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Abstract  
Ruin theory is a predominant topic in actuarial science and many researchers have 

brought their contributions in it to make the theory close to reality. Historically, the 

pioneers of ruin theory have assumed a risk model that is not affected by the force of 

interest. However, it is well-known that insurance companies operate in an economic 

environment where the force of interest plays an important role, hence the study of 

ruin probability without considering the force of interest is flawed in reality.  

In this thesis, we consider Ramsay’s model, modified by the inclusion of random 

interest rate on the surplus process, where we investigate the effect of random interest 

rate on the ruin probability. Autoregressive model is introduced to model the 

randomness of the interest rate. Based on the statistics’ test, we found that The Three- 

Months South Africa Treasury Bill Rates (TBR) used in this study can be modelled by 

an autoregressive structure of order one. We then derive exponential type upper 

bounds for the ruin probability by using a renewal recursive technique. Finally, we 

provide numerical examples where the length of the sickness period and that of the 

healthy period follow an Erlang distribution to illustrate our results. We found that the 

probability of ruin is very small when we considered a random interest rate in the 

Ramsay’s risk model unlike the results obtained by Adekambi (2013) when he 

considered a constant interest rate in the Ramsay model. 
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Chapter 1- Introduction 

1.1 Background 
Over the past two decades, due to financial difficulties, the economic environment has 

been marked by ruin cases in many financial institutions, and especially in insurance 

companies. For example, in May 2000, American Chambers Life Insurance Company 

was declared insolvent, and State Life and Health Insurance Guaranty Associations 

acquired it in the same year. Four years later, The Life and Health Insurance Company 

of America (LHICA) filed for bankruptcy as a result of financial difficulties. Following 

that announcement the Pennsylvania Department of Insurance took control of the 

company in July 2004. More recently, on February 28, 2015, precisely, CoOportunity 

Health was declared bankrupt due to financial difficulties and was liquidated to the Life 

and Health Insurance Guaranty Association. These are a few examples of insurance 

companies in the United States of America that went insolvent due to financial 

difficulties.  

 The main objective of an insurance company is to put together risks that policyholders 

may encounter by providing financial support or compensation that would help to 

reduce the financial consequences of the loss that may face them. Thus, state 

insurance regulators, policymakers and researchers have all become more concerned 

about the financial status of insurance companies and have tried to come up with an 

appropriate framework that would assist insurance companies to meet their 

commitments to policyholders. Hence, the notion of ruin theory appears as an 

important approach that insurance companies need to consider in order to measure 

the type of risk inherent in the insurance business, as well as assessing the financial 

situation of the company over a long period of time.  

First introduced in the 1900s, by the Swedish actuary, Filip Lundberg, ruin theory can 

be defined theoretically as an approach that uses mathematical techniques to explain 

an insurer’s exposure to insolvency or ruin (Lundberg, 1909). Moreover, in most 

actuarial literatures ruin theory is described as a method that investigates the 

probability that the insurer’s surplus level –that is, the premium received over claims 

paid out- will eventually drop below zero making the insurance company insolvent 

(Tanasescu and Mircea, 2014). In other words, ruin theory deals with the 

approximation of the probability that the insurance company will go bankrupt. 

Therefore, by knowing the probability of ruin, the insurance companies can take 
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measures to reduce the risk of bankruptcy. In line with this, Tanasescu and Mircea 

(2014) argued that one way an insurance company can measure the risk related to its 

business is to evaluate the ruin probability of the company. Furthermore, the authors 

stated that ruin probability is a useful means that can be used by the insurance 

company to control its disposable fund over a long period of time. 

1.2 Research problem and research question 
Following the work published by Lundberg (1903), ruin theory has become the main 

focus in actuarial science and researchers have extended it to reflect the economic 

environment in which the insurance companies operate more. According to Yao and 

Wang (2010), there are two kinds of the extension of ruin theory in actuarial science. 

The first kind of extension of the theory is the one that assumes that the increments in 

the surplus process are ‘dependent’, which advocated that dependence within claims 

and premiums can occur at any time in reality; the second type of extension is to 

consider a risk model that is influenced by the force of interest.  

As far as the first extension is concerned, Kit Mo (2002) argued that, “Dependence 

within the risk model can happen many times in reality; hence the assumption of 

independent claims would be inadequate in modelling real world insurance 

processes.” Therefore, in the aim of modelling real world insurance processes, many 

authors, such as: Kit Mo (2002); Frostig; Haberman and Levikson (2003); Chan and 

Yang (2006); Lefèvre and Loisel (2009); Biard et al (2011); Peng, Huang and Wang 

(2011); Cheung and Landriault (2012); and, more recently, Li, Wu and Zhuang (2015); 

Li and Yang (2015); Albrecher et al. (2015), as well as Raducan et al. (2015); 

investigated the effect of dependence within the risk model on ruin probability, where 

they assumed that either the premiums or the claims were dependent. 

The second type of extension of ruin theory - which is of particular interest to us since 

most of insurance companies operate their business in a world that is deeply 

influenced by the force of interest - is based on developing a risk model that takes into 

account the forces of interest, reflecting the reality of insurance companies more. In 

line with that, authors, such as: Cai (2002a, 2002b); Yang and Zhang (2003); Yuen, 

Wang and Wu (2006); Zhang, Yuen, and Li (2007); Mitric and Sendova (2010); Yao 

and Wang (2010); Mitric, Badescu and Stanford (2012); Adekambi (2013); Gao and 

Yang (2014); Thampi (2015); as well as Li and Yang (2015); all investigated the effect 
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of the force of interest on ruin probability in the aim of having a risk model close to 

reality . 

In this study, we follow the model proposed by Ramsay (1984), where he studied ruin 

probability for a health care insurance risk model without considering the effect of 

interest rate on the risk model and the probability of ruin. In his study, the author 

assumed that the policyholder pays a premium to the insurance company at a constant 

rate, , during the healthy period; on the other hand, during the period of sickness, if 

the length of sickness goes beyond a waiting period, w , the insurer pays out claims 

continuously at a constant rate,  , which is proportional to the remaining duration of 

sickness. He finally derived the ruin probability of the insurer by using an alternating 

renewal process.  

The main motivation of our study is that, to the best of our knowledge, it is only 

Adekambi (2013) who has extended the model proposed by Ramsay (1984) by 

considering the effect of constant interest rate. However, Cai (2002b) argued that the 

assumption of constant rates of interest does not hold in reality ‘since interest rate is 

usually statistically dependent over time’. Therefore, the main contribution of this paper 

is to extend the work done by Ramsay (1984) and Adekambi (2013) by investigating 

the effect of random interest rate on the probability of ruin in the Ramsay risk model. 

Given that most of the insurance companies operate in a world that is deeply 

influenced by the force of interest, and, due to the uncertainty associated with the 

insurance business; most insurers invest their surplus to generate some interest 

income. Therefore, the inclusion of random interest rate on the surplus process in our 

risk model depicts a real life scenario. Furthermore, Yao and Wang (2010), contended 

that it is unrealistic to assess the ruin probability of an insurance company without 

taking into account interest rate. The authors argue that a considerable amount of the 

surplus of the insurer is derived from interest income.  In line with the work of Yao and 

Wang (2010), Cheng and Wang (2011) investigated the effect of dependent interest 

rate on the risk model to evaluate the probability of ruin for an insurance company. 

These authors believed that the hypothesis of a constant does not hold in real world.  

This study will therefore seek to answer the following question: What is the effect of 

random interest rate on the probability of ruin in Ramsay’s model? 
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1.3 Objective of the study and research design 
The main purpose of the study, therefore, is to investigate the effect of random interest 

rate on the probability of ruin in the Ramsay model. In other words, we want to extend 

the results obtained by Ramsay (1984) and Adekambi (2013). Regarding the 

randomness of interest rate, the econometric estimation of the interest rate used in 

this study tells us that it can be well-modelled by an autoregressive structure of order 

one. One should recall that an autoregressive process is a process that assumes that 

the past values of a variable have an impact on its current values. This corroborates 

the study done by Cai (2002b), where he argued that interest rates are statistically 

proven to depend on each other over time.  

Therefore, in order to investigate the effect of random interest rate on the probability 

of ruin in Ramsay’s model, we will first use recursive technique to derive integral 

equations of the probability of ruin and then derive probability inequalities of the ruin 

probability. The inequalities are going to be used as upper bound to evaluate the ruin 

probability of our model.   

1.4 Chapters overview 
The remainder of the paper is structured as follows. Besides the introduction, chapter 

2 discusses the literature review while chapter 3 presents Ramsay’s model, then 

Chapter 4 presents the econometric estimation of interest rate. Thereafter, Chapter 5 

describes the model and the methodology used in this study, while chapter 6 gives 

numerical examples to illustrate the application of the results under random interest 

rate, and, finally, chapter 7 presents the conclusion. 

 

Chapter 2- Literature Review 

2.1 Introduction 
In this chapter, we look at some theoretical and empirical literatures regarding the 

assessment of ruin probability for an insurance company with the objective of 

identifying a gap in the literature that this study will attempt to fill. One of the limitations 

of the Lundberg risk model is based on the assumption of independence made on the 

claims and the premiums as well as the use of a risk model that does not consider the 

force of interest. Even though these two assumptions facilitate the determination of 

ruin probability, they are flawed and hence cannot be applied in real life. That is the 

reason why, in the effort to make the results more applicable in reality, many studies 
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have been carried out to assess ruin probability using different approaches, such as 

the effect of dependent claims and premiums on ruin probability, in the case of ordinary 

renewal processes and the effect of the force of interest on this. Some researchers 

have evaluated ruin probability in the context of ordinary renewal processes where 

premiums and claims are dependent; while others have focused their studies on the 

asymptotic behaviour of ruin probability when the interest rate is considered.  

This literature review consists of three sections. In the first section, we discuss studies 

that investigated the effect of the dependent claims and premiums on the probability 

of ruin. In the second section, we provide an overview of the economic environment 

of the insurance company. In the subsequent section, we discuss some theoretical 

and empirical literatures on ruin probability when the interest rate is considered.  

2.2 Theoretical and empirical literature on the effect of dependent claims and 
premiums on ruin probability 
Many studies have investigated the effect of dependent claims and premiums on the 

probability of ruin. Among others, Kit Mo (2002) argued- that the assumptions made 

on the Lundberg classical risk model that individual claims are independent of each 

other over time- does not always hold in reality, because claims generated by one 

policy in an insurance portfolio may induce claims from other policies in the same 

portfolio. Therefore, the author analysed the effects of dependence on both the 

probability of ruin and time to ruin. He used copulas to introduce the dependent 

structure on claim occurrence and then performed a simulation study to investigate 

the effects of different dependent structures on the aggregate claims number, the 

probability of ruin and the time to ruin. Finally Kit Mo (2002) found that the probability 

of ruin increases when dependence is considered in the risk model; however, this 

increase has a slight impact on the time to ruin. He concluded that the results obtained 

can be applied in real life. 

In their study, Frostig et al. (2003) investigated the probability of ruin for a generalised 

life insurance models including whole life and long-term care contracts. The authors 

contended that, in such models, the claims’ occurrences are dependent over time; 

hence the structure of their study is different from that of ruin probability in the 

Lundberg classical risk model where it is assumed that claims over time are 

independent. In order to obtain the results, they developed an algorithm to model the 
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dependence structure on the claim, which, in turn, enables them to find recursively 

new upper and lower bounds for the ruin probability of their dependent risk model. 

Frostig et al. (2003) sated that the new upper bounds derived in their model perform 

much better than the Lundberg-type upper bounds; hence, their risk model is more 

adequate in real world insurance business. 

Moreover, Chang and Yang (2006) stated that the assumption made on the classical 

ruin theory that the risk model forms a random walk might not hold in reality due to the 

fact that annual incomes of an insurance company can be correlated. In order to 

illustrate their argument, the authors considered a risk model in which claims and 

premiums are dependent over time. They used the Granger’s causality method to 

model the claim and premium and finally derived upper bounds for the ruin 

probabilities by using the martingale technique. They argued that their model can be 

applied in any domain other than in the domain of insurance by considering the 

premium as an input process of any system and the claim process as an output 

process of that system. According to Chang and Yang (2006:11) “The system can be 

monetary reserve or stock of a commodity, where we are interested in its reserve after 

some time and therefore one can apply the results obtained to find out the probability 

that the reserve will ever become negative”. 

Lefèvre et al. (2009), examined two generalised versions of the ‘classical compound 

Poisson risk model’.  In the first version of the model, they included a premium function 

that is not constant and claim processes that vary over time, and, in the latter, they 

assumed the possibility of interdependence between the claim occurrences. The 

authors argued that previous studies regarding the classical compound Poisson risk 

model assumed interdependence between the claims occurrences. However, 

according to Lefèvre et al. (2009), these assumptions may be found to be too 

restrictive and not applicable to real insurance portfolios. Therefore, in order to derive 

the probabilities of ruin of the two generalised versions of the classical compound 

Poisson risk model, the authors used a recursive method that relies on the use of 

remarkable families of polynomials which are of ‘Appel’ or ‘generalised Appel’ types. 

They contended that the results obtained can also be applied to an insurance portfolio 

with several interconnected risks, and to the case of continuous claim severities.  
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In addition, Biard et al. (2011) argued that many strong assumptions in the classical 

compound Poisson risk model may not accurately give the change of the reserve of 

an insurance business over time. This is the case in the insurance business, which 

experiences natural disaster risks like earthquake or flooding. Concerning these types 

of risks, claim amounts may be dependent on each other and they may also depend 

on previous natural disasters (Biard et al. 2011). Therefore, in order to take into 

account natural disaster risks, such as earthquakes or flooding, the authors 

considered a ‘dependent Poisson risk model’, where each claim amount depends on 

the previous claim inter-arrival time. Finally, they evaluated the finite time ruin 

probability of these type-dependent risk models by assuming that the claim sizes have 

a heavy tailed distribution. The technique used in order to derive the upper bound ruin 

probability is based on ‘the analysis of spacings in the conditioned Poisson processes. 

Moreover, Peng et al. (2011) argued that, because of the increasing complexity of 

insurance and reinsurance products, many researchers have been studying the 

modelling of dependent risks to reflect the real word insurance companies. In their 

study, they examined ruin probability in a dependent discrete risk model with a 

constant interest rate, in which the dependent claims are assumed to have a one-side 

linear structure. They found an explicit asymptotic formula for the ruin probability by 

martingale and inductive techniques. Peng et al. (2011) concluded that the results 

obtained are more applicable in reality. 

Furthermore, Li and Yang (2015) contended that previous studies regarding 

‘multidimensional risk models’ were based on the assumption that claims from different 

insurance portfolios are absolutely independent. Then, the authors argued that, even 

though this assumption makes the risk model easy to manipulate; it is nearly 

impossible to apply the results in real world insurance business. That is the reason 

why in their study, they considered a ‘bidimensional renewal risk model’ with 

dependent claims where they assumed that the insurance company proportionally 

allocates its aggregate initial capital to two types of insurance portfolios. The 

dependence among claim sizes comes from two perspectives: the first is based on the 

assumption that that the two types of claims have the same renewal claim number 

process; while the latter relies on the fact that each vector of claims follows a general 

dependence structure, which is given in terms of copulas having both asymptotic 



15 
 

independence and asymptotic dependent situations. They finally found an exact 

asymptotic formula for the finite-time and infinite-time ruin probabilities.  

2.3 Overview of the economic environment of the insurance company 
The Lundberg classical risk model does not take into account the economic 

environment in which insurance companies operate, namely the inflation and interest 

rates. Both together have a significant impact on the economy of a country. The term 

‘inflation’ is defined as a decline in purchasing power of a currency. It is often caused 

by the presence of increasing the prices of goods and services in an economy. In other 

words, inflation is a state where people realise that they need more money to buy 

goods and services than they needed last month or last year to buy the same goods 

and services. Therefore, the main consequence of inflation is that a currency of a 

country suffers the loss of its value. Hence, inflation is seen as a big problem in most 

of the economies. It is in this context that Castaner et al. (2013) argued that inflation 

and interest rates can, sometimes drastically, affect the evolution of the reserve of a 

company. “Claim amounts and premiums have often a tendency to increase for 

various socio-economic reasons (e.g. higher loss levels and larger compensations or 

coverages)”- (Castaner et al. 2013). Hence, it is imperative for insurance companies 

to know the impact of inflation on the total claim amounts when computing the 

premiums charged. 

As far as interest rate is concerned, it is defined as the amount of interest due per 

period, as a proportion of the amount lent, deposited or borrowed. In other words, it is 

the rate a bank or other lender charges to borrow its money, or the rate a bank pays 

its savers for keeping money in an account. Given the importance of interest rates in 

an economy, many studies have been carried out in the objective of finding the main 

determinants of interest rates, and economists are divided between two of the most 

remarkable theories of interest rates, namely: the Irvin Fisher’s classical approach and 

the liquidity preference theory first introduced by Keynes.  

According to Fisher (1930), interest rate is the compensation or payment acquired by 

individual for loaning his savings to another person. In other words, it is the price of 

borrowing from a person and the recompense for lenders. Hence, according to 

Fisher’s theory, the main determinant of interest rate dwells on how the supply and 

demand for savings interact; therefore, saving plays an important role in determining 
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the interest rate. Fisher’s theory of interest rates gained support from many 

economists. Fabozzi et al. (1998) support the view of Fisher in their study and describe 

the interest rate as the cost paid by debtors to a creditor for the utilisation of capital for 

the period of time. 

However, many others criticised Fisher’s theory and are in line with Keynes’ liquidity 

preference theory. In his theory, Keynes (1936) defined interest rate as the interaction 

of money supply and money demand, rather than the interaction of supply and demand 

for savings. The reasoning behind his theory is as follows: Keynes believed that 

investors prefer to keep their money liquid for present transactions and they demand 

interest in returns for sacrificing their liquidity. In this context, he considers interest 

rates as an opportunity to hold cash (money), due to the fact that one may convert 

money into bonds and earn more. So, Keynes argued that the amount of money 

people hold varies inversely with interest rates - if rates decrease, they will hold more 

money until rates increase. 

Therefore, both theories highlight the importance of the interest rate in modern 

economies, and the risk model should consider interest rates to model real life 

insurance companies. Yao and Wang (2010) argued that it is fundamental to consider 

the interest rate in the study of ruin probability since large amounts of the surplus of 

the insurance companies come from investment income. This is to say that the interest 

rate plays a vital role in the survival of the insurance company; so, studying the 

probability of ruin without taking into account rates of interest, could be too restrictive 

in real world.  

2.4 Theoretical and empirical literature on the effect of interest rate on the 
probability of ruin 
Given the importance of the interest rate in an economy, many researchers have 

investigated the effect of the force of interest on the ruin probability with the objective 

of modelling an insurance risk model that can be applied in real life. Authors, such as 

Shen and Lin (2010), studied the ruin probability in a continuous-time renewal model 

of upper-tailed independent and heavy-tailed random variables with the inclusion of 

interest rates in the model. The authors assumed that the claim sizes are identically 

distributed - but not necessarily independent and nonnegative variables - with the 

same distribution and their inter-arrival times; but there are another series of 
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independent, identically distributed  . .i i d  and nonnegative random variables. When 

assuming a model where the interest rate and premium are constant, they found a 

simple solution for ruin probability of the renewal process where the initial surplus is 

large.  

Similarly, Gao and Yang (2014) investigated the effect of the force of interest on ruin 

probability by studying three kinds of finite-time ruin probabilities in a diffusion-

perturbed bi-dimensional risk model with a constant force of interest, where the claims 

are pair-wise, strongly quasi-asymptotically independent and there are two general 

claim arrival processes. The authors derived a homogeneous asymptotic expression 

for finite-time ruin probability when they assumed the claims both to be long-tailed and 

dominatingly varying-tailed. They found that when considering a certain dependence 

structure among the inter-arrival times, the obtained formulas satisfy uniformly for all 

times when the claims are pair-wise, quasi-asymptotically independent and 

consistently varying-tailed. 

More recently, Thampi (2015) studied the effect of the force of interest on ruin 

probability by investigating the asymptotic behaviour of the finite time ruin probability 

of a compound renewal risk process with a constant interest rate. The author assumed 

a risk model where the size of claims are ‘weakly negatively dependent’ (WND) and 

identically distributed random variables that belong to the group of variable tails. Based 

on the inclusion of a constant interest rate in the model and the assumption made on 

the claim sizes, he found an expression for the finite time ruin probability for this 

particular risk model and argued that the results obtained have extended and improved 

some corresponding results of related studies. 

Furthermore, Li and Yang (2015) estimated the ruin probability for a bi-dimensional 

renewal risk model with a constant interest rate and dependent regularly varying 

claims. The authors assumed that the insurer invested its total surplus in two types of 

insurance businesses. Under the condition of having a constant rate of interest, the 

authors obtained an exact solution for the finite-time and infinite-time ruin probabilities.  

However, Cai (2002b) argued that considering the force of interest in the classical risk 

model that is constant (or i.i.d.) does not reflect the true reality of the insurance 

company. For this reason, some researchers have shifted their study on the effect of 

a random interest rate on the surplus process to evaluate the ruin probability of the 

insurer. 
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Among others, Cai (2002b) evaluated ruin probabilities in two generalised risk model 

where he showed how the probability of ruin is affected by the timing of payments and 

interest rate. The author considered a dependent autoregressive process to model 

interest rate. Based on this assumption and using a renewal recursive method the 

author derived Lundberg inequalities for the ruin probabilities. He finally gave some 

numerical examples to illustrate the results in the case of the compound binomial risk 

process. 

Similarly, Cheng and Wang (2011), assessed ruin probabilities for a discrete risk 

model in which they considered that the claims, the premiums and the interest rate 

had a dependent autoregressive process of order one. They then used the recursive 

and integral equations for the expected discounted penalty function to derive the 

generalised Lundberg inequality for the infinite time ruin probability as well as for the 

finite time ruin probability. 

Furthermore, Yuen, Wang and Wu (2006) studied ruin probability related to the 

discounted penalty function in the renewal risk model. The authors derived an integro-

differential equation for the Gerber-Shiu expected discounted penalty function when 

they asserted that the inter-occurrence times of claims followed an Erlang distribution. 

The main finding of their study is as follows: they derived lower and upper bounds for 

the ultimate probability of risk of the risk model, and, by using two special cases of 

stochastic interest processes - namely the Brownian motion case and the compound 

Poisson case - they found exact formula for the discounted density related to the 

expected discounted penalty function.    

This chapter presents a review on ruin probability for an insurance company in broad, 

general sense. However, studies that evaluate ruin probability in health care 

insurance, in particular, are few. One such study conducted by Ramsay (1984) 

assessed ruin probability for a health care insurance concern using alternating renewal 

process without considering the effect of interest rate on the risk model of the insurer. 

Furthermore, Adekambi (2013) extended the model proposed by Ramsay (1984) by 

including a constant interest rate on the probability of ruin in the Ramsay model. He 

used martingale and recursive techniques to derive Lundberg inequalities for the ruin 

probability. However, the use of a constant interest rate does not necessarily hold in 

reality as it does in real life: insurance companies operate their businesses in an 

economic environment where interest rates are generally supposed to be dependent 

on one another over time (Cai, 2002b). Therefore, the major contribution of this study 
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is to extend the work done by Ramsay (1984) and Adekambi (2013) by taking into 

consideration the effect of random interest rate, covered in the Ramsay model, to 

estimate ruin probability for a health care insurance company. 

The next chapter presents the Ramsay model. 

Chapter 3- Ramsay’s Model 
Ramsay (1984) proposed the alternating renewal process for the study of health 

insurance problems in his work entitled “The asymptotic ruin problem when the healthy 

and sick periods form an alternating renewal process”. In what follows, the Ramsay 

model will be described, followed by the description of how the probability of health 

(and sickness) of the model was determined. After which, we finally present the main 

findings of the extension of the Ramsay model in the work done by Adekambi (2013). 

The model is described as: 
1 1 2 2 ,, , , ... ...n nT Y T Y T Y  is the sequence of independent random 

variables. According to Ramsay (1984), “The 'iT s  are assumed to have a common 

. .c d f  F x and the 'iY s  have a common . .c d f ( )G x . . .c d f ( )G x . Both the 'iT s  and 'iY s

are positive random variables.” 

Ramsay considered the following insurance portfolio to build his model: the insurance 

company deals with insurance contracts. Each policyholder pays a premium to the 

insurance company at a constant rate of   during the healthy period. On the other 

hand, during the period of sickness, if the length of sickness goes beyond a waiting 

period of w , the insurer pays out claims continuously at a constant rate of  , which is 

proportional to the remaining duration of sickness. He assumed that the period of 

health and sickness alternate; hence, they form an alternating renewal process. If iT  

denotes the length of the thi  period of health and iY , the length of the thi  period of 

sickness; then Ramsay (1984) assumed that, “The sequence 1 1 2 2, , , ...T Y T Y  is an 

alternating renewal process in the sense of Cov (1962).” He further assumed that the 

insurance company sets up an initial reserve of u  per contract. The reserve nQ  at the 

end of the thn  sickness period for an individual contract is  

n n nQ u P S   . 1, 2,...n   and 0u  .                                                             (3.1)   

where  

nS   is the discounted aggregate amount of benefit paid out up to the end of the thn  

sickness period, n 1, 2, 3... 
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 '

1

n

n k k

k

S Y w




   

nP   is the discounted aggregate amount of premium received up to the end of the thn   

healthy period, n 1, 2, 3... 

1

n

n k

k

P Y


   

Note 0 0 0P S  . Ramsay defined the random variable N , as a stopping time, as 

follows: 

 : 0, 0nN Inf n Q n   . 

He argued that ruin occurred at N iff N   and define    0Pru N Q u     

3.1 Probability of sickness and health 
In this section, we provide some results obtained by Ramsay (1984) to illustrate how 

a health care insurance company operates. Ramsay assumed that the end of the 

preceding sickness period is denoted by time = 0.  

Ramsay defined, 

   
0

x
stf s e dF t                                                                                       (3.2)  

   
0

x
stg s e dG t                                                                                        (3.3) 

Considering 2 ( )h t  to be the renewal density for the process  f s , 

           2 2
0 0 0

.
t t t y

h t dF y dG t y h y dF z dG t y z dy


        

Using Laplace equation, he got  

           2 2h s f s g s h s f s g s        

or 

 
   

   2
1

f s g s
h s

f s g s

 



 



                                                                               (3.4)  

Therefore, every time the term    

   1

f s g s

f s g s

 

 
is expressed, Ramsay (1984) assumed 

that    2 2
0

sth s e h t dt


    was a Lebesque integral. 

The author made the same assumption for the process  g s . If 1( )h t is the renewal 

density for the process  g s , then it follows that 
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       1 2
0 0

.
t t

h t dF y h y dF t y dy     

Using Laplace equation, he got, 

       1 2h s f s h s f s      

or 

 
 

   1
1

f s
h s

f s g s





 



                                                                                (3.5) 

Every time the term  

   1

f s

f s g s



 
 is expressed, Ramsay (1984) considered the 

following: 

 p t   The probability that the policyholder is healthy. when 0t  . 

 q t The probability that the policy holder gets sick.  when 0t  .  

Clearly,     1p t q t   and, 

       2
0

t

t t y
p t dF y h y dF z dy

 


                                                                (3.6)                                   

             2
0

1 1
t

F t F t y h y dy                                                                (3.7)                                         

Ramsay (1984) argued that  p t  exists if equation (3.7) is a Lebesque integral.  

Now he considered,  

 r t  is the probability that the policyholder gets sick and receives a benefit at time t. 

Hence, 

       2
0 0

t w t w y

r t h y dF z dG t w y z dy
  

                                                       (3.8) 

Thus according to Ramsay (1984), these are the major probabilities required to define 

a health care insurance company. 

However, the model proposed by Ramsay is not without limitations as he did not 

consider the effect of interest rate on the risk model, hence it is consistent with the 

classical risk model assumptions. In order to make the model proposed by Ramsay 

applicable in real world, Adekambi (2013) included the force of interest in the model, 

and he assumed that the force of interest is constant. 

When considering constant force of interest Adekambi (2013) found the following,  

nS  The discounted aggregate amount of benefit paid out up to the end of the thn  

sickness period, n 1, 2, 3... 
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   

 

1 ...

1

1 k

k

Z w
n

Y Y w

k

e
S n e





 



 

   



 
                                                             (3.9) 

nP The discounted aggregate amount of premium received up to the end of the thn   

healthy period, n 1, 2, 3... 

   1 1 1 1...

1

1 k

k k

Y
n

Y Z Y Z

k

e
P n e





 


 



    



                                                               (3.10) 

Adekambi denote by ( )n u  and ( )u  the finite and ultimate ruin probability when 

the force of interest is δ.  

Then  

   1
( ) Pr 0

n

n k
k

u U V T 


   and    1
( ) Pr 0k

k
u U V T 




                   (3.11) 

Where 

     kV T u P n S n     .                                                                                (3.12) 

Adekambi used two different techniques to find the upper bound for the ruin probability 

in the Ramsay model which was modified by the inclusion of constant interest rate.  
1( )

R u

n u e


  is the upper bound derived by the martingale techniques and 

2( )
R u

u e


  is the one obtained by the recursive technique. 

However, as mentioned in the previous chapter, the use of constant interest rate in the 

Ramsay’s model does not necessarily portray the reality in which insurance 

companies operate. In order to build a risk model that is very close to reality, we 

decided to modify Ramsay’s model by the inclusion of random interest rate. Another 

point that makes our risk model different from those proposed by Ramsay (1984) and 

Adekambi (2013) is that we did not use discounted aggregate amount of claim and 

discounted aggregate amount of premium. Therefore, we followed the same approach 

as Cai (2002b), where, in his study, he first derived an integral equation by using 

recursive technique, and then gave probability inequalities for ruin probability. Thus, 

our model becomes a special case of Cai’s (2002b) risk model. The subsequent 

chapter presents the econometric estimation of the interest rate used in this study. 

 

Chapter 4- Econometric Estimation of the Interest Rate 
The purpose of this chapter is to illustrate the reason why a random interest rate was 

considered in this study. Several studies have estimated interest rate using different 
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models to fit the data of specific countries. In this study, the econometric estimation of 

the interest rate is illustrated with reference to data relevant to the South Africa 

economy. This chapter is organised as follows: it commences with a discussion of the 

data used in the study; then how the model was estimated will be outlined; concluding 

with presenting the results. 

4.1 Data 
This section provides a description of the data used in the study. The study makes use 

of the annual data for the South Africa three-month Treasury Bill Rates from 1970 to 

2015. Data was sourced from Quantec. 

4.2 Model estimation 
The following variables are used to evaluate the appropriateness of the randomness 

of the interest rate. 

1t t tR R K                                                                                      (4.1) 

Where 
tR the current change in interest rate; 

1tR 
is the lagged change in interest 

rates;  is called the coefficient of regression and 
tK is the error term; which is an 

uncorrelated sequence of random variables with a probability distribution that has zero 

for mean and a finite variance, i.e.  20, .tK    

4.3 Empirical results 
The first step in our empirical analysis is to investigate the appropriateness of the 

randomness of the interest rate. The result of our test is given by equation (4.2). It can 

be concluded that the lagged change in interest rate is a useful predictor of the current 

change in interest rate, as 28.19 1.96t   .Therefore, the randomness of interest 

rate used in this study can well be modelled by an autoregressive structure of order 

one. 

 R  0.97*  1R            2 0.66R                                         (4.2) 

                        0.03  

 

The second step in our empirical study is to perform some diagnostic tests for the 

residuals. These tests are very important since they are going to tell us whether or not 

the residuals are normally distributed, ensuring that they do not suffer from 

Heteroscedasticity and/or serial correlation. The first test performed is the Breusch-
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Godfrey Serial Correlation LM Test and we found that residuals were not correlated to 

each other, as the null hypothesis at 5%significance level was rejected, since the 

probability of Chi-Square= 0.216 0.05 . The second test performed is Breusch-

Pagan-Godfrey heteroscedasticity test, where we found that there was no presence 

of heteroscedasticity in the model as we rejected the null hypothesis at 5%  

significance level, since the probability of Chi-Square= 0.099 0.05 . Finally, we 

performed the normality test for the residuals and the finding was that the residuals 

are normally distributed. Thus the null hypothesis at 5%  significance level was 

rejected again since the probability= 0.413 0.05  

We proved statistically that the randomness of the interest rate used in this study can 

be modelled by an autoregressive structure of order one.  The next chapter describes 

the model and how we derived the integral equation and the probability inequalities for 

ruin probability in the Ramsay’s model modified by the inclusion of random interest 

rate. 

Chapter 5 - Research Methodology  
This chapter presents the methodology used in our study. The aim of our study is to 

assess the probability of ruin in the Ramsay model as modified by the inclusion of 

random interest rate on the surplus process. In order to evaluate the ruin probability in 

our model, we first use the recursive technique to derive integral equations for the ruin 

probability and then give probability inequalities for the ruin probability. The upper 

bound is derived from the inequalities and serves in evaluation of the ruin probability. 

The first section of this chapter will describe our risk model. The next section will show 

the different steps to derive the integral equations for ruin probability, concluding this 

chapter by providing probability inequalities for ruin probability. 

5.1 Description of the model  
Let us assume a discrete time risk model in which the premiums and claims are noted 

only at times 1, 2,..t  . We consider an insurance company that deals with sickness 

insurance contracts. Each policyholder pays a premium to the insurance company at 

a constant amount, , proportional to the healthy period. On the other hand, during 

the period of sickness, we assume that if the length of sickness goes beyond a waiting 

period, w , the insurer pays out claims to the policyholder at a constant amount,  , 

proportional to the remaining duration of sickness.  



25 
 

Let us consider { , 1,2,..., }tH t t   and  { , 1,2,..., }tS w t t


   as being two sequences of 

independent and identically distributed ( . . .)i i d  positive random variables, where tH  

represents the aggregate premiums during tht , that is, the healthy period, which is  

from time t−1 to time t.  tS w


  denotes the aggregate claims during the tht period 

of sickness. We set    t tS w S w 


    if tS w  or   0tS w


   if
tS w . We 

assume that the amount of claims,  tS w


 , during the tht period of sickness, is paid 

at the end of the tht  period, and the amount of premium, tH  during the tht  period of 

health is received at the beginning of the tht  period, that is at time 1t  . 

Furthermore, we consider 
1 1 2 2, , , ,..., ,t tH S H S H S  to be a sequence of positive 

independent random variables. ,iH 1,...,i t  represents the length of the thi  healthy 

period. ,iS 1,...,i t  represents the length of the thi  period of sickness. One should 

notice that the healthy period and sick periods alternate; hence, we assume that they 

form an alternating renewal process. Thus, the process,  ,iI i  with , 1i i iI H S i  

, 00 R   forms an ordinary renewal process. We then set
1

q

q i

i

N I


  and 
0 0N   for 

1q  .  

With the description of the model above, we have the following:  

The capital of the insurance business at time t  - represented by tV  with the initial 

capital v  - is such that: 

 1 , 1,2,...,t t t tV V H S w t  
                                                               (5.1)                   

with 
0 0.V v   

, 1,2,...,tV t   is the surplus process at time t  of the risk model (5.1). In actuarial 

science, the preferred risk model (5.1) is ‘the classical risk model’ because it 

characterises an insurer’s surplus, which experiences two opposing flow of money: 

namely, the premiums received from the policyholder and the claims paid out to the 

policyholder, with both of these increments considered to be independent. 

Furthermore, in the classical risk model, it is assumed that no investment is made by 

the insurance company; that is, the risk model (5.1) does not consider any interest 
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rate. The ultimate probability of ruin with the initial capital, v  in the risk process (5.1) 

is characterised by: 

   
1

Pr 0t

t

v V




 
  

 

                                                                                       (5.2)  

As mentioned above, the risk model (5.1) is not influenced by any force of interest as 

we assumed that there is no investment made by the insurance company. However, 

in reality, most of the insurance companies invest their surplus in the stock market or 

in any investment portfolio that might generate some interest income on the surplus. 

Yao and Wang (2010) argue that a huge amount of the surplus of the insurer is derived 

from investment income. Thus, using a risk model that does not consider the force of 

interest does not portray the reality of insurance companies. Since interest rate ( ,tR  

1,2,...t  ) in our study can be modelled by an autoregressive structure of order one,  

therefore tR  is such that, 

          1 ,t t tR R K    1, 2,...,t                                                                                 (5.3) 

With 0 1   and 
0 0 0R r   as constants, and  , 1,2,... ,tK t   a sequence of ( . . .)i i d  

nonnegative random variables. We can observe that if 0  , model (5.3) is a random 

model of the ( . . .)i i d  interest rate and turns out to be a model of constant rate if 0   

and
tK c , a constant, for all , 1,2,...,tK t  . Therefore, according to Kellison (1991), 

model (3) has a dependent structure. 

Moreover,     , 1,2,... , , 1,2,...t tH t S w t    and  , 1,2,...tK t  are assumed to be 

independents and have common distribution functions: 

       1 1( ) Pr{ ), PrH h H h F s w S w s w          and 
1( ) Pr{ }G k K k  , 

respectively, with (0) 0.F   Further, it is possible to show by the induction technique 

that (5.3) is equivalent to:  

1

0 1 1... .t t

t t tR R K K K  

                                                                                      (5.4) 

 Proof:  

For 1t  , we have  
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1 0 1.R R K   

Let’s assume that the result is true for 1t  , then:  

1 2

1 0 1 2 1... .t t

t t tR R K K K   

        

According to (5.3), the following is true: 

1t t tR R K    

By substituting for 1tR  , we have 

 1 2

0 1 2 1...t t

t t t tR R K K K K    

        

1 2 2

0 1 2 1...t t

t t t tI R K K K K    

        

Finally, the following is obtained: 

1

0 1 1... .t t

t t tR R K K K  

     1, 2,...,t   . 

Equation (5.4) means that the force of interest is deeply influenced by the recent rates. 

When considering the model described on top and assuming that the insurance 

company could invest its surplus and receive some interests each year from the 

investment; we have the following surplus process at time t . 

 1( )(1 ) , 1,2,...,t t t t tV V H R S w t  
                                                       (5.5)              

Model (5.5) can be interpreted as a generalisation of the classical risk model (5.1) 

since it takes into account the interest rate described in model (5.3). In fact, model 

(5.1) becomes a special case of model (5.5) when it is assumed that the model is not 

influenced by any interest rate, that is, 0tR   for 1, 2,...,.t   Moreover, it is possible 

to interpret model (5.5) in a risk theoretical framework. Let us consider that the 

insurance company invests its surplus and therefore receives some interest on it 

during each period. Let tR  represent the interest rate for the duration of the tht period: 

that is, from time 1t   to time t . The following hypothesis can then be made about the 

payment of the claim amounts,  tS w


 , during the tht  period of sickness. We 

assumed that the insurance company pays out the claims at the end of the tht  period 

of sickness, that is, at time t . Regarding the amount of premiums, tH  during the tht  
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healthy period; it can be presupposed that the policyholder pays premiums at the 

beginning of the tht  period, that is, at time 1t  . Therefore, the capital of the insurance 

company at time t , represented by tV , with the initial capital, v ; complies with model 

(5.5). 

Hence, by using the induction technique, model (5.5) implies 

  
11 1

(1 ) (1 ) (1 )
t tt

t k q q q n

qq n q

V v R H R S w R 


  

 
       

 
  1, 2,...n         (5.6)    

 1 1
b

n

n a

R


 
, if a b  

Proof: 

By employing the induction technique: 

For 1t   , we have  

1 0 1 1 1 1(1 ) (1 ) ( ) .V V R H R S w         

Let us then assume that the result is true for 1t  , then  

  
1 11

1

11 1

(1 ) (1 ) (1 ) .
t tt

t q q q q n

qq n q

V v R H R S w R 
 

 
  

 
       

 
   

According to (5.5), it is found that: 

 1( )(1 )t t t t tV V H R S w  
      

 1(1 ) (1 )t t t t t tV V R H R S w  
       

By substituting for 
1tV 
, one finds:  

    
1 11

11 1

(1 ) (1 ) (1 ) (1 ) (1 )
t tt

t q q q q n t t t t

qq n q

V v R H R S w R R H R S w   
 


  

  
             
   

 

    
1 11

11 1

(1 )(1 ) (1 ) (1 )(1 ) (1 )
t tt

t q t q q q n t t t t

qq n q

V v R R H R S w R R H R S w   
 


  

 
             

 
 

Since  

     
1

1 2 1

1 1

(1 )(1 ) 1 1 ... 1 1 (1 )
t t

q t n t q

q q

R R R R R R R




 

           

Then, the following equation is derived:  
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1

1 1

(1 )(1 ) (1 )
t t

q t q

q q

v R R v R


 

    
,  

and, 

    

    

  

11

1 1

1

1 1

1 1

(1 ) (1 )(1 ) (1 )

(1 ) (1 ) (1 )

(1 ) (1 ) .

tt

q q q n t t t t

q n q

tt

q q q n t t t

q n q

tt

q q q n

q n q

H R S w R R H R S w

H R S w R H R S w

H R S w R

   

   

 




  




  


  

 
         

 

 
         

 

 
     

 

 

 

 

 

We finally obtain: 

  
11 1

(1 ) (1 ) (1 ) .
t tt

t q q q q n

qq n q

V v R H R S w R 


  

 
       

 
  1,2,...t   

The eventual probability of ruin in model (5.6) - associated with model (5.3), the initial 

capital and the initial rate, 0r  - is then characterised as: 

   0

1

, Pr 0t

t

v r V




 
  

 

,                                                                                     (5.7) 

where 
tV  is specified in model (5.6). The process of  0,v r  means that ruin happens 

no later than the tht period of sickness. In fact, (5.7) implies the probability that the 

surplus process of the insurance company drops below zero for any period between 

one to infinity.  

Since it is difficult to get an exact solution for the ruin probability,  v  it is even more 

challenging to obtain an exact solution for the ruin probability,  0,v r . Thus, due to 

the difficulty of model (5.6), we will derive probability inequalities for  v  and  0, .v r  

According to the Lundberg inequality, if 
1 1( ) ( )E H E S w     (net profit condition), and 

there exists a constant, 0C   such that: 

  1 1 1
C H S w

E e
 


    

  
.                                                                                (5.8)                                                                                                                    

then 

  Cvv e   , 0v .                                                                                                 (5.9) 

Given that the ruin probability,  v , in the classical risk model decreases when we 

consider the force of interest on the surplus as well as when we assume that the 
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payment of the premiums is made at the beginning of each healthy period; we have 

the following relationship:  

   0,v r v  , 0v                                                                                    (5.10)                             

In another words, (5.10) means that the probability of an insurance company getting 

ruined is less when the surplus process of the insurer is invested than when it is not 

because, by investing its surplus, the insurance company receives interest income 

during each period, which, in turn, allows it to pay out more claims, therefore 

decreasing the probability of getting ruined. 

Then again, when considering (5.10), any correct upper bound for  0,v r , for 

instance: 

   0 0, ,v r Q v r   should be such that 

 0, , 0.CvQ v r e v                                                                                                     (5.11)    

Therefore, the aim of the next section is to derive integral equations for  0,v r  by 

using a recursive technique and then giving probability inequalities for  0,v r , which 

is a generalisation of the Lundberg inequality for ruin possibility, thereby satisfying 

(5.11). 

5.2 Integral equations for ruin probabilities 
In this section of the methodology, we will use the recursive technique to derive integral 

equations for ruin probability. These integral equations are very important in the sense 

that they will be used in the next section to provide probability inequalities for the 

probability of ruin.  

We first express the finite time probability of ruin in model, (5.6) using model (5.3), the 

initial capital, ,v  and the initial rate, 0 ,r by: 

   0

1

, Pr 0
t

t t

q

v r V


  
  

  

  

                
        

11 11

Pr 1 1 1 0
q qqt

n m m m n

mn n mq

v R H R S w R 


  

   
         

   
 

. 

Then   

                    0 0lim , ,t t v r v r    

The subsequent integral equations for  0,t v r  and  0,v r  are as follows: 

Lemma 1: For 1,2,...t   



31 
 

        

    
  

  
0

1 0 0
0 0

1

0 0
0 0 0

, 1

1 , ( ) ( )

t

v h r k

t

v r F v h r k dH h dG k

v h r k s w r k dF s w dH h dG k
 

  

     

 



    



     

         

 

  

and 

        

    
  

  
0

0 0
0 0

1

0 0
0 0 0

, 1

1 , ( ) ( )
v h r k

v r F v h r k dH h dG k

v h r k s w r k dF s w dH h dG k
 

  

     

 

    



     

         

 

  

 

Proof:  
From (5.6), we have: 

         1 1 1 1 1 0 1 11 1V v H R S w v H r K S w    
 

            

Given that 1 1,S s H h  , and 1K k , let us consider 0b r k   and assume that if: 

    0( )(1 ) 1s w v h r k v h b   


         
Then  

 1 1 1 1Pr 0 , , 1V S s H h K k      , implying that ruin has occurred during the first 

period. 

This means that:  

 
1

1 1 1

1

Pr 0 , , 1
t

q

q

V S s H h K k




  
      

  

. 

Let       , 1, 2,... , , 1, 2,... , 1, 2,...t t tH t S w t and K t


     be independent duplicates of

      , 1,2,... , , 1,2,... , 1,2,...t t tH t S w t and K t


    , respectively.  

Therefore, assuming that 1K k , and by (5.4) we know that:  

1 2

0 1 2 1...t t t

t t tR r K K K K    

      

   = 1 2

0 2 1( ) ...t t

t tr k K K K    

     

   = 1 2

2 1...t t

t tb K K K   

   , for 0,1,...t   

tR  and 1 2

1 1 2 1...t t

t t tR b K K K   

        have a common distribution, where 

1,2,...t  { , 1,2,...}tR t  and { , 1,2,...}tR t   have the same autoregressive process, that 

is to say: 

1t t tR R K   , 1, 2,..t   but with not the same initial interest rate 
0 0 0R r b r k     

Hence, if       00 (1 ) 1s w v h r k v h b   


         , 
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Then  1 1 1 1Pr 0 , , 0V S s H h K k       

Which means by (5.5) that, for     0 1s w v h b 


     , 

 
1

1 1 1

1

Pr 0 , ,
t

q

q

V S s H h K k




  
     

  

 

=  
1

1 1 1

2

Pr 0 , ,
t

k

q

V S s H h K k




  
     

  

 

          
1

22 12

Pr 1 (1 ) (1 ) 1 0
q qqt

n m m m n

mn n mq

v h b s w R H R S w R   


 
  

   
             

   
 

since tR and 1tR  have the same distribution, it is found that: 

 
1

1 1 1

1

Pr 0 , ,
t

q

q

V S s H h K k




  
     

  

 

         
1

1 1 1

22 12

Pr 1 (1 ) (1 ) ( ) 1 0
q qqt

n m m m n

mn n mq

v h b s w R H R S w R   


   
  

   
             

   
 

Let 1,p q   and then the following is obtained: 

         
1 11

1 1 1 1 1

22 11

Pr 1 (1 ) (1 ) ( ) 1 0
p ppn

n m m m n

mn n mp

v h b s w R H R S w R   
 

     
  

   
             

   
 

Finally, we arrive at this equation: 

         
11 11

Pr 1 (1 ) (1 ) ( ) 1 0 .
p ppt

t m m m n

mn n mp

v h b s w R H R S w R    
  

   
             

   
 

For consistency, with  
1

1 1 1

1

Pr 0 , ,
t

q

q

V S s H h K k




  
     

  

, we assume that q p  and 

then have the following result: 

 
1

1 1 1

1

Pr 0 , ,
t

q

q

V S s H h K k




  
     

  

         
11 11

Pr 1 (1 ) (1 ) ( ) 1 0
q qqt

n m m m n

mn n mq

v h b s w R H R S w I    
  

   
             

   
 

=      01 ,t v h b s w r  


     

=      1 , .t v h b s w b  


     

Therefore, when one places conditions on 
1 1,S H  and

1K :  

 
1

1 0

1

( , ) Pr 0
t

t q

q

v r V






  
  

  
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        
1

1 1 1
0 0

1

Pr 0 , ,
t

q
w

q

V S s H h K k dF s w dH h dG k


  




  
       

  
    

  
     

     
  

      

0 0 1

1

0 0 0
1 ,

v h b

v h b

t

dF s dH h dG k

v h b s w b dF s w dH h dG k





   

  

 

   

 



     

  

  

 

       

     
  

  

0 0

1

0 0 0

1

1 , ( ) ( )
v h b

t

F v h b dH h dG k

v h b s w b dF s w dH h dG k




   

 

   

 

  

     

 

  
(5.12) 

Since 0b r k  , we have: 

         

     
  

  

1 0
0 0

1

0
0 0 0

, 1

1 , ( ) ( )

t

v h b

t

v r F v h b dH h dG k

v h b s w r k dF s w dH h dG k


 

    

 



   

 

  

      

 

  
 

Therefore, the integral equation for  0,v r  in Lemma (1) follows from letting 

t   in (5.12) and    0 0lim , ,t
t

v r v r 


 . 

5.3 Inequalities for ruin probabilities 

The aim of section 5.2 was to derive an integral equation for  0,v r  by using a 

renewal recursive technique. In this section, the integral equation obtained in the 

previous section will be utilised to derive probability inequality for  0,v r . We will 

use the inductive technique in order to obtain the result.  

The following theorem is to be considered: 

Theorem 1: Assume that there exists a positive constant, 1 0C   such that: 

  1 1 1 11 ( )
1

C H K S w
E e

       
 

                                                                       (5.13)             

Then, 

      1 1 1 1 0 11

0, , 0
C S w C v H r K

v r E e E e v
  

  
        

  
                                  (5.14)                      

where 
   

 

1

1

1

0
( ) inf

C s w

t

C tt

e dF s

e F t






 






                                                                              (5.15)                 

Proof:  

For any, 0c  , we have: 
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 

   
   

 
11

11

C s wC c

c

C s wC c

c

e e dF s
F c F c

e e dF s









 

 





 

             =    

 
 

11

11

1

( )

C s wC c

C s wC cc

c

e e dF s
e e dF s

F c









 

 

 
 
  
 




 

            =
   

 
 

1

11

1

1

( )

C s w

C s wC cc

C c c

e dF s
e e dF s

e F c









 

 

 
 
  
 




 

Knowing that  

   

 

1

1

1

0
( ) inf

C s w

t

C tt

e dF s

e F t






 






  

implies that  

   

 

1

1

1

0

sup

C s w

t

C t
t

e dF s

e F t







 



 
 
  
 

  

We then have 

   

 
 

1

11

1

1

( ) ( )

C s w

C s wC cc

C c c

e dF s
F c e e dF s

e F c









 

 

 
 
  
 




 

 11 ( )
C s wC c

c
e e dF s


 

                                                                                   (5.16) 

since  

           1 1 1
cC s w C s w C s w

c c
e dF s e dF s e dF s

  
  

   


    . 

and          1 1 1
c C s w C s w C s w

c
e dF s e dF s E e

  
  

  



  
    

Thus 

 11 1( )
C s wC c C c

c
e e dF s e


 

  
 1C s w

E e



 

 
 

Therefore   

   11
C s wC cF c e E e


 
  

 
                                                               (5.17)                                                                                               

So, for 1t   , and for any 0,v  and 0 0r  , it is discovered that: 

         1 0 1 1 1 1 1 0 1, Pr ( ) 1 Pr ( ) 1v r S w v H R S w v H r K                

   
  

   
0

1 0
0 0 1

,
v h r k

v r dF s dH h dG k
 


  

  
     
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Knowing that  

 
  

 
  00

11 v h r kv h r k
dF s F s

  

 

    
     

 
  

    
0

0
1

1
v h r k

dF s F F v h r k
 

 


  
         

 
  

  
0

0
1

1 1
v h r k

dF s F v h r k
 

 


  
        

 
  

  
0

0
1

1
v h r k

dF s F v h r k
 

 


  
       

we find that: 

        1 0 0
0 0

, 1v r F v h r k dH h dG k  
 

       , 

Therefore, according to (17), 

          1 1 1 01

1 0
0 0

,
C S w C v h r k

v r E e e dH h dG k
  

  
       

    

          1 1 1 01

1 0
0 0

,
C S w C v h i k

v r E e e dH h dG k
  

  
      

     

and 

             1 1 1 11 0 1 1 0 11 1

0 0

C S w C S wC v h r k C v H r K
E e e dH h dG k E e E e

    
  

              
       

Thus 

      1 1 1 1 0 11

1 0,
C S w C v H r K

v r E e E e
  

  
       

  
 

Considering the inductive theory, we assume for any 0v   and any 0 0r  , 

      1 1 1 1 0 11

0,
C S w C v H r K

t v r E e E e
  

  
       

  
                                            (5.18)      

Equation (5.18) is derived from the fact that the probability of being ruined in the first 

period is higher than any other period in the future.  

Thus         1 1 1 1 0 11

0 1 0, ,
C S w C v H r K

t v r v r E e E e
  

   
        

  
 for any 1t  . Therefore, 

any correct upper bound for  1 0,v r  should also be an upper bound for  0, , 1.t v r t   

Hence, for any ,t  and     00 1s w v h r k  


      ; by (18), 0 0r   and 1 0K  , one 

arrives at the following: 

     
          1 0 1 0 11 1

0 0

1 1

1 ,t

C v h r k s w H r k KC S w

v h r k s w r k

E e E e
     

    

 



            

     

  
    
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Based on the assumption made with respect to 
0 0r   and 1 0K  , we have

0 0r k  

; and, if 0p  , then pq qe e  , and hence: 

          

        

1 0 1 0 11 1

1 0 1 11 1

1 1

1 1

C v h r k s w H r k KC S w

C v h r k s w H KC S w

E e E e

E e E e

     

   









            

          

  
    

  
    

 

         1 0 1 1 11 1
1 1C v h r k s w C H KC S w

E e E e
   

 
          

    
 

It then follows that:  
                   1 0 1 1 1 1 01 1 1 1 1 1 1

1 1 11C v h r k s w C H K C v h r k s wC S w C S w C H K
E e E e E e E e e

        
   

                      
         

Because    , 1,2,... , , 1,2,...t tH t S t  and  , 1,2,...tK t   are independents and have a 

common distribution function, we find: 
                   1 0 1 1 1 1 01 1 1 1 1 1 1

1 1 11C v h r k s w C H K C v h r k s wC S w C S w C H K
E e E e E e E e E e

        
   

                        
          

                   1 0 1 1 1 1 01 1 1 1 1 1 1
1 1 11C v h r k s w C H K R v h r k s wC S w C H K R S w

E e E e E e E e
        

   
                       

         

                   11 0
1 0 1 1 1 1 1 1 11 1

1 1 1 C v h r k s wC v h r k s w C H K C H K S wC S w
E e E e E e E e

       
 

     


 
                     

          

Hence

               11 0
1 1 1 11

0 01 ,
C v h r k s wC H K S w

t v h r k s w r k E e E e
   

     
     




     



        
      

By (5.13), we have   1 1 1 11 ( )
1

C H K S w
E e

       
 

 

Therefore 

           1 01

0 01 ,
C v h r k s w

t v h r k s w r k e
  

           


                 (5.19)      

Hence, by Lemma 1, (5.16) and (5.19) we have: 

            1 01 1 1 1 0 1
11

1 0,
C v h r k s wC S w C v H r K

t v r E e E e e
    

   
         


    

  

      

  
     

      
     

11 0

0

0
11 0

1

1 0
0 0 1

11

0 0 0

,
C s wC v h r k

t
v h r k

v h r k C s wC v h r k

v r e e dF s dH h dG k

e e dF s dH h dG k

 

 

   

 







      


  

        





  

  
 

And  
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    

  
     

      
     

      

  

         

  

11 0

0

0
11 0

0
1 11 0

0

1 0

1

0 0 1

11

0 0

11

0 0 1

1

C s wC v h r k

v h r k

v h r k C s wC v h r k

v h r k C s w C s wC v h r k

v h r k

c v h r k

e e dF s dH h dG k

e e dF s dH h dG k

e e e dF s dH h dG k

e e

 

 

   

    

 

 













 

      

  

        



         

   

   



 



  

  

   

        

    

1

1 1 1 1 0 1

0 0

1

C s w

C S w c v H r K

dF s dH h dG k

E e E e



  






   



       
  

  

 

With  

     1 1 1C s w C S w
e dF s E e

 
 

  



 
   

Therefore,  

      1 1 1 1 0 11

1 0,
C S w C v H r K

t v r E e E e
  

  
    


   

  
 

Thus, for any 1, 2,...,t  (5.18) holds.  

Therefore, (5.14) follows from letting t   in (5.18) and    0 0lim , ,t
t

v r v r 


 . 

Furthermore, it is possible to get a better upper bound in Theorem 1. This would be 

feasible when F is new worse than used in convex ordering (NWUC) - for the definition 

and properties of NWUC class, see Cao and Wang (1991). 

Corollary 1: 

Considering the assumptions of Theorem 1, if F is new worse than used in the convex 

ordering, it follows that, 

    1 1 0 11

0, , 0
C v H r K

v r e v
 


     

 
                                                (5.20)           

Proof:  

Willmot and Lin (2001)’s proposition of 6.11 shows that if F is NWUC, then  

  1 1
1

C S w
Ee


 




 .  

Hence (5.20) is derived from (5.14). 

It is possible to demonstrate that the upper bound in Theorem 1 is less than the 

Lundberg upper bound. In finding this to be so, we obtain the following result about 

1C and .C  

Proposition 1: 
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If    1 1E H E S w 


   and 1 0C   in (5.13) and 0C   in (5.8) exist, it follows that

1C C  - especially if both 1H  and 1K  are not reduced to 0, then 1C C . 

Proof: 
Let’s assume the following functions:  

    1 1 11 ( )
1

c H K S w
y c E e

       
 

 

and 

   1 1( )
1

c H S w
z c E e

      
 

, 

It follows that:  

       1 1 11 ( )'

1 1 11 ( ) ,
c H K S w

y c E H K S w e
 

     


     
 

 

and  

       1 1 1
2 1 ( )"

1 1 11 ( ) 0
c H K S w

y c E H K S w e
 

     


     
 

, 

which means that the function  y c  is convex. Furthermore,  0 0y   and  

     

 

 

'

1 1 1

1 1 1 1

1 1

0 1

( ) ( )

( ) 0

y E S w EH K

E S w E H E H K

E S w E H

 

  

 







   

   

   

 

Therefore, if 
1 0C   and 0C   exist, then they are unique positive roots of  y c  and 

 z c , respectively, on  0, .  In addition, if 0c  , such that   0,z c   then .c C  

Conversely, 

    1 1 1 1 1 1 1
1 ( ) ( )C H K S w C H S w

e e
    

      
  

Hence  
    1 1 1 1 1 1 1
1 ( ) ( )

1
C H K S w C H S w

Ee e
    

      
    (the Lundberg inequality theory) 

This is the same as writing  

   1 1 1( )

1 1 0,
C H S w

z C Ee
    

    

which means that 1C C - especially if both 1H  and 1K  are not reduced to 0. Then:  

    1 1 1 1 1 1 1
1 ( ) ( )

1 ,
C H K S w C H S w

Ee e
    

      
   

Or 

   1 1 1( )

1 1 0,
C H S w

z C Ee
    

    
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implying that 1C C . 

Now the upper bound in Theorem 1 is to be represented by  0, ,Q v r  that is: 

      1 1 1 1 0 11

0, , 0
C S w C v H r K

Q v r E e E e v
  

 
        

  
 

Then the result is as follows. 

Proposition 2: 

For any 0,v   0, CvQ v r e  

Proof: 

By 1 00, 0,K i  Theorem 1 and Proposition 1; we get 0,v   

       1 1 1 0 1 1 1 0 11 1

0,
C S w C v r K C H r K

Q v r E e E e
   

 
         

  
 

     1 1 1 0 1 1 11 1C S w C v r C H K
E e E e

  
 

       
  

 

           1 1 1 11 0 1 1 1 1 0 1 1 11 1 1 1C S w C S wC v r C H K C v r C H K
E e E e E e E e e

    
  

              
      

 

Since    , 1,2,... , , 1,2,...t tH t S t   and  , 1,2,...tK t   are independents and they have 

a common distribution functions, one finds: 
           1 1 1 11 0 1 1 1 1 01 1 11 1 11C S w C S wC v r C H K C v rC H K

E e E e E e E e e
   

  
             

     
 

           1 1 1 11 0 1 1 1 1 01 1 11 1 11C S w C S wC v r C H K C v rC H K
E e E e E e e e

   
  

            
    

 

            1 1 1 11 1 1 0 1 1 1 1 0
11 1 1C H K S wC S w C v r C H K C v r

E e E e E e e
    

  
              

      
 

Thus, 

 

According to (5.13), we arrive at   1 1 1 11 ( )
1

C H K S w
E e

       
 

. 

Therefore,  

     1 0 1 01 1

0,
C v r C v r

Q v r e e
     

   

And 
 1 0 1
1C v r C v

e e
  

 . 

Finally,  

  1

0,
C v

Q v r e


  

Proposition 2 implies that the upper bound in Theorem 1 is less than the Lundberg 

upper bound.  

 
      1 1 1 1 1 0
1 1

0,
C H K S w C v r

Q v r E e e
  

 
      

  
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The following chapter provides a numerical example to illustrate the upper bound for 

ruin probability derived. 

Chapter 6- Numerical Examples 

6.1 Introduction 
In this chapter, we use an example to illustrate the application of the upper bound 

derived in chapter 5. It is generally known that it is difficult to calculate the probability 

of ruin. However, the upper bound derived in this study is of great importance, as, in 

most of the practical cases, it can be used to estimate the probability of ruin. Therefore, 

the main purpose of this chapter is to calculate the adjustment coefficient as it is an 

important parameter to approximate the upper bound for the ruin probability. 

The numerical results for the upper bound and Lundberg’s upper bound for the ruin 

probability of this research are given in four tables, from Table 1 to Table 4.The 

following calculations are obtained by Matlab software. 

6.2 Examples and results 
Let us consider an insurance company that deals with disability contracts. We assume 

that the length of a sickness period is denoted by S  and that of healthy period by H  

follow Erlang distribution whose density functions are given by, 

  10

1 10 tF S S e   and  
10

1 ,
10

t

e
H H H



   respectively.  

Equation (5.13) can be written as   1 1 1 11 ( )
( ) 1

C H K S w
mgf r E e

       
 

 

Equation (5.13) can be rewritten as: 
   1 11 1 11

( ) 1
C S wC H K

mgf r E e E e



     

   
, since the random variables 1 1,H K and 1S are

. . .i i d  

Consequently, by working out equation (5.13) in Matlab, with the assumption that 

   1 1E H E S w 


  holds, the convex function of ( )mgf r will have the following 

shape: 

The convex function’s shape ( )mgf r  and the numerical value for the adjustment 

coefficient, with different values of the parameters, is presented as ,   and w . 
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Case1: 2, 20    and 5w   

 

 

 

 

 

 

 

 

 

Figure 1: Illustration of the convex function of ( )mgf r  

Table 1: Adjustment coefficient 1C  when, 2  , 20   

Parameters 2   20   5w   

Adjustment 

coefficient 1C  

0.4500 

 

Table 2: Upper bound for ruin probability when 2  , 20  , 5w  , and 1 0.4500C  . 

Initial surplus v  Upper bound for the ruin probability 

0v   1 

5v   0.105399 

10v   0.011109 

15v   0.001171 

20v   0.000123 

25v   0.000013 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

r

m
g
f(

r)

R
1
 Value



42 
 

Case2: 50, 200    and 3w 

 

Figure 2: Illustration of the convex function of ( )mgf r . 

Table 3: Adjustment coefficient 1C  when 50  , 200  , and 3w  . 

Parameters 50   200   3w   

Adjustment 

coefficient 1C  

0.0480 

 

Table 4: Upper bound for the ruin probability when 50  , 200   3w   and

1 0.0480C  . 

Initial surplus v  Upper bound for the ruin probability 

0v   1 

5v   0.7866 

10v   0.6188 

15v   0.4868 

20v   0.3829 

25v   0.3012 
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6.3 Interpretation of the results 
Figure 1 and 2 show that the function ( )mgf r is a nonnegative continuous, convex 

function regardless of the value of the parameters ,   and ,w (such that (0) 1mgf   

and  lim
r

mgf r


  ). This is in line with the proof of proposition 1, where we showed 

that the function     1 1 11 ( )
1

c H K S w
y c E e

       
 

 is convex and nonnegative. Therefore, if 

the adjustment coefficient exists, we continue to find the upper bound for the 

probability of ruin. 

As far as Table1 and Table 3 are concerned, they give us the unique positive value of 

the adjustment coefficient 1C . It can be noticed that the value of the adjustment 

coefficient changes when the parameters ,  and w change; supporting the 

uniqueness of the adjustment coefficient states in proposition 1. 

It can be noted that the adjustment coefficient obtained in Table 3 has decreased 

compared to the one in Table 1. This is due to fact that we have increased the value 

of  and   in case 2, implying that the adjustment coefficient is strongly affected by 

the value assigned to the parameter  and  . 

Finally, Table 2 and Table 4 provide us with the different values of the upper bound 

for the ruin probability. We notice that the upper bound computed in Table 2 is smaller 

than the one in Table 4. This is due to the fact that the adjustment coefficient obtained 

in case 1 is greater than the one in case 2. This implies that the bigger the value of 

the adjustment coefficient, the smaller the upper bound, which, in turn, means a 

smaller ruin probability. 

Therefore, our results is in line with the results obtained by Adekambi (2013) when he 

used constant interest rate in the Ramsay’s risk model. However the upper bound in 

our example is smaller than the one found by Adekambi (2013). The use of random 

interest rate in our risk model might be the reason why we obtained an upper bound 

for the ruin probability that is smaller than the one obtained by Adekambi (2013). 
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Chapter 7- Conclusion 

In this study, we have evaluated the probability of ruin in the Ramsay model by 

considering a random interest rate. We have proved that the interest rate used in this 

study can be modelled by an autoregressive process of order one. For many 

researchers, such as Cai (2002b), this reflect the true economic environment in which 

insurance companies operate. Then, in order to assess the probability of ruin, we used 

recursive technique to derive integral equations and probability inequalities for the 

probability of ruin in our risk model. Our results are in line with intuitive thinking that 

the probability of ruin decreases when one incorporates random interest rate in the 

risk model. This means that the insurance company is allowed to invest its capital in 

order to receive some interest income, hence enabling her to face claims. Moreover, 

the adjustment coefficient obtained in the study heavily depends on the value assigned 

to the parameters  and  . Our results, therefore, improved on the ones obtained by 

Adekambi (2013) when he used constant interest rate in the Ramsay model making 

our model is more practical in real world.   

It must be noted, however, that our model is not without limitations.  

First, we assumed a risk model in which claims and premiums are independent over 

time. This presumption might not hold in reality, as, in reality, claims and premiums 

may have a dependent autoregressive structure, that is, the value of the current claims 

and premiums may dependent on their previous ones. 

Secondly, we assumed that claims are paid out at a constant amount  , which does 

not necessarily hold in real insurance world. Indeed, the claim amounts themselves 

may be dependent. It is not difficult to envisage a situation where these would hold. 

For instance, in reality, medical costs are more age-dependent, thus the amount,   

should be paid accordingly. 

Therefore, these limitations open doors for future research. For example, one could 

investigate the probability of ruin in the Ramsay risk model with random interest rate 

by considering claims and premiums to have a dependent autoregressive structure 

and by reckoning   to be paid out according to the age of the policyholder. 
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Appendix: Matlab code 
%Moment generating function in calculating the value for the adjustment 

%coefficient (R1) 

Function  

Mgf(r) = mg (R1, H1, K1, lambda, beta, w) 

Mgf(r) = (-R1*lambda-1/10)*H1 - R1*lambda*H1*K1 - (K1^2 - 17.6304*K1 + 

77.7078)/42.1748 

End  

%Main Matlab Codes for the implementation of the two Functions  

clear all 

clc 

close all  

%assigned values for the parameters (lambda, beta, w) in the Moment 

%generating function for calculating the adjustment coefficient and 

%Upper bounds of the ruin probability. These values can be varied. 

Lambda = 50; 

Beta = 200; 

w = 3; 

%r=0:1e-8:1e-3; % this value be any value from zero to infinity: Possible values of 

R1 

%r=0:1:10/beta; 

r = linspace (0, 10/beta, 51); 

%r = R1  

%% Calculating for the approximate value of the adjustment coefficient (R1) 

Mgf(r) = mg(r, lambda, beta, w); %moment generating function 

Mgf(0)=1;% Value of the moment generating function when r=0 

%ml=exp(r.*L); 

figure (1) 

plot(r, mgf(r), 'b-') 

hold on 

plot(r,m0, 'r-') 

xlabel('r') 

ylabel('mgf(r)') 

title('R_1 Value') 
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hold off 

% %%%%%%%%%%%%%%%%%%%%%%%%%% 

[data index] = sort (abs (mgf(r)-1),'ascend'); 

R1 = r (index (2)) %Adjustment Coefficient 

R1=0.0480 

 

 


