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Abstract—Given binary data transmission encoded using a
Reed-Solomon (RS) code and employing binary sync-words
(markers) for synchronization, we calculate the probability of
finding the sync-word in the codewords of the RS code as PS . We
give analytical expressions for calculating PS , which is applicable
to RS codes. Knowledge of PS can be used to calculate the
probability of finding a sync-word that is used as a marker
in RS encoded data, PT . The probability PT is called the false
acquisition probability in the synchonization of RS encoded data.

Index Terms—Reed-Solomon codes, Frame Synchronization,
Sync-words.

I. INTRODUCTION

In synchronization, using sync-words, it is desired that the
sync-word has a very low probability of occurring in the data
being synchronized in order to minimise (or avoid) confusion
between the data and the sync-word. The work in [1] gave sim-
ulation results of the probability of false acquisition in a Reed-
Solomon (RS) codeword. As a follow up on [1], in this paper
we give analytical expressions for the probability of finding
sync-words in Reed-Solomon (RS) codes (probability of false
acquisition). If we consider transmission of RS encoded data
which is synchronized using sync-words, these expressions can
be used to estimate the probability of false acquisition of the
sync-word in RS codes, PT (the probability of finding the
sync-word where it was not inserted in the data). In [2] a
method of avoiding specific symbols in RS codes, inspired by
[3], was presented. This method in [2] found an application of
reducing the propability of false acquisition in RS codes and
resulted in the article in [4]. However, the work in [4] focuses
on modified RS codes, and does not give analytical expressions
for the probability of false acquisition in RS codes.

The reader who wants to get acquainted with the principles
of Reed-Solomon encoding is referred to [5] and [6]. When
describing RS codes over GF(2m), where m is a positive
integer, we will be using integer symbols to represent elements
of GF(2m) because the integer symbols make it easier to
follow operations on the RS codes and also aid presentation.
We will, in short, refer to the integer symbols simply as
symbols. When the distance properties are not important, as
is the case in the rest of the paper, we will refer to the RS
codes as (2m − 1, k) RS code (or (n, k) RS code), where m
is the number of bits per symbol, k is the dimension of the
code and n = 2m − 1 is the codeword length.

II. PROBABILITY OF A SUBSEQUENCE OF SYMBOLS

Consider an n-symbol sequence Sn, where the symbols are
equiprobable and statistically independent. Let the complete
set of such symbols making up Sn have a cardinality q, hence
the probability of a symbol in Sn is P = 1/q. We now
want to find the probability of an LS-symbol subsequence
of consecutive symbols from Sn, where LS ≤ n. Denote by
PS , the probability of an LS-symbol subsequence from Sn.
PS is going to be used later on to estimate the probability of
a sync-word in a RS code. For now we give an expression for
PS .

We consider a case where the LS-symbol subsequences can
share symbols. This means that each LS-symbol subsequence
has no unique symbols and shares some of its symbols with
the neighbouring LS-symbol subsequences. The expression for
PS for this scenario is given as

PS ≈
1

dmax

dmax∑
i=1

i

(
n− LS + 1

i

)
PiLS (1− PLS )(n−LS+1−i),

(1)
where dmax = n − LS + 1,

(
n−LS+1

i

)
is combinations and

the subscript i indicates the number of LS-symbol subse-
quences in Sn. The expression in (1) can be found in [5,
pp. 345], which is an approximation used here to estimate
the probability of finding an LS-symbol subsequence in Sn.
Our expression in (1) is a good approximation for large n and
small LS , and can be verified through simulations.

III. PROBABILITY OF A SYNC-WORD IN A RS CODE

In the previous section, an expression for the probability
of a subsequence of symbols, in a given sequence, where
symbols are generated with a uniform distribution, was given.
It was required that the symbols occur independently with a
uniform distribution. In this section we show that a subset of
the symbols in a RS code behave the same as equiprobable
and statistically independent symbols. This enables us to apply
the same analysis as in Section II to find the probability of a
subsequence of symbols, PS in a RS code (or a RS codeword).
We shall soon show that a sync-word, in relation to a RS code,
is made up of subsequences from the same symbols as the RS
code, hence we can use the PS to find the probability of the
sync-word in a RS code (which gives the probability of false
acquisition on data).
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To show that a subset of the symbols in a RS codeword
behave the same as equiprobable and statistically independent
symbols, we need the following definition.

Definition 1 A vector of n random variables is called k-wise
independent if each subset of k of the variables is independent,
where k ≤ n.

In other words, this definition means that if any k (or less than
k) random variables out of the n are selected, they form an
independent distribution. Definition 1 can be found in different
variations in the literature, for example, see [7] and [8].

An (n, k) RS code over GF(q) has its n-symbol codewords
as vectors, where the symbols are random variables such
that any codeword is k-wise independent. The k symbols of
a RS codeword form a uniform distribution with a symbol
probability of 1/q. It is easy to see that for an (n, k) RS code,
any of the n-symbol codewords is k-wise independent. This
follows from the following knowledge about the generator
matrix and message vector of a RS code. The symbols in a
message vector of length k are uniformly distributed. This
message vector results in a codeword of length n, when
multiplied by the k×n generator matrix G. The k×n generator
matrix has rank k, that is, any k columns of the generator
matrix are independent. The implication of this is that any
k symbols in the codeword are a result of multiplying the
message vector with k independent columns of G, hence those
k symbols form a uniform distribution.

Throughout this paper we deal with known binary sync-
words. To represent the binary sync-words as subsequences,
with symbols taken from the same alphabet as the RS code, we
break down the sync-words into their symbol equivalents as
follows. For a (2m−1, k) RS code, sync-words of any number
of bits can be represented by the m-bit symbols from GF(2m).
All possible symbol combinations that make up the sync-word
are listed, and the probabilities, for each combination found in
the RS code, are calculated and summed up to give an estimate
of the probability of finding the sync-word in the RS code. The
representation of a sync-word by the symbols from GF(q) is
illustrated by Example 1. We shall refer to the representation
of a sync-word by the symbols from GF(q) as symbol make-up
of a sync-word.

Example 1 For a (2m−1, k) RS code, let m = 4, and let the
sync-word be a 7-bit Barker sequence S = {1110010}. This
results in the symbol make-up of S as shown in Figure 1. To
arrive at the result of Figure 1, S is left shifted one bit at a
time, over the three blocks (the rectangles containing bits) of
possible symbols, until all possible combinations of symbols
making up S are found.

The symbol make-up for S is shown in four groups, A,
B, C and D. The groups A and D, each consists of two (2)
subsequences of length two, and groups B and C, each consists
of 32 subsequences of length three. The symbol X in a block
in a group means that the bit can either be a 0 or a 1. As an
example, in group A the block with 010X means that the four
bit sequence there can be either 0100 or 0101 which represents

{9}

{4, 5}

{7, 15} {2}

{14}{14}

{12} {8, 9, 10, 11}

{0, 1, . . . , 7}

{1, 3, . . . , 15}

{3, 7, 11, 15}
1 1 11 0 00X

1 1 1 1 000 XX X XX

1 1 101 0 0X X X XX

11 11 00 0 X

D

C

A

B

Fig. 1. Symbol make-up of a 7-bit Barker sequence S = {1110010}.

either a 4 or a 5, respectively hence the set {4, 5} in that block.
Now, Figure 1 can be interpreted as follows. For a given

group, selecting a symbol in each block beginning from the
leftmost block up to the rightmost block, will result in the bit
sequence S. A block without a symbol has no effect since it
has no symbol or bits. The list of all the possible combinations
of symbols that can result in the bit sequence S is:

A =
[
14 4; 14 5

]
,

B =



1 12 8; 1 12 9; 1 12 10; 1 12 11;
3 12 8; 3 12 9; 3 12 10; 3 12 11;
5 12 8; 5 12 9; 5 12 10; 5 12 11;
7 12 8; 7 12 9; 7 12 10; 7 12 11;
9 12 8; 9 12 9; 9 12 10; 9 12 11;
11 12 8; 11 12 9; 11 12 10; 11 12 11;
13 12 8; 13 12 9; 13 12 10; 13 12 11;
15 12 8; 15 12 9; 15 12 10; 15 12 11


,

C =



3 9 0; 7 9 0; 11 9 0; 15 9 0;
3 9 1; 7 9 1; 11 9 1; 15 9 1;
3 9 2; 7 9 2; 11 9 2; 15 9 2;
3 9 3; 7 9 3; 11 9 3; 15 9 3;
3 9 4; 7 9 4; 11 9 4; 15 9 4;
3 9 5; 7 9 5; 11 9 5; 15 9 5;
3 9 6; 7 9 6; 11 9 6; 15 9 6;
3 9 7; 7 9 7; 11 9 7; 15 9 7


,

D =
[
7 2; 15 2

]
. 2

Proposition 1 Given a sync-word of N bits and any (2m −
1, k) RS code, if the N bits of the sync-word are grouped into
m bits to form m-bit integer symbols, there will be a maximum
of:

1) (m− r+1)2m−r sequences of dN/me integer symbols
2) (r−1)22m−r sequences of dN/me+1 integer symbols,

where r is the remainder of N/m, r = 1, 2, . . .m. Note
that (r = 0) ≡ (r = m). 2

The total probability of a sequence of N bits is then given by

PT = (m− r + 1)2m−rPS(LS = dN/me)
+(r − 1)22m−rPS(LS = dN/me+ 1), (2)

where PS(x) denotes that PS is a function of x.

PROOF To give a sketch of the proof of Proposition 1 we
will occasionally refer to Example 1 to enhance understanding.



Take any row of N bits and partition them in blocks of m
bits as was done in Figure 1. Each whole number of m bits
in a block can form a decimal integer. Let the number of the
remainder of the bits which are less than m be denoted r,
where r = 0, 1, 2, . . .m− 1.

1) It is easy to see that this partitioning of the row of N
bits in blocks of m bits will result in dN/me blocks,
including the block of remainder bits. The m− r empty
spaces (denoted by X in Figure 1, where X ∈ {0, 1})
in the incomplete block will result in 2m−r possible
integers. Let the number of such rows/groups which
result in dN/me blocks be α, then there will be a total
of α2m−r possible integer sequences of length dN/me
which can form the N -bit sequence. We will soon find
α.

2) Now if we begin shifting the bits partitioned in blocks
either to the left or right, we begin to see a spill-over of
the bits which create one extra partially occupied block
such that there will be dN/me+ 1 blocks as shown by
Groups B and C in Figure 1. If we view the spill-over
bits as coming from the r bits, we can see that the r
bits are now shared between two incomplete block, the
total number of empty spaces in those blocks will now
be m+ (m− r), hence giving a total of 2m × 2m−r =
22m−r possible integers. This extra partially occupied
block only occurs when r > 1. Let the number of such
rows/groups which result in dN/me + 1 blocks be β,
then there will be a total of β22m−r possible integer
sequences of length dN/me + 1 which can form the
N -bit sequence. We will find β, as well as α next.

3) Shifting the partitioned bits will result in a maximum of
m groups. Therefore α+ β = m. We need to find α or
β. The groups with 0, 1, 2 . . .m − r empty spaces are
therefore m−r+1 in total, and those are the groups with
dN/me blocks. This therefore means that α = m−r+1.
Then, β = m− α = m− (m− r + 1) = r − 1.

4) There is a special case of r = 0, that is when there are
no remainder bits in the division of N by m. For this
case, r = 0 is equivalent to r = m because the last
block of the dN/me will be completely filled with m
bits. Hence r = 1, 2, . . .m. �

Having shown how a binary sync-word can be represented
by the symbols from GF(q), same as the RS code of interest,
it can easily be shown how PS can be used to calculate the
probability of a sync-word in a RS code, PT . The following
example illustrates this.

Example 2 Using the symbol make-up of the N = 7 bits
Barker sequence, S = {1110010} in Example 1, let the (2m−
1, k) RS code have m = 4 and k = 3. The RS code will be
over GF(2m) of size q = 2m = 16, and length n = 2m −
1 = 15. The probability of a symbol in the RS code is then
P = 1/q = 1/16.

As mentioned in Example 1, the groups A and D, each
consists of two (2) subsequences of length two, and groups B
and C, each consists of 32 subsequences of length three. This

can be related to Proposition 1 as follows: The remainder of
N/m is r = 2.

1) Groups A and D: there are (m − r + 1)2m−r = (4 −
3 + 1)24−3 = 4 sequences of length, LS = dN/me =
d7/4e = 2.

2) Groups B and C: there are (r − 1)22m−r = (3 −
1)22×4−3 = 64 sequences of length, LS = dN/me =
d7/4e+ 1 = 2 + 1 = 3

The probability of the N = 7 bits Barker sequence S =
{1110010} in the (15, 3) RS code is then the probability of
the group A and D sequences plus the probability of the group
B and C sequences, and is given by the expression in (2) as

PT = 4PS(LS = 2) + 64PS(LS = 3), (3)

where

PS(LS = 2) =
1

14

14∑
i=1

i

(
15 + i− 1

i

)
P2i(1− P2)(14−2+1−i)

= 4.2× 10−3

and

PS(LS = 3) =
1

13

13∑
i=1

i

(
15 + i− 1

i

)
P3i(1− P3)(14−3+1−i)

= 3× 10−4,

therefore

PT = 4PS(LS = 2) + 64PS(LS = 3)

= 4× 4.2× 10−3 + 64× 3× 10−4

= 0.035.

2

It should be noted that if any number of symbols in the sync-
word symbol make-up exceed the dimension of the (2m−1, k)
RS code, i.e. LS > k, the analytical expression for PS cannot
be applied as the LS symbols will no longer be following
a uniform distribution. This is therefore a limitation to our
analytical expression for PS . The next task is then to state
when this limitation occurs. Given a binary sync-word of
length N and a (2m − 1, k) RS code, we want to find the
largest LS in the symbol make up. This largest LS should not
exceed k, for validity of the analytical expression for PS to
be guaranteed.

Theorem 1 Given a sequence of N bits and any (2m − 1, k)
RS code, the largest value of N for which the sequence can be
grouped into m-bit symbols such that the symbols are k-wise
independent in relation to the RS code is

N ≤ (k − 1)m+ 1. (4)

2

Remark: PS is valid as long as the m-bit symbols, of the
sequence of length N bits, do not exceed k. These symbols
will then behave as equiprobable and statistically independent
in the (2m − 1, k) RS code, hence satisfying Definition 1.



PROOF Let us prove the validity of (4) as follows. We need
to put a sequence of N bits into groups of m bits, where m
bits make up a symbol, i.e. a group here represents a symbol.
We can put the N bits into dN/me groups (symbols), and the
groups are completely filled with bits if N is a multiple of m.
However, since we perform a shifting of the bits to find all
the possible symbols making up the N -bit sequence, we need
one extra empty group to which we can shift the bits. The
empty group can also hold m bits, therefore as we shift bits
from previous groups, the same number of bits shifted out of
last group get shifted into the extra group. We can never need
more that dN/me+1 groups (symbols) because when all the
m bits from the last group get filled into the extra group, the
last group ceases to exist and the situation gets back to dN/me
groups. So, the only time we need dN/me+1 groups is when
there are some bits in the last group as well as some bits in
the extra group. There is one special case to consider. This is
the case when there is only one bit in the last group. It can be
realised that in this case, there is never a situation when there
are some bits in the last group as well as in the extra group.
This is because when the one bit in the last group gets shifted
out of the last group, the last group ceases to exist and gets
created again by the bit in the first group. Therefore, there
will not be an extra group in this case. Hence, the number of
necessary groups, to contain the bits, never exceeds dN/me.
Therefore, the analytical expression for PS is guaranteed to
be valid if

k ≥

⌈
N

m

⌉
+ 1. (5)

To include the special case of one bit in the last group, we
can modify the expression in (5) by removing one bit from
the N bits and obtain the expression

k ≥

⌈
N − 1

m

⌉
+ 1. (6)

By rearranging the expression in (6) and removing the ceiling
operator, we get (4). �

TABLE I
COMPARISON OF PT FROM (2) AND PT FROM SIMULATED RESULTS (P ′T ),

FOR BINARY SYNC-WORDS OF LENGTHS 7− 11, WRITTEN IN THEIR
OCTAL FORMAT. A (24 − 1, 3) RS CODE WAS USED.

Binary Sync-words Length, N PT P ′T
130 7 0.0351 0.0312
270 8 0.0178 0.0156
560 9 0.0090 0.0078

TABLE II
COMPARISON OF PT FROM (2) AND PT FROM SIMULATED RESULTS (P ′T ),

FOR BINARY SYNC-WORDS OF LENGTHS 7− 14, WRITTEN IN THEIR
OCTAL FORMAT. A (25 − 1, 3) RS CODE WAS USED.

Binary Sync-words Length, N PT P ′T
130 7 0.0407 0.0391
270 8 0.0205 0.0196
560 9 0.0103 0.0098
1560 10 0.0052 0.0049
2670 11 0.0026 0.0024

TABLE III
COMPARISON OF PT FROM (2) AND PT FROM SIMULATED RESULTS (P ′T ),

FOR BINARY SYNC-WORDS OF LENGTHS 7− 16, WRITTEN IN THEIR
OCTAL FORMAT. A (26 − 1, 3) RS CODE WAS USED.

Binary Sync-words Length, N PT P ′T
130 7 0.0477 0.0469
270 8 0.0239 0.0235
560 9 0.0120 0.0117
1560 10 0.0060 0.0059
2670 11 0.0030 0.0029
6540 12 0.0015 0.0015
16540 13 0.000756 0.000732

IV. RESULTS

To prove the validity of the expressions in (1) and (2) we
present the following results. Let the PT from simulated results
be denoted P ′T . The results in Tables I, II and III are for
(24 − 1, 3) RS code, (25 − 1, 3) RS code and (26 − 1, 3)
RS code, respectively. In the simulations, each binary sync-
word was searched for in all the codewords of the (2m−1, k)
RS code using a “sliding window”, and a count of the found
sync-words was divided by all the places searched, and then
multiplied by m to obtain P ′T in symbol representation.

The results in Tables I, II and III show the that PT is very
close to P ′T , hence validating our expression for PT in (2).

V. CONCLUSION

We gave analytical expressions for the probability of finding
a subsequence in a sequence. These expressions were applied
to Reed-Solomon codes to find the probability of false acqui-
sition on data given a sync-word (in its symbol format), PT .
Such knowledge of the probability of a sync-word occurring
in a RS code can be used to evaluate the performance of
synchronization. The symbol make-up can serve as guideline
on which symbols to avoid in a RS code in order to improve
the performance of synchronization.
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