turbine 0.63 to 6.3 ±1% full scale m3/s*(104) 
Wetting water mass flow meter Turbine 1.1 to 10.1 ±1% full scale m3/s*(104) 

RTD PT 100 173 to 673 ±0.06 K 
Thermocouple T-Type 73 to 623 ±0.5 K 

Relative humidity sensor PT 100 0 to 90 ±2 % 
Differential pressure transducer Strain 0 to 1245.0 ±1% full scale Pa 

 
 

3. Results and Discussion 
 

Experimentally measured air, refrigerant and wetting-water parameters such as flow rate, temperature and relative 
humidity are used to calculate condenser heat transfer capacity in dry and wet conditions. Experimental test 
conditions for each test in Table 2 are summarized in Table 3.  
 
Dry case air-side capacity, ሶܳ  .is calculated using Equation (1) ,ݕݎ݀,ܽ

                                          ሶܳ ௔,ௗ௥௬ ൌ ௔ߩ	 ∗ ௔ܸ ∗ ௔݌ܥ ∗ ሺ ௔ܶ,௢௨௧ െ ௔ܶ,௜௡ሻ                                (1) 

Both dry and wet case refrigerant-side capacity, ሶܳ  .is calculated using Equation (2) ,ݎ

                  ሶܳ ௥ ൌ 	 ሶ݉ ௥ ∗ ሺ݄௜௡ െ ݄௢௨௧ሻ                                                            (2) 

Equation (3) is used to calculate dry case energy balance, ሶܳ  .ݕݎ݀,ܾ݁
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                                                                                      (3) 

Wet case air-side capacity, ሶܳ  .is calculated using Equation (4) , ݐ݁ݓ,ܽ

                             ሶܳ ௔,௪௘௧ ൌ ௔ߩ	 ∗ ௔ܸ ∗ ሺ݄௢௨௧ െ ݄௜௡ሺ1 െ ሺݔ௢௨௧ െ  ௜௡ሻሻሻ                         (4)ݔ

Wetting-water capacity, ሶܳ  .is calculated using Equation (5) , ݓݓ

ሶܳ௪௪ ൌ ௪௪݌ܥ	 ∗ ሾ ௪ܶ௪,௢௨௧ሺ݉௪௪ െ ሺݔ௢௨௧ െ ݉௔,௢௨௧ሻ	௜௡ሻݔ െ ሺ ௪ܶ௪,௜௡ ∗ ݉௪௪,௜௡ሻሿ        (5) 

Equation (6) is used to calculate dry case energy balance, ሶܳ  .ݐ݁ݓ,ܾ݁

                                                                             (6) 

The total uncertainty of measured variables such as air-aide pressure drop is calculated using the sum of systematic 
error of each instrument as summarized in Table 4 and random error which is the standard deviation of measured 
variable. 
 
Round tube heat exchanger capacity, air-side pressure drop and energy balance along with measurement uncertainty 
is presented in Table 5. The energy balance in both dry and wet case studies was found to be less than 5%. 
 

Table 5: Round tube heat exchanger capacity, air-side pressure drop and energy balance along with measurement 
uncertainty. 

S. No Case Air Velocity (m/s) Angle1 
Heat Exchanger 

Capacity (W) 
Air-side Pressure 

Drop (Pa) 
Energy Balance 

(%) 
1 Dry 1.4 0° 2912± 211 27±13 4.2 
2 Dry 3.5 0° 5069±203 132±14 3.0 
3 Wet 1.4 0° 7652±227 64±14 2.0 
4 Dry 1.4 21° 2953±228 29±13 1.2 
5 Dry 3.5 21° 5128±230 137±14 4.2 
6 Wet 1.4 21° 8311±291 67±14 0.6 

 
 
A comparison of heat exchanger capacity and air-side pressure drop at 0° and 21° angle for both dry and wet 
conditions at different air-velocities is presented in Figures 6 and 7, respectively. As shown in Figures 6 and 7, 
increasing air velocity from 1.4 m/s to 3.5 m/s enhances the condenser heat transfer capacity and air-side pressure 
drop by approximately 74% and 380%, respectively, for both 0° and 21° angle of heat exchanger with the vertical. 
The capacity increase is achieved at the cost of a substantial increase in air-side pressure drop. Therefore, it is clear 
that increasing air velocity to 3.5 m/s is not a good option to enhance heat exchanger condenser capacity. It is also 
observed that in dry conditions, changing the angle of heat exchanger has a negligible effect on heat transfer 
capacity and on air-side pressure drop for round tube louver-fin heat exchanger.  
 
Deluge water cooling was provided to condenser by wetting water at approximately 22°C which flowed through a 
perforated bottom tray type applicator installed on top of test heat exchanger. At 1.4 m/s air velocity deluge water 
cooling enhances heat transfer capacity of the heat exchanger by approximately 162% and 181% and air-side 
pressure drop by approximately 137% and 135% for 0° and 21° angle, respectively with the vertical. As a result it is 
concluded that increasing the heat exchanger angle enhances heat transfer rate of the condenser due to enhanced 
drainage of wetting water through narrow fin spacing. Similar to the dry case results, changing the angle of heat 
exchanger resulted in a negligible change in air-side pressure drop for round tube louver-fin heat exchanger tested at 
1.4 m/s in both dry and wet conditions.  
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Figure 6: Comparison of round tube heat exchanger capacity at 0° and 21° angle for both dry and wet conditions at 

different air-velocities. 
 

 
 
Figure 7: Comparison of round tube heat exchanger airside pressure drop at 0° and 21° angle for both dry and wet 

conditions at different air-velocities. 
 

 5. CONCLUSIONS 
 
Round tube louver fin compact heat exchanger condenser’s capacity and air-side pressure drop are experimentally 
evaluated in both dry and wet conditions. It is found that under dry conditions increasing the air velocity from 1.4 to 
3.5 m/s enhances heat exchanger capacity and air-side pressure drop by approximately 74 % and 380%, respectively 
in case of both 0° and 21° angle with vertical. Thus increasing the air velocity in dry conditions causes a much 
higher pressure drop that does not justify the increase in heat exchanger capacity. Furthermore, in dry conditions 
there is no significant effect of angle of inclination on both heat exchanger capacity and air-side pressure drop. 
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Under wetting conditions, heat exchanger capacity increases by 162% and 181%, and pressure drop increases by 
137 % and 135 %, respectively for the case of 0° and 21° angle with vertical. Therefore, use of wetting water and 
change in angle of the heat exchanger with the vertical, offer better options for enhancing condenser heat transfer 
capacity compared to increase in  air velocity. Thus, it is clear that significant capacity enhancement can be achieved 
by deluge cooling of compact round tube heat exchangers. Moreover, this work lays the foundation for several 
comprehensive studies that could be performed in the designed experimental facility to test the effect of wetting on 
hot heat exchanger surfaces by varying wetting water flow rate, angle of inclination, air velocity, orientation of heat 
exchanger tubes, fin geometry and applying various coatings to develop best wetting strategy for different heat 
exchangers.  It is envisaged that such studies would enhance understanding of water hold up mechanisms, wetting 
water application methods, expected heat and mass transfer improvements, and optimized geometry for sufficient 
water evaporation to maximize energy efficiency, and water economy for compact round tube heat exchangers.  
 

NOMENCLATURE 
 
COP coefficient of performance  (–) Subscripts 
h enthalpy (J/kg) a  air 
ሶ݉ 	 mass flow rate (kg/s)                                         eb  energy balance 
ሶܳ  heat transfer rate (W)                                            in   inlet stream 
ρ density (kg/m3)                                      out  outlet condition 
T temperature (°C)                                            w   water 
V volume flow rate (m3/s)                                         ww wetting water 
x humidity ratio (–)   
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