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ABSTRACT 
 
This study experimentally investigated the frost growth on louvered folded fins in outdoor microchannel heat 
exchangers used in air-source heat pump systems. The effects of surface temperature and fin geometries on the 
performance of the microchannel heat exchangers under frosting condition were studied. 7 fin samples with various 
fin width, fin height and fin density were tested in controlled laboratory conditions that replicated those of actual 
heat pump systems in winter season. The fin surface temperature was experimentally estimated with the novel 
methodology developed in the present study. Experimental data of local frost thickness, air pressure drop across the 
coils, time of frost-defrost cycles and heat transfer rates were recorded for heat exchangers operating in actual 
transient frosting conditions. Data showed that the frosting time and the frost growth rates were depended mainly on 
the local fin surface temperature. A set of empirical correlations were developed to predict the frost thickness on fin 
leading edge and the reduction of air face velocity due to air pressure drop across the frosted coil during frosting 
operation. The correlations aid to calculate the instantaneous air-side Reynolds numbers during frosting operation of 
the fin samples. These are critical for predicting the heat transfer rates of the microchannel coils in quasi-steady state 
frosting operating conditions.  
 

1. INTRODUCTION 
 
Air source heat pump systems are used for heating and cooling of residential and commercial buildings all year 
around. Their outdoor coils accumulate frost on their surface in winter operation mode and defrost cycles need to be 
periodically executed in between the heating cycles. Microchannel coils have been employed recently in heat pump 
applications to replace conventional fin and tube coils due to their compactness, lower coil weight and less 
refrigerant charge which could lower the direct contribution to global warming due to potential refrigerant leakage 
(Garimella, 2003; Kim and Groll, 2003; Kim and Bullard, 2002; Park and Hrnjak, 2007). During heating mode, the 
energy performance of heat pump systems with microchannel outdoor coils are generally low due to a higher 
frequency of defrost cycles (Kim and Groll, 2003; Padhmanabhan et al., 2008).  
There are several parameters that affect frost formation on outdoor coils, such as air velocity, air humidity, air 
temperature, cold surface temperature (Kondepudi and O'Neal, 1989; Lee et al., 1997) surface energy and fin-base 
surface microscopic characteristics (include coatings and roughness) (Na and Webb, 2003; Shin et al., 2003), fin 
geometry and coil water retention after defrost cycles (Xia et al., 2006). 
Kim and Groll (2003) studied two microchannel geometries with different fin density and coil orientations under 
frosting condition and concluded that water drainage and refrigerant distribution in headers needed to be improved 
for achieving a better frosting performance. Xia et al. (2006) investigated five louvered-fin flat tube microchannel 
evaporators experimentally and observed that water retention has a significant effect on the air pressure drop in the 
next cycles. In another study, Zhang and Hrnjak (2010) investigated frosting performance of parallel-flow parallel-
fin (PF²) flat tube microchannel heat exchangers with horizontally installed tubes. The authors observed an 
improvement in frosting performance over a conventional serpentine fin which was attributed to better drainage 
capability of the PF² heat exchanger. Padhmanabhan et al. (2008), on the other hand, observed that removing the 
water residual at the end of the defrost cycle by flushing the microchannel coil with pressurized nitrogen improved 
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the next frost cycle time by only 4%. The preliminary results of this study (Moallem et al., 2012a) also showed that 
water retention, which was assumed to be one of the main reasons of faster frost growth on microchannels, is not the 
dominant factor affecting the frost, even though it seems to have some effects on the air side pressure drop. The key 
parameters that affect frost nucleation and growth were observed to be fin surface temperature (Moallem et al., 
2012a) and the fin geometry. In several previous studies on microchannel heat exchanger in the literature, the 
geometries were varied to search for the best option for thermal performance. As a result, the effect of geometry 
modification was coupled with the effect of surface temperature change. To isolate and study the effect of surface 
temperature, a new methodology was developed by the authors that measured and controlled the fin surface 
temperature independently and isolated its effects from the geometry effects (Moallem et al., 2012c). The 
experimental data of authors' previous work are used in the present study. 
Although a number of studies are available on frosting behavior of microchannels, their findings are limited to a 
limited number of geometries tested. The essence of developing an empirical correlation aims to unite previous 
findings into a general form that could be employed for a variety of geometries. The most important correlations that 
would be needed are for the frost thickness, instantaneous air face velocity, and instantaneous heat transfer 
coefficient. In the present study, new correlations for frost thickness correlation and the reduction of the air face 
velocity are developed and discussed. The correlations were verified against experimental data. . The scientific merit 
of this work is a fundamental understanding of frost growth, which changes the air side hydraulic geometry for the 
various geometries of folded louvered fins of microchannel heat exchangers. Once the instantaneous hydraulic 
geometry and air velocity are determined during the frost period, the Reynolds numbers are calculated. These 
numbers could be used for the development of instantaneous heat transfer coefficients during frosting operation, 
which is a future extension of this work.  
 

2. EXPERIMENTAL SETUP 
 
The fin samples are one column of louvered fins (15 cm in length) cut from commercially available microchannel 
coils. The tubes of this one column were eliminated and heat conduction was adopted in cooling the samples. This 
approach helped to eliminate the effect of different internal tube designs and microchannel ports and ensured a 
uniform one dimensional conduction heat transfer. A typical fin sample and schematic can be seen in Figure 1. The 
detail geometry of the samples is shown in Table 1.  
In order to remove the heat from the sample fin, or cool it to the desired temperature, a method originally proposed 
by Thomas et al. (1999) was used. ThermoElectric Cooling (TEC) modules were installed, in each side of the 
samples to remove the heat and control the fin temperature as shown in Figure 2. With this configuration, 
thermocouples at the base of the fins samples showed a constant temperature of about -5, -8 and -11°C in each test. 
An air flow test set up was designed and built in laboratory to control the test condition specified in (AHRI, 
Standard 210/240, 2008) for heat pump system performance rating. The apparatus and the vice that holds the sample 
were placed inside a large air tunnel as shown in step 4 at the top and component 2 at the bottom of Figure 2. The 
tunnel is a close loop duct system equipped with ultrasonic humidifiers, refrigeration coil, electrical heater, and a 
centrifugal variable speed fan. The inlet air is controlled at 1.67/0.56°C (35/33°F) dry bulb/wet bulb temperature 
(~82% RH).  
All experimental tests were conducted with the fin sample initially in dry condition. Each test started with air at 
1.5m/s face velocity on fin samples. Fan was kept at constant RPM throughout the entire test and air face velocity 
was allowed to drop. This method of testing was preferred over a constant air velocity method since it was closer to 
the actual operation of the outdoor evaporator coils in air-source heat pump systems. More details about 
experimental setup can be found in Hong et al. (2012).  
Frost thickness was measured with a magnifying high resolution CCD (Charge-Coupled Device) camera that has a 
borescope probe. The value of frost thickness was obtained by scaling high resolution images using special imaging 
computer software (iView PC) with an accuracy of ±0.03mm. The uncertainty was calculated using uncertainty 
propagation calculation which showed 12% on air side and 8% on conduction side. More details about the 
instrumentation and test procedures are in Hong (2011) and Hong et al. (2012). The verifications of the 
instrumentation connectivity, accuracy and validation of proper data recording were demonstrated through a set of 
validation tests called calorimeter tests. Experimental validation tests included the heat balance verification (two 
methods of air enthalpy method vs. conduction heat transfer), performed on all of the fin samples which showed the 
difference never exceeded 15% in dry tests and during quasi steady state periods of the frosting tests (Moallem et al., 
2012d). 
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Fin 
Depth 
(Ch_d) 
 (mm)

Fin 
Width 
(Ch_w) 
 (mm)

Channel 
 Height 
(Ch_h) 
(mm)

Fin 
Density 
 (FPI)

Tube 
thickn
ess 
(mm)

Fin 
Thick
ness 
(mm)

Fin type

No 
of 

louve
rs

Louver 
 pitch 
(mm)

Louver 
 angle 
(Deg)

Louver 
 
Height 
 (mm)

Louver 
 

Length 
 (mm)

1 27.0 8.0 2.34 10.4 1.8 ~0.1  Flat fin corrougated - - - - -
2 27.0 8.0 1.77 13.6 1.8 ~0.1 Louvered 16 1.50 ~30 0.22 6.5
3 26.0 7.6 1.15 20.3 1.4 ~0.1 Louvered 24 0.94 ~30 0.09 6.0
4 25.0 10.0 1.21 19.4 1.7 ~0.1 Louvered 18 1.22 ~30 0.24 7.5
5 25.0 13.0 1.20 19.6 2.0 ~0.1 Louvered 20 1.23 ~30 ~0.21 9.5
6 30.0 8.1 1.27 18.5 1.4 ~0.1 Louvered 28 0.86 ~30 ~0.2 7.0
7 19.0 8.0 1.36 17.4 3.0 ~0.1 Louvered 16 0.94 ~30 ~0.2 6.5

Sa
mp
le 
No.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Schematic drawing of a microchannel sample with geometrical parameters shown in the left side of the 
figure. (These drawings were made at Oklahoma State University and they were not given by the 
manufacturers). One of the fin samples is shown on the right side of the figure. 

 
Table 1: Details of the geometries of the microchannel fin samples used in the present study 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2: Procedure for the preparation of the test assembly set up inside the wind tunnel (top) and schematic of air 
tunnel or airflow loop (bottom).  
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3. RESULTS AND DISCUSSION 
 
3.1 Visual Observations  
Frost growth pattern on microchannel fin sample 2 is shown in Figure 3. Similar results were observed for other 
samples (Moallem et al., 2012c). The location of the camera was in the center of the 6 inch long sample. Figure 3 
shows the frost accumulation over time; the frost time is measured from the time the air flow was started on the cold 
sample to the end of the frosting period, that is, when the air face velocity reached 30% of its initial value. There 
were not significant visual differences between the frost layers that grow on different geometries. The end of the 
cycle occurred at a time when the air gaps between the fins were almost completely blocked by frost. 

 
 
 
 
 
 
 
 
 
 
 
 

3.2 Frost Empirical Correlation, Scope and Fundamentals  
The effect of various surface temperatures and geometry were previously published in authors previous work 
(Moallem et al., 2012c). In this section, a new set of frost correlations were developed and verified against 
experimental data. The fundamental frost formation theories in the literature associated the frost formation rate with 
vapor pressure of the air and temperature at which frost forms, which is basically the surface temperature. In 
crystallization theory, for the phase transition of the water vapor into ice crystals, air should be in a supersaturation 
level. Air supersaturation (in this paper we refer to this quantity as frost number, Fs) is the driving force for 
migration of water vapor particles and their deposition on the cold surface which is defined as the following (Na and 
Webb, 2004; Sanders, 1974): 

 

ݏܨ ൌ ܵ ൌ  ௉ೌ೔ೝି௉ೞೠೝ೑

௉ೞೠೝ೑
              (1) 

ߜ ൌ ݂൫ݐ௧, ௦ܶ௨௥௙, ௔ܶ௜௥, ߱௔௜௥, ߜ            ൯ݕݎݐ݁݉݋݁ܩ ൌ ݂ሺ݋ܨ, ,ݏܨ ,௪݄ܥ :ݕݎݐ݁݉݋݁ܩ        ሻݕݎݐ݁݉݋݁ܩ ,௛݄ܥ  ௗ        (2)݄ܥ

ߜ ൌ
ݐ

ሺ݄ܥ௛/2ሻ                  (3) 

δ is dimensionless frost thickness and is unity when the free flow area between two adjacent fins is completely 
blocked by frost. As data on Figure 4 shows, the frost thickness starts from 0 at the beginning of the test and reaches 
near 1 at the end. For geometry parameters, we observed that except than a few discrepancies, three parameters of 
fin pitch (or ݄ܥ௛), fin length ሺ݄ܥ௪ሻ and fin depth ሺ݄ܥௗሻ (as shown in Figure 1) could predict the experimental 
data within sufficient accuracy.  
 
3.3 Frost Thickness Correlation 
In order to predict the frosting behavior of microchannels, it should be pointed out that the air side free flow 
geometry changes during frost period. This observation is the key to calculate the correct instantaneous Reynolds 
number in quasi-steady state operation. Although the frost thickness was measured only at the leading edge, this 
parameter is sufficient to calculate the critical Reynolds number, which is the Re number estimated at the minimum 
cross section area. The authors of the present paper concluded that some of the geometrical parameters in the frost 
thickness correlation had to be in dimensional form in order to provide better accuracy of correlation when 
compared to the experimental data. Minimizing root mean square errors was the approach taken to find the 
coefficients of the correlation, which is as follows: 

Figure 3: Microchannel sample 2 under frosting conditions. a, b, c and d represents time of 0, 8, 16 and 24
minutes after starting the test. Tsurf= -8°C and air temperature=1.7°C/0.6°C db/wb. Similar visual
results were observed for surface temperatures of -5°C and -11°C with different time duration.  
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ߜ ൌ ௠݋ܨ ߙ
ఉ                              (4) 

௠݋ܨ ൌ ஽ೌ್௧೟
஼௛೓

మ                     (5) 

ߙ ൌ ቀ ଵ
ఉఱ.ఱቁ ൫ܿଵ݄ܥ௪

ଶ ൅ ܿଶ݄ܥ௪ ൅ ܿଷ൯൫ܿସ݄ܥ௛
ଶ ൅ ܿହ݄ܥ௛ ൅ ܿ଺൯൫ܿ଻݄ܥௗ

ଶ൅଼݄ܿܥௗ ൅ ܿଽ൯ሺݏܨ െ ܿଵ଴ሻ ൅      

 ൫ܿଵଵ݄ܥ௪
ଶ ൅  ܿଵଶ݄ܥ௪ ൅ ܿଵଷ൯൫ܿଵସ݄ܥ௛

ଶ ൅ ܿଵହ݄ܥ௛ ൅ ܿଵ଺൯൫ܿଵ଻݄ܥௗ
ଶ൅ܿଵ଼݄ܥௗ ൅ ܿଵଽ൯       (6) 

ߚ ൌ 0.75 ൅ ൫ܿଶ଴݄ܥ௪
ଶ ൅ ܿଶଵ݄ܥ௪ ൅ ܿଶଶ൯൫ܿଶଷ݄ܥ௛

ଶ ൅ ܿଶସ݄ܥ௛ ൅ ܿଶହ൯൫ܿଶ଺݄ܥௗ
ଶ൅ܿଶ଻݄ܥௗ ൅ ܿଶ଼൯ሺݏܨ െ ܿଵ଴ሻ       (7) 

 
In above equations ߙ and ߚ are functions of geometry and Frost number. ߙ ranges from 1.2E-5 to 1.9E-3 and ߚ 
varied from 0.55 to 0.99. ݄ܥ௛, ݄ܥ௪ and ݄ܥௗ have dimensions in mm. The coefficients ܿଵ to ܿଶ଼ are constants and 
their values are shown in Table 2. Equation (4) was able to capture the experimental data of frost thickness on 21 
different frost data that included 7 different geometries tested at 3 fin surface temperatures. A comparison of the 
instantaneous frost predicted by using equation (4) vs. experimental thickness data for sample 6 and sample 2 at 
three temperatures is shown in Figure 4. Similar results were observed for other geometries (Figure 5). 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Table 2: Coefficients of geometry in general frost thickness correlation 
c1 -2.24444E-06 c6 -2.16158E+00 c11 -3.82446E-07 c16 -1.62560E+00 c21 -5.555E-01 c26 -1.099E-02
c2 4.34942E-05 c7 2.47364E-03 c12 -6.77335E-06 c17 -2.86864E-03 c22 4.275E+00 c27 5.164E-01
c3 -7.89706E-05 c8 -1.03390E-01 c13 2.58664E-04 c18 1.33878E-01 c23 1.619E+00 c28 -5.848E+00
c4 -1.22951E+00 c9 1.96625E+00 c14 -9.36590E-01 c19 -5.38708E-01 c24 -5.678E+00
c5 4.16146E+00 c10 1.36432E+00 c15 3.35870E+00 c20 1.28500E-02 c25 6.102E+00

Figure 4: Frost thickness correlation versus experimental measured frost thickness data for Sample 2 and 6
(top). Similar results were observed for other samples. Comparison of present correlation with
previous published works Moallem et al. (2012a) and Xia et al. (2006) (bottom).  
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The developed correlation was also compared to other experimental microchannel frost thickness data with larger 1ft 
by 1ft microchannel coils (Moallem et al., 2012a) and the result was in satisfactory agreement as shown in Figure 4. 
Also the present form of correlation was compared against frost thicknesses data obtained in the literature (Xia et al., 
2006). In their work, Xia et al. used a different experimental setup to measure frost growth but the frost thickness 
correlation developed in this work captured well the trend of the data, as shown in Figure 4. It should be emphasized 
that the coefficients ܿଵ to ܿଶ଼ in Table 2, which were based only on the measurements of Hong et al. (2012), were 
not tuned to fit the experimental results of Moallem et al. (2010) and Xia et al. (2006). 
The overall performance of frost correlation is shown in Figure 5 in which frost thickness ratios δୡ୭୰୰ୣ୪ୟ୲୧୭୬/
δୣ୶୮ୣ୰୧୫ୣ୬୲ୟ୪ is shown on vertical axis versus the actual frost thickness measurement data. The correlation seems to 
be able to predict the experimental frost thickness reasonably well for all of data. However there are some data 
points that have significant deviation from correlation prediction when the frost thickness ratio is less than 0.2. This 
is due to the early condensation frosting or formation of supercooled droplets which delayed frost growth process at 
early stages of growth as discussed in details in previous studies (Hoke et al., 2004; Moallem et al., 2012b; Na and 
Webb, 2003). These points acted like singularity points and created division by zero, and thus large errors, in the 
analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The error analysis has been performed on the present frost thickness correlation and relative errors and RMS (Root 
Mean Square) errors have been reported in Table 3. The relative error indicates that the frost thickness correlation 
can predict the experimental data within a certain average percentage of accuracy calculated according to the 
following:  
 

Relative Error ൌ ଵ
୬

∑ ୅୆ୗ൫δౙ౥౨౨.ିδ౛౮౦.൯
δ౛౮౦.

ൈ 100     RMS Error ൌ ඨଵ
୬

∑ ൬δౙ౥౨౨.ିδ౛౮౦.

δ౛౮౦.
൰

ଶ
ൈ 100  (8) 

 
In which n is the total number of data points, which is 320 point in the present study. RMS error was calculated 
using the same approach. As data in Table 3 shows, the present frost thickness correlation predicts the entire set of 
experimental data with average ±17.6% accuracy. As discussed before with eliminating the points of singularity 
which frost has a near zero values at those points, the correlation can predict 95% of the thickness experimental data 
within average of ±9.8% accuracy. 
 

Sample 1 17.4 50.4
Sample 2 11.5 21.5
Sample 3 26.4 34.7
Sample 4 29.0 38.8
Sample 5 16.4 28.4
Sample 6 16.2 28.2
Sample 7 6.5 13.4
80% of 
Entire 

Data Base
95% of 
Entire 

Data Base

 Entire 
Data Base

δ 
predicted 

w ithin 
average 
of ± [%]

RMS 
Error 
[%]

30.8

-

-5.2

17.6

9.8

Sample 
No./ Bank

Figure 5: Frost Thickness Correlation versus experimental measured 
dimensionless frost thickness data for Samples 1 ~ 7. 

Table 3: Thickness 
Correlation    
overall 
performance 
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3.4 Air Face Velocity Degradation Correlation 
In dry and wet microchannel coils the geometry can be assumed to be fixed and steady state conditions are sound. In 
frosting conditions the geometry is changing at each moment and the velocity is the result of the pressure balance 
across the coil and to the additional resistance created by the frost buildup on the coil surfaces. As the frost grows, the 
free flow area between fins is reduced. The increased air pressure drop causes a major reduction in air face velocity. It 
is also possible to force the air face velocity to remain constant all through a frost test by increasing the fan rotational 
speed and fan power. This second approach is quite different from the actual operation of outdoor coils of air-source 
heat pumps. In addition, our calculations showed that forcing the air face velocity to be constant would cause the local 
air velocity in between the frosted fins to increase by more than 10 times with respect to initial dry conditions. The 
authors concluded that constant air face velocity would provide unrealistic heat transfer coefficients and very large heat 
transfer rates, as discussed more in details in (Moallem et al., 2012a) (Moallem et al., 2012b). 
When frost started to deposit on the surface it formed a frost layer with a considerable thickness on the fin surface, as 
shown in Figure 4. The air pressure drop across the microchannel increased considerably (Moallem et al., 2012c). With 
increasing pressure drop, the total air flow rate was affected and the air face velocity on the microchannel sample 
decreased. For every value of air pressure drop across the microchannel sample during the frosting test, one value of 
corresponding air face velocity was measured. The objective of the correlation developed in the present study was to 
correlate the change of the air face velocity entering the microchannel sample with frost thickness, fin geometric 
dimensions, and time, as shown in equations (9) to (12).  
 

Normalized Velocity(correlation) = 
௏ೌ೔ೝ,೑ೌ೎೐

௏ೌ೔ೝ,೑ೌ೎೐బ
ൌ ௠݋ܨܽ

ଶ ൅ ௠݋ܨܾ ൅ 1          (9) 

ܽ ൌ ሺܿଵ݄ܥ௪
ଶ ൅ܿଶ݄ܥ௪ାܿଷሻሺܿସ݄ܥ௛

ଶ ൅ ܿହ݄ܥ௛ ൅ ܿ଺ሻሺܿ଻݄ܥௗ
ଶ൅଼݄ܿܥௗାܿଽሻሺݏܨሻ௣భ         (10) 

ଵ݌ ൌ ሺܿଵ଴݄ܥ௪
ଶ ൅ܿଵଵ݄ܥ௪ାܿଵଶሻሺܿଵଷ݄ܥ௛ ൅ ܿଵସሻሺܿଵହ݄ܥௗ

ଶ൅ܿଵ଺݄ܥௗାܿଵ଻ሻ          (11) 
ܾ ൌ ሺܿଵ଼݄ܥ௪

ଶ ൅ܿଵଽ݄ܥ௪ାܿଶ଴ሻሺܿଶଵ݄ܥ௛
ଶ ൅ ܿଶଶ݄ܥ௛ ൅ ܿଶଷሻሺܿଶସ݄ܥௗ

ଶ൅ܿଶହ݄ܥௗାܿଶ଺ሻሺݏܨሻ௖మళ ൅ ܿଶ଼           (12) 
 

In the above equations, a and b are function of fin geometry and Fs number and p1 is the power of frost umber. There 
are a set of constant which are shown in Table 4. Ch୦ , Ch୵  and Chୢ  are in mm. The present form of velocity 
correlation predicted the velocity reduction on the 7 different geometries with three different surface temperatures. The 
result for microchannel sample 6 is shown in Figure 6. Similar results were obtained for other samples (see Figure 7). 
The overall performance of velocity correlation in equation (9) is shown in Figure 7. There is a concentration of data 
points on the right side of the horizontal axis where the normalized experimental air face velocity is near 1. Figure 7 
also shows that near the end of the test where the air velocities are low the error percentage increases. These points 
were the points when the velocities were very low. As shown in Figure 6, while the correlation does not fail to 
predict the experimental data at the end of each frost test, the magnitude of velocity is small and a large percentage 
of error occurs.  
 
 
 
 
 
 
 
 
 
Figure 7 shows that the concentration of data point is not uniform all through the horizontal axis. The data points 
have been collected in equal time intervals in the frost test. However since for considerable time of the test, the air 
velocity is near initial velocity as shown in Figure 6, the concentration of data point are grouped more around 1 in 
the horizontal axis of Figure 7. A small percentage of the data points were located outside 10% accuracy of the 
present correlation according to the following analysis. Table 5 provide a summary of the statistical error when 
using the correlation (9) for predicting the experimental velocity data, The errors in Table 5 are calculated for 375 
data points in 21 frost tests for 7 geometries of the present study; each geometry was run at three different fin 
surface temperature. The error was calculated in the same method described before regarding the thickness 
correlation. Data shows that velocity correlation can predict the entire set of data with an average error of 7.7%.  
 
 
 

Table 4: Coefficients of geometry in general frost air face velocity correlation 
c1 2.36032E-02 c6 5.90549E-08 c11 9.29921E-01 c16 1.12464E-01 c21 4.46048E-03 c26 -7.70151E+01
c2 -5.50886E-01 c7 9.37121E-04 c12 -3.22532E+00 c17 -1.92793E-01 c22 -6.67660E+00 c27 2.50000E+00
c3 3.74068E+00 c8 -3.02470E-02 c13 -3.31519E-01 c18 -2.08972E-06 c23 9.30292E+00 c28 6.00000E-05
c4 2.22105E-08 c9 1.24149E+00 c14 2.40261E+00 c19 4.74618E-05 c24 -1.22558E-01
c5 -7.95832E-08 c10 -4.68794E-02 c15 -2.63953E-03 c20 -2.55006E-04 c25 6.16741E+00
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Figure 6: Air face velocity drop correlation vs. experimental measured air face velocity data Sample 6.
Similar results were observed for other samples. 

Figure 7: Frost air face velocity correlation versus normalized experimental
measured air face velocity data for Samples 1 ~ 7. 
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The rate of change of the air face velocity did not depend only on air pressure drop through the microchannel but also 
on the fan curve and the system resistance due to the duct and other components of the test set up. In the present study, 
the blower used during the experiments was representative of a mid class well sized fan with a near linear curve 
characteristic within the range of testing operating conditions. When the pressure drop increased, the flow dropped 
linearly and similar behavior is expected for an actual fan-coils assembly in air-source heat pumps. It should be noted 
that only a small part of total air flow (about 5 cfm or 0.0024 m3/s) was diverted to the small microchannel samples 
while the rest of flow (about 100 cfm or 0.047 m3/s) was recirculated and bypassed the fin sample. Thus, when 
reducing 5 cfm (0.0024 m3/s) to the sample to zero cfm, the rest of flow was practically unaffected and the working 
conditions of the fan in the test set up were not drastically influenced during the frosting tests of the present work. From 
this perspective, the authors concluded that the data obtained in the present study on air face velocity reduction were 
practically independent from the fan used in the test set up. It was clear that the change of air velocity were mainly due 
to the behavior of the fins geometry during their frost buildups. . It is worth to emphasize that all of the equations 
mentioned in this section, equations (4) to (12), are explicit equations that can be setup using a spreadsheet to predict 
the value of frost thickness and air velocity at each time during the frost period. These values can be used to calculate 
the instantaneous Re number for prediction of the heat transfer coefficient. Future studies might be required to extend 
the frost and velocity reduction correlation to a broader range of fin geometry and operating conditions, specifically for 
a larger set of ambient temperatures and humidity.  
 

4. CONCLUSIONS 
 
The present work focused on various aspects of frost formation on louvered folded fins in outdoor microchannel 
heat exchangers used in air source heat pump systems. More than 90 tests with different surface temperatures were 
performed on 7 microchannel fin samples with different geometry and the effects of surface temperature, fin 
geometries on the thermal and hydraulic performance of the microchannel heat exchangers under frosting conditions 
were studied. This paper presents new correlations for frost thickness and air face velocity reduction that properly 
account for frosting operating conditions of 7 fin geometries for microchannel heat exchangers. The developed 
correlations were verified for fin surface temperature ranging from -11°C (12°F) to -5°C (23°F) and were able to 
predict the frost thickness and air face velocity degradation within average error of ±17.6% and ±7.7%. Correlations 
that predict the frost thickness and the reduction of air face velocity during frosting operation can be used to 
calculate the instantaneous air-side Reynolds number during frosting operation of the fins, which is a fundamental 
parameter for predicting the heat transfer rates of the microchannel coils in quasi-steady state frosting operating 
conditions. 
 

NOMENCLATURE 
 
Chୢ or Cd: Channel depth (air side) or Coil depth (mm) 
Ch୦: Channel height (air side) (free space between two adjacent fins) (mm) 
Ch୵: Channel width (air side) (free apace between two adjacent  
          vertical tube walls) (mm) 
Dୟୠ= binary diffusion coefficient of water to air (2.28E-5) (m2/s) 
Fo or ݋ܨ௠: mass transfer Fourier number (eq. 5) 
Fs: Frost number or supersaturation level of air (eq. 1)  
ll: Louver length (mm) 
lp or Lp: Louver pitch (mm) 
݉:ሶ  mass flow rate (kg/s) 

௔ܲ௜௥: Pressure of water vapor pressure in the air stream (Pa)  
௦ܲ௨௥௙: Pressure of water vapor pressure in the air at surface temperature (Pa) 
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