
The use of learning tools for active knowledge construction to develop
coding skills

Abstract: Research indicates that providing students with learning tools to scaffold
them during a CS1 course can positively affect the manner in which they develop
programming skills. Some examples of learning tools are Scratch, Lego Mindstorms
and programming strategies. These learning tools provide an opportunity for students to
actively learn, as the tools’ fundamental design focuses on multi-dimensional, tangible
objects. This paper presents the qualitative and quantitative results which formed part of
a study that focused on many learning principles for CS1 courses. Active learning,
discussed in this paper, was one of the learning principles. The results to date are
promising.

Introduction
	
Tools provide a foundation on which programming can be taught. The purpose of such tools is to provide a
graphical development environment that delivers a visual interpretation of how to develop a computer program
(Ford, 2009). The idea of interactive tools, such as games, as a pedagogical approach to teaching-and-learning
computer programming is not new (Lawhead, 2002). This said, using games as a learning tool is advocated as
games have the potential to positively contribute to successful learning (Piteira, 2011). Amongst others, tools
provide two necessary elements for learning, namely understanding and motivation (Piteira, 2011, Yamazaki,
2015). Robots, in particular, provide an innovative teaching tool for building students computer programming
skills.

The tools provide a platform for students to build, reinforce and practice fundamental computer programming
concepts, while adding an element of fun. They can scaffold students learning because they use action instead of
explanation, accommodate a variety of learning styles and skills, reinforce mastery skills, provide an opportunity
to practice, and afford an interactive, decision making context. More importantly, tools provide students with an
opportunity to ‘tinker’ with varying possible code combinations. This paper presents the results of students that
were provided with opportunities to make use of tools when learning CS1.

Background
	
According to Kagan (2009) the domain-based knowledge that instructors transfer to students is one of the least
important aspects of teaching-and-learning as information is not instruction. In reality, each student brings their
own knowledge framework into the teaching environment and unless students are given an opportunity to actively
engage with others and construct knowledge, the learning is likely to fail (Ben-Ari, 1998). The term ‘active
learning’ has its roots deeply entrenched within authentic learning as well as social constructivism. MacDonald
(2005) provides a useful definition of what makes learning active by saying that:
Active learning is a process whereby students are actively engaged in constructing knowledge in a meaningful,
realistic context through exploration reflection and social discourse with others, rather than passively receiving
information (MacDonald, 2005).

Instructors can make use of knowledge construction tools that confront the student with a phenomenon, or include
a construction kit which encourages investigation and ‘tinkering’ (Karagiorgi, 2005). For example, a phenomena
can be viewed as a real-world simulation where investigation can take place, and a construction kit could involve
the use of Lego or Logo (Karagiorgi, 2005). These construction kits can be seen as being part of Vygotsky’s
theory regarding the ‘zone of proximal development’. Students form partnerships with the tools, which provide
strategies that experts use to solve problems, thus providing scaffolding relevant to the student’s ability level
(Mercer, 1992).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/129826069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The design of the pedagogical intervention for the computer programming module made use of the following
construction kits:

Table 1: Construction Kits

Semester 1
problem solving knowledge construction kits

Semester 2
computer programming construction kits

 Puzzle-based learning (Kawash, 2012, Allan,
1997, Gonzalez, 2004)

 Notational machine (Sorva, 2013)
 Input-process-output (IPO) charts
 Pseudo code
 Programming strategies explicitly taught

(deRaadt, 2008)
 Interactive development environments, such

as Scratch (Meerbaum-Salant, 2010)

 Notional machine (Sorva, 2013)
 Input-process-output (IPO) charts
 Pseudo code
 Programming strategies explicitly taught

(deRaadt, 2008)
 Lego® construction (Mason, 2013,

Yamazaki, 2015)

Aims, objectives and research questions
	
The aim of the paper is to show how construction kits or tools can assist CS1 students to understand programming
concepts taught to them. The objectives of the paper are as follows:

 To describe how tools can be used to improve teaching and learning of CS1;
 To analyse quantitative results that were collected related to tools, namely programming strategies and

the Lego Mindstorms questionnaires respectively; and
 To analyse qualitative results that were collected related to tools, as listed in the previous bullet point.

The research question that was answered was “Do students feel that tools scaffold the learning of a CS1 course?”.
A sub-question was “To what extent did the tools scaffold learning?”.
	
Method
	
Research design

DBR was a vehicle used to address a complex real-world educational problem. Using iterative cycles of analysis,
design and reflective inquiry a final set of educational design principles was produced. During the first iteration
the educational design principles were developed and then refined over the second iteration to reflect the final
eight design principles. This paper presents the results related to one of the design principles, namely to “provide
learning tools that require students to be actively involved during knowledge construction while learning by
‘tinkering’ and so develop algorithmic programming skills”. The study tested a proposed solution during iteration
one (pilot study) and iteration two (main study).

Participants

For iteration one, there were 108 students enrolled for the CS1 course, comprising of module A and module B
(over a year)..For iteration two, 135 students. The participants represented the diversity of the population in terms
of gender, however there were many more male students than female ones. In terms of ethnicity the majority of
students were black (83) and the remainder were from other groups (Coloured, Indian and White). Although the
design was weaved into the teaching-and-learning students were provided with an explanation as to why the
teaching-and-learning approach was different to that of other modules. Students were aware that research was
being conducted into the teaching-and-learning of computer programming. Ethical considerations were
implemented accordingly.

Instruments

The data that was collected in response to each of the research questions posed in this study illuminated the role
that each design principle played in teaching- and-learning during the two iterations of the computer programming
modules. For this paper qualitative results, as well as other questionnaires that focus on learning tools, are
presented.

Data analysis

Questionnaires that made use of a Likert-type scale were developed. Scores, means and standard deviations
calculated useful statistical data. A factor analysis was applied to validate results. The use of an electronic
computerised software package, namely SPSS was applied.

Results
	
The results of each are now presented by design principle.
Data for exploring this design principle was generated by using two pedagogical intervention questionnaires, a
focus group interview, a Lego Mindstorms questionnaire, programming strategies questionnaire, and an
evaluation of students programming strategies. The results are discussed in the following sections.
Focus group interview
The analysis yielded two codes. Firstly, a code ‘games are useful for critical thinking’ with a code frequency of
50% emerged. An example of text that supported this code is:

I learnt how to build a robot from the scratch and write a program of how it must function,
for example, how to turn when it reaches a certain point.

Secondly, a code ‘Scratch is useful for programming’ with a code frequency of 70% also emerged. An example
of text that supported this code is:

I believe the games that we played before hand - they were beneficial in a way. I believe
they allowed us to firstly just open up with the rest of your classmates and - they also
allowed - they also make you start thinking out of the box, because that was what mostly
you were firstly taught or stressed upon that we need to think out of the box when it comes
to programming.

As qualitative analysis perceived as a ladder of analytical abstraction where data is firstly summarised and
packaged, and then repackaged and aggregated, further analysis yielded categories and themes that identified
relationships in the data (Troskie-de Bruin, 2013). For example, the code that the researcher suggests be labelled
‘games are useful for critical thinking’ and ‘Scratch is useful for programming’.

Programming strategies questionnaire

During the second iteration students completed a questionnaire regarding the use of programming strategies that
was used as a tool when learning computer programming skills. Strategies can assist students when they were
faced with the task of developing a software solution. The responses, tabulated in Table 2, relate to whether or
not students felt that strategies promote learning.

Table 2 indicates that as students have no prior experience of programming and, at best, demonstrate an ability
to hold only fragile knowledge related to computer programming concepts, strategies do assist them with
building algorithmic solutions. The percentage of students who agreed that computer programming strategies
were very helpful to them was 83.6%, with 16.9% of students in disagreement. It is interesting to note that in
question 6 of Table 1 many students struggled to adapt the strategy from one problem solving context to
another. This means that these students have not developed sufficient higher order thinking skills (HOTS)
(King, 2000). This is problematic as higher order thinking skills are directly related to the ability of students to
solve a problem in one context and develop a solution in another context, namely at an algorithmic level (Levy,
2011).

Table 2: Students’ responses to explicit teaching of computer programming strategies
Questions % Yes % No
Q1: I understand that a computer programming strategy is a specific guideline
(algorithm) to solve a general problem.

96 4

Q2: I have read and understand most of the computer programming strategies provided
to me.

78 22

Q3: I am able to identify what a computer programming strategy does when I see it. 81 19
Q4: I am able to make use of the correct computer programming strategy when a
problem is presented to me.

76 24

Q5: I found computer programming strategies useful when solving a problem. 91 9
Q6: I find it easy to take a strategy and change/adapt the strategy to the problem that I
need to solve.

67 33

Q7: I find that a computer programming strategy can assist me in solving a problem
faster, with more accuracy.

85 15

Q8: In the last semester test I made use of the strategies given to me as an appendix at
the end of the question paper.

86 14

Q9: A computer programming strategy can improve my programming abilities because
I can learn from the strategy and have better insight into the problem.

92 8

Q10: I feel that computer programming strategies can assist me with learning
programming skills.

92 8

Q11: When I am reading through a problem I very quickly start getting a mental picture
of which computer programming concepts are needed to solve the problem.

70 30

Average 83.16% 16.9%

Evaluation of students’ programming strategies results
During the second iteration students’ end-of-semester assessment was analysed to determine the presence or
absence of strategies. There were two questions in the assessment that were analysed, namely Question 4 and
Question 5 (Table 4 shows the skill set, context, level of programming concepts and abstract thought required
for each question).

Table 3: Presence or absence of a computer programming strategy

Question Strategy absent Strategy present
4 55% 45%
5 11.5% 88.5%

The presence or absence of a strategy was analysed by the researcher, the results of which are tabulated in Table
3. It appears that the difficulty level associated with an assessment question determines the presence or absence
of a strategy, as shown in Table 3.

Strategies for novice programmers are seemingly only useful if the transfer of learning is not too wide. This is
confirmed by Vygotsky’s theory regarding the ZPD. The use of a strategy as a tool to assist students when
learning computer programming is seemingly only beneficial if students are ‘learning on the edge of what they
know’.

Table 4: Computer programming skill set required to solve problems

Computer Programming skill set Question 4 Question 5
Level of understanding required when reading the question (easy,
moderate, difficult).

Difficult Easy

Amount of ‘story telling’ information provided that could
interfere with students thought processes.

Considerable Little

Computer programming constructs required to solve the problem. Input, processing,
output, selection,
looping

Input, processing,
output, looping,
arrays

The degree to which the strategy needs to be adapted from one
context to another.

Hard Moderate

	

Lego Mindstorms questionnaire
The analysis yielded the category ‘fun way to develop programming skills’ with a code frequency of 100%. An
example of text that supported this code is:

I learnt to think about solving problems in different ways and just have fun while learning.

As a tool, the Lego Mindstorms provided students with an opportunity to further enforce the fundamental skills
(Table 5) needed to write programming solutions. As indicated in Table 5 there was a high response rate (yes)
for Lego Mindstorms being an effective tool to reinforce programming concepts.

Table 5: Responses regarding Mindstorms reinforcing learning

Programming concept ‘yes’ ‘no’
Problem solving 21
Breaking problems into small steps 20 1
Practice algorithmic skills 20 1
Assist in understanding how to solve problems better algorithmically 21
Assist in coding programs that require input-processing-output 19 2
Assist in coding programs that require methods 21
Assist in coding programs that require repetition 21

Conclusion
	
The analysis of the focus group interview indicates a code frequency of 50% and students Agreed (3) that
classroom activities included the use of tools. Additionally, these tools promoted learning, as indicated by a
code frequency of 70%.
The researcher noted that 83.16% of students felt that the programming strategies promoted learning as these
strategies scaffold students. Only 16.9% of students felt that the strategies did not promote learning.
Students programs were evaluated for the presence or absence of a programming strategy. The presence or
absence of a strategy depended on the difficulty of the problem that students needed to solve. A total of 55% of
students made use of a strategy when problems that ranged between ‘Easy’ and ‘Moderate’ were presented to
them. It was noted that 5% of students did not make use of a strategy. However, if the problem was deemed to
be categorised as ‘Difficult’, only 11.5% of students made use of a strategy. The gap between the ‘known’ and
the ‘unknown’ was too wide and 88.5% of students could not identify the relationship between the problem and
the strategy.

The analysis of the Lego Mindstorms questionnaire indicates a code frequency of 100% where students felt that
the Lego Mindstorms provided an opportunity to actively engage with tools as well as that these tools promoted
learning.

References
	
ALLAN, V. H., KOLESAR, M.V. 1997. Teaching Computer Science: A Problem Solving Approach that Works.
SIGCUE Outlook, 25, 9.
BEN-ARI, M. Constructivism in Computer Science Education. In: SIGSCE, ed. SIGSCE'98, 1998 Atlanta GA
USA. ACM.
DERAADT, M. 2008. Teaching Programming Strategies Explicitly to Novice Programmers. Doctor of
Philosophy, University of Southern Queensland.
FORD, J. L. J. 2009. Scratch programming for teens, USA, Course Technology.
GONZALEZ, G. 2004. CONSTRUCTIVISM IN AN INTRODUCTION TO PROGRAMMING COURSE.
Consortium for Computing Sciences in Colleges, 19, 7.
KARAGIORGI, Y., SYMEOU, L. 2005. Translating Constructivism into Instructional Design: Potential and
Limitations. Educational Technology & Society, 8, 11.
KAWASH, J. Engaging Students by Intertwining Puzzle-Based and Problem-Based Learning. SIGITE'12, 2012
Calgary, Alberta, Canada. ACM.
KING, F. J., GOODSON, L., ROHANI, F. 2000. Higher Order Thinking Skills. Publication of the Educational
Services Program.

LAWHEAD, P. B., BLAND, C.G., BARNES, D.J., DUNCAN, M.E., GOLDWEBER, M., HOLLINGSWORTH,
R.G., SCHEP, M. A Road Map for Teaching Introductory Programming Using LEGO Mindstorms Robots.
ITiCSE-WSR, 2002.
LEVY, R. B., ITURBIDE, J.A.V. A Problem Solving Teaching Guide based on a Procedure Intertwined with a
Teaching Model. ITiCSE'11, June 2011 2011 Darmstadt, Germany. ACM, 1.
MACDONALD, J. Rules of engagement: Fostering active learning for performance improvement.
Interservice/Industry Training, Simulation, and Education Conference, 2005. 9.
MASON, R., COOPER, G. 2013. Mindstorms robots and the application of cognitive load theory in introductory
programming. Computer Science Educational, 23, 296–314.
MEERBAUM-SALANT, O., ARMONI, M., BEN-ARI, M. Learning Computer Science Concepts with Scratch.
ICER 2010, 2010 Aarhus, Denmark. ACM, 8.
MERCER, N., FISHER, E. 1992. How do teachers help children to learn? An analysis of teachers' interventions
in computer-based activities. Learning and Instruction, 2, 17.
PITEIRA, M., HADDAD, S.R. Innovate in Your Program Computer Class: An approach based on a serious game.
OSDOC'11, 2011 Lisbon, Portugal.
SORVA, J. 2013. Notational Machines and Introductory Programming Education. ACM Transactions On
Computing Education, 13, 31.
TROSKIE-DE BRUIN, C. 2013. Qualitative research: Requirements for post-graduate study projects. In:
(ASEV), R. A. D. C. (ed.). Stellenbosch.
YAMAZAKI, S., SAKAMOTO, K., HONDA, K., WASHIZAKI, H., FUKAZAWA, Y. Comparative Study on
Programmable Robots as Programming Educational Tools. In: FALKNER, D. D. S. A. K., ed. Australasian
Computer Education (ACE) Conference, 2015 Sydney, Australia. Australia Computer Society Inc.

