Carbon Dioxide Hydrogenation over Nickel-, Ruthenium- and Copperbased Catalysts: Review of Kinetics and Mechanism

Kalala Jalama

Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Doornfontein 2028, SOUTH AFRICA, kjalama@uj.ac.za

Abstract

This study critically reviews the mechanism of CO₂ hydrogenation over Ni, Ru and Cu, and the effect of catalyst properties and operating conditions on reaction kinetics. Most studies have reported the presence of CO and formate species on Ni-, Ru- and Cu-based catalysts, where subsequent conversion of these species depends on the type of catalyst and the physicochemical properties of the catalyst support. Methane is the major product that forms during CO₂ hydrogenation over Ni and Ru catalysts, while methanol and CO are mainly produced on Cu catalysts. A different approach for catalyst formulations and/or process development is required where long chain hydrocarbons are desired.

Keywords: CO₂ hydrogenation; Nickel; Ruthenium; Copper.

1 Introduction

Hydrogenation of CO₂ to fuel has received greater attention, especially over the last decade. This is due primarily to increased global energy demand and the need for mitigating carbon emissions to the environment by targeting a possible closed carbon cycle through CO₂ utilization. The number of investigations on the development of new catalysts formulations and optimization of operating conditions for CO₂ hydrogenation has increased rapidly, requiring a compilation to distill the major findings in this research area. A number of reviews on catalytic CO₂ hydrogenation to methane (1 - 5), long chain hydrocarbons (3, 6), methanol (3, 6 - 9), dimethyl-ether (3) and higher alcohols (3) have been compiled over the past few years.

The catalytic hydrogenation of CO₂ to methane is an old process that was mainly used for the purification of hydrogen by removing small amounts of CO₂ prior to ammonia synthesis (10, 11), and for the production of substitute natural gas (SNG) (12 - 14). The desire to produce long chain hydrocarbons from CO₂-containing feedstock has emerged in recent years, with mostly transition and noble metals being evaluated for this process. Unlike Fischer-Tropsch synthesis where predominantly longer chain hydrocarbons are produced in presence of CO and H₂, CO₂ hydrogenation over conventional Fischer-Tropsch synthesis catalysts yields significantly higher amounts of methane. There is a strong need to develop fundamental understanding for this reaction. Among transition metals, Ni constitutes a relatively simple system, as it is one of the most methane-selective catalysts. Fundamental understanding of this system can shed light on more complex systems that involve the formation of a broad range of products. Many excellent reviews on CO₂ hydrogenation have suggested a general reaction route based on data obtained from a number of different catalytic systems. Reviews that specifically examined CO₂ hydrogenation over metal-based catalysts such as Ni, Ru or Cu separately, are scarce. The review by Vlasenko and Yuzefovich (1) in 1969 focused on the mechanism of CO and CO₂ hydrogenation over iron-group metals. Their study discussed two major routes for CO₂ hydrogenation, namely i) the scheme involving CO as an intermediate and ii) an independent route that does not involve CO. At the time of their review, most existing experimental data to deeply analyze the mechanism on the Ni surface were not available. For example, experimental studies on the behavior of adsorbed CO₂ on Ni in the presence of H₂ were nonexistent. The interpretation of the mechanism was largely based on kinetic data generated on supported Ni, such as Ni on kieselguhr and binary systems such as Ni-Cr. Possible

contributions from the support or a second metal can complicate any investigation of the intrinsic behavior of a catalyst.

Darensbourg *et al.* (2) categorized the mechanistic aspects of CO₂ methanation into two types: i) early mechanisms that suggest CO₂ methanation without CO formation and ii) recent mechanisms suggested by studies published from 1977 to 1982 which point to a mechanism for CO₂ methanation that occurs through the formation of adsorbed CO. Studies involving Ni catalysts were limited, as the review involved many other catalysts such as Rh, Ru, Cu, and Pd. Studies on Ni catalysts were mainly based on the analysis of methanation reaction products and/or reactant adsorption-desorption techniques. Wang *et al.* (3) reported on general advances in CO₂ hydrogenation covering the period from 1997 to 2010. For CO₂ hydrogenation using Ni as a catalyst, the review mainly gave an overview on the effects of catalyst supports such as MCM-41, rice husk ash (RHA) silica-alumina composite, ZrO₂, La₂O₃ and Ce-Zr binary oxides.

The most recent review by Aziz *et al.* (5) looked at kinetics and the mechanism of CO₂ methanation over a number of catalysts including Ni, Ru, Rh, Pd, Au, Co and Mg. They extensively reviewed the effect of support, metal loading, second metal and preparation method on the physicochemical and catalytic properties of Ni catalysts based on studies published from 2011 to 2015. In reviewing mechanistic aspects, which essentially involved supported catalysts, the support was suggested to play a role.

Recent studies employing in-situ spectroscopic techniques (15, 16) have shown that the nature of the support influences the CO₂ hydrogenation mechanism on Ni-based catalysts. One possibility is that different active intermediate species form on the catalyst surface depending on the support used. This can, at least in part, account for differences that have been reported on this topic.

By scrutinizing recent and earlier studies on CO₂ methanation, this review aims to establish the most likely active intermediate in the *intrinsic* mechanism of CO₂ methanation occurring on the Ni surface in comparison to Ru- and Cu-based catalysts. In addition, the kinetics of this reaction will be reviewed with a greater focus on aspects that have not yet been extensively reviewed such as kinetic models and the influence of reaction conditions.

2 Reaction Mechanism

The early literature that was summarized by Vlasenko and Yuzefovich (1) on CO₂ hydrogenation suggested two major reaction routes: i) the scheme proposed by Bahr, as cited in (1) involving the formation of CO as an intermediate and ii) the direct hydrogenation of CO₂ by activated hydrogen to formic acid, structural rearrangement, and stepwise hydrogenation of intermediates. Bahr's scheme was mostly supported by studies using Fe-Cu, Cu-Cr₂O₃, Co-Cu-ZnO, Ru and a number of catalysts based on metals of the iron group and on various binary systems. On the other hand, the direct scheme was supported by studies involving Ni-Cr catalysts. A number of findings were highlighted to be unfavorable to the Bahr scheme (1), for example: i) the hydrogenation of CO₂ on Fe- and Ru-based catalysts, mainly produces CH₄ unlike CO hydrogenation; ii) CO₂ is not hydrogenated at a lower temperature than CO.

Based on their analysis of the literature, Vlasenko and Yuzefovich (1) were in favor of a direct CO₂ conversion route, without formation of CO as intermediate. This scheme suggests that hydrogen is activated on the catalyst surface, after which the reaction takes place in the gas phase. The hydrogenation of adsorbed CO₂ at the start of the process is dismissed.

Several subsequent studies from different research groups have been conducted with the aim of determining the active intermediate species on the catalyst surface. The findings are still controversial as the major question is now to determine whether the active intermediate is CO, formate species or both. The various routes on Ni, Ru and Cu catalysts are discussed in the following sections.

2.1 Reaction via CO

Various techniques have been used to confirm that CO is formed as an intermediate species in CO_2 hydrogenation over nickel-based catalysts. They include i) spectroscopic (11), desorption (13) or adsorption (17) analyses of species formed on the catalyst surface upon CO₂ adsorption in the absence of H₂; ii) analysis of the product formed during hydrogenation of pre-adsorbed CO₂ species on the catalyst (12, 13); iii) product analysis of a typical CO₂ hydrogenation reaction where H₂ and CO₂ were fed simultaneously to the system (18 - 21); iv) transient response analysis (22 - 26) and v) diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis during CO₂ hydrogenation (25, 27).

Martin *et al.* (11) used infrared spectroscopy and magnetic techniques to study reactions of CO and CO₂ on a Ni/SiO₂ catalyst. CO₂ chemisorption on nickel surface at 300 and 580 K showed two bands at 2020 and 1835 cm⁻¹ assigned to CO species bonded to four Ni atoms. No carboxylate, nor carbonate bands were detected. The reactivity of these species towards hydrogen was studied (12) by first adsorbing CO₂ on the catalyst at 300 K and subsequently introducing hydrogen. Methane was detected at temperatures above 355 K. The authors also tested the hydrogenation of a superficial carbide prepared by ethane cracking and found that it formed methane. They then proposed that CO₂ hydrogenation is likely to proceed via CO₂ dissociative adsorption and the formation of superficial carbide which is subsequently hydrogenated to form methane as shown in Fig. 1.

Figure 1: CO₂ hydrogenation via CO and superficial carbide.

Falconer and Zagli (13) used temperature programmed desorption (TPD) and temperature programmed reaction (TPR) to study the adsorption and methanation of CO₂ over a Ni/SiO₂ catalyst. They found that CO₂ adsorption on the catalyst surface was activated and increased significantly with temperature with a maximum value obtained around 473 K. The adsorbed CO₂ desorbed as CO and CO₂ during TPD. They found similarities between CO and CO₂ adsorption indicating that CO₂ dissociates to CO and oxygen upon adsorption at higher temperatures. The TPR was performed by first adsorbing CO₂ at high temperature, cooling and then switching to H₂ before heating. They observed the formation of water, comparable to the amount of CO₂ adsorbed, upon catalyst contact with H₂ at room temperature and confirmed the presence of oxygen atoms on the catalyst surface. They also found the same TPR results for CO and CO₂ methanation and suggested that once adsorbed, CO and CO₂ follow the same mechanism to yield methane.

 CO_2 pulses were used on Al₂O₃-, SiO₂- and TiO₂-supported Ni by Osaki and Mori (17) to study the kinetics of CO₂ dissociation. They observed CO formation but could not detect O₂. The exponential decay of the amount of CO formed with the number of CO₂ pulses suggested an irreversible adsorption of O_{ads} on the Ni active sites through CO₂ dissociation.

Using Ni/SiO₂ catalyst, Weatherbee and Bartholomew (19) observed CO in the product of CO₂ hydrogenation at 500 - 600 K and 140 kPa. They suggested that the amount of CO measured in the product was determined by equilibrium between surface and gas phase CO species. Based on their kinetic results, they proposed a complex Langmuir-Hinshelwood mechanism involving dissociative adsorption of CO₂ to CO and atomic oxygen followed by the hydrogenation of CO via a carbon intermediate to methane as shown in Fig. 2. The rate-limiting step was assumed to be CO dissociation.

6

Figure 2: Proposed sequence of elementary steps in CO₂ methanation (S refers to a surface site)

Large amounts of CO were also measured during CO_2 methanation on Ni (100) catalyst by Peebles *et al.* (20). Based on higher initial specific rates for CO production compared to CH₄ and lower activation energy, they proposed that a balance between the formation of adsorbed carbon and its removal by reaction with surface hydrogen are the controlling factors for CO_2 methanation.

Fujita et al. (22, 24) used transient response and TPR (24) methods to study the mechanism of both CO and CO₂ methanation over unsupported Ni. They found that CH₄ was produced from adsorbed surface carbon species resulting from strongly adsorbed CO on the catalyst surface. They also found that CO₂ dissociation to adsorbed CO and O was enhanced in the presence of H₂. The amount of surface carbon was much less compared to adsorbed CO and the amount of reversibly adsorbed CO was negligible. The kinetics were different in the case of CO hydrogenation, where more surface carbon was present along with strongly adsorbed CO. They suggested that reversibly adsorbed CO inhibits the hydrogenation of adsorbed carbon species. When they used DRIFTS, TPR and the transient response method (TRM) techniques over an Al₂O₃-supported Ni catalyst (25), they found that the following species were present on the catalyst surface during CO₂ methanation at 453 K: i) unidentate formate on the Ni surface, ii) bidentate formate on the support, iii) linear CO on Ni, iv) bridged CO on Ni and v) carbonates on the support. After steady-state methanation and flushing the reactor with He, they found that strongly adsorbed bridged CO and bidentate formate were the most predominant species on the catalyst surface. Using temperature programmed hydrogenation, they found that both species formed CH₄ and H₂O at 433 and 533 K respectively. Bridged CO species were believed to dissociate into surface oxygen species and carbon which were rapidly hydrogenated to water and methane respectively. Like in their earlier studies on unsupported Ni (22, 24), they also found differences in the species formed on the catalyst surface during CO₂ and CO methanation, respectively. In contrast to CO₂ methanation, considerable amounts of carbidic carbon species and linear CO in addition to bridged CO, formate, methoxide and surface hydrocarbon species were present during CO methanation. Linearly adsorbed CO markedly retarded the hydrogenation of carbidic carbon to methane during CO hydrogenation.

Using the transient response method, Spinicci and Tofanari (23) observed a rapid increase in CO formation with an overshoot within the initial few minutes of CO₂ hydrogenation over SiO₂- and TiO₂-supported Ni catalysts while the methane formation was progressive. They attributed the overshoot response for CO formation to the slow regeneration of vacant active sites as a consequence of slow surface reactions or desorption of other products, and the progressive increasing response for CH₄ to a combination of slow surface reaction and desorption of the ensuing product. Thus, they suggested that the rate-limiting step of CO formation might be the regeneration of the active site or its intermediate and assumed that CO can be formed on the same active site as CH₄.

A study by Lapidus *et al.* (26) who used isotopes, non-steady-state and steady-state methods, found that significant amounts of CO and CH₄ were produced after switching a H₂-containing feed to a CO₂-containing feed over a carbon felt-supported Ni catalyst and suggested that a significant amount of H₂ was adsorbed on the catalyst surface. CO was considered as a possible main intermediate, as it appeared faster in the gas product than CH₄. CO₂ and H₂ adsorption was faster on the catalyst surface having preadsorbed hydrogen. The study suggests that CO and CH₄ are produced from CO₂ and H₂ in their adsorbed states. The fast and slow steps were suggested to be the hydrogenation of carbon fragments and CO formation, respectively.

Most of these studies, that suggest CO as the active intermediate, did not report the formation of other species such carbonates or formates on the catalyst surface. This does not completely

dismiss their formation. Appropriate techniques such as infrared (IR) spectroscopy that can detect such compounds were not used in most of these studies. In some case (11), IR spectroscopy was used on a catalyst surface with preadsorbed CO₂ in the absence of H₂. It has been reported (28 - 31) that in the absence of H₂, only CO and O₂ are formed by CO₂ dissociation above 200 K. Ren *et al.* (27) who recently used DRIFTS analysis, detected peaks for adsorbed CO₂, CO, hydrogen carbonates, monodentate carbonates and bicarbonate species during CO₂ methanation over unpromoted and Fe-promoted Ni/ZrO₂ catalysts. They, however, indicated that some of the species (monodentate, bicarbonate or hydrogen-carbonates) convert to CO₂ when the concentration of CO₂ is below a certain threshold value. As they observed a significant decrease in the peak intensities for adsorbed CO₂ and CO after exposure to H₂, they suggested that CO may be the active surface species in CO₂ methanation where CO₂ dissociates to CO by interaction with oxygen vacancies formed by reduction of the ZrO₂ surface.

Mainly Gupta *et al.* (32 - 34) have proposed a mechanism for CO₂ hydrogenation that involves CO as the main intermediate, without any significant role of formate species, on Ru catalysts. In their early study (32), they used experiments which essentially consisted in injecting CO₂ into a He feed stream followed by H₂ injections at different time intervals and analyzing the eluted products over a 1.8%Ru/molecular-sieve catalyst. The measurements were performed at different temperatures (400 - 600 K). Using electron spin resonance (ESR) technique, they observed no signal when CO₂ was introduced on the catalyst in the absence of H₂; however, a signal suggesting the formation of carbon on the catalyst surface was observed when the injection of CO₂ was followed by that of H₂ below 500 K. They suggested that CO₂ chemisorbs on the catalyst and is subsequently reduced by H₂ to yield methane through the formation of CO and active carbon as intermediates. In their subsequent study (33), they observed CO formation along CH₄ using a H₂:CO₂ ratio of 6:1 and temperatures above 523 K. They also observed some CO₂ adsorption and even some small extent of CO₂ reduction to CO at high

temperatures, in presence of H₂ on Ru-free supports. However, they indicated that the hydrogenation of the CO that formed, only occurred on Ru sites. No CO was observed in the absence of H₂. Using FTIR spectroscopy (34), they detected adsorbed CO (CO_a) on a Ru/TiO₂ catalyst after H₂ treatment at 475 and 575 K and subsequent exposure to CO₂. They detected these CO_a species even on a sample which was not H₂-pretreated. They suggested that possible sites for CO₂ reduction could include both Ru⁰ and the Ti₂₋₆ moieties at the Ru/TiO₂ interface. As they observed that CH₄ formation was accompanied by simultaneous decrease of CO_a species on the surface when exposed to H₂, they proposed that the adsorbed CO is the precursor to CH₄ via active carbon formation. They found that the stability of CO_a species is considerably affected by coadsorbed or gaseous H₂. In the absence of H₂, the CO_a that formed upon exposure to CO₂ is strongly bonded to the surface and is not easily removed upon evacuation at elevated temperatures. However, in the presence of CO₂/H₂, the formed species were easily removed at room temperature. They concluded that the CO_a, which formed following the reactions proposed in Fig. 3, is very reactive to H₂ in preadsorbed or gaseous form.

Figure 3: Reactions occurring at catalyst surface during CO₂ or CO₂/H2 interaction with Ru/TiO₂ catalyst.

CO also forms on Cu-based catalysts during CO₂ hydrogenation and is not generally reported as an intermediate for methanol formation. It is rather a product of a parallel reverse water-gasshift (RWGS) reaction (35, 36). Only few studies have reported CO as intermediate in methanol formation from CO₂ and H₂ over Cu-based catalysts. For example, Inui *et al.* (37) found that CO₂ was exclusively converted to CO at short contact times at 563 K over a Cu/ZnO/Cr₂O₃ catalyst promoted by Pd and Na. As the selectivity to methanol increased at prolonged contact times, they concluded that CO is an intermediate in CO₂ hydrogenation on this catalyst.

2.2 Reaction via formates

CO₂ methanation through the formation of formate species as active intermediates on Ni catalysts has mainly been proposed by studies that used in-situ spectroscopic techniques. Schild et al. (38) used in-situ diffuse reflectance spectroscopy in the hydrogenation of CO₂ over Ni/ZrO₂ catalysts. Under static conditions, they found that surface carbonate and formate species formed at 363 K, water and methane above 383 K and no gaseous CO was observed. In their dynamic experiment using a continuous flow of H_2 and CO (H_2 :CO₂ ratio of 4:1), they found that carbonates and formates were detected from the beginning of the reaction. Adsorbed CO was only observed later in the reaction suggesting that it originated from the formate species that were steadily accumulating on the surface. Upon replacing the CO₂ and H₂ mixture with pure H₂ (under static conditions at 383 K) they found that methane was formed while the formate signals were decreasing and suggested that the formate species on the surface acted as the CH₄ precursor. The adsorbed CO did not desorb from the surface but was found to dissociate. They suggested the mechanism shown in Fig. 4 that combines CO and CO₂ hydrogenation and takes into account the RWGS that they observed to take place at elevated temperatures. The high methane selectivity observed for CO₂ compared to CO hydrogenation was explained by a non-dissociative path via formate hydrogenation.

Figure 4: Proposed reaction scheme for the hydrogenation of CO and CO₂ over nickel/zirconia catalysts.

The distribution of intermediate species on the surface of Ni/CeO₂-ZrO₂ and Ni/SiO₂ surface was found to be influenced by the catalyst support. Aldana *et al.* (15) used IR operando spectroscopy during CO₂ methanation, and found that significant surface concentrations of carbonates, of mainly the mono and bidentate types, were present on the Ni/CeO₂-ZrO₂ catalyst at 423 K and formate species were detected after 30 min of reaction. As their amount increased with temperature until 523 K before decreasing drastically while a significant amount of methane was formed, the authors suggested that formates are either intermediates or inhibiters involved in CO₂ methanation. CO formation on the surface also occurred from 423 K but the amount did not change with the increases in temperature. On the other hand, they found that formates species were already present on Ni/SiO₂ at 423 K with a lower surface coverage of carbonates being formed. Combining these findings with those of transient reaction techniques over the Ni/CeO₂-ZrO₂ catalyst, they proposed a mechanism where CO does not appear in the main pathway of methane formation (Fig. 5). Rather, the CeO₂-ZrO₂ support contributes to the formation of carbonates and formates as intermediates.

Figure 5: Reaction mechanism proposed on Ni-CZsol-gel sample for CO₂ methanation.

Similarly, Pan *et al.* (16) also proposed a mechanism (Fig. 6) that does not include CO as an active intermediate. Using in-situ FTIR spectroscopy, they found that carbonates and formates are intermediates for CO₂ methanation over Ni/Ce_{0.5}Zr_{0.5}O₂ and Ni/ γ -Al₂O₃ catalysts. They suggested that the reaction over Ni// γ -Al₂O₃ proceeds through the hydrogenation of bidentate formates while that on Ni/Ce_{0.5}Zr_{0.5}O₂ proceeds through both bidentate and monodentate formates. They indicated that the hydrogenation of monodentate formates, derived from

monodentate carbonates (formed on medium basic sites such as ceria), is faster than that of the bidentate formates derived from hydrogen carbonates.

Figure 6: Proposed pathways for CO₂ activation and methanation, a) on Ni/Ce_{0.5}Zr_{0.5}O₂,
b) on Ni/γ-Al₂O₃.

Most studies (26, 35, 39 - 51), that investigated the mechanism of CO₂ hydrogenation on Cubased catalysts have reported formate species as the main reaction intermediate. However, controversial reports on the nature of the active site and the limiting steps of the reaction still exist. As Chinchen et al. (43) found similar specific activity for unsupported polycrystalline copper and supported Cu/Al₂O₃ catalysts exposed to a mixture of CO₂ and H₂ at 1 bar during TPR, they proposed that the critical step is the hydrogenolysis of formate on the copper surface. In a similar study where 60%Cu/30%ZnO/Al₂O₃ and polycrystalline copper catalysts were involved, Bowket et al. (44) used TPR, TPD and microreactor kinetic measurements, and found that during methanol synthesis, from CO₂/H₂ at 500 K, the Cu surface was covered by oxygen (70-78% saturation) and formate species, while ZnO contained interstitial hydrogen. They also proposed that the limiting step was the hydrogenation of formate intermediates formed on the Cu surface by H₂ and CO₂ coadsorption. Hadden *et al.* (35) used ¹⁴C-labelled CO₂ to study the adsorption and decomposition of CO₂ on polycrystalline copper at ambient temperature and low pressure (< 0.013 bar), and TPD after CO₂ adsorption on Cu surface at low temperatures (213–498 K). They found that CO₂ was first weakly adsorbed at the clean Cu surface and that upon activation, it dissociated to produce adsorbed CO and surface oxygen that partially oxidized the Cu surface. Thereafter, CO₂ strongly adsorbed on this oxidized Cu surface in a state that can be hydrogenated to methanol via formate formation. When a Cu/ZnO/Al₂O₃ catalyst was used (45), an increased amount of CO₂ was measured on the partially oxidized

surface of Cu compared to a freshly reduced catalyst. The authors proposed that surface hydroxyl groups form on the oxidized catalyst as part of the H₂ reacts with the surface oxygen while some is dissociated on the metallic Cu. They also indicated that the formation of formate species through CO₂ interaction with surface hydroxyl species enhances CO₂ adsorption in the presence of H₂. In contrast, Rasmussen *et al.* (48) found no evidence of copper oxidation after the reaction of CO₂ and H₂ on Cu (100) surface and concluded that methanol can be formed on metallic copper with reaction rates comparable to commercial catalysts. They proposed that methanol is formed following the elementary steps reported in Fig. 7, where the hydrogenation of dioxomethylene (step 8) or the hydrogenation of formaldehyde (reaction 13) are the rate-limiting steps.

Figure 7: The elementary reaction steps relevant for methanol synthesis.

As Yoshihara and Campbell (50) used TPD technique and detected formates that were adsorbed on a Cu (110) surface after CO₂ hydrogenation, they also suggested that the active site for methanol synthesis on Cu/ZnO is metallic Cu. They believed that the role of ZnO may be to maintain a large proportion of the metallic Cu in ultrathin islands that behave like a Cu (110) surface.

Using XPS analyses, Nakamura *et al.* (49) detected formate species on a Zn-deposited polycrystalline Cu surface, which increased with increasing Zn coverage up to a coverage of 0.2 and decreased after this value. They proposed that formate species formed on the active sites that are located in the vicinity of ZnO_x species and that the rate-determining step for methanol formation is the hydrogenation of formate to methoxy species. Similar findings were reported when Zn with different coverages was deposited on Cu (111) surface by vapor deposition (51). Using XPS, the authors detected formates on the surface, after reaction, in an

amount that increased linearly with an increase in Zn coverage below 0.15 and suggested that Zn species stabilize formates. They indicated that the active sites for methanol synthesis are not only metallic Cu but also special sites such as Cu-Zn sites that work in synergy with Cu. They proposed a mechanism on a Zn/Cu(111) surface with Zn coverage below 0.2, where the formate species forms on the Cu atoms of the Cu (111) surface and subsequently migrates to the Cu-Zn site where it is hydrogenated to methanol through a methoxy species.

2.3 Reaction via formate and CO

Vesselli et al. (21) investigated CO₂ coadsorption with H₂ on Ni (110). They combined TPR in ultra-high vacuum (UHV), X-ray photoelectron spectroscopy (XPS) and high resolution electron energy loss spectroscopy (HREELS) techniques and observed the formation of formates on the catalyst surface. With the aid of density functional theory (DFT) calculations, they found that at 90 K, CO₂ is chemisorbed and activated on the surface via the carbon atom as CO_2^{δ} . This geometrical configuration changes when the temperature is increased in the presence of hydrogen as the H-CO₂ complex flips and binds to the surface through the two oxygen atoms while H binds to the carbon atom to yield formate. Further hydrogenation of formate by coadsorbed hydrogen was not observed to occur but instead, formate dehydrogenation took place when the temperature was increased to around 305 K (52). CO formation from formate decomposition was not observed, and they found that the energy barrier for this decomposition was very high (> 3 eV) suggesting that formate is very stable, precluding further hydrogenation. After exposing preadsorbed CO₂ on Ni (110) to atomic hydrogen gas at 90 K and using TPD, XPS and HREELS analyses, they detected the formation of H₂O, formate and CO, the latter of which was shown to form by hydrogen-assisted CO₂ dissociation following the Eley-Rideal (ER) mechanism at 90 K. Combining with DFT calculations, they contended that the favourable reaction path is through a parallel ER mechanism involving CO as an intermediate (52). In their subsequent study (53) on an

unsupported model Ni catalyst using chemical transient kinetics at 1 bar, they found that CO₂ adsorption is strongly affected by hydrogen coadsorption and coverage. They suggested two parallel reaction mechanisms: i) fast direct hydrogenation of CO₂ at the beginning of the reaction where a complex obtained is suddenly dissociated and further reacts to produce gaseous methane and ii) a mechanism involving formate-derived species at steady state conditions. The rate-limiting step was believed to be the removal of these oxygen-containing intermediates that are slow to react and accumulate on the catalyst surface.

Recently, Westermann *et al.* (54) used operando IR spectroscopy for both CO₂ adsorption and methanation conditions over Ni/USY zeolite catalysts (5 – 14% Ni). Based on the evolution of the relative concentration of methane in the gas phase, adsorbed CO and formates, and the CO₂ conversion during TPSR (Fig. 8) they observed that the intensity of carbonyl bands was increasing with a corresponding decrease in formate band intensity between 150 and 250 °C. They suggested that CO arises from formate decomposition and was subsequently dissociated and /or was hydrogenated within a temperature range of 200 - 300 °C as the system gained more energy. They also considered a direct hydrogenation of formates at higher temperatures where they were observed to suddenly decrease. Their proposed mechanism in Fig. 10 involves hydrogen dissociation on the Ni surface and reaction with weakly adsorbed CO₂ or carbonates to form monodentate formates, and then carbonyls, which are hydrogenated to methane.

Figure 8. Evolution of the relative concentrations of $CH_{4(g)}$, adsorbed CO (2100-1740 cm⁻¹) and formates (1573 cm⁻¹) and CO₂ conversion (%) during TPSR Ar/H₂/CO₂ (75/20/5)

over 14% NiUSY zeolite.

Figure 9: Proposed mechanism for CO₂ hydrogenation on NiUSY zeolites.

In contrast, Fan et al. (55) have proposed that carbonates are spectator species on Ni/MgAlO4 catalysts, as CO₂ adsorption analysis at 523 K suggested that they form in the absence of H₂ and Ni⁰ and arise from the surface reaction of CO₂ with O²⁻ from the support. Using DRIFTS analysis, they found that surface carbonyls were produced above 473 K and were believed to be the true intermediate for CO₂ methanation. They suggested that the reaction proceeds via the dissociation of formates to adsorbed CO, which is subsequently hydrogenated to methane. From the studies reviewed in the above sections, it can be generally accepted that CO and formate species form on the catalyst surface during CO₂ methanation on Ni-based catalysts. However, the role of CO and formate still needs to be clearly understood. This task becomes more complex on supported catalysts where the support may play a role in the mechanism. Indeed, the role of the catalyst support cannot be underestimated as it can significantly modify catalyst surface properties and its adsorptive features. For example, in addition to adsorptive properties toward CO₂ observed on some supports (15, 16, 55, 56), some degree of interaction between Ni species and the support such as alumina has been reported (57 - 65) and can produce some surface spinel/Ni aluminate species with modified properties. Therefore, the analysis of intermediates species on supported Ni catalysts requires more caution. More insight on the mechanism can be obtained from unsupported (20, 22, 24, 25, 53), model (21, 52) and supported Ni catalysts (11 - 13, 19, 23) with support materials that possess low or virtually no basicity and which do not strongly interact with Ni, such as SiO₂. Almost all these studies suggest a mechanism of CO₂ methanation via CO as the main route. In parallel to CO₂ dissociation, formate species are also formed on the Ni surface. As mentioned earlier, these species were not detected in other studies mostly because appropriate techniques suitable for their detection were not used.

Since it has been reported that before CO_2 dissociation on a Ni surface, the adsorbed CO_2 is negatively charged and most likely possess a C_{2v} symmetry where it is coordinated to the metal surface through oxygen (28 - 30, 66), it is possible that the hydrogenation of this species leads to bidentate formate as also found by Vesselli *et al.* (21). These species are slow to react and accumulate on the catalyst surface (53). A different mechanism is possible on a catalyst where the support promotes the formation of monodentate formate that can, in turn, be hydrogenated faster than bidentate formate (16).

The absence of heavier hydrocarbons during CO₂ hydrogenation as compared to CO hydrogenation is usually explained by reasons that include the following: i) a lower surface concentration of carbon in the case of CO₂ hydrogenation (12); ii) geometric dilution by adsorbed oxygen atoms which are relatively more abundant in the case of CO₂ adsorption and which contribute to decreased probability for C-C bond formation (12); iii) the slow activated adsorption of CO₂ which may create a higher H₂:CO surface ratio during steady-state hydrogenation (13) and iv) a limited amount of reversibly adsorbed CO which is reported to inhibit the hydrogenation of surface carbon (22, 24, 25).

Solymosi *et al.* (67) used a microscale, IR spectroscopy, thermal desorption, mass spectroscopy, a micro reactor, and micro catalytic pulse system to study the hydrogenation of CO₂ on supported Ru catalysts. They found that CO₂ was adsorbed on a Ru/Al₂O₃ catalyst at 298 – 373 K and its coverage decreased with increasing temperature. The adsorption was mainly observed on the Al₂O₃ support and was enhanced in the presence of H₂. They observed the formation of CO_a and formate in presence of CO₂ and H₂ at 373 K and also during CO₂ hydrogenation at high temperatures. No formate was detected on any Ru-free support at 298-573 K. They considered formates as inactive species in the methanation of CO₂ as they proposed that they form on the Ru surface but migrate rapidly to the support. They based their findings on the following observations: i) the adsorption of formic acid on the support, or on supported Ru, gave identical formate bands as recorded during the surface reaction of H₂ and CO₂; ii) the stability of the formate ion was the same; iii) the accumulation of the formate ion

on the Ru/Al₂O₃ sample during the reaction did not influence the rate of methanation and iv) the preadsorption of formic acid had no influence on the band areas for the adsorbed CO. They proposed a mechanism (Fig. 10) where Ru activates H₂ molecules by producing adsorbed hydrogen atoms that react with CO₂ to produce formate. Part of the formate species decomposes on the Ru surface, yielding CO_a and the remainder quickly migrates to the support. Since they also identified surface carbon during the reaction, they proposed that this surface carbon is most probably produced by the dissociation of chemisorbed CO, promoted by the adsorbed H.

Figure 10: Mechanism for CO₂ methanation on Ru catalyst.

Prairy *et al.* used DRIFTS, transient and steady-state experiments to study CO₂ hydrogenation mechanism over Ru/TiO₂ (68 - 70), and Ru/Al₂O₃ (70) catalysts. They observed that CO was adsorbed in the on-top position on Ru⁰ and formate formed under steady conditions in presence of CO₂ and H₂ at 393 K on the Ru/TiO₂ catalyst. They proposed that CO_a is formed via the RWGS reaction in which formate ion is implicated. They studied the role of CO_a in producing CH₄ using transient experiments. They did not find any rate dependence on CO_a coverage but suggested that CO is the primary intermediate in CO₂ methanation (68). Some carbonates, bicarbonates and/or formates also formed on the catalyst support. As these species disappeared with time while the surface coverage of CO_a increased, the authors suggested a possible migration of these species from the support to the Ru surface. In the presence of H₂, they found that CO_a species were actively consumed and that the cabonates/formates quickly disappeared. Therefore, they suggested that carbonates and formates from the support may be a source of CH₄ via CO_a species in the presence of H₂. They investigated the role of formate species in the overall mechanism by using a batch reactor where they compared the rate of CH₄ formation from CO₂/H₂ and HCOOH/H₂ mixtures, respectively (70). They found that relative initial rates were similar and suggested that CO₂ reduction to formate is not rate-limiting. No adsorbed species were observed when they exposed a blank TiO₂ support to CO or a mixture of CO₂ and H₂; however, formate species formed upon exposure to HCOOH. The formate species did not decompose or desorb in flowing Ar or H₂ stream at 473 K for more than 4h but disappeared in the presence of H₂ from 353 K on the Ru/TiO₂ catalyst. The authors, therefore suggested that formates form more on the catalyst support and that in the presence of CO₂ and H₂, Ru plays a role of catalyzing CO₂ reduction to formates, using dissociated hydrogen, and their subsequent dehydrogenation to form CO_a.

Marwood *et al.* (71 - 73) also observed the formation of CO_a and formate on a Ru/TiO₂ catalyst. Using in-situ IR surface analysis under dynamic cyclic conditions where the concentration of CO_2 was periodically varied in a H₂ reaction feed, they proposed a reaction path where CO_2 chemisorbs on the catalyst surface to form adsorbed bicarbonate species, which is subsequently hydrogenated to a formate species. The latter of which decomposes to adsorbed CO which is subsequently hydrogenated to CH₄ as shown in Fig. 11 (71).

Figure 11: Mechanism of methane formation on Ru/TiO₂.

They found that the formation of CO_a is inhibited by H₂O and enhanced by H₂, while the hydrogenation of CO_a species is not influenced by H₂O partial pressure. They deduced that the rate-limiting step in the overall reaction is the formation of CO_a (72). In a later study (73), they found that formate species were fixed on the catalyst support, in equilibrium with an active formate species on the metal-support interface. They proposed a mechanism where the

precursor for CO_a is an active formate species that is formed by the reduction of HCO_3^- species at the Ru-support interface.

The formation of methane via adsorbed formate species, which is subsequently transformed into adsorbed CO, was also proposed on Ru/SiO₂ and Ru/ZSM-5 catalysts (74). Upon catalyst exposure to a H₂/CO₂ mixture (H₂:CO₂ ratio of 13:5) at room temperature, the authors detected linearly adsorbed CO on Ru⁰ on both Ru/ZSM-5 and Ru/SiO₂ catalysts using FTIR spectroscopy. They suggested that CO and H₂ compete for the same Ru sites forming RuH(CO) species. They also observed formate species and suggested that the adsorbed CO is hydrogenated to methane following the same route as for CO hydrogenation. Using in-situ FTIR technique, Panagiotopoulou et al. (75) also detected carbonates and formate species associated with the TiO₂ support when a 5%Ru/TiO₂ catalyst was exposed to a mixture containing 1%CO₂ and 5%H₂ at 298 K. A progressive formation of adsorbed CO on the Ru surface was observed above 373 K and went through a maxiumum at ca. 473K. They found that under CO₂ hydrogenation conditions, the catalyst is able to convert CO₂ into CO species which cannot be dissociated into detectable amount of Ru-C and Ru-O. They also found that the presence of H₂ promotes the conversion of CO₂ to CO_a. Coupling these findings with their H₂-TPD results, they proposed a mechanism where the hydrogen adsorbed on Ru surface migrates to the Ru-TiO₂ interface where it reacts with the CO₂ adsorbed on the TiO₂ support to form formate and Ru-CO species.

3 Kinetics

3.1 Effect of temperature

The work of Cratty, Jr and Russell (76) was one of the earliest studies that systematically investigated the effect of temperature on CO₂ hydrogenation over an unsupported nickel catalyst. The catalyst was prepared by precipitation of nickel as carbonate, reduced by hydrogen and tested from 473 to 773 K. Using a H₂:CO₂ feed ratio of 2:1, they observed that

CH₄ was the predominant product with a small yield of CO. The CH₄ yield increased with the reaction temperature and went through a maximum of ca. 50% between 573 and 673 K. Similar trends where CO₂ conversion and methane production passed through a maximum between 573 and 673 K were also reported on supported nickel catalysts (18, 55, 77 - 79). Weatherbee and Bartholomew (18) measured maximum CO₂ conversion and methane production at around 635 K in a more diluted system (1% CO₂ and 4% CO₂ in N₂) over a 3%Ni/SiO₂ catalyst. Maximum CO₂ conversion and methane production were measured at 623 K over model Ni (53), 10-25 wt.% Ni /Al₂O₃ (78), Ni/bentonite (79) and Ni/MgAlO₄ (55) catalysts, respectively. An increase in CO₂ conversion with temperature up to 773 K has been reported for Ni supported on rice husk ash (RHA) (77); Ce- and Sm- doped Ni/ZrO₂ (80) and 69.1% Ni/Al₂O₃ (14, 81).

High temperatures have also been reported to increase the formation of CH₄ on molecular sieve-supported Ru (1.8% Ru, 400 – 525 K) (32), Ru/Al₂O₃ and molecular-sieve-supported Ru (400 – 600 K) (33), Ru/Al₂O₃ (443 – 553 K) (82) catalysts. Some studies have reported that that the CO₂ conversion and/or the formation of methane increased and went through a maximum over a 0.5% Ru/SiO₂ (max. at 675 K) (83), 0.5%Ru/Al₂O₃ (max. at 623 K) (84), 10%Ru/ γ -Al₂O₃ (max. at 548 K) (85) and 3% Ru/TiO₂ (max. at 623 K) (86) when the reaction temperature was increased. On the other hand, Panagiotopoulou *et al.* (87) found that CO₂ conversion increased and the methane selectivity decreased with an increasing temperature (423 – 723K) on a 0.5%Ru/Al₂O₃ catalyst.

Increases in catalyst activity with an increasing reaction temperature can be expected as the system gains more heat to overcome the activation energy. The latter is significantly affected by catalyst composition, preparation method and testing conditions. Values for the activation energy required for CO₂ hydrogenation over Ni- and Ru-based catalysts are compiled in Tables 1 and 2, respectively.

Table 1. Activation energy for CO₂ hydrogenation over nickel-based catalysts

Table 2. Activation energy for CO2 hydrogenation over ruthenium-based catalysts

The lowest value (13.1 kJ/mole) was obtained with a ceria-promoted nickel catalyst supported on carbon nanotubes (12% Ni/4.5% Ce/CNT) (99) and the highest (138 kJ/mole) on a nickelphosphide catalyst (90). For Ru-based catalysts, the lowest and highest activation energies of ca. 17.6 and 105 kJ/mole were respectively obtained with molecular-sieve-supported Ru (1.8%) catalyst activated by γ -irradiation (33) and 0.6%Ru/ γ -Al₂O₃ (103).

Decreases in activity measured at high temperatures can be due to catalyst deactivation and/or thermodynamic limitations as CO₂ hydrogenation is an exothermic process where the equilibrium conversion decreases with increasing temperatures.

Generally, the rise in operating temperature during CO₂ hydrogenation has been reported to increase the CO₂ conversion and the selectivity for CO, and decrease the selectivity for methanol on Cu catalysts. This trend has been reported on Cu/Al₂O₃ (453 – 533 K) (41), Cu/TiO₂ (493 – 553 K) (105), Cu/ZrO₂ (493 – 553K) (105), (453 – 553K) (36), Cu/ZnO/La₂O₃ (523 – 673 K) (42), Cu/SiO₂ (523 – 623 K) (36, 106), Cu/ZnO/Al₂O₃/Cr₂O₃ (463-553 K), Cu/ZnO/Cr₂O₃ (453 – 593 K) (107) , Cr-CuB, Zr-CuB, Th-CuB and Cu-Zn (473 – 300 K) (108), Cu/ZnO/Al₂O₃ (453 – 513 K) (109), (473 – 533 K) (110), Cu/ZnO/ZrO₂ and Cu/ZnO/CeO₂ (453 – 513 K) (109), and Cu/ZnO/Al₂O₃/ZrO₂ (443-583 K) (111) catalysts. In some cases (42), the selectivity to light hydrocarbons, such as CH₄, also increased with the rising temperature.

Using a Cu/ZnO/Cr₂O₃ catalyst that was promoted by Pd and Na, Inui *et al.* (37) found that below 20 bar, the formation of methanol decreased with an increase in temperature (493 - 593)

K). At high pressure, for example around 50 bar, the yield for methanol increased with temperature and went through a maximum at around 543 K before decreasing, while approaching equilibrium data. They indicated that in the temperature range considered, the catalyst tends to oxidize at higher pressures.

Activation energies of ca. 67 and 69 kJ/mol have been reported on Cu (110) (50) and Cu (100) (47, 48), respectively.

3.2 Effect of pressure and space velocity

Experimental data showing the effect of pressure on CO₂ hydrogenation over nickel-based catalysts are scarce. As the reaction proceeds with gas contraction, the increase in pressure is expected to increase the equilibrium conversion. Some experimental data have been reported by Weatherbee and Bartholomew (18) and Abelló *et al.* (81) suggesting a positive effect of high pressure on CO₂ hydrogenation on nickel catalysts. Weatherbee and Bartholomew (18) found that the yield for methane during CO₂ hydrogenation on a 35%Ni/SiO₂ catalyst increased with an increase in reaction pressure (1.4 – 26 bar). Abelló *et al.* (81) used 5, 10 and 20 bar for CO₂ hydrogenation over a 69.1% Ni/Al₂O₃ catalyst at different temperatures. They found that CO₂ conversion and CH₄ selectivity were lower and the CO selectivity was higher at 5 bar. Pressure did not have a significant effect above 10 bar.

Understanding the effect that the space velocity has on a catalytic process is very important as more insight on equilibrium and non-equilibrium product composition can be obtained.

Increasing the space velocity decreased the methane yield on a Ni/SiO₂ catalyst (18). Using space velocities of 0.2 - 1 mole CO₂/g_{Cat}/h during CO₂ hydrogenation over a 69.1 %Ni/Al₂O₃ catalyst at different temperatures, Abelló *et al.* (81) measured equilibrium CO₂ conversion and methane selectivity for all space velocities at temperatures above 723 K. No equilibrium was reached below 623 K even at the lowest space velocity.

Rahmani *et al.* (78) found that the CO₂ conversion decreased but the CH₄ selectivity remained unchanged when the space velocity was increased from 6 to 18 L/gCat/h using a 20%Ni/Al₂O₃ catalyst. These results suggest that methane is a primary product for CO₂ hydrogenation.

Systematic studies on the effect of operating pressure on CO₂ hydrogenation using Ru-based catalysts are also limited. In a study by Weatherbee and Bartholomew (83), it was reported that the rates for CO₂ conversion and CH₄ formation over a 0.5%Ru/SiO₂ catalyst increased with the operating pressure. They fitted their data to a power-law and found that the order of pressure dependence was 0.069 for both CO₂ conversion and CH₄ formation rates.

The dependence of CO₂ hydrogenation on space velocity over Ru-based catalysts has been reported by a number of studies (74, 85). Scirè *et al.* (74) observed that the CO selectivity decreased and the CH₄ selectivity increased with an increase in CO₂ conversion (decrease in space velocity) over 2%Ru/SiO₂ and 2%Ru/ZSM-5 catalysts. Janke *et al.* (85) found that increasing the space velocity over a 10%Ru/γ-Al₂O₃ catalyst resulted in a decrease of CH₄ formation.

High pressure has been reported to improve the selectivity and yield for methanol over CuO/ZnO (15 - 40 bar) (112), La-promoted Cu/ZnO/Cr₂O₃/Al₂O₃ (20 - 80 bar) (113), Cu/ZnO/Al₂O₃/Cr₂O₃ (1 - 30 bar) (46), Pd and Na-promoted Cu/ZnO/Cr₂O₃ (10 - 50 bar) (37), Cu/ZnO/Cr₂O₃ (1 - 50 bar) (107), Cu/ZnO/Al₂O₃, Cu/ZnO/ZrO₂ and Cu/ZnO/CeO₂ (1 - 50 bar) (107), Cu/ZnO/Al₂O₃, Cu/ZnO/ZrO₂ and Cu/ZnO/CeO₂ (1 - 50 bar) (109), and Cu/ZnO/Al₂O₃/ZrO₂ (10 - 90 bar) (111) catalysts.

Denise *et al.* (40) found that short contact times (high space velocity) favored methanol formation, while extended times led to the formation of more CO along with H₂ and H₂O through a reaction involving CO₂ and methanol. Similarly, Amenomiya *et al.* (105) also found that methanol selectivity over CuO/ZrO₂, CuO/Cr₂O₃-Al₂O₃, CuO/ZrO₂/Al₂O₃ and CuO/ZrO₂/SiO₂-Al₂O₃ catalysts decreased as the space velocity decreased (conversion

increased) as shown in Fig. 12, where the curves for carbon conversion to methanol, deviate to the right as the total CO₂ conversion increases.

Figure 12: Conversion to methanol vs. total conversion.

In other cases involving Cu/ZnO/Al₂O₃/Cr₂O₃ (46) and Cu/ZnO/Cr₂O₃ (107) catalysts, the selectivity for methanol was reported to decrease and go through a minimum before rising as the contact time was increased. Gao *et al.* (111) have indicated that when the contact time is long enough, methanol formation prevailed on CO formation over a Cu/ZnO/Al₂O₃/ZrO₂

3.3 Effect of feed composition

catalyst.

The data for CO_2 hydrogenation reported in the literature to date have been generated using a wide range of feed composition and this has made any comparison of data from different laboratories difficult. However, a limited number of studies have reported on the effect of CO_2 hydrogenation products such as CH₄ and H₂O (88), CO (88, 114, 115) and H₂:CO₂ ratio (81, 116) in the feed for CO₂ hydrogenation over Ni catalysts.

van Herwijnen, *et al.* (88) studied the effect of reaction product on the rate of CO₂ hydrogenation on a Ni/ γ -alumina catalyst by adding CH₄ to the feed (CO₂:CH₄ ratio of 0.55 and 0.61). They concluded that CH₄ and H₂O at low concentrations have no effect on the reaction rate. However, CO in concentrations above 200 ppm inhibit CO₂ methanation. The latter was delayed until very high conversions of CO were achieved. This was explained by a fast CO adsorption that occupied most of the active sites on catalyst surface compared to CO₂. Similar behavior was observed by Inui *et al.* (114) who studied the effect of CO on CO₂ methanation over a Ni/La₂O₃-Ru catalyst. They found that CO inhibits CO₂ methanation as the latter only occurred when the temperature corresponded to high CO conversion.

The study by Sheshko and Serov (115) on the hydrogenation of mixed carbon oxides (9 vol.% CO, 15 vol.% CO₂ in He) with hydrogen to carbon oxides ratios of 2:1 and 4:1 over ultradispersed Ni powder at 573 - 823 K rather suggested that both CO and CO₂ were hydrogenated through dissociative adsorption on the catalysts surface and led to methane as the main product. The effects of H₂:CO₂ ratio on the hydrogenation of CO₂ over nickel catalysts have been reported by Abbeló *et al.* (81) and Rahmani *et al.* (116) . Increasing the H₂:CO₂ ratio from 3:1 to 4:1 and 5:1 during CO₂ hydrogenation over a high loaded (69.1 wt.%) Ni/Al₂O₃ catalyst increased the CO₂ conversion as the reaction was promoted by a high concentration of dissociated hydrogen on the catalyst surface (81) . A similar trend was observed by Rahmani *et al.* (116) when the H₂:CO₂ ratio was increased from 3:1 to 4:1 but the CH₄ selectivity remained unchanged and close to 100%.

Addition of water vapor (30%) to a H_2/CO_2 feed for CO_2 hydrogenation over a Ru/Al₂O₃ catalyst, decreased the activity of the catalyst (87). This was attributed to the enhancement of the WGS reaction. The presence of water inhibited the hydrogenation of CO as intermediate toward methane formation.

Lange *et al.* (117) have reported that the presence of N_2 in the feed for CO₂ hydrogenation over Ru/ZrO₂ catalysts did not affect the product selectivity when the H₂/CO₂ ratio was kept unchanged.

3.4 Effect of support

Metal oxides such as Al₂O₃, SiO₂, TiO₂, ZrO₂, ZnO and CeO₂ are the most used supports for Ni, Ru and Cu catalysts for CO₂ hydrogenation. Carbon-based and zeolite supports have also been used in a few studies. Comparison of the effects of various metal oxide supports on these catalysts is yet to be entirely conclusive as it is affected by many other factors such as support phase, metal loading, and catalyst preparation, pretreatment and testing conditions. For

example, tetragonal ZrO₂-supported nickel catalysts displayed higher turnover frequency for methanation and greater CO₂ adsorption than monoclinic ZrO₂-supported nickel catalysts (118).

Vance and Bartholomew (91) compared the effect of Al_2O_3 , SiO_2 and TiO_2 supports on the adsorption properties and catalytic performance of Ni for CO₂ hydrogenation. They used low-loaded (3 wt.%) catalysts prepared by an impregnation method and found that the CO₂:H adsorption ratio, the catalyst activity for CO₂ hydrogenation and the CH₄ selectivity increased in the order Ni/SiO₂ < Ni/Al₂O₃ < Ni/TiO₂. Spinicci and Tofanari (23) compared SiO₂ and TiO₂ as supports for 10 wt.% Ni catalysts used for temperature programmed CO and CO₂ hydrogenation and measured the highest activity and CH₄ selectivity on Ni/SiO₂ between 543 and 573 K and between 653 and 673 K for Ni/TiO₂ catalysts, respectively.

Chang *et al.* (77, 119, 120) compared CO_2 hydrogenation activity and selectivity for Ni supported on rice husk ash (RHA) and on silica. They measured higher methane yield and selectivity on a RHA-supported catalyst compared to a silica-gel-supported catalyst. The promotion effect of the RHA-supported catalyst was believed to be due to stronger metal-support interactions compared to the silica-supported catalyst (77).

When catalysts containing 5 wt.% of Ni supported on γ -Al₂O₃, SiO₂, protonated Y zeolite (HY), MCM-41 and mesostructured silica nanoparticles (MSN) were compared, the activity for CO₂ methanation increased in the following order: Ni/ γ -Al₂O₃ < Ni/SiO₂ < Ni/HY < Ni/MCM-41 < Ni/MSN. The methanation activity increased with an increase in concentration of basic sites (98).

In a recent study, Pandey and Deo (121) found that the effect of support for catalysts containing 10% Ni on the yield for methane increased in the following order Nb₂O₅ < SiO₂ < TiO₂ < ZrO₂ < Al₂O₃. The enhancement was related to the ability of the support to adsorb CO₂.

Rare earth oxides also improve CO₂ hydrogenation on Ni catalysts. Under similar reaction conditions, higher activity for CO₂ hydrogenation was measured on 10%Ni/La₂O₃ catalyst compared to 10%Ni/ γ -Al₂O₃ (122). 10 wt.% Ni/CeO₂ catalyst had higher CO₂ conversions and methane selectivity compared to α -Al₂O₃, TiO₂ and MgO-supported catalysts (123). This was explained by more CO₂ adsorbed on the Ni/CeO₂ catalyst and the partial reduction of CeO₂ during catalyst activation in hydrogen. At 673 K, the CO₂ conversion and methane selectivity increased in the following order: Ni/MgO < Ni/TiO₂ < Ni / α -Al₂O₃ < Ni/CeO₂. Supporting Ni on CeO₂-ZrO₂ mixed oxides leads to higher CO₂ hydrogenation activity (15, 16, 124). The mixed oxide provides mild or medium-strength basic sites (15, 16) where monodentate carbonates form and lead to the formation of monodentate formates that are quickly hydrogenated (16).

A few studies on the use of carbon materials as supports for Ni catalysts have also been reported. Guerrero-Ruiz and Rodriguez-Ramos (93) found that supporting Ni (4.5%) on carbon reduces CH₄ selectivity and increases CO selectivity compared to bulk Ni. The authors indicated that further studies are required to explain these findings. A better catalytic performance for Ni supported on multi-walled CNTs was reported by Wang *et al.* (99) compared to Al₂O₃-supported Ni catalysts. The extent of reduction of Ni was higher on CNT-supported catalysts.

Appropriate support pretreatment can also have a significant effect on CO₂ methanation. For example, higher activity was measured on Ni supported on acid–alkali treated bentonite support compared to the untreated materials. Support treatment led to a higher specific surface area and an improvement in the dispersion of Ni particles (79).

At similar Ru loading (1.8 wt.%), the catalyst that was supported on molecular sieve (MS) showed higher methane yield compared to that of an alumina-supported catalyst (33). CO₂ was more strongly adsorbed on Ru/Al₂O₃ compared to Ru/MS. Solymosi *et al.* (67) compared

Al₂O₃, MgO, SiO₂, and TiO₂ supports for Ru and found that the adsorption of CO₂ in the presence of H₂ increased in the following order: 5%Ru/SiO₂ < 5%Ru/Al₂O₃ < 5%Ru/MgO < 5%Ru/TiO₂. The trend was function of the surface area of Ru. Higher methane selectivity (> 99%) was measured at 298 K on a Ru/TiO₂ catalyst while no activity was measured on Ru/Al₂O₃ and Ru/SiO₂ catalysts under similar conditions (pCO₂: 0.05 bar, pH₂: 0.6 bar) (102). In a subsequent study, Prairie *et al.* (70) found that a Ru/TiO₂ catalyst was 15 times more active than a Ru/Al₂O₃ catalyst at similar Ru loading (3.8%). Both had similar activation energy but the coverage of adsorbed CO was higher (0.4) on the TiO₂-supported catalyst and 0.2 on the Al₂O₃-supported catalyst. The high activity for the Ru/TiO₂ catalyst was explained by a high dispersion of Ru on the TiO₂ support. Scirè *et al.* (74) compared zeolite (H-ZSM-5, SA = 410 m²/g) and silica (25 and 490 m²/g) as supports for Ru (2%) and measured higher methane selectivity on Ru/ZSM-5. They explained that this was related to a higher positive polarization of Ru on the zeolite, leading to a weaker Ru-CO bond with corresponding increase of hydrogen coverage on the surface.

At similar Ru loading (ca. 3%), Hu *et al.* (125) found that the conversion of CO₂ increased as Ru/TiO₂ (rutile, SA <5 m²/g) < Ru/ α -Al₂O₃ (SA < 5 m²/g) < Ru/MgO-Al₂O₃ (SA = 168 m²/g) < Ru/SiO₂ (SA = 46 m²/g) < Ru/TiO₂ (P-25, SA = 30 m²/g) < Ru/TiO₂ (R/A = 60:40, SA = 50 m²/g). The methane selectivity followed a similar trend. They indicated that the hydrogenation of CO₂ was not only affected by the surface area of the support, as in the case for TiO₂-supported catalysts, but also by the interaction between Ru and the support. Kowalczyk *et al.* (126) compared active Al₂O₃ (225 m²/g), MgO (94 m²/g), MgAl₂O₄ spinel (96 m²/g) and turbostatic carbons of low (CA: 66 m²/g) and high (CB: 440 m²/g and CB_{H2}: 435 m²/g) surface area supports for Ru and found that the catalyst activity increased in the following order: 9%Ru/CA < 10%Ru/MgO < 10%Ru/MgAl₂O₄ < 10%Ru/Al₂O₃.

The use of ZnO in the formulation of Cu-based catalysts for methanol synthesis from CO₂ and H₂ has been vastly reported (37, 42, 47, 49 – 51, 105, 109,113, 127 – 141), although its effects on Cu surface properties still remain controversial. The various ways in which ZnO has been reported to influence Cu catalyst during CO₂ hydrogenation include improving Cu dispersion (47, 135), maintaining metallic Cu in ultrathin islands that behave like Cu (110) surface (50), and the creation of new active sites (49, 51, 131).

Using XRD and EDX, Kanai et al. (131) showed that ZnO_x species migrate onto the Cu surface and dissolve into the Cu particle forming a Cu-Zn alloy during catalyst reduction above 600 K. Combining with their CO-TPD and FTIR results, they found that more active Cu⁺ sites for methanol production formed in the vicinity of ZnOx species on the Cu surface. Nakamura et al. (49) deposited Zn species with varying coverage on a polycrystalline Cu surface by vapourdeposition method to form a model system and found that the TOF for methanol increased with Zn coverage and reached a maximum (six times more active than the Zn-free Cu surface) at a Zn coverage of 0.17, after which it started to decrease as the Zn coverage was further increased. They suggested that ZnO_x species directly promote methanol formation by forming new active sites, which they proposed to be Cu^+ -O-Zn species that are created in the vicinity of ZnO_x species on the Cu surface. These sites were believed to stabilize reaction intermediates such as formate and methoxy species. The authors also found that the ZnO_x/Cu model catalyst behaved similarly to a powder Cu/ZnO catalyst. A further study (51) involving the coverage of Cu (111) surface with Zn species also showed a similar trend where up to a Zn coverage of 0.19, the TOF for methanol linearly increased with Zn coverage. At a Zn coverage of 0.19, they measured a TOF that was 13 times higher than that on Zn-free Cu (111) surface. As indicated in section 2.2, they suggested that the active sites for methanol synthesis are not only metallic Cu but also Cu-Zn sites.

Other supports for Cu catalysts have also been explored. Denise and Sneeden (127) found that supporting Cu on MgO, La₂O₃ and Sm₂O₃ led to much less active catalysts for CO₂ hydrogenation. However, ZnO, Al₂O₃, ZrO₂, ThO₂-K-supported Cu catalysts and Cu/ZnO/Al₂O₃ displayed higher activities. Amenomiya (105) found that, at similar Cu loading, the conversion of CO₂ to methanol varies as CuO/ZrO₂ > CuO/Cr₂O₃-Al₂O₃ > CuO/ZnO > CuO/TiO₂ > CuO/Al₂O₃ > CuO/SiO₂. CuO/SiO₂ did not show any activity. On the other hand, the selectivity to methanol varied as CuO/ZrO₂ > CuO/ZnO > CuO/TiO₂ > CuO/Cr₂O₃-Al₂O₃ > CuO/Al₂O₃ > CuO/SiO₂. They found that the surface area for the catalyst did not have a significant role on the catalyst performance but rather the nature of the Cu interaction with the support. Fujitani *et al.* (130) found that the specific activity for methanol formation changed as Cu/Ga₂O₃ > Cu/ZnO > Cu/Cr₂O₃ > Cu/ZrO₂ ≈ Cu/Al₂O₃ > Cu/SiO₂. They related the role of these oxides to the formation of Cu⁺ site at the interface of Cu particle and metal oxide moiety, which is located on the surface of Cu or near the perimeter of the Cu particles.

3.5 Effect of promoter or surface modifier

Nickel catalysts have been modified by adding elements in the form of metals or oxides with the aim of affecting their catalytic properties for CO₂ hydrogenation.

Addition of a small amount of copper (< 4%) greatly increased the yield for CO and decreased that of CH₄ (76). High amounts of Cu diluted Ni and formed alloys that decreased the rate of CO₂ hydrogenation (10).

Potassium, a well-known promoter that is used to increase the selectivity for heavier hydrocarbons in CO hydrogenation (142 - 144), has also been used to promote Ni catalysts for CO_2 hydrogenation. Increased CH₄ and CO production rates were observed upon preadsorption of potassium on a Ni (100) catalyst but with no promotion for higher hydrocarbons (20). Upon promoting supported Ni catalysts by potassium, Campbell and Falconer (94) found that the

effect is dependent on the support used. On Ni/SiO₂-Al₂O₃ catalyst, they found that potassium at low coverage increased the rate for CO₂ hydrogenation and the opposite happened at higher potassium coverage. Only small amounts of C₂ hydrocarbons were observed on unpromoted and K-promoted samples. However, on Ni/SiO₂ catalyst, potassium rapidly decreased the hydrogenation rate. It did not promote the formation of higher hydrocarbons or olefins but changed the CH₄/CO product ratio by increasing the formation of CO. In addition to small amounts of C₂ hydrocarbons detected on catalyst samples having 0 - 0.81% K, small quantities of C₃ hydrocarbons were observed on Ni/SiO₂ samples that contained 0.25 and 0.81%K.

Rare earth elements and noble metals can also significantly modify Ni catalyst properties for CO₂ methanation. Addition of small amounts of La (0.2% of Ni) and Ru (0.1% of Ni) to a supported Ni catalyst leads to an increase in CO₂ methanation rate (89, 145). La₂O₃ improves CO₂ adsorption by its basicity and Ru serves as a porthole for H₂ spillover (145). Lanthanum added to NiO/Al₂O₃ catalysts in small quantities, e.g. 0.04 elementary molar fraction, enhanced CO₂ conversion to methane (146). Small amounts (< 5%) of Ce promotes Ni reducibility (by improving Ni-support interaction) and dispersion on the support (99, 116) and enhances CO₂ methanation (99, 116, 146). It significantly decreased the activation energy for CO₂ hydrogenation on nickel catalyst supported on carbon nanotubes (CNTs) due to its promotion effect on the charge transfer from the metal surface and the support to the CO₂ molecules (99). Addition of Rh to Ni supported on Ce_{0.72}Zr_{0.28}O₂ led to higher Ni dispersion, resulting in increases in both activity and catalyst life-time (124).

The promoting effects of transition metals or their oxides on nickel catalysts have also been reported. ZrO₂ increased the activity and stability for CO₂ hydrogenation over alumina-supported nickel catalysts (97). Sheshko and Serov (115) found a synergy by using bimetallic Ni-Fe ultradispersed powder for the hydrogenation of mixed carbon oxides (CO and CO₂) where the main products were methane and ethylene compared to ultradispersed nickel powder

alone that mainly led to the formation of methane. Hwang, *et al.* (147) studied the effect of a second metal (Fe, Zr, Ni, Y, and Mg) on Ni/alumina xerogel catalysts and found that CO₂ conversion and CH₄ yield decreased with the type of the second metal added to the catalyst in the following order: Fe > Zr > Ni > Y > Mg. Their catalysts contained 35% of mesoporous Ni and 5% of the second metal. The addition of Fe led to a catalyst which retained most of the optimal CO dissociation energy and with the lowest metal-support interaction.

Addition of Fe (around 3 wt.%), by co-impregnation with Ni nitrate on ZrO₂, enhanced the catalytic activity of 30% Ni/ZrO₂ catalyst for CO₂ methanation at low temperatures. This was explained by an enhancement in nickel dispersion and extent of reduction, and the partial reduction of the ZrO₂ support that enhances CO₂ dissociation at low pressure due to a high concentration of oxygen vacancies in the support (27). Addition of Fe to Ni (Fe:Ni ratio of 1:3) supported on Al₂O₃, ZrO₂, TiO₂ and SiO₂ resulted in a higher CH₄ yield compared to the supported Ni catalysts without Fe (121). The enhancement was explained by the formation of suitable Ni-Fe alloy such as Ni₃F. Small amounts of Mo increased Ni metal dispersion in a low Ni loaded (5 wt.%Ni/Al₂O₃) catalyst resulting in an increase in CO₂ conversion (148). Zr addition to Ni₁₀₀O_x catalysts (10 mol.%) improved the catalyst activity as a result of Zr ions involvement (149). MnO₂ improved the reducibility of 20%Ni/γ-Al₂O₃ catalysts by changing the Ni-Al₂O₃ interaction (116). Addition of an appropriate amount of V₂O₅ (3%) to nickel catalyst (20% NiO) supported on acid-alkali treated bentonite support increased the activity for CO₂ methanation. V₂O₅ enhances H₂ uptakes, increases Ni dispersion and has been proposed to exert an electronic effect that promotes dissociation of CO in the methanation reaction (79). Ni catalysts have also been promoted by modifying the support. For example, doping ZrO₂ support with Ni²⁺, and Ca²⁺ (150) or Sm³⁺ (151) enhanced the activity of Ni/ZrO₂ catalysts. This was explained by oxygen vacancies produced by the introduction of these ions into the tetragonal phase of ZrO_2 (Fig. 13) (150).

Figure 13: Reaction mechanism proposed on Ni – ZrO₂ with oxygen vacancies for CO₂ methanation.

Ruthenium catalysts are rarely promoted by a second metal. Limited studies that promoted Ru catalysts involve the addition of Rh (125) and Ni (117, 125). Hu *et al.* (125) respectively added Rh (2%) and Ni (5%) to a 3%Ru/TiO₂ catalyst and found that Rh did not affect the CO₂ conversion while Ni had an inhibiting effect. Low loadings (around 1 wt.%) of equimolar Ru and Ni were reported to favor the formation of alloys that lead to similar performance as for monometallic Ru catalysts. Higher loadings (ca. 2 - 4 wt.%) led to the covering of Ru by Ni and the formation of larger Ni agglomerates resulting in decreased activity (117).

Various components are usually added to binary copper catalysts such Cu/ZnO and Cu/ZrO₂ to improve their catalytic performance for CO₂ hydrogenation to methanol.

Ramaroson *et al.* (42) promoted a 50%Cu/ZnO catalyst with 10% of groups III and IV metal oxides (La₂O₃, MgO, ThO₂, Nd₂O₃, Y₂O₃, Al₂O₃, In₂O₃ and SiO₂) and found that the total CO₂ conversion increased in the following order: Cu/ZnO/MgO < Cu/ZnO/SiO₂ < Cu/ZnO/Al₂O₃ < Cu/ZnO/ThO₂ < Cu/ZnO/Y₂O₃ < Cu/ZnO < Cu/ZnO/Nd₂O₃ < Cu/ZnO/Nd₂O₃ < Cu/ZnO/In₂O₃. They found that SiO₂ significantly promoted methane formation and led to very low methanol selectivity of ca. 1.5%. The selectivity for methanol that was measured on other promoted catalysts, in comparison to the unpromoted catalyst, was above 90% and increased in the following order: CuO/ZnO/In₂O₃ < CuO/ZnO/MgO = CuO/ZnO/Al₂O₃ < CuO/ZnO/Y₂O₃ < CuO/ZnO/Nd₂O₃ < CuO/ZnO/ThO₂ < CuO/ZnO/MgO = CuO/ZnO/La₂O₃. The promoting effect of these oxides was explained by their ability to stabilize oxygenates intermediates like formate on the catalyst surface. Addition of Al₂O₃ (34%) and a small amount of Cr₂O₃ (3%) to Cu/ZnO catalyst improved both CO₂ conversion and selectivity to methanol (46). Ag (4.8%)

increased the selectivity for methanol without significantly affecting the activity of a Cu/ZnO catalyst (129). It decreased the catalyst reduction temperature and possibly influenced the distribution of reduced and oxidized surface species during reaction. Saito *et al.* (133) studied the effect of Ga, Cr, Al and Zr oxides addition to Cu/ZnO catalysts and found that Al₂O₃ or ZrO₂ improve the dispersion of Cu in the catalyst while Ga₂O₃ or Cr₂O₃ optimize the ratio of Cu⁺ and Cu⁰ on the surface of Cu particles, resulting in the increase of the specific activity. Sahibzada (134) reported that Pd promotes the activity of Cu/ZnO catalysts by a possible hydrogen spillover process that plays a role in counteracting the inhibition by water. Toyir *et al.* (136) found that the addition of Al₂O₃ or ZrO₂ to Cu/ZnO increases the total surface area and the dispersion of Cu particles on the surface, while the addition of Ga₂O₃ to the catalyst improved the specific activity and stability of Cu, and the selectivity for methanol. The promoting effect of Ga₂O₃ was due to small particles of Ga₂O₃ that favour the formation of an intermediate state of copper between Cu⁰ and Cu²⁺ or Cu⁺.

Amenomiya (105) added ca. 10% of Al₂O₃, ZnO, SiO₂, SiO₂-Al₂O₃, Cr₂O₃-Al₂O₃, WO₃-Al₂O₃, SiO₂-MgO, graphite, ThO₂ and CeO₃ to a 40%CuO/ZrO₂ catalyst and found that Al₂O₃, ZnO, SiO₂-Al₂O₃, and Cr₂O₃-Al₂O₃ increased the conversion to methanol, while SiO₂, WO₃-Al₂O₃, SiO₂-MgO and graphite showed no effect. ThO₂ and CeO₃ decreased the catalyst activity. Al₂O₃ was found to be the most effective in increasing the catalyst activity; however it decreased the selectivity for methanol. When compared at similar CO₂ conversion levels, the selectivity to methanol decreased as CuO/ZrO₂ > CuO/ZrO₂/Al₂O₃ > CuO/ZrO₂/SiO₂-Al₂O₃.

Cu/ZnO catalyst associated with ZrO₂ has been reported to have a good performance for CO₂ hydrogenation (109, 138, 140), as ZrO₂ possess high thermal stability under reducing and oxidizing environments (138).
Promotion of other binary copper catalysts has also been reported. For example, Liaw and Chen (108) promoted the dispersion and stability of CuB catalysts for methanol synthesis from CO₂/H₂ by doping the catalyst with Cr, Zr and Th respectively. Addition of vanadium to a 12%Cu/γ-Al₂O₃ catalyst improved the catalytic performance (152). The conversion of CO₂ went through a maximum level at ca. 3% V loading, while the selectivity for methanol increased and the CO selectivity decreased with increasing V content up to 9%. V was found to enhance the dispersion of supported CuO.

The modification of a well-known ternary Cu/ZnO/Al₂O₃ catalyst system that is used for commercial methanol synthesis from CO/CO₂/H₂ has also received significant research interest with an attempt to make it efficient for CO₂ hydrogenation. Sahibzada *et al.* (132) promoted Cu/ZnO/Al₂O₃ catalyst with Pd in two ways: i) physical mixture of Pd/Al₂O₃ and Cu/ZnO/Al₂O₃ catalysts and ii) impregnation of Cu/ZnO/Al₂O₃ catalyst with Pd. They found that Pd increased the conversion of CO₂ to methanol but had no effect on CO₂ conversion to CO. They also attributed the promoting effect of Pd to hydrogen spillover from Pd that counteracts the oxidizing effect of CO₂ and/or water on active Cu. Gao et al. (139) promoted a Cu/ZnO/Al₂O₃ catalyst using Ce, La, Mn, Y and Zr, and found that the CO₂ conversion increased as Cu/Zn/Al < Cu/Zn/Al/Mn < Cu/Zn/Al/La < Cu/Zn/Al/Ce < Cu/Zn/Al/Zr < Cu/Zn/Al/Y. On the other hand, they found that methanol selectivity increased as Cu/Zn/Al < Cu/Zn/Al/Mn < Cu/Zn/Al/La < Cu/Zn/Al/Ce < Cu/Zn/Al/Y < Cu/Zn/Al/Zr and had a linear relationship with the increase of the fraction of strong basic sites in the catalyst. They indicated that the introduction of Mn, La, Ce, Zr and Y (ca. 2.5%) favors the production of methanol and that Y- and Zr-modified catalysts showed the highest CO₂ conversion and methanol selectivity, respectively.

Cu/ZnO/ZrO₂ catalysts have also been promoted using various components. Słoczyński *et al.* (137) added small amounts (3%) of B, Ga, In, Gd, Y, Mn and MgO oxides to a Cu/ZnO/ZrO₂

cayalyst (65wt.%CuO, 23% ZnO, 9% ZrO₂ and 3% metal oxide) for methanol synthesis from CO₂. They found that the addition of Ga₂O₃ led to the highest yield of methanol. In₂O₃ drastically decreased the activity of the catalyst. These changes were due to the following: i) control of the dispersion of Cu in the catalyst; ii) increase in the concentration of ZrO₂ on the catalyst surface and iii) the related decrease of the ability of the surface to adsorb water, which inhibits methanol formation.

Natesakhawat *et al.* (138) incorporated Ga₂O₃ and Y₂O₃ into Cu/ZnO/ZrO₂ catalysts to enhance the dispersion and reducibility of Cu, resulting in high activity for methanol synthesis.

Composite catalysts have also been promoted to improve the catalytic performance. Inui et al. (113)added oxides 4% of Y, La, some (ca. Ce, Sm) to а 25%CuO/41.5%ZnO/1.2%Cr₂O₃/Al₂O₃ catalyst and found that the addition of La oxide had the most effect in increasing both methanol selectivity and yield (Fig. 14). The promoting effect was due to the strong basicity of La oxide that enhanced CO₂ adsorption and methanol yield compared to the other oxides used. An increase in La content increased the CO₂ conversion and methanol yield up to equilibrium levels.

Figure 14: Effect of combination of lanthanide oxides with MSCg-S on the performance of methanol synthesis.

In another study (37) from the same laboratory, they added Pd and Na to a Cu/ZnO/Cr₂O₃ catalyst and found that Pd alone did not have any significant effect but the combination of Pd and Na increased the conversion of CO₂ and the formation of methanol. They suggested that sodium oxides promote the adsorption of CO₂ on the catalyst. Zhan *et al.* (141) studied the effect of Y, Ce, Mg and Zr addition to La/Cu/ZnO catalysts for CO₂ hydrogenation. They found that Ce, Mg and Zr lead to lower reduction temperature and higher dispersion of Cu. They also

increased the amount of basic sites leading to an improved methanol yield. They suggested that the improvement in methanol selectivity originates from a special copper valance in the catalyst after reduction.

3.6 Effect of catalyst pore structure, metal loading and particle size

Catalyst pore structure and metal particle size play significant roles in the optimization of industrial catalysts formulations, as these parameters directly affect the transfer of reactants and product in the catalyst.

Inui and Takeguchi (145) studied the effect of pore structure on CO and CO₂ methanation activity using SiO₂-supported catalysts containing 4.6 % Ni-2.6 % La₂O₃. They found that the steady state yield of methane increased when the support pore size was increased from 6 to 760 nm and that the highest activity was measured on the support with meso-macro bimodal pores. They concluded that the mesopores are necessary to provide the sites for catalyst particles and the macropores are responsible for the rapid transport of reactants and products.

Kester *et al.* (153) used TPR to study the effect of Ni loading (1.8 - 15%) on Al₂O₃ for CO and CO₂ hydrogenation. The catalysts were prepared by support impregnation with nickel nitrate solution. They found that methanation occurs on two types of sites: i) sites having higher intrinsic activity that are associated with Ni crystallites formed from the reduction of NiO on the alumina surface and ii) sites possessing lower intrinsic activity resulting from the reduction of a form of NiAl₂O₄ that leads to Ni species surrounded by oxygens of the alumina lattice. The distribution of these sites is affected by Ni loading. Increasing Ni loading leads to more active sites as the proportion of NiAl₂O₄ species, which are difficult to reduce, decreases.

Hwang *et al.* (154) found a correlation between methane yield and metal particle size over a 30% Ni/5% Fe/Al₂O₃ catalyst that was prepared by a co-precipitation method where they varied the precipitation agent, i.e. (NH₄)₂CO₃, Na₂CO₃, NH₄OH or NaOH, to control the particle size of Ni. They found that the yield for methane increased with a decrease in Ni particles size. A

similar trend was also reported by Garbarino *et al.* (14) who found that small Ni particles on Al₂O₃ support were very selective for methane. They also found that the larger the Ni particles, the higher the production of CO as an intermediate. In contrast to the findings by Kester *et al.* (153), they suggested that fast methanation occurs on the corners of nanoparticles interacting with the alumina support.

Hu *et al.* (125) measured an increase in CO₂ conversion with increases in Ru loading, on a TiO₂ support, up to ca. 3% before declining, while the selectivity for CO and CH₄ remained unchanged. Similarly, Kwak *et al.* (104) found that the TOF for CH₄ increased with Ru loading (0.1 - 5%) on Al₂O₃. However, an opposite trend was observed for the TOF and selectivity of CO. They suggested that the reaction mechanism is different on small particles that are atomically dispersed and larger Ru particles. Single Ru atoms or interfacial Ru favour CO formation, while Ru clusters, which are able to supply large amounts of atomic hydrogen to this process, favour the formation of CH₄. Lange *et al.* (117) also found that increasing the loading of Ru on a ZrO₂ support, from 1 to 3%, increased the CO₂ conversion from 93.9 to ca. 97%.

Fig. 15a displays a relationship between the activity that was measured on various catalysts and the size of Ru particles. The data were replotted from the work of Kowalczyk et *al.* (126) and show that the activity decreases as the Ru particle size, on different supports, increases. However, when the activity is plotted against the size of Ru particles on the same support (Fig. 15b), a slight increase in activity can be observed on larger Ru particles. This reflects some differences in the morphology of Ru crystallites on the different supports, as suggested by the authors.

Figure 15: Effect of a) support type and metal particle size on CO₂ hydrogenation activity over \Box 10%Ru/Al₂O₃; • 10%Ru/MgAl₂O₄; \circ 10%Ru/MgO and \triangle 9%Ru/CA and b) metal particle size on CO₂ hydrogenation activity over □ Ru/Al₂O₃; ● Ru/MgAl₂O₄ and ○ 10%Ru/MgO.

Kusmierz et *al.* (103) found that the apparent activation energy for a Ru/γ -Al₂O₃ catalyst decreased with an increasing dispersion of Ru on the support and went through a minimum at a dispersion of 0.5. They indicated that a high dispersion of Ru increases the amount of metal/oxide borders that enhance the generation of adsorbed CO. As a result, the surface coverage with CO increases while the hydrogen coverage decreases, and the heat of hydrogen adsorption increases. Słoczynski *et al.* (137) have reported a linear increase of the yield for methanol with a decrease in Cu crystallite sizes in modified Cu/ZnO/ZrO₂ catalysts (Fig. 17). A similar trend was reported by Natesakhawat (138) who measured higher TOF on smaller Cu particles on various supports (Fig. 18) and explained this trend by a synergetic interaction of Cu particles with the support, as smaller Cu particles lead to larger interfacial area with the metal oxide support. They ruled out the possibility of Cu⁺ species acting as active sites as they did not observe them on the surface of working catalysts. In a recent study, Dong *et al.* (155) also found that the conversion of CO₂ increases with an increase in Cu surface area.

Figure 16: Yield of methanol as a function of the crystal sizes of copper.

Figure 17: Relationship between TOF for methanol synthesis and copper crystallite size.

3.7 Kinetic models

Studies that specifically focused on the development of kinetic models for CO_2 methanation under conditions relevant to industrial applications are still limited. Table 3 summarizes kinetic models for Ni catalysts that have been proposed in the literature.

Table 3. Kinetic models for CO₂ methanation on Ni catalysts

Most studies suggest Langmuir-type models (19, 88, 100, 156, 158 – 160) although some power-law (92, 157, 161) models are also reported.

Dew *et al.* (156) assumed that two adsorbed molecules of hydrogen reacted with a dissociated CO₂ molecule at a pressure of two atmospheres. A different mechanism was assumed above this pressure, where four adsorbed hydrogen molecules react with one adsorbed CO₂ molecule on the catalyst surface. van Herwijnen *et al.* (88) assumed localized Langmuir chemisorption in a system having very small concentration of CO₂ (0.22 - 2.38%) in H₂. A complex Langmuir-Hinshelwood mechanism involving dissociative adsorption of CO₂ to CO and atomic oxygen followed by hydrogenation of CO via a carbon intermediate to methane (Fig. 3) was assumed by Weatherbee and Bartholomew (19). Values of kinetic constants from their proposed model (Equation 6) are reported in Table 4.

Table 4. Values of kinetic constants from Langmuir-Hinshelwood fit of data.

Kai *et al.* (159) assumed equilibrium of dissociative CO₂ and H₂ adsorption on the catalyst surface and that the hydrogenation of surface carbon was the rate determining elementary step. A recent study by Koschany *et al.* (100) has suggested that differential conversions and higher conversions closer to equilibrium have different kinetics. They found that a simple power law with inhibition by adsorbed hydroxyl (Equation 16 with parameter estimation in Table 5) is adequate to reflect kinetics from differential to equilibrium conversions. However, the best fit of experimental data was obtained for the Langmuir Hinshelwood-type model (equation 17) with parameter estimation reported in Table 6.

Table 5. Parameter estimation for the power law with inhibition by adsorbed hydroxyl (Eqt. 2-16, $T_{ref} = 555$ K).

Table 6. Parameter estimation for Langmuir Hinshelwood rate equation (Eqt. 2-17, T_{ref}=555 K).

The Langmuir Hinshelwood model was derived assuming hydrogen-assisted carbon oxygen bond cleavage where formyl formation was assumed to be the rate determining step as described in Fig. 18.

Figure 18: Proposed elementary steps for CO₂ hydrogenation via hydrogen assisted carbon oxygen cleavage.

Few studies that have developed kinetic models on Ru- and Cu-based catalysts are summarized in Table 7.

Table 7. Kinetic models for CO₂ hydrogenation on Ru and Cu catalysts

Table 8. Summarized literature data for CO₂ hydrogenation kinetics over Ni catalysts

Table 9. Summarized literature data for CO₂ hydrogenation kinetics over Ru catalysts

Table 10. Summarized literature data for CO₂ hydrogenation kinetics over Cu catalysts

4 Conclusions

It can generally be accepted that CO and formate species form on Ni, Ru or Cu catalyst during CO₂ hydrogenation. In some cases, CO is suggested to form from formate species and acts as an active intermediate on Ni and Ru catalysts. It forms during a parallel RWGS reaction on Cu catalysts, where formate species are proposed to be the main intermediate for methanol formation. Physicochemical properties of the catalyst support can influence the formation of intermediate species on the surface of the catalyst. Active supports are proposed to participate in the catalyst and may promote the formation of formates species having a different coordination geometry to the catalyst surface which makes them active for further hydrogenation.

A significant amount of CO₂ hydrogenation data has been reported in literature. However, the large difference in testing conditions has made the comparison of data from different laboratories difficult. Tables 8 to 10 summarize the data for CO₂ hydrogenation respectively over Ni, Ru and Cu catalysts for a wide range of temperature, pressure, H₂:CO₂ ratio, space velocities and catalyst preparation methods. Methane is the major reaction product on Ni and Ru catalysts. In some cases CO and C₂₊ hydrocarbons also formed in small amounts. The major products that form over Cu catalysts are methanol and CO.

Long-chain hydrocarbons are not practically formed on these catalysts. Where these products are desired, a different approach should be envisaged. For example, composite catalysts and two-step processes involving the production of methanol with subsequent conversion to hydrocarbons (19, 71, 94) can be explored further.

References

- Vlasenko, V.M.; Yuzefovich, G.E. Mechanism of the Catalytic Hydrogenation of Oxides of Carbon. Russ. Chem. Rev. 1969, 38 (9), 728 - 739.
- Darensbourg, D.J.; Bauch, C.G.; Ovalles, C. Mechanistic Aspects of Catalytic Carbon Dioxide Methanation. Rev. Inorg. Chem. 1985, 7 (4), 315 - 340.
- Wang, W.; Wang, S.; Ma, X.; Gong, J. Recent Advances in Catalytic Hydrogenation of Carbon Dioxide. Chem. Soc. Rev. 2011, 40 (7), 3369 - 4260.
- Wang, W.; Gong, J. Methanation of Carbon Dioxide: an Overview. Front. Chem. Sci. Eng. 2011, 5 (1), 2 - 10.
- Aziz, M.A.A.; Jalil, A.A.; Triwahyono, S.; Ahmad, A. CO₂ Methanation over Heterogeneous Catalysts: Recent Progress and Future Prospects. Green Chem. 2015, 17 (5), 2647 - 2663.
- 6. Saeidi, S.; Amin, N.A.S.; Rahimpour, M.R. Hydrogenation of CO₂ to Value-added Products—A Review and Potential Future Developments. J. CO₂ Util. 2014, 5, 66 - 81.
- Ganesh, I. Conversion of Carbon Dioxide into Methanol A potential Liquid Fuel: Fundamental Challenges and Opportunities (a review). Renew. Sust. Energ. Rev. 2014, 31, 221 - 257.
- Jadhav, S.G.; Vaidya, P.D.; Bhanage, B.M.; Joshi, J.B. Catalytic Carbon Dioxide Hydrogenation to methanol: A Review of Recent Studies. Chem. Eng. Res. Des. 2014, 92 (11), 2557 - 2567.
- Wang, W.-H.; Himeda, Y.; Muckerman, J.T.; Manbeck, G.F.; Fujita, E. CO₂ Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO₂ Reduction. Chem. Rev. 2015, 115 (23), 12936 - 12973.
- Araki, M.; Ponec, V. Methanation of Carbon Monoxide on Nickel and Nickel-Copper Alloys. J. Catal. 1976, 44 (3), 439 - 448.

- Martin, G.A.; Primet, M.; Dalmon, J.A. Reactions of CO and CO₂ on Ni/SiO₂ above 373
 K as Studied by Infrared Spectroscopic and Magnetic Methods. J. Catal. 1978, 53 (3), 321
 330.
- Dalmon, J.-A.; Martin, G.A. Intermediates in CO and CO₂ Hydrogenation over Ni Catalysts. J. Chem. Soc., Faraday Trans. 1. 1979, 75 (0), 1011 - 1015.
- Falconer, J.L.; Zagli, A.E. Adsorption and Methanation of Carbon Dioxide on a Nickel/Silica Catalyst. J. Catal. 1980, 62 (2), 280 - 285.
- Garbarino, G.; Riani, P.; Magistri, L.; Busca, G. A Study of the Methanation of Carbon Dioxide on Ni/Al₂O₃ Catalysts at Atmospheric Pressure. Int. J. Hydrogen Energ. 2014, 39 (22), 11557 - 11565.
- Ussa Aldana, P.A.; Ocampo, F.; Kobl, K.; Louis, B.; Thibault-Starzyk, F.; Daturi, M.;
 Bazin, P.; Thomas, S.; Roger, A.C. Catalytic CO₂ Valorization into CH₄ on Ni-based
 Ceria-Zirconia. Reaction Mechanism by Operando IR Spectroscopy. Catal. Today 2013, 215, 201 207.
- Pan, Q.; Peng, J.;Sun, T.; Wang, S.; Wang, S. Insight into the Reaction Route of CO₂ Methanation: Promotion Effect of Medium Basic Sites. Catal. Commun. 2014, 45, 74 - 78.
- Osaki, T.; Mori, T. Kinetics Studies on CO₂ Dissociation on Supported Ni Catalysts. React. Kinet. Catal. Lett. 2006, 87 (1), 149 - 156.
- Weatherbee, G.D.; Bartholomew, C.H. Hydrogenation of CO₂ on Group VIII Metals, I. Specific Activity of Ni/SiO₂. J. Catal. 1981, 68 (1), 67 - 76.
- Weatherbee, G.D.; Bartholomew, C.H. Hydrogenation of CO₂ on Group VIII Metals, II.
 Kinetics and Mechanism of CO₂ Hydrogenation on Nickel. J. Catal. 1982, 77 (2), 460 472.
- 20. Peebles, D.E.; Goodman, D.W.; White, J.M. Methanation of Carbon Dioxide on Ni(100) and the Effects of Surface Modifiers. J. Phys. Chem. 1983, 87 (22), 4378 4387.

- Vesselli, E.; De Rogatis, L.; Ding, X.; Baraldi, A.; Savio, L.; Vattuone, L.; Rocca, M.; Fornasiero, P.; Peressi, M.; Baldereschi, A.; Rosei, R.; Comelli, G. Carbon Dioxide Hydrogenation on Ni(110). J. Am. Chem. Soc. 2008, 130 (34), 11417 – 11422.
- 22. Fujita, S.; Terunuma, H.; Kobayashi, H.; Takezawa, N. Methanation of Carbon Monoxide and Carbon Dioxide over Nickel Catalyst under The Transient State. React. Kinet. Catal. Lett. 1987, 33 (1), 179 - 184.
- 23. Spinicci, R.; Tofanari, A. Comparative Study of the Activity of Titania- and Silica-Based Catalysts for Carbon Dioxide Methanation. Appl. Catal. 1988, 41, 241 - 252.
- Fujita, S-i.; Terunuma, H.; Nakamura, M.; Takezawa, N. Mechanisms of Methanation of CO and CO₂ over Ni. Ind. Eng. Chem. Res. 1991, 30 (6), 1146 - 1151.
- Fujita, S-i.; Nakamura, M.; Doi, T.; Takezawa, N.; Mechanisms of Methanation of Carbon Dioxide and Carbon Monoxide over Nickel/Alumina Catalysts. Appl. Catal. A: Gen. 1993, 104 (1), 87-100.
- 26. Lapidus, A.L.; Gaidai, N.A.; Nekrasov, N.V.; Tishkova, L.A.; Agafonov, Yu. A.; Myshenkova, T.N. The Mechanism of Carbon Dioxide Hydrogenation on Copper and Nickel Catalysts. Petrol. Chem. 2007, 47 (2), 75 - 82.
- 27. Ren, J.; Qin, X.; Yang, J.-Z. Qin, Z.-F.; Guo, H.-L.; Lin, J.-Y.; Li, Z. Methanation of Carbon Dioxide over Ni–M/ZrO₂ (M = Fe, Co, Cu) Catalysts: Effect of Addition of a Second Metal. Fuel Process. Technol. 2015, 137, 204 - 211.
- Bartos, B.; Freund, H.-J.; Kuhlenbeck, H.; Neumann, M.; Lindner, H.; Müller, K. Adsorption and Reaction of CO₂ and CO₂/O₂ Co-adsorption on Ni (110): Angle Resolved Photoemission (ARUPS) and Electron Energy Loss (HREELS) Studies. Surf. Sci. 1987, 179 (1), 59 - 89.
- Lindner, H.; Rupprecht, D.; Hammer, L.; Müller, K. Reactivity of Carbon Dioxide at Ni (110). J. Electron Spectrosc. 1987, 44 (1), 141 - 148.

- 30. Illing, G., Heskett, D.; Plummer, E.W.; Freund, H.-J.; Somers, J.; Lindner, Th.; Bradshaw, A.M.; Buskotte, U.; Neumann, M.; Starke, U.; Heinz, K.; De Andres, P.L.; Saldin, D.; Pendry, J.B. Adsorption and Reaction of CO₂ on Ni{110}: X-ray Photoemission, Near-edge X-ray Absorption, Fine-structure and Diffuse Leed Studies. Surf. Sci. 1988, 206 (1-2), 1 - 19.
- 31. Ding, X.; De Rogatis, L.; Vesselli, E.; Baraldi, A.; Comelli, G.; Rosei, R.; Savio, L.; Vattuone, L.; Rocca, M.; Fornasiero, P.; Ancilotto, F.; Baldereschi, A.; Peressi, M. Interaction of Carbon Dioxide with Ni(110): A Combined Experimental and Theoretical Study. Phys. Rev. B. 2007, 76 (19), 195425: 1 - 12.
- Gupta, N.M; Kamble, V.S.; Annaji Rao, K.; Iyer, R.M. On the Mechanism of CO and CO₂ Methanation over Ru/Molecular-Sieve Catalyst. J. Catal. 1979, 60 (1), 57 - 67.
- Gupta, N.M..; Kamble, V.S.; Iyer, R.M. Effect of γ-Irradiation on Methanation of Carbon Dioxide over Supported Ru Catalysts. J. Catal. 1980, 66 (1), 101 - 111.
- 34. Gupta, N.M.; Kamble, V.S.; Kartha, V.B.; Iyer, R.M.; Ravindranathan Thampi, K.; Gratzel,
 M. FTIR Spectroscopic Study of the Interaction of CO₂ and CO₂ + H₂ over Partially
 Oxidized Ru/TiO₂ Catalyst. J. Catal. 1994, 146 (1), 173 184.
- 35. Hadden, R.A.; Vandervell, H.D.; Waugh, K.C.; Webb, G. The Adsorption and Decomposition of Carbon Dioxide on Polycrystalline Copper. Catal. Lett. 1988, 1 (1 – 3), 27-34.
- Gasser, D.; Baiker, A. Hydrogenation of Carbon Dioxide over Copper-Zirconia Catalysts Prepared by In-Situ Activation of Amorphous Copper-Zirconium Alloy. Appl. Catal. 1989, 48 (2), 279-294.
- 37. Inui, T.; Kitagawa, K.; Takeguchi, T.; Hagiwara, T.; Makino, Y. Hydrogenation of Carbon Dioxide to C1-C7 Hydrocarbons via Methanol on Composite Catalysts. Appl. Catal. A: Gen. 1993, 94 (1), 31-44.

- 38. Schild, C.; Wokaun. A.; Koeppel, R.A.; Baiker, A. CO₂ Hydrogenation over Nickel/Zirconia Catalysts from Amorphous Precursors: On the Mechanism of Methane Formation. J. Phys. Chem. 1991, 95 (16), 6341 - 6346.
- 39. Kieffer, R.; Ramaroson, E.; Deluzarche, A.; Trambouze, Y. A comparison of Reactivity in the Synthesis of Methanol from $CO_2 + H_2$ and $CO + H_2$ (Catalysts Cu, Zn/Al₂O₃, P = 515×10^4 Pa). React. Kinet. Catal. Lett. 1981, 16 (2), 207–212.
- Denise, B.; Sneeden, R.P.A.; Hamon, C. Hydrocondensation of Carbon Dioxide: IV. J. Mol. Catal. 1982, 17 (2-3), 359 - 366.
- 41. Tagawa, T.; Pleizier, G.; Amenomiya, Y. Methanol Synthesis from CO₂ + H₂: I. Characterization of Catalysts by TPD. Appl. Catal. 1985, 18 (2), 285 293.
- Ramaroson, E.; Kieffer, R.; Kiennemann, A. Reaction of CO-H₂ and CO₂ H₂ on Copper-Zinc Catalysts Promoted by Metal Oxides of Group III and IV. Appl. Catal. 1982, 4 (3), 281 - 286.
- 43. Chinchen, G.C.; Spencer, M.S.; Waugh, K.C.; Whan, D.A. Promotion of Methanol Synthesis and the Water-gas Shift Reactions by Adsorbed Oxygen on Supported Copper Catalysts. J. Chem. Soc., Faraday Trans. 1. 1987, 83 (7), 2193-2212.
- 44. Bowker, M.; Hadden, R.A.; Houghton, H.; Hyland, J.N.K.; Waugh, K.C. The Mechanism of Methanol Synthesis on Copper/Zinc Oxide/Alumina Catalysts. J. Catal. 1988, 109 (2), 263 273.
- 45. Kinnaird, S.; Webb, G.; Chinchen, G.C. Radiotracer Studies of Chemisorption on Copperbased Catalysts. J. Chem. Soc., Faraday Trans. 1. 1988, 84 (6), 2135 - 2145.
- Arakawa, H.; Dubois, J.-L.; Sayama, K. Selective Conversion of CO₂ to Methanol by Catalytic Hydrogenation over Promoted Copper Catalyst. Energ. Convers. Manage. 1992, 33 (5-8), 521–528.

- 47. P. B. Rasmussen, P.B.; Holmblad, P.M.; Askgaard, T.; Ovesen, C.V.; Stoltze, P.; Nørskov, J.K.; Chorkendorff, I. Methanol Synthesis on Cu (100) from a Binary Gas Mixture of CO₂ and H₂. Catal. Lett. 1994, 26 (3 4), 373 381.
- 48. Rasmussen, P.B.; Kazuta, M.; Chorkendorff, I. Synthesis of Methanol from a Mixture of H2 and CO2 on Cu (100)," Surf. Sci. 1994, 318 (3), 267 280.
- 49. Nakamura, J.; Nakamura, I.; Uchijima, T.; Kanai, Y.; Watanabe, T.; Saito, M.; Fujitani, T.
 A Surface Science Investigation of Methanol Synthesis over a Zn-Deposited Polycrystalline Cu Surface. J. Catal. 1996, 160 (1), 65 75.
- 50. Yoshihara, J.; Campbell, C.T. Methanol Synthesis and Reverse Water–Gas Shift Kinetics over Cu (110) Model Catalysts: Structural Sensitivity. J. Catal. 1996, 161 (2), 776 782.
- 51. Fujitani, T.; Nakamura, I.; Uchijima, T.; Nakamura, J. The Kinetics and Mechanism of Methanol Synthesis by Hydrogenation of CO₂ over a Zn-deposited Cu (111) Surface. Surf. Sci. 1997, 383 (2-3), 285 - 298.
- 52. Vesselli, E.; Rizzi, M.; De Rogatis, L.; Ding, X.; Baraldi, A.; Comelli, G.; Savio, L.; Vattuone, L.; Rocca, M.; Fornasiero, P.; Baldereschi, A.; Peressi, M. Hydrogen-Assisted Transformation of CO₂ on Nickel: The Role of Formate and Carbon Monoxide. J. Phys. Chem. Lett. 2010, 1 (1), 402 406.
- 53. Vesselli, E.; Schweicher, J.; Bundhoo, A.; Frennet, A.; Kruse, N. Catalytic CO₂ Hydrogenation on Nickel: Novel Insight by Chemical Transient Kinetics. J. Phys. Chem. C. 2011, 115 (4), 1255 - 1260.
- 54. Westermann, A.; Azambre, B.; Bacariza, M.C.; Graça, I.; Ribeiro, M.F.; Lopes, J.M.; Henriques, C. Insight into CO₂ Methanation Mechanism over NiUSY Zeolites: An Operando IR Study. Appl. Catal. B: Environ. 2015, 174 - 175, 120 - 125.

- 55. Fan, Z.; Sun, K.; Rui, N.; Zhao, B.; Liu. C.-j. Improved Activity of Ni/MgAl₂O₄ for CO₂ Methanation by the Plasma Decomposition. J. Energy Chem. 2015, 24 (5), 655 659.
- 56. Aksoylu, A.E.; Akin, A.N.; Önsan, Z.İ.; Trimm. D.L. Structure/Activity Relationships in Coprecipitated Nickel-Alumina Catalysts using CO₂ Adsorption and Methanation. Appl. Catal. A: Gen. 1996, 145 (1-2), 185 - 193.
- 57. Lo Jacono, M.; Schiavello, M.; Cimino, A., Structural, Magnetic, and Optical Properties of Nickel Oxide Supported on η- and γ- Aluminas. J. Phys. Chem. 1971, 75 (8), 1044 - 1050.
- 58. Zielinski, J. Morphology of Nickel/Alumina Catalysts. J. Catal. 1982, 76 (1), 157 163.
- 59. Gavalas, G.R.; Phichitkul, C.; Voecks, G.E. Structure and Activity of NiO/a-Al₂O₃ and NiO/ZrO₂ Calcined at High Temperatures. J. Catal. 1984, 88 (1), 54 64.
- Scheffer, B.; Heijeinga, J.J.; Moulijn, J.A. An Electron Spectroscopy and X-ray Dlffraction Study of NiO/AI₂O₃ and NiO-WO₃/AI₂O₃ Catalysts. J. Phys. Chem. 1987, 91 (18), 4752 -4759.
- de Bokx, P.K.; Wassenberg, W.B.A.; Geus, J.W. Interaction of Nickel Ions with a y-Al₂O₃
 Support during Deposition from Aqueous Solution. J. Catal. 1987, 104 (1), 86 98.
- 62. Kadkhodayan, A.; Brenne, A. Temperature-programmed Reduction and Oxidation of Metals Supported on γ-alumina. J. Catal. 1989, 117 (2), 311-321.
- Scheffer, B.; Molhoek, P.; Moulijn, J.A. Temperature-Programmed Reduction of NiO-WO₃/Al₂O₃ Hydrodesulphurization Catalysts. Appl. Catal. 1989, 46 (1), 11 30.
- 64. Rynkowski, J.M.; Paryjczak, T; Lenik, M. On the Nature of Oxidic Nickel Phases in NiO/γ-Al₂O₃ Catalysts. Appl. Catal. A: Gen. 1993, 106 (1), 73 82.
- 65. Chang, F.-W.; Kuo, M.-S.; Tsay, M.-T.; Hsieh, M.-C. Hydrogenation of CO₂ over Nickel Catalysts on Rice Husk Ash-Alumina Prepared by Incipient Wetness Impregnation. Appl. Catal. A: Gen. 2003, 247 (2), 309 - 320.

- 66. Wambach, J.; Illing, G.; Freund, H.-J. CO₂ Activation and Reaction with Hydrogen on Ni(110): Formate Formation. Chem. Phys. Lett. 1991, 184 (1-3), 239 244.
- 67. Solymosi, F.; Erdöhelyi, A.; Kocsis, M. Methanation of CO₂ on Supported Ru Catalysts.J. Chem. Soc., Faraday Trans. 1. 1981, 77 (5), 1003 1012.
- 68. Highfield, J.G.; Prairie, M.; Renken, A. In-situ DRIFT Spectroscopy in a Continuous Recycle reactor: a Versatile Tool for Catalytic Process Research. Catal. Today 1991, 9 (1-2), 39 - 46.
- 69. Prairie, M.R.; Highfield, J.G.; Renken, A. Diffuse-Reflectance FTIR Spectroscopy for Kinetic and Mechanistic Studies of CO₂ Hydrogenation in a Continuous Recycle Reactor. Chem. Eng. Sci. 1991, 46 (1), 113 - 121.
- 70. Prairie, M.R.; Renken, A.; Highfield, J.G.; Ravindranathan Thampi, K.; Grätzel, M. A Fourier Transform Infrared Spectroscopic Study of CO₂ Methanation on Supported Ruthenium. J. Catal. 1991, 129 (1), 130 - 144.
- 71. Marwood, M.; Van Vyve, F.; Doepper, R.; Renke, A. Periodic Operation Applied to the Kinetic Study of CO₂ methanation. Catal. Today 1994, 20 (3), 437 448.
- Marwood, M.; Doepper, R.; Prairie, M.; Renken, A. Transient Drift Spectroscopy for the Determination of the Surface Reaction Kinetics of CO₂ Methanation. Chem. Eng. Sci. 1994, 49 (24), 4801 – 4809.
- 73. Marwood, M.; Doepper, R.; Renken, A. In-situ Surface and Gas Phase Analysis for Kinetic Studies under Transient Conditions: The Catalytic Hydrogenation of CO₂. Appl. Catal. A: Gen. 1997, 151 (1), 223 - 246.
- 74. Scirè, S.; Crisafulli, C.; Maggiore, R.; Minicò, S.; Galvagno, S. Influence of the Support on CO₂ Methanation over Ru Catalysts: an FT-IR Study. Catal. Lett. 1998, 51 (1 2), 41 45.

- 75. Panagiotopoulou, P.; Kondarides, D.I.; Verykios, X.E. Mechanistic Study of the Selective Methanation of CO over Ru/TiO₂ Catalyst: Identification of Active Surface Species and Reaction Pathways. J. Phys. Chem. C. 2011, 115 (4), 1220 - 1230.
- 76. Cratty, Jr, L.E.; Russell, W.W. Nickel, Copper and Some of their Alloys as Catalysts for the Hydrogenation of Carbon Dioxide. J. Am. Chem. Soc. 1958, 80 (4), 767 - 772.
- 77. Chang, F.-W.; Hsiao, T.-J.; Chung, S.-W.; Lo, J.-J. Nickel Supported on Rice Husk Ash - Activity and Selectivity in CO₂ Methanation. Appl. Catal. A: Gen. 1997, 164 (1-2), 225 - 236.
- 78. Rahmani, S.; Rezaei, M.; Meshkani, F. Preparation of Highly Active Nickel Catalysts Supported on Mesoporous Nanocrystalline γ-Al₂O₃ for CO₂ Methanation. J. Ind. Eng. Chem. 2014, 20 (4), 1346 - 1352.
- 79. Lu, X.; Gu, F.; Liu,Q.; Gao, J.; Liu, Y.; Li, H.; Jia, L.; Xu, G.; Zhong, Z.; Su, F. VOx
 Promoted Ni Catalysts Supported on the Modified Bentonite for CO and CO₂ Methanation.
 Fuel Process. Technol. 2015, 135, 34 46.
- Perkas, N.; Amirian, G.; Zhong, Z.; Teo, J.; Gofer, Y.; Gedanken, A. Methanation of Carbon Dioxide on Ni Catalysts on Mesoporous ZrO₂ Doped with Rare Earth Oxides. Catal. Lett. 2009, 130 (3), 455 - 462.
- Abelló, S.; Berrueco, C.; Montané, D. High-loaded Nickel–Alumina Catalyst for Direct CO₂ Hydrogenation into Synthetic Natural Gas (SNG). Fuel 2013, 113, 598 - 609.
- Solymosi, F.; Erdöhelyi, A. Hydrogenation of CO₂ to CH₄ over Alumina-supported Noble Metals. J. Mol. Catal. 1980, 8 (4), 471 - 474, 1980.
- 83. Weatherbee, G.D.; Bartholomew, C.H. Hydrogenation of CO₂ on Group VIII Metals: IV. Specific Activities and Selectivities of Silica-Supported Co, Fe, and Ru. J. Catal. 1984, 87 (2), 352 362.

- 84. Ohya, H.; Fun, J.; Kawamura, H.; Itoh, K.; Ohashi, H.; Aihara, M.; Tanisho, S.; Negishi,
 Y. Methanation of Carbon Dioxide by Using Membrane Reactor Integrated with Water
 Vapor Permselective Membrane and its Analysis. J. Membrane. Sci. 1997, 131 (1-2), 237
 247, 1997.
- 85. Janke, C.; Duyar, M.S.; Hoskins, M.; Farrauto, R. Catalytic and Adsorption Studies for the Hydrogenation of CO₂ to Methane. Appl. Catal. B: Environ. 2014, 152–153 , 184–191.
- 86. Brooks, K.P.; Hu, J.; Zhu, H.; Kee, R.J. Methanation of Carbon Dioxide by Hydrogen Reduction Using the Sabatier Process in Microchannel Reactors. Chem. Eng. Sci., 62 (4), 1161–1170.
- 87. Panagiotopoulou, P.; Kondarides, D.I.; Verykios, X.E. Selective Methanation of CO over Supported Noble Metal Catalysts: Effects of the Nature of the Metallic Phase on Catalytic Performance. Appl. Catal. A: Gen. 2008, 344 (1 – 2), 45 – 54.
- 88. van Herwijnen, T.; van Doesburg, H.; De Jong, W.A. Kinetics of the Methanation of CO and CO₂ on a Nickel Catalyst. J. Catal. 1973, 28 (3), 391 - 402.
- Inui, T.; Funabiki, M. Methanation of Carbon Dioxide and Carbon Monoxide on Supported Ni–La₂O₃–Ru Catalyst. Chem. Lett. 1978, 7 (3), 251 - 252.
- 90. Okamoto, Y.; Matsunaga, E.; Imanaka, T.; Teranishi, S. Surface State and Catalytic Activity and Selectivity of Nickel Catalysts in Hydrogenation Reactions, V. Electronic Effects on Methanation of CO and CO₂. J. Catal. 1982, 74 (1), 183 - 187.
- 91. Vance, C.K; Bartholomew, C.H. Hydrogenation of Carbon Dioxide on Group VIII Metals:
 III, Effects of Supports on Activity/Selectivty and Adsorption Properties of Nickel. Appl.
 Catal. 1983, 7 (2), 169 177.
- 92. Chiang, J.H.; Hopper, J.R. Kinetics of the Hydrogenation of Carbon Dioxide over Supported Nickel. Ind. Eng. Chem. Prod. Res. Dev. 1983, 22 (2), 225 - 228.

- 93. Guerrero-Ruiz, A.; Rodriguez-Ramos, I. Hydogenation of CO₂ on Carbon-Supported Nickel and Cobalt. React. Kinet. Catal. Lett. 1985, 29 (1), 93 - 99.
- 94. Campbell, T.K.; Falconer, J.L. Carbon Dioxide Hydrogenation on Potassium-Promoted Nickel Catalysts. Appl. Catal. 1989, 50 (1), 189 198.
- 95. Mori, S.; Xu, W.-C.; Ishidzuki, T.; Ogasawara, N.; Imai, J.; Kobayash, K. Mechanochemical Activation of Catalysts for CO₂ Methanation. Appl. Catal. A: Gen. 1996, 137 (2), 255-268.
- 96. Lee, G.D.; Moon, M.J.; Park, J.H.; Park, S.S.; Hong, S.S. Raney Ni Catalysts Derived from Different Alloy Precursors, Part II: CO and CO₂ Methanation Activity. Korean J. Chem. Eng. 2005, 22 (4), 541 - 546.
- 97. Cai, M.; Wen, J.; Chu, W.; Cheng, X.; Li, Z. Methanation of Carbon Dioxide on Ni/ZrO₂-Al₂O₃ Catalysts: Effects of ZrO₂ Promoter and Preparation Method of Novel ZrO₂-Al₂O₃ Carrier. J. Nat. Gas Chem. 2011, 20 (3), 318 - 324.
- 98. Aziz, M.A.A.; Jalil, A.A.; Triwahyono, S.; Mukti, R.R.; Taufiq-Yap, Y.H.; Sazegar, M.R. Highly Active Ni-promoted Mesostructured Silica Nanoparticles for CO₂ Methanation. Appl. Catal. B: Environ. 2014, 147, 359 - 368.
- Wang, W.; Chu, W.; Wang, N.; Yang, W.; Jiang, C. Mesoporous Nickel Catalyst Supported on Multi-walled Carbon Nanotubes for Carbon Dioxide Methanation. Int. J. Hydrogen Energ. 2016, 41 (2), 967 - 975.
- 100. Koschany, F.; Schlereth, D.; Hinrichsen, O. On the Kinetics of the Methanation of Carbon Dioxide on Coprecipitated NiAl(O)_x. Appl. Catal. B: Environ. 2016, 181, 504 516.
- 101. Lunde, P.J.; Kester, F.L. Rates of Methane Formation from Carbon Dioxide and Hydrogen over a Ruthenium Catalyst. J. Catal. 1973, 30 (3), 423 429.

- 102. Ravindranathan Thampi, K.; John Kiwi, J.; Michael Grätzel, M. Methanation and Photo-methanation of Carbon Dioxide at Room Temperature and Atmospheric pressure. Nature 1987, 327, 506 - 508.
- Kuśmierz, M. Kinetic Study on Carbon Dioxide Hydrogenation over Ru/y-Al₂O₃
 Catalysts. Catal. Today 2008, 137 (2-4), 429 432.
- Kwak, J.H.; Kovarik, L.; Szanyi, J. CO₂ Reduction on Supported Ru/Al₂O₃ Catalysts: Cluster Size Dependence of Product Selectivity. ACS Catal. 2013, 3 (11), 2449–2455.
- Amenomiya, Y. Methanol Synthesis from CO₂ + H₂: II. Copper-based Binary and Ternary Catalysts. Appl. Catal. 1987, 30 (1), 57 - 68.
- 106. Nozaki, F.; Sodesawa, T.; Satoh, S.; Kimura, K. Hydrogenation of Carbon Dioxide into Light Hydrocarbons at Atmospheric Pressure over Rh/Nb2O5 or Cu/SiO2-Rh/Nb2O5 Catalyst. J. Catal. 1987, 104 (2), 339 - 346.
- 107. Fujiwara, M.; Ando, H.; Tanaka, M.; Souma, Y. Hydrogenation of Carbon Dioxide over Cu–Zn–Cr Oxide Catalysts. Bull. Chem. Soc. Jpn. 1994, 67 (2), 546 – 550.
- Liaw, B.J.; Chen, Y.Z. Liquid-phase Synthesis of Methanol from CO₂/H₂ over Ultrafine CuB Catalysts. Appl. Catal. A: Gen. 2001, 206 (2), 245 - 256.
- 109. Arena, F.; Mezzatesta, G.; Zafarana, G.; Trunfio, G.; F. Frusteri, F.; Spadaro, L. Effects of Oxide Carriers on Surface Functionality and Process Performance of the Cu–ZnO System in the Synthesis of Methanol via CO₂ Hydrogenation. J. Catal. 2013, 300 (1), 141– 151.
- Bukhtiyarova, M.; Lunkenbein, T.; Kähler, K.; Schlögl, R. Methanol Synthesis from Industrial CO₂ Sources: A Contribution to Chemical Energy Conversion. Catal. Lett. 2017, 147 (2), 416-427.

- 111. Gao, P.; Xie, R.; Wang, H.; Zhong, L.; Xia, L.; Zhang, Z.; Wei, W.; Sun, Y. Cu/Zn/Al/Zr Catalysts via Phase-pure Hydrotalcite-like Compounds for Methanol Synthesis from Carbon Dioxide. J. CO₂ Util. 2015, 11, 41-48.
- Beguin, B.; Denise, B.; Sneeden, R.P.A. Hydrocondensation of CO₂: Reaction of CO₂(CO)/H₂ on CuO/ZnO Contact Masses. React. Kinet. Catal. Lett. 1980, 14 (1), 9 14.
- Inui, T.; Takeguchi, T.; Kohama, A.; Kohama, K. Effective Conversion of Carbon Dioxide to Gasoline. Energ. Convers. and Manage. 1992, 33 (5-8), 513–520.
- Inui, T.; Funabiki, M.; Takegami, Y. Effect of CO on CO₂ Methanation over a supported Ni-La₂O₃-Ru Catalyst. React. Kinet. Catal. Lett. 1979, 12 (3), 287 - 290.
- Sheshko, T.F.; Serov, Y.M. Combined Hydrogenation of Carbon Oxides on Catalysts Bearing Iron and Nickel Nanoparticles. Russ. J. Phys. Chem. A. 2011, 85 (1), 51 - 54.
- 116. Rahmani, S.; Rezaei, M.; Meshkani, F. Preparation of Promoted Nickel Catalysts Supported on Mesoporous Nanocrystalline Gamma Alumina for Carbon Dioxide Methanation Reaction. J. Ind. Eng. Chem. 2014, 20 (6), 4176 - 4182.
- 117. Lange, F.; Armbruster, U.; Martin, A. Heterogeneously-Catalyzed Hydrogenation of CarbonDioxide to Methane using RuNi Bimetallic Catalysts. Energ Technol. 2015, 3 (1), 55 – 62.
- 118. Yamasaki, M.; Habazaki, H.; Asami, K.; Izumiya, K.; Hashimoto, K. Effect of Tetragonal ZrO₂ on the Catalytic Activity of Ni/ZrO₂ Catalyst Prepared from Amorphous Ni–Zr Alloys. Catal. Commun. 2006, 7(1), 24 - 28.
- Chang, F.-W.; Hsiao, T.-J.; Shih, J.-D. Hydrogenation of CO₂ over a Rice Husk Ash Supported Nickel Catalyst Prepared by Deposition-Precipitation. Ind. Eng. Chem. Res. 1998, 37 (10), 3838 - 3845.

- Chang, F.-W.; Tsay, M.-T.; Liang, S.-P. Hydrogenation of CO₂ over Nickel Catalysts Supported on Rice Husk Ash Prepared by Ion Exchange. Appl. Catal. A: Gen. 2001, 209 (1-2), 217 – 227.
- Pandey, D.; Deo, G. Effect of Support on the Catalytic Activity of Supported Ni–Fe Catalysts for the CO₂ Methanation Reaction. J. Ind. Eng. Chem. 2016, 33, 99 - 107.
- Huanling, S.; Jian, Y.; Jun, Z.; Lingjun, C. Methanation of Carbon Dioxide over a Highly Dispersed Ni/La₂O₃ Catalyst. Chin. J. Catal. 2010, 31 (1), 21 - 23.
- 123. Tada, S.; Shimizu, T.; Kameyama, H.; Haneda, T.; Kikuchi, R. Ni/CeO₂ Catalysts with High CO₂ Methanation Activity and High CH₄ Selectivity at Low Temperatures. Int. J. Hydrogen Energ. 2012, 37 (7), 5527 - 5531.
- 124. Ocampo, F.; Louis, B.; Kiwi-Minsker, L.; Roger, A.-C. Effect of Ce/Zr Composition and Noble Metal Promotion on Nickel Based Ce_xZr_{1-x}O₂ Catalysts for Carbon Dioxide Methanation. Appl. Catal., A: Gen. 2011, 392 (1-2), 36 - 44.
- Hu, J.; Brooks, K.P.; Holladay, J.D.; Howe, D.T.; Simon, T.M. Catalyst Development for Microchannel Reactors for Martian in situ Propellant Production. Catal. Today 2007, 125 (1-2), 103 - 110.
- 126. Kowalczyk, Z.; Stołecki, K.; Raróg-Pilecka, W.; Miśkiewicz, E. Wilczkowska, E.; Karpiński, Z. Supported Ruthenium Catalysts for Selective Methanation of Carbon Oxides at Very Low COx/H2 ratios. Appl. Catal. A: Gen. 2008, 342 (1 - 2), 35 - 39.
- 127. Denise, B.; Sneeden, R.P.A. Oxide-Supported Copper Catalysts Prepared from Copper Formate: Differences in Behaviour in Methanol Synthesis from CO/H₂ and CO₂/H₂ Mixtures. Appl. Catal. 1986, 28, 235 - 239.
- 128. Denise, B.; Cherifi, O.; Bettahar, M.M.; Sneeden, R.P.A. Supported Copper Catalysts Prepared from Copper(II) Formate - Hydrogenation of Carbon Dioxide Containing Feedstocks. Appl. Catal. 1989, 48 (2), 365 - 372.

- Fröhlich, C.; Köppel, R.A.; Baiker, A.; Kilo, M.; Wokaun, A. Hydrogenation of Carbon Dioxide over Silver Promoted Copper/Zirconia Catalysts. Appl. Catal. A: Gen. 1993, 106 (2), 275-293.
- 130. Fujitani, T.; Saito, M.; Kanai, Y.; Kakumoto, T.; Watanabe, T.; Nakamura, J.;
 Uchijima, T. The Role of Metal Oxides in Promoting a Copper Catalyst for Methanol Synthesis. Catal. Lett. 1994, 25 (3 – 4), 271 - 276.
- 131. Kanai, Y.; Watanabe, T.; Fujitani, T.; Saito, M.; Nakamura, J; Uchijima, T. Evidence for the Migration of ZnO_x in a Cu/ZnO Methanol Synthesis Catalyst. Catal. Lett. 1994, 27 (1-2), 67-78.
- 132. Sahibzada, M.; Chadwick, D.; Metcalfe, I.S. Hydrogenation of Carbon Dioxide to Methanol over Palladium-promoted Cu/ZnO/Al₂O₃ Catalysts. Catal. Today 1996, 29 (1-4), 367 - 372.
- 133. Saito, M.; Fujitani, T.; Tekeuchi, M.; Watanabe, T. Development of Copper/Zinc Oxide-based Multicomponent Catalysts for Methanol Synthesis from Carbon Dioxide and Hydrogen. Appl. Catal. A: Gen. 1996, 138 (2), 311 - 318.
- Sahibzada, M. Pd-Promoted Cu/ZnO Catalysts for Methanol Synthesis from CO₂/H₂.
 Trans. IChemE. 2000, 78A, 943 946.
- 135. Toyir, J.; de la Piscina, P.R.; Fierro, J.L.G.; Homs, N. Catalytic Performance for CO₂ Conversion to Methanol of Gallium-promoted Copper-based Catalysts: Influence of Metallic Precursors. Appl. Catal. B: Environ. 2001, 34 (4), 255 - 266.
- 136. Toyir, J.; de la Piscina, P.R.; Fierro, J.L.G.; Homs, N. Highly Effective Conversion of CO₂ to Methanol over Supported and Promoted Copper-based Catalysts: Influence of Support and Promoter. Appl. Catal. B: Environ. 2001, 29 (3), 207–215.
- 137. Słoczyński, J.; Grabowski, R.; Olszewski, P.; Kozłowska, A.; Stoch, J.; Lachowska,M.; Skrzypek, J. Effect of Metal Oxide Additives on the Activity and Stability of

Cu/ZnO/ZrO₂ Catalysts in the Synthesis of Methanol from CO₂ and H₂. Appl. Catal. A: Gen. 2006, 310, 127–137.

- 138. Natesakhawat, S.; Lekse, J.W.; Baltrus, J.P.; Ohodnicki Jr., P.R.; Howard, B.H.; Dengand, X.; Matranga, C. Active Sites and Structure-Activity Relationships of Copperbased Catalysts for Carbon Dioxide Hydrogenation to Methanol. ACS Catal. 2012, 2 (8), 1667-1676.
- 139. Gao, P.; Li, F., Zhao, N.; Xiao, F.; Wei, W.; Zhong, L. Influence of Modifier (Mn, La, Ce, Zr and Y) on the Performance of Cu/Zn/Al Catalysts via Hydrotalcite-like Precursors for CO₂ Hydrogenation to Methanol. Appl. Catal. A: Gen. 2013, 468, 442 452.
- 140. Frei, E.; Schaadt, A.; Ludwig, T.; Hillebrecht, H.; Krossing, I. The Influence of the Precipitation/Ageing Temperature on a Cu/ZnO/ZrO₂ Catalyst for Methanol Synthesis from H₂ and CO₂. ChemCatChem. 2014, 6 (6), 1721-1730.
- 141. Zhan, H.; Li, F.; Gao, P.; Zhao, N.; Xiao, F.; Wei, W.; Zhong, L.; Sun, Y. Methanol Synthesis from CO₂ Hydrogenation over La-M-Cu-Zn-O (M = Y, Ce, Mg, Zr) Catalysts Derived from Perovskite-type Precursors. J. Power Sources 2014, 251, 113-121.
- 142. Dry, M.E.; Shingles, T.; Boshoff, L.J.; Oosthuizen, G.J. Heats of Chemisorption on Promoted Iron Surfaces and the Role of Alkali in Fischer-Tropsch Synthesis. J. Catal. 1969, 15 (2), 190 - 199.
- Bonzel, H.P.; Krebs, H.J. Ehnanced Rate of Carbon Deposition during Fischer-Tropsch Synthesis on K Promoted Fe. Surf. Sci. 1981, 109 (2), L527 - L531.
- 144. Campbell, C.T.; Goodman, D.W. A Surface Science Investigation of the Role of Patassium Promoters in Nickel Catalysts for CO Hydrogenation. Surf. Sci. 1982, 123 (2-3), 413 - 426.
- Inui, T.; Takeguchi, T. Effective Conversion of Carbon Dioxide and Hydrogen to Hydrocarbons. Catalysis Today 1991, 10 (1), 95 - 106.

- 146. Znak, L.; Stołecki, K.; Zieliński, J. The Effect of Cerium, Lanthanum and Zirconium on Nickel/Alumina Catalysts for the Hydrogenation of Carbon Oxides. Catal. Today 2005, 101 (2), 65 - 71.
- 147. Hwang, S.; Hong, U.G.; Lee, J.; Baik, J.H.; Koh, D.J.; Lim, H.; Song, I.K. Methanation of Carbon Dioxide Over Mesoporous Nickel–M–Alumina (M = Fe, Zr, Ni, Y, and Mg) Xerogel Catalysts: Effect of Second Metal. Catal. Lett. 2012, 142 (7), 860 - 868.
- Aksoylu, A.E.; Misirli, Z.; Onsan, Z.I. Interaction Between Nickel and Molybdenum in Ni-Mo/Al₂O₃ catalysts: I: CO₂ methanation and SEM-TEM studies. Appl. Catal. A: Gen. 1998, 168 (2), 385 - 397.
- 149. Krämer, M.; Stöwe, K.; Duisberg, M.; Müller, F.; Reiser, M.; Sticher, S.; Maier, W.F.
 The Impact of Dopants on the Activity and Selectivity of a Ni-based Methanation Catalyst.
 Appl. Catal. A: Gen. 2009, 369 (1-2), 42 52.
- 150. Takano, H.; Shinomiya, H.; Izumiya, K.; Kumagai, N.; Habazaki, H.; Hashimoto, K. CO₂ Methanation of Ni Catalysts Supported on Tetragonal ZrO₂ Doped with Ca²⁺ and Ni²⁺ ions. Int. J. Hydrogen Energ. 2015, 40 (26), 8347 8355.
- 151. Takano, H.; Izumiya, K.; Kumagai, N.; Hashimoto, K. The Effect of Heat Treatment on the Performance of the Ni/(Zr-Sm oxide) Catalysts for Carbon Dioxide Methanation. Appl. Surf. Sci. 2011, 257 (19), 8171–8176.
- 152. Zhang, Y.; Fei, J.; Yu, Y.; Zheng, X. Study of CO₂ Hydrogenation to Methanol over Cu-V/y-Al₂O₃ Catalyst. J. Nat. Gas Chem. 2007, 16 (1), 12-15.
- 153. Kester, K.B.; Zagli, E.; Falconer, J.L. Methanation of Carbon Monoxide and Carbon Dioxide on Ni/Al₂O₃ Catalysts: Effects of Nickel Loading. Appl. Catal. 1986, 22 (2), 311 319.
- 154. Hwang, H.; Hong, U.G.; Lee, J.; Seo, J.G.; Baik, J.H.; Koh, D.J.; Lim, H.; Song,
 I.K. Methanation of Carbon Dioxide over Mesoporous Ni–Fe–Al₂O₃ Catalysts

Prepared by a Coprecipitation Method: Effect of Precipitation Agent. J. Ind. Eng. Chem. 2013, 19 (6), 2016 - 2021.

- 155. Dong, X.; Li, F.; Zhao, N.; Xiao, F.; Wang, J.; Tan, Y. CO₂ Hydrogenation to Methanol over Cu/ZnO/ZrO₂ Catalysts Prepared by Precipitation-reduction Method. Appl. Catal. B: Environ. 2016, 191, 8-17.
- Dew, J.N.; White, R.R.; Sliepcevich, C.M. Hydrogenation of Carbon dioxide on Nickel-Kieselguhr Catalyst. Ind. Eng. Chem. 1955, 47 (1), 140 - 146.
- 157. Muller, J.; Pour, V.; Regner, A. Specific Catalytic Activity of Nickel in Hydrogenation of Carbon Dioxide to Methane. J. Catal. 1968, 11 (4), 326 335.
- Inoue, H.; Funakoshi, M. Kinetics of Methanation of Carbon Monoxide and Carbone Dioxide. J. Chem. Eng. Jpn. 1984, 17 (6), 602 - 610.
- Kai, T., Takahashi, T.; Farusaki, S. Kinetics of the Methanation of Carbon Dioxide over a Supported Ni-La₂O₃ Catalyst. Can. J. Chem. Eng. 1988, 66 (2), 343 – 347.
- 160. Xu, G.; Froment, G.F. Methane Steam Reforming, Methanation and Water-Gas Shift:1. Intrinsic Kinetics. AIChE J. 1989, 35 (1), 88 96.
- 161. Lu, B.; Ju, Y.; Abe, T.; Kawamoto, K. Grafting Ni Particles onto SBA-15, and Their Enhanced Performance for CO₂ Methanation. RSC Adv. 2015, 5 (70), 56444 56454.
- Lunde, P.J.; Kester, F.L. Carbon Dioxide Methanation on a Ruthenium Catalyst. Ind.
 Eng. Chem. Process Des. Dev. 1974, 13 (1), 27 33.
- Garbarino, G.; Bellotti, D.; Riani, P.; Magistri, L.; Busca, G. Methanation of Carbon Dioxide on Ru/Al₂O₃ and Ni/Al₂O₃ Catalysts at Atmospheric Pressure: Catalysts Activation, Behaviour and Stability. Int. J. Hydrogen Energy 2015, 40 (30), 9171 - 9182.

- 164. Du, G.; Lim, S.; Yang, Y.; Wang,C.; Pfefferle, L.; Haller, G.L. Methanation of Carbon Dioxide on Ni-incorporated MCM-41 Catalysts: The Influence of Catalyst Pretreatment and Study of Steady-state Reaction. J. Catal. 2007, 249 (2), 370 - 379.
- Ocampo, F.; Louis, B.; Roger, A.-C. Methanation of Carbon Dioxide over Nickel-based Ce0.72Zr0.28O2 Mixed Oxide. Appl. Catal. A: Gen. 2009, 369 (1-2), 90 - 96.
- Mutz, B.; Carvalho, H.W.P.; Mangold, S.; Kleist, W.; Grunwaldt, J-D. Methanation of CO₂: Structural Response of a Ni-based Catalyst under Fluctuating Reaction Conditions Unraveled by Operando Spectroscopy. J. Catal. 2015, 327, 48 -53.
- 167. Karn, F.S.; Shultz, J.F.; Anderson, R.B. Hydrogenanation of Carbon Monoxide and Carbon Dioxide on Supported Ruthenium Catalysts at Moderate Pressures. Ind. Eng. Chem. Prod. Res. Dev. 1965, 4 (4), 265 - 269.
- 168. Fujimoto, K.; Shikada, T. Selective Synthesis of C₂-C₅ Hydrocarbons from Carbon Dioxide Utilizing a Hybrid Catalyst Composed of a Methanol Synthesis Catalyst and Zeolite. Appl. Catal. 1987, 31 (1), 13 - 23.
- 169. Jingfa, D.; Qi, S.; Yulong, Z.; Songying, C.; Dong, W. A Novel process for Preparation of Cu/ZnO/Al₂O₃ Ultrafine catalyst for Methanol Synthesis from CO₂ + H₂: Comparison of various Preparation Methods. Appl. Catal. A: Gen. 1996, 139 (1 2), 75 85.

Figures

 $CO_{2gas} \iff Ni_4CO_{ads} + NiO_{ads}$ $Ni_4CO_{ads} \iff Ni_3C_{surf.} + NiO_{ads.}$ $Ni_3C_{surf.}$ hydrogenation to CH_4

where Ni₃C_{surf} is the superficial carbide.

Figure 1: CO₂ hydrogenation via CO and superficial carbide. Redrawn from Journal of Chemical Society, Faraday Transactions 1, Vol. 75, Dalmon and Martin, "Intermediates in CO and CO₂ Hydrogenation over Ni Catalysts", Pages 1011 - 1015, Copyright (1979), with permission from Royal Society of Chemistry.

$$H_{2}(g) + 2 S \stackrel{k_{1}}{\longleftrightarrow} 2 H-S$$

$$CO_{2}(g) + 2 S \stackrel{k_{2}}{\longleftrightarrow} CO-S + O-S$$

$$CO-S \stackrel{k_{3}}{\longleftrightarrow} CO(g) + S$$

$$CO-S + S \stackrel{k_{4}}{\longleftrightarrow} C-S + O-S$$

$$C-S + H-S \stackrel{k_{5}}{\longleftrightarrow} CH-S + S$$

$$CH-S + H-S \stackrel{k_{5}}{\longleftarrow} CH_{2}-S + S$$

$$CH_{2}-S + H-S \stackrel{k_{7}}{\longleftarrow} CH_{3}-S + S$$

$$CH_{3}-S + H-S \stackrel{k_{9}}{\longleftarrow} CH_{4}-S + S$$

$$CH_{4}-S \stackrel{k_{10}}{\longleftarrow} CH_{4}(g) + S$$

$$O-S + H-S \stackrel{k_{10}}{\longleftarrow} OH-S + S$$

$$OH-S + H-S \stackrel{k_{11}}{\longleftarrow} H_{2}O-S + S$$

Figure 2: Proposed sequence of elementary steps in CO₂ methanation (S refers to a surface site). Redrawn from Journal of Catalysis, Vol. 77, Weatherbee and Bartholomew, "Hydrogenation of CO₂ on Group VIII Metals. II. Kinetics and Mechanism of CO₂ Hydrogenation on Nickel", Pages 460 - 472, Copyright (1982), with permission from Elsevier.

Figure 3: Reactions occurring at catalyst surface during CO_2 or $CO_2/H2$ interaction with Ru/TiO₂ catalyst. Redrawn from Journal of Catalysis, Vol. 146, Gupta *et al.*, "FTIR Spectroscopic Study of the Interaction of CO₂ and CO₂ + H₂ over Partially Oxidized Ru/TiO₂ Catalyst", Pages 173 - 184, Copyright (1994), with permission from Elsevier.

Figure 4: Proposed reaction scheme for the hydrogenation of CO and CO₂ over nickel/zirconia catalysts. Reprinted from The Journal of Physical Chemistry, Vol. 95, Schild *et al.*, "CO₂ Hydrogenation over Nickel/Zirconia Catalysts from Amorphous Precursors: On the Mechanism of Methane Formation", Pages 6341 - 6346, Copyright (1991), with permission from American Chemical Society.

Figure 5: Reaction mechanism proposed on Ni-CZsol-gel sample for CO₂ methanation. Reprinted from Catalysis Today, Vol. 215, Aldana *et al.*, "Catalytic CO₂ valorization into CH₄ on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy", Pages 201 - 207, Copyright (2013), with permission from Elsevier.

Figure 6: Proposed pathways for CO₂ activation and methanation, a) on Ni/Ce_{0.5}Zr_{0.5}O₂, b) on Ni/ γ -Al₂O₃. Reprinted from Catalysis Communications, Vol. 45, Pan *et al.*, "Insight into the reaction route of CO₂ methanation: Promotion effect of medium basic sites", Pages 74 - 78, Copyright (2014), with permission from Elsevier.

$H_2(g) + 2^*$	+	2H*	(1)
$CO_2(g) + *$	+	CO ₂ *	(2)
CO ₂ * + *	+	$CO^* + O^*$	(3)
CO(g) + *	+	CO*	(4)
$O_2(g) + 2^*$	+	20*	(5)
$\rm CO_2* + H*$	+	HCOO* + *	(6)
HCOO* + H*	+	$H_2CO_2^* + *$	(7)
$\mathrm{H}_{2}\mathrm{CO}_{2}^{*} + \mathrm{H}^{*}$	+	$C_3O^* + O^*$	(8)
$C_3O^* + H^*$	+	C ₃ O* + *	(9)
$C_{3}O(g) + *$	+	C ₃ O*	(10)
H ₂ CO ₂ * + *	+	$H_2CO^* + O^*$	(11)
$H_2CO(g) + *$	+	H ₂ CO*	(12)
$H_2CO^* + H^*$	+	C ₃ O* + *	(13)
$H_2O(g) + *$	+	H ₂ O*	(14)
H ₂ O* + *	+	O* + H*	(15)
O* + *	+	O* + H*	(16)
2O * + *	+	$H_2O^* + O^*$	(17)

Figure 7: The elementary reaction steps relevant for methanol synthesis. Redrawn from Surface Science, Vol. 318, Rasmussen *et al.*, "Synthesis of Methanol from a Mixture of H₂ and CO₂ on Cu (100)", Pages 267 - 280, Copyright (1994), with permission from Elsevier.

Figure 8. Evolution of the relative concentrations of $CH_{4(g)}$, adsorbed CO (2100-1740 cm ⁻¹) and formates (1573 cm⁻¹) and CO₂ conversion (%) during TPSR Ar/H₂/CO₂ (75/20/5) over 14% NiUSY zeolite. Reprinted from Applied Catalysis B: Environment, Vol. 174 - 175, Wetermann *et al.*, "Insight into CO₂ methanation mechanism over NiUSY zeolites: An Operando IR Study", Pages 120 - 125, Copyright (2015), with permission from Elsevier.

Figure 9: Proposed mechanism for CO₂ hydrogenation on NiUSY zeolites. Reprinted from Applied Catalysis B: Environment, Vol. 174 - 175, Wetermann *et al.*, "Insight into CO₂ methanation mechanism over NiUSY zeolites: An Operando IR Study", Pages 120 - 125, Copyright (2015), with permission from Elsevier.

Figure 10: Mechanism for CO₂ methanation on Ru catalyst. [C*] represents less reactive form of surface carbon that requires high activation energy to be hydrogenated. Redrawn from Journal of Chemical Society, Faraday Transactions 1, Vol. 77, Solymosi *et al.*, "Methanation of CO₂ on Supported Ru Catalysts", Pages 1003 - 1012, Copyright (1981), with permission from Royal Society of Chemistry.

Figure 11: Mechanism of methane formation on Ru/TiO₂. Redrawn from Catalysis Today, Vol. 20, Marwood *et al.*, "Periodic Operation Applied to the Kinetic Study of CO₂ Methanation", Pages 437 - 448, Copyright (1994), with permission from Elsevier.

Figure 12: Conversion to methanol vs. total conversion. Reprinted from Applied Catalysis, Vol. 30, Amenomiya, "Methanol Synthesis from $CO_2 + H_2$: II. Copper-based Binary and Ternary Catalysts", Pages 57 - 68, Copyright (1987), with permission from Elsevier.

Figure 13: Reaction mechanism proposed on Ni – ZrO₂ with oxygen vacancies for CO₂ methanation. Reprinted from International Journal of Hydrogen Energy, Vol. 40, Takano *et al.*, "CO₂ Methanation on Ni Catalysts Supported on Tetragonal ZrO₂ Doped with Ca²⁺ and Ni²⁺ ions", Pages 8347 - 8355, Copyright (2015), with permission from Elsevier.

Figure 14: Effect of combination of lanthanide oxides with MSCg-S on the performance of methanol synthesis. 25.0% CO₂ - 75.0% H₂, SV = 4700 h⁻¹, 50 atm., 250 °C, Catalyst 1.8 ml. The composition at optimum methanol yield is the same as MSCg-S. Reprinted from Energy Conversion and Management, Vol. 33, Inui *et al.*, "Effective Conversion of Carbon Dioxide to Gasoline", Pages 513 - 520, Copyright (1992), with permission from Elsevier.

Figure 15: Effect of a) support type and metal particle size on CO₂ hydrogenation activity over \Box 10%Ru/Al₂O₃; • 10%Ru/MgAl₂O₄; • 10%Ru/MgO and \triangle 9%Ru/CA and b) metal particle size on CO₂ hydrogenation activity over \Box Ru/Al₂O₃; • Ru/MgAl₂O₄ and • 10%Ru/MgO. Drawn from data from Kowalczyk *et al.* (126).

Figure 16: Yield of methanol as a function of the crystal sizes of copper. The numbers 1 and 8 represent Cu/ZnO/ZrO₂ catalysts that were prepared by co-precipitation as carbonates and by complexing with citric acid, respectively. The numbers 2 to 7 represent the co-precipitated catalysts that were respectively modified by the following additives: 2.8% Ga₂O₃, 2% MnO, 2.1% B₂O₃, 4.0% In₂O₃, 4.0%Gd₂O₃, and 4.0%Y₂O₃. The catalysts prepared by complexing with citric acid and modified by 2.8% Ga₂O₃, 3.9 MgO and 2% MnO are represented by numbers 9, 10 and 11 respectively. Reprinted from Applied Catalysis A: General, Vol. 310, Słoczyński *et al.*, "Effect of Metal Oxide Additives on the Activity and Stability of Cu/ZnO/ZrO₂ Catalysts in the Synthesis of Methanol from CO₂ and H₂", Pages 127 - 137, Copyright (2006), with permission from Elsevier.

Figure 17: Relationship between TOF for methanol synthesis and copper crystallite size. Reaction conditions: 240 °C, 20 bar, $CO_2/H_2/N_2 = 1/3/0.4$, CO_2 conversion $\approx 5\%$. Reprinted from ACS Catalysis, Vol. 2, Natesakhawat *et al.*, "Active sites and Structure-Activity relationships of Copper-based Catalysts for Carbon Dioxide Hydrogenation to Methanol", Pages 1667 - 1676, Copyright (2012), with permission from American Chemical Society.

1: CO ₂	+ 2*	₽	CO*	+ O*
2: H ₂	+ 2*	₽	2H*	+
3: CO*	+ H*	ţ	CHO*	+ *
4: CHO*	• + *	ţ	CH*	+ 0*
5: CH*	+ 3H*	< ↓	CH4*	+ 3*
6: CH ₄ *		ţ	CH ₄	+ *
7: O*	+ H *	ţ	OH*	+ *
8: OH*	+ H*	ţ	H ₂ O*	+ *
9: H ₂ O*		₽	H ₂ O	+ *

Figure 18: Proposed elementary steps for CO₂ hydrogenation via hydrogen assisted carbon oxygen cleavage. Reprinted from Applied Catalysis B: Environmental, Vol. 181, Koschany *et al.*, "On the Kinetics of the Methanation of Carbon Dioxide on Coprecipitated NiAl(O)x", Pages 504 - 516, Copyright (2016), with permission from Elsevier.

Tables

Catalyst	Preparation method	Reduction	H ₂ :CO ₂ ratio	Temp. [K]	Press. [bar]	Ea [kJ/mol]		Ref.
						CO ₂	CH ₄	
Ni/Al ₂ O ₃	(Commercial)	H ₂ , 623 K	454/1-41/1	473-503	1	106		(88)
5.5%Ni/0.8%Ru/SiO2	Spraying	H ₂ , 623 K	3:1		Atmospheric		82	(89)
4.6%Ni/2.6%La2O3/SiO2	Spraying	H ₂ , 623 K	3:1		Atmospheric		82	(89)
4.3%Ni/2.5%La2O3/0.7%Ru/SiO2	Spraying	H ₂ , 623 K	3:1		Atmospheric		82	(89)
3%Ni/SiO ₂	Impregnation	H ₂ , 750 K	4:1 (95% N ₂)	500-550	1.4	70	80	(18)
NiB(P-1)	Reduction of Ni acetate with NaBH ₄	H_2	3:1	413-498			71	(90)
Raney Ni	Activated by NaOH at 70 °C for 30 min	H_2	3:1	413-498			54	(90)
Ni-P-1	Reacting NiCl ₂ with NaH ₂ PO ₂	H_2	3:1	573-623			138	(90)
D-Ni	Ni formate decomposition	H_2	3:1	498-563			96	(90)
Ni (100)		H ₂ , 750 K	4:1	430-710	0.16		89	(20)
Ni (100)		H ₂ , 750 K	96:1	550-710	0.13		89	(20)
100% Ni		H ₂ , 553 K		500-550	1.01	97		(91)
3% Ni/SiO ₂	Impregnation	H ₂ , 723 K	4:1 (95% N ₂)	500-550	1.01	81		(91)
3% Ni/SiO ₂	Impregnation	H ₂ , 723 K	4:1 (95% N ₂)	500-550	1.01	72		(91)
3% Ni/Al ₂ O ₃	Impregnation	H ₂ , 723 K	4:1 (95% N2)	500-550	1.01	69		(91)
3% Ni/TiO ₂	Impregnation	H ₂ , 723 K	4:1 (95% N2)	500-550	1.01	85		(91)
58%Ni/SiO ₂		H ₂ , 700 K	4:1 - 2:1	530-605	6 - 18	61		(92)
100% Ni	Reduction of NiO	$\rm H_2$, 673 K	4:1	523-573	Atmospheric	98		(93)
4.5% Ni/S1	Impregnation	H ₂ , 673 K	4:1	533-583	Atmospheric	95		(93)
4.5% Ni/S3	Impregnation	H ₂ , 673 K	4:1	503-553	Atmospheric	100		(93)
9.2%Ni/SiO ₂	Impregnation	H ₂ , 773 K	3.3:1		1.2		89	(94)
0.25%K/9.2%Ni/SiO ₂	Co-impregnation	H ₂ , 773 K	3.3:1		1.2		90	(94)
0.70%K/11.0%Ni/SiO ₂	Co-impregnation	H ₂ , 773 K	3.3:1		1.2		88	(94)
0.81%K/9.2%Ni/SiO ₂	Co-impregnation	H ₂ , 773 K	3.3:1		1.2		90	(94)
4.1%K/11.0%Ni/SiO2	Co-impregnation	H ₂ , 773 K	3.3:1		1.2		89	(94)
9.5%Ni/SiO ₂ -Al ₂ O ₃	Impregnation	H ₂ , 773 K	3.3:1		1.2		86	(94)
0.25%K/11.5%Ni/SiO ₂ -Al ₂ O ₃	Co-impregnation	H ₂ , 773 K	3.3:1		1.2		82	(94)
0.81%K/9.7%Ni/SiO ₂ -Al ₂ O ₃	Co-impregnation	H ₂ , 773 K	3.3:1		1.2		84	(94)
3.9%K/11.5%Ni/SiO ₂ -Al ₂ O ₃	Co-impregnation	H ₂ , 773 K	3.3:1		1.2		89	(94)
Ni(14.7g)-Fe(14.0g)-MgO (2.02g)	Powder mixing	Milling	5:1	363-393	0.8	39		(95)
5%Ni/Al ₂ O ₃	Coprecipiation	$H_{2}, 623 \ K$	9:1	433-533	Atmospheric		68	(56)
11%Ni/Al ₂ O ₃	Coprecipiation	$H_{2}, 623 \ K$	9:1	433-533	Atmospheric		73	(56)
16.5%Ni/Al ₂ O ₃	Coprecipiation	$H_2,\ 623\ K$	9:1	433-533	Atmospheric		62	(56)
25%Ni/Al ₂ O ₃	Coprecipiation	$H_2,\ 623\ K$	9:1	433-533	Atmospheric		59	(56)
Raney Ni (77.7%)	Leaching	H ₂ , 623 K	4:1	433-533		88		(96)

Table 1. Activation energy for CO₂ hydrogenation over nickel-based catalysts

Raney Ni (75.3%)	Leaching	H ₂ , 623 K	4:1	433-533		91		(96)
Raney Ni (84.6%)	Leaching	H ₂ , 623 K	4:1	433-533		90		(96)
12%Ni/ZrO ₂ -Al ₂ O ₃ ^{CP}	Impregnation		3.5:1	453-633	Atmospheric	72		(97)
12%Ni/γ-Al ₂ O ₃	Impregnation		3.5:2	453-633	Atmospheric	77		(97)
12%Ni/ZrO ₂ -Al ₂ O ₃ Imp	Impregnation		3.5:3	453-633	Atmospheric	75		(97)
12%Ni/ZrO ₂ -Al ₂ O ₃ ^{I-P}	Impregnation		3.5:4	453-633	Atmospheric	55		(97)
5%Ni/MSN	Impregnation	H ₂ , 773 K	4:1	523-573	Atmospheric	76		(98)
5%Ni/MCM-41	Impregnation	H ₂ , 773 K	4:1	523-573	Atmospheric	78		(98)
5%Ni/HY	Impregnation	H ₂ , 773 K	4:1	523-573	Atmospheric	81		(98)
5%Ni/SiO ₂	Impregnation	H ₂ , 773 K	4:1	523-573	Atmospheric	84		(98)
5%Ni/γ-Al ₂ O ₃	Impregnation	H ₂ , 773 K	4:1	523-573	Atmospheric	103		(98)
20%Ni/Bentonite	Impregnation	H ₂ , 873 K	4:1	470-515	1	107		(79)
20%Ni/3%V2O5/Bentonite	Co-impregnation	H ₂ , 873 K	4:1	470-515	1	69		(79)
20%Ni/5%V2O5/Bentonite	Co-impregnation	H ₂ , 873 K	4:1	470-515	1	74		(79)
20%Ni/8%V2O5/Bentonite	Co-impregnation	H ₂ , 873 K	4:1	470-515	1	86		(79)
12%Ni/CNT	Impregnation	H ₂ , 623 K	4:1	560-595	Atmospheric	85		(99)
12%Ni4.5Ce/CNT	Impregnation	H ₂ , 623 K	4:1	560-595	Atmospheric	13		(99)
NiAl(O)x (N/Al molar ration from 5/1 to 1/5)	Coprecipitation	H ₂ , 758 K	4:1	510-580	3		85	(100)
					6		82	(100)
					9		83	(100)

^{CP}: support prepared by coprecipitation of aluminium nitrate and zirconyl chloride
 ^{Imp}: Support prepared by impregnation of γ-Al₂O₃ with an aqueous solution of zirconyl chloride
 ^{I-P}: Support prepared by impregnation-precipitation
 D-Ni: decomposed-nickel catalyst
 MSN: Mesostructured silica nanoparticles
 NiB(P-1): nickel-boride catalyst
 Ni-P-1: nickel-phosphide catalyst
 S1 & S3: Saran carbon

Catalyst	Preparation method	Reduction	H ₂ :CO ₂ ratio	Temp. [K]	Pressure [bar]	Ea	a [kJ/mol]	Ref.
						CO ₂	CH_4	_
0.5%Ru/Al ₂ O ₃	(Commercial)		1.9:1 - 3.9:1	478-644	1	70.4		(101)
3.3%Ru/SiO ₂	Precipitation-deposition	H_2	3:1	500-523	Atmospheric		81.9	(89)
1.8%/y-Al ₂ O ₃	Impregnation	H ₂ , 675K	2%CO2 in H2	400-600	1.2		57.7	(33)
		H ₂ , 675K, γ*					32.2	(33)
1.8%Ru/Molecular Sieve (13X)	Impregnation	H ₂ , 625K	2%CO2 in H2	400-600	1.2		30.5	(33)
		H ₂ , 625K, γ*					17.6	(33)
5%Ru/Al ₂ O ₃	Impregnation	H ₂ , 673K	4:1	443-543	1		67.3	(82)
0.5%Ru/SiO ₂	Impregnation	H ₂ , 750K	4:1	502-563	1	72	72	(83)
				485-550	11	103	103	(83)
			4:1 (95% N ₂)	500-550	1	73	68	(83)
3.8%Ru/TiO ₂	Impregnation	H ₂ , 493 K	12:1	298-362	1		54	(102)
3.8%Ru/TiO ₂	Impregnation	H ₂ , 483K	4.4 : 1	393-445	0.48		79	(69)
3.8%Ru/TiO ₂	Impregnation	H ₂ , 498K	4:1	393-463			80.7	(69)
3.8%Ru/Al ₂ O ₃	Impregnation	H ₂ , 498K	5:1	394-463			79.8	(69)
2%Ru/TiO ₂	Impregnation	H ₂ , 498K				80		(71)
Ru/y-Al ₂ O ₃ (0.575% Ru)	Impregnation	H ₂ , 773K	4.2:1	573-653		96.5		(103)
Ru/y-Al ₂ O ₃ (0.607% Ru)	Impregnation	H ₂ , 773K	4.2:1	573-653		105.2		(103)
Ru/y-Al ₂ O ₃ (0.699% Ru)	Impregnation	H ₂ , 773K	4.2:1	573-653		87.7		(103)
Ru/y-Al ₂ O ₃ (0.766% Ru)	Impregnation	H ₂ , 773K	4.2:1	573-653		82.6		(103)
Ru/y-Al ₂ O ₃ (0.815% Ru)	Impregnation	H ₂ , 773K	4.2:1	573-653		102.3		(103)
0.5%Ru/Al ₂ O ₃	Impregnation	H ₂ , 573K	3.3:1	450-600	Atmospheric	75.2		(87)
0.5-5%Ru/Al ₂ O ₃	Impregnation	H ₂ , 773K	3:1 (80% He)	543-623			62	(104)

Table 2. Activation energy for CO₂ hydrogenation over ruthenium-based catalysts

. γ^* : γ -irradiation

Catalyst details	Testing conditions	Kinetic model	Equation number	Ref.
Ni/Kieselguhr (ca. 59.4% Ni) from Harshaw Chemical Co., reduced by $\rm H_2$	555 - 672 K, 2 - 30 bar, 5 - 90% CO ₂	$r_{0} = \frac{kp_{CO_{2}} p_{H_{2}}^{4}}{\left(1 + K_{1} p_{H_{2}} + K_{2} p_{CO_{2}}\right)^{5}}$ Where $r_{0} = \text{initial rate of methane formation;}$ $k = \text{rection rate constant;}$	1	(156)
		K_1 and K_2 = adsorption equilibrium constants; pCO ₂ and pH ₂ : partial pressures of H ₂ and CO ₂ respectively.		
	555 - 672 K, 2 bar, 5 - 90% CO ₂	$r_0 = \frac{k p_{CO_2}^{\frac{1}{2}} p_{H_2}^{2}}{\left(1 + K_1 p_{H_2}\right)^3}$	2	
	555 - 672 K, 2 bar, 5 - 90% CO ₂	$r_0 = \frac{kp_{CO_2}^{\frac{1}{2}}p_{H_2}}{\left(1 + K_1p_{H_2} + K_2p_{CO_2}\right)^2}$	3	
		$r_0 =$ initial rate of carbon monoxide formation		
Ni/gamma-Al ₂ O ₃ (33.6% of NiO) obtained from Girdler-Sudchemie, reduced by $\rm H_2$	473 - 503 K, atmospheric pressure, 0.22 - 2.38% CO ₂ in H ₂	$r_{CO_2} = \frac{1.36 \times 10^{12} \cdot \exp(-\frac{25300}{RT}) \cdot p_{CO_2}}{(1 + 1270 \cdot p_{CO_2})}$	4	(88)
Ni/Cr_2O_3 (100% Ni to 1:4 Ni/Cr_2O_3 ratio) prepared by co-precipitation and reduced by H_2	423 - 493 K, 5 - 25 x 10^{-5} moles/liter of CO ₂ with large excess of H ₂	$r = kC_{CO_2}^{\frac{1}{2}}$	5	(157)

Table 3. Kinetic models for CO₂ methanation on Ni catalysts

 $\begin{array}{ll} Ni/SiO_2 \ (3\% \ Ni) \ prepared \ by \ impregnation \ method \\ and \ reduced \ by \ H_2 \end{array} \qquad \begin{array}{ll} 500 - 600 \ K, \\ 1.40 - 1.75 \ k \\ differential \end{array}$

$$\int_{1.40 - 1.75 \text{ kPa,}}^{500 - 600 \text{ K,}} \frac{1.40 - 1.75 \text{ kPa,}}{\text{differential}} \frac{1}{2} L^2 P_{CO_2}^{-\frac{1}{2}} P_{H_2}^{-\frac{1}{2}} \frac{1}{2} \\ = \frac{\left(\frac{K_1 K_2 K_{10} k_4 k_{11}}{2}\right)^{\frac{1}{2}} L^2 P_{CO_2}^{-\frac{1}{2}} P_{H_2}^{-\frac{1}{2}}}{\left(1 + \left(\frac{2K_2 k_4}{K_1 K_{10} k_{11}}\right)^{\frac{1}{2}} \frac{P_{CO_2}^{-\frac{1}{2}}}{P_{H_2}^{-\frac{1}{2}}} + \left(\frac{K_1 K_2 K_{10} k_{11}}{2k_4}\right)^{\frac{1}{2}} P_{CO_2}^{-\frac{1}{2}} P_{H_2}^{-\frac{1}{2}} + \frac{P_{CO}}{K_3}\right)^{\frac{1}{2}}$$

$$(19)$$

Where

 r_{CH4} = rate of methane formation expressed as molecules of methane produced per site per second and L = the total number of available surface sites.

Ni/SiO₂ (58% Ni) reduced by H₂
S50 to 591 K,
6.9 - 17.2 bar,
20 - 30% CO₂;
67 - 70% H₂,
CO₂ conversion:
10 - 45%
Electrodeposited Ni on the inner wall of aluminium
tube.

$$573 \text{ K},$$

$$P_{CO_2} \text{ changed up} \text{ to } 0.72 \times 10^2 \text{ bar},$$

$$P_{H_2} \text{ changed up to} 1 \text{ bar}.$$

$$-r_{CO_2} = \frac{k_2 P_{H_2}^{\frac{1}{2}} P_{CO_2}^{\frac{1}{2}}}{\left(1 + K_{H_2} P_{H_2}^{\frac{1}{2}} + K_{CO_2} P_{CO_2}^{\frac{1}{2}}\right)^2}$$
(92)
(158)

Ni-La₂O₃/Al₂O₃ (20% Ni, Ni/La = 5/1) prepared by
impregnation and reduced by H₂
$$513 - 593$$
 K,
differential and
integral conditions $r_{CH_4} = \frac{kP_{H_2}^{\frac{1}{2}}P_{CO_2}^{\frac{1}{3}}}{\left(1 + K_{H_2}P_{H_2}^{\frac{1}{2}} + K_{CO_2}P_{CO_2}^{\frac{1}{2}} + K_{H_2O}P_{H_2O}\right)^2}$ (159)

$$r_{1} = \frac{\frac{k_{1}}{p_{H_{2}}^{2.5}} \left(p_{CH_{4}} p_{H_{2}O} - \frac{p_{H_{2}}^{3} p_{CO}}{K_{1}} \right)}{\left(1 + K_{CO} P_{CO} + K_{H_{2}} P_{H_{2}} + K_{CH_{4}} P_{CH_{4}} + \frac{K_{H_{2}O} P_{H_{2}O}}{P_{H_{2}}} \right)^{2}}$$

$$10$$
(160)

$$r_{2} = \frac{\frac{k_{2}}{p_{H_{2}}} \left(p_{CO} p_{H_{2}O} - \frac{p_{H_{2}} p_{CO_{2}}}{K_{2}} \right)}{\left(1 + K_{CO} P_{CO} + K_{H_{2}} P_{H_{2}} + K_{CH_{4}} P_{CH_{4}} + \frac{K_{H_{2}O} P_{H_{2}O}}{P_{H_{2}}} \right)^{2}}$$

$$r_{3} = \frac{\frac{k_{3}}{p_{H_{2}}^{3.5}} \left(p_{CH_{4}} p_{H_{2}O}^{2} - \frac{p_{H_{2}}^{4} p_{CO_{2}}}{K_{3}} \right)}{\left(1 + K_{CO} P_{CO} + K_{H_{2}} P_{H_{2}} + K_{CH_{4}} P_{CH_{4}} + \frac{K_{H_{2}O} P_{H_{2}O}}{P_{H_{2}}} \right)^{2}}$$
12

$$r_{CO_2} = r_2 + r_3$$
 13

$$r_{CH_4} = r_1 + r_3$$
 14

Ni-grafted SBA-15 reduced by H₂

$$733 \text{ K}, \qquad r = kC_{CO_2}^{0.64} C_{H_2}^{4.05}$$
15 (161)

 $\begin{array}{ll} NiAl(O)_x \ (N/Al \ molar \ ratio \ from \ 5/1 \ to \ 1/5) \ reduced & 453 \ - \ 613 \ K, \ 1 \ - \ 15 \ bar, \ H_2/CO_2 \\ ratio: \ 0.25 \ - \ 8 \end{array}$

$$r = k \cdot \frac{p_{H_2}^{n_{H_2}} p_{co_2}^{n_{CO_2}}}{1 + K_{OH} \frac{p_{H_2O}}{p_{H_2}^{\frac{1}{2}}}} \left(1 - \frac{p_{CH_4} p_{H_2O}^2}{p_{H_2}^4 p_{CO_2} Keq} \right)$$

$$16$$
(100)

$$r = \frac{k p_{H_2}^{0.5} p_{CO_2}^{0.5} \left(1 - \frac{p_{CH_4} p_{H_2O}^2}{p_{H_2}^4 p_{CO_2} Keq} \right)}{\left(1 + K_{OH} \frac{p_{H_2O}}{p_{H_2}^{0.5}} + K_{H_2} p_{H_2}^{0.5} + K_{mix} p_{CO_2}^{0.5} \right)^2}$$
¹⁷

Table 4. Values of kinetic constants from Langmuir-Hinshelwood fit of data. Redrawn from Journal of Catalysis, Vol. 77, Weatherbee and Bartholomew, "Hydrogenation of CO₂ on Group VIII Metals, II. Kinetics and Mechanism of CO₂ Hydrogenation on Nickel", Pages pp. 460 - 472, Copyright (1982), with permission from Elsevier.

Temperature [K]	$\left(\frac{K_1K_2K_{10}k_4K}{2}\right)$	$\frac{11}{11} \bigg)^{1} \left(\frac{2K_2k_4}{K_1K_{10}k_{11}} \right)^{1/2}$	$\left(\frac{K_1K_2K_{10}k_{11}}{2k_4}\right)^{1/2}$	$\left(\frac{1}{K_3}\right)$	K ₂	k4	$\frac{\sum err^2}{\left(ft\right)^2}$
500	0.535	0.156	0.0997	22.8	0.016	5.37	0.0136
525	1.86	0.289	0.14	8.24	0.04	13.3	0.00732
550	4.73	0.419	0.143	1.99	0.06	33.1	0.0074
575	8.05	0.704	0.0936	1.38	0.066	86	0.00125
600	15.9	0.998	0.0678	0.909	0.068	235	0.00429

Table 5. Parameter estimation for the power law with inhibition by adsorbed hydroxyl (Eqt. 2-16, $T_{ref} = 555$ K). Redrawn from Applied Catalysis B: Environmental, Vol. 181, Koschany *et al.*, "On the Kinetics of the Methanation of Carbon Dioxide on Coprecipitated NiAl(O)_x", Pages 504 - 516, Copyright (2016), with permission from Elsevier.

k0, 555 к	$6.41e-05 \pm 3.0e-6$	mol bar-0.54s-1gCat-1
EA	93.6 ± 2.5	kJmol ⁻¹
n _{H2}	0.31 ± 0.02	-
n _{CO2}	0.16 ± 0.02	-
Аон, 555 к	0.62 ± 0.09	bar- ^{0.5}
ΔНон	64.3 ± 6.3	kJmol ⁻¹

Table 6. Parameter estimation for Langmuir Hinshelwood rate equation (Eqt. 2-17, T_{ref} =555 K). Redrawn from Applied Catalysis B: Environmental, Vol. 181, Koschany *et al.*, "On the Kinetics of the Methanation of Carbon Dioxide on Coprecipitated NiAl(O)_x", Pages 504 - 516, Copyright (2016), with permission from Elsevier.

k _{0, 555 K}	$3.46e-4 \pm 4.1e-5$	mol bar-1s-1gCat-1
EA	77.5 ± 6.9	kJmol ⁻¹
Аон, 555 к	0.50 ± 0.05	bar ^{-0.5}
ΔH_{OH}	22.4 ± 6.4	kJmol ⁻¹
Ан2, 555 к	0.44 ± 0.08	bar ^{-0.5}
ΔH_{H2}	-6.2 ± 10.0	kJmol ⁻¹
A _{mix, 555 K}	0.88 ± 0.10	bar ^{-0.5}
ΔH_{mix}	-10.0 ± 5.7	kJmol ⁻¹

Catalyst details	Testing conditions	Kinetic model	Equation number	Ref.
0.5%Ru/Al ₂ O ₃ , Commercial	478 – 644K, 1 bar, H ₂ :CO ₂ = 1.9:1 – 3.9:1	$-\frac{dP_{CO_2}}{dt} = k \exp\left(\frac{-E_a}{RT}\right) \left\{ \left[P_{CO_2}\right]^n \left[P_{H_2}\right]^{4n} - \frac{\left[P_{CH_4}\right]^n \left[P_{H_2O}\right]^{2n}}{\left[K_e(T)\right]^n} \right\} \right\}$	18	(101, 162)

Where,

$$K_{e}(T) = \exp\left[\left(1.0/1.987\right)\left(\frac{56000}{T_{k}^{2}} + \frac{34633}{T_{k}} - 16.4\ln T_{k} + 0.00557T_{k}\right) + 33.165\right]$$

Tk = gas temperature in K,P = pressure in atm.

Ru/Al₂O₃

$$N_{CH_4} = 2.7 \times 10^6 \exp\left(\frac{-16.1}{RT}\right) \times P_{H_2} \times P_{CO_2}^{0.47}$$
¹⁹ (67)

Where, N_{CH4} = the turnover number.

$$R_{CH_4} = k_r \theta_{CO} p_{H_2}^n = \frac{k_r k_1 [CO_2] p_2^{m+n}}{k_2 p_{H_2O} + k_r p_{H_2}^m}$$
⁽⁶⁹⁾

Where,

 $k_1 \mbox{ and } k_2 \mbox{ are respectively the forward and reverse rate constants for CO_2 reduction to adsorbed CO, through the RWGS reaction.$

 $k_{\rm r}$ is the rate constant for CO hydrogenation

$$R_{CH_4} = 0.0167 \times \left(P_{CO_2}\right)^{0.22} \left(P_{H_2}\right)^{0.57} \left(P_{H_2O}\right)^{-0.28}$$
⁽⁷²⁾

Where R_{CH4} is the rate of CO₂ methanation in µmol/gRu/s under steady-steate conditions at 383K.

Ru/CA, Ru/MgAl₂O₄ 2000–5000 ppm COx
and Ru/Al₂O₃
$$2200-5000$$
 ppm COx
in the gas mixture $r = kp_{COx}^n$ 22 (126)
Where,
 $n =$ reaction order which depends on the temperature and, to a lower extent, on the kind of support material.
The values of n for Ru/CA at 493, 513 and 543 K are respectively 0.05, 0.15 and 0.55. The corresponding value for
Ru/Al₂O₃ are 0.4, 07 and 0.8.

 $\begin{array}{ll} 3\% \ Ru/Al_2O_3 & 573 \ K, 15 \ 000/h \ in \\ commercial \ catalyst \\ (Acta \ S.p.A, \\ Crespina, \ Pista, \ Italy) \end{array}$

$$r_{CH_4} = -r_{CO_2} = \left(\frac{-dP_{CO_2}}{dt}\right) = \frac{dp_{CH_4}}{dt} = ke^{\left(-E_A/RT\right)}P_{CO_2}{}^0P_{H_2}{}^{0.39}n_{SA}$$
⁽¹⁶³⁾

Where n_{SA} is the number of the active sites for the reaction

Cu(100)

$$r_{CH_{3}OH} = k_{11}K_{10} \frac{\theta_{HCOO^{*}}\theta_{H^{*}}^{2}}{\theta_{*}} - \frac{k_{11}}{K_{11}}\theta_{H_{3}CO_{*}\theta_{O^{*}}}$$
²⁴ ⁽⁴⁷⁾

$$r_{H_{2}O} = k_{11}K_{10} \frac{\theta_{HCOO}*\theta_{H_*}^2}{\theta_*} - \frac{k_{11}}{K_{11}}\theta_{H_3CO*\theta_{O_*}} - k_7CO_*\theta_{O_*} + \frac{k_7}{K_7}\theta_{CO_2*\theta_*}$$
25

Where:

 K_i are the equilibrium constants calculated from the partition functions of the intermediates; k_i are the rate constants assumed to be of the Arrhenius form and θx^* represents the coverage of the intermediates.

10%Cu/ANM (activated nonwoven carbon material)

$$r = k_1 \frac{p_{CO_2} P_{H_2} \gamma}{p_{H_2}^{0.5} + k_2 p_{CO_2} + k_3 p_{H_2O}}$$
 (26)

 $k_1 = 2.46 \ x \ 10^{10} e^{-15200/T} \ (mol. \ g^{-1}. \ h^{-1}. \ Atm^{-1.5}), \\ k_2 = 7.81 \ x \ 10^{-3} e^{5500/T} \ (atm^{-0.5}) \ and \\ k_3 = 2.28 \ x \ 10^{-5} e^{8520/T}.$

Catalyst	Prep. method / reduction details	H ₂ :CO ₂	T [K]	P [bar]	SV	Conv. [%]	TOF o	or specific rate	%5	Selectivi	ity	Ref.
			[]	[]		[,•] _	CO_2	CH_4	CH_4	CO	C ₂₊	-
5.5%Ni/0.8%Ru/SiO2	Spraying method / H2 at 673 K	3:1	500	Atm.	10 000/h			1.4 mol CH ₄ / h/LCat	99.8			(89)
			523					3.17 mol CH4 /	100			
			020					h/LCat	100			
4.6%Ni/2.6%La2O3/SiO2	Spraying method / H2 at 673 K	3:1	500	Atm.	10 000/h			4.5 / mol CH4 /	99.3			(20)
								R 13 mol CH4 /				(89)
			523					h/Lcat	99.7			
		2.1	500		10.0004			9.55 mol CH4 /	00 (
4.3%N1/2.5%La ₂ O ₃ /0.7%Ru/S1O ₂	Spraying method / H_2 at 673 K	3:1	500	Atm.	10 000/h			h/Lcat	98.6			(89)
			523					12.6 mol CH4 /	00.6			
			525					h/Lcat	99.0			
3%Ni/SiO ₂	Impregnation / H ₂ at 750 K	4:1,	500	1.4	16.250.4	3.9		0.00085/s	70	9	0.07	(18)
-	1 0 -	95%N ₂	525		16 350/h	96		0.0021/a	77	15	0.05	
			525		10 550/ll 32 900/h	0.0 11.2		0.0021/8	70	15	0.03	
NF (100)	Single errotel disk / H at 750 V	06.1	550	0.12	52 900/II	5		0.005/8	17	23	0.02	(20)
NI (100)	Single crystal disk / 11 ₂ at / 50 K	90.1	600	0.15		13			16	8J		(20)
			650			13			21	70		
			710			43 78			21	69		
100% Ni	/H- at 553 K		525	1.01		< 10	10/s		70	30		(91)
10070111	/112 at 555 K	4.1	525	1.01		< 10	10/3		70	50		()1)
3% Ni/SiO ₂	Impregnation / H_2 at 723 K	95%N ₂	525	1.01		< 10	3.6/s		58	34		(91)
29/ Ni/SiO	Imprognation / H at 722 V	4:1,	525	1.01		< 10	5.0/5		56	44		(01)
576 INF/SIO ₂	impregnation / H ₂ at /25 K	95%N ₂	525	1.01		< 10	5.9/8		50	44		(91)
3% Ni/Al ₂ O ₂	Impregnation / H ₂ at 723 K	4:1,	525	1.01		< 10	13/s		86	11		(91)
570 TUT 11203	111prognation + 112 ar + 20 11	95%N ₂	020	1.01		10	10/0		00			())
3% Ni/TiO ₂	Impregnation / H2 at 723 K	4:1, 05%N	525	1.01		< 10	19/s		98	1		(91)
100% Ni	Reduction of NiO / H ₂ at 723 K	4·1	543	Atm		24	0.00239/s		61	39		(93)
4 5% Ni/S1	Impregnation / H_2 at 673 K	4.1	543	Atm		17	0.0029/s		22	78		(93)
4 5% Ni/83	Impregnation / H_2 at 673 K	4.1	543	Atm		6.9	0.0014/s		36	64		(93)
9.2%Ni/SiO2	Impregnation / H_2 at 773 K	3 3.1	553	1.2		< 8	0.001 #5	0.097/s	50	01		(94)
0.25% K/9.2% Ni/SiO ₂	Co-impregnation / H_2 at 773 K	3 3.1	553	1.2		< 8		0.051/s				(94)
$0.20\% K/11.0\% Ni/SiO_2$	Co-impregnation / H_2 at 773 K	3 3.1	553	1.2		< 8		0.0054/s				(94)
0.81% K/9 2%Ni/SiO ₂	Co-impregnation / H_2 at 773 K	3 3.1	553	1.2		< 8		0.016/s				(94)
$4 \frac{1\% K}{11} \frac{0\% Ni}{SiO_2}$	Co-impregnation / H_2 at 773 K	3 3.1	553	1.2		< 8		0.00003/s				(94)
9.5%Ni/SiO ₂ -Al ₂ O ₂	Impregnation / H_2 at 773 K	3.3.1	553	1.2		< 8		0.032/s				(94)
0.25%K/11.5%Ni/SiO ₂ -Al ₂ O ₂	Co-impregnation / H ₂ at 773 K	3 3.1	553	1.2		< 8		0.035/s				(94)
0.81%K/9.7%Ni/SiO ₂ -Al ₂ O ₂	Co-impregnation / H_2 at 773 K	3 3.1	553	1.2		< 8		0.043/s				(94)
3 9%K/11 5%Ni/SiO ₂ -Al ₂ O ₂	Co-impregnation / H_2 at 773 K	3 3.1	553	1.2		$< \tilde{8}$		0.041/s				(94)
5%Ni/Al ₂ O ₃ *	Coprecipiation / H_2 at 623 K	9:1	493	Atm.	2 400/h	21		0.0.1.0	>99.7			(56)
	r r		513			35			>99.7			()

Table 8. Summarized literature data for CO₂ hydrogenation kinetics over Ni catalysts

			533			54	>99.7	
11%Ni/Al ₂ O ₃ *	Coprecipiation / H ₂ at 623 K	9:1	473	Atm.	2 400/h	23	>99.7	(56)
			493			38	>99.7	
			513			68	>99.7	
			533			98	>99.7	
16.5%Ni/Al ₂ O ₃ *	Coprecipiation / H ₂ at 623 K	9:1	453	Atm.	2 400/h	21	>99.7	(56)
	1 1 2		493			60	>99.7	· · · ·
			513			100	>99.7	
			533			100	>99.7	
25%Ni/Al ₂ O ₃ *	Coprecipiation / H ₂ at 623 K	9:1	433	Atm.	2 400/h	15	>99.7	(56)
2-5	I I I I I I I I I I I I I I I I I I I		473			43	>99.7	()
			493			88	>99 7	
			513			100	>99 7	
			533			100	>99 7	
5%Ni/SiORHA*	Impregnation / H ₂	4.1	623	Atm		12.5	90	(77)
	improgration / 112	1.1	673	7 11111.		36	89	(//)
			773			59	94	
			873			54	71	
			973			44	18	
5% Ni/SiO. gel*	Impregnation / H-	4.1	623	Atm		37	16	(77)
570141/5102-get	mpregnation / 112	4.1	673	Aun.		10	10	(n)
			773			67	40	
			873			63	49	
			073			61	51	
5%NE/ALO	Imprognation / H. at 622 V	2.1	522	1	22.2 L/gCat/h	2 72	0.62 mmol/gCat/s 0.62	(148)
5%NJ/AI2O3	Γ_2 at 623 K	2.1	523	1	22.3 L/gCat/h	5.72	$\frac{1.22 \text{ mmol/gCat/s}}{1.22 \text{ mmol/gCat/s}} = 0.22$	(146)
$5/0107/3/0100/A1_{2}O_{3}$	Co-impregnation / H_2 at 623 K	2.1	525	1	22.3 L/gCat/li	6.79	$1.35 \text{ minol/gCat/s} \qquad 0.36$	(140)
5% N1/10% NO/Al ₂ O ₃	Co-impregnation / H_2 at 623 K	2:1	523	1	22.5 L/gCat/h	0.78	1.34 mmol/gCat/s 0.34	(148)
370 NI/1370 NI/AI ₂ O ₃	Co-implegiation / H_2 at 625 K	2.1	525	1	22.5 L/gCat/li	3.89	1.18 mmol/gCat/s 0.55	(146)
10% NI/AI ₂ O ₃	Impregnation / H_2 at 623 K	2:1	523	1	22.5 L/gCat/h	1.2	1.6/ mmol/gCat/s 0.19	(148)
10% $10%$	Co-impregnation / H_2 at 623 K	2:1	525	1	22.5 L/gCat/h	11.7	2.86 mmol/gCal/s 0.1	(148)
10%NI/ $10%$ MO/Al ₂ O ₃	Co-impregnation / H_2 at 623 K	2:1	523	1	22.3 L/gCat/h	11.80	2.97 mmol/gCat/s 0.07	(148)
10%N1/15%M0/Al ₂ O ₃	Co-impregnation / H_2 at 623 K	2:1	523	1	22.3 L/gCat/h	11.04	2.77 mmol/gCat/s 0.07	(148)
15%N1/Al ₂ O ₃	Impregnation / H_2 at 623 K	2:1	523	1	22.3 L/gCat/h	14.55	3.88 mmol/gCat/s 0.06	(148)
15%N1/5%M0/Al ₂ O ₃	Co-impregnation / H_2 at 623 K	2:1	523	I	22.3 L/gCat/h	17.19	4.64 mmol/gCat/s 0.03	(148)
15%Ni/10%Mo/Al ₂ O ₃	Co-impregnation / H_2 at 623 K	2:1	523	1	22.3 L/gCat/h	15.6	4.05 mmol/gCat/s 0.04	(148)
15%Ni/15%Mo/Al ₂ O ₃	Co-impregnation / H_2 at 623 K	2:1	523	1	22.3 L/gCat/h	12.95	3.26 mmol/gCat/s 0.05	(148)
2.5%N ₁ /RHA-Al ₂ O ₃	Impregnation / H ₂ at 1073 K	4:1	773	Atm	30 L/gCat/h	47	9	(65)
5%Ni/RHA-Al ₂ O ₃	Impregnation / H ₂ at 1073 K	4:1	773	Atm	30 L/gCat/h	55	24	(65)
10%Ni/RHA-Al ₂ O ₃ *	Impregnation / H_2 at 1073 K	4:1	773	Atm	30 L/gCat/h	59	43	(65)
15%Ni/RHA-Al ₂ O ₃ *	Impregnation / H_2 at 1073 K	4:1	773	Atm	30 L/gCat/h	64	58	(65)
20%Ni/RHA-Al ₂ O ₃ *	Impregnation / H_2 at 1073 K	4:1	773	Atm	30 L/gCat/h	65	64	(65)
25%Ni/RHA-Al ₂ O ₃ *	Impregnation / H ₂ at 1073 K	4:1	773	Atm	30 L/gCat/h	67	60	(65)
1%Ni/MCM-41	Ni ions incorporation / H_2 at 923	2.6.1	573	0.069	11.5 L/gCat/h	12	0.018 g/gCat/h 55.6 14.4	(164)
1/01/1/1/10101-41	K	2.0.1	515	0.007		1.2	0.010 g/gCat/li 55.0 44.4	(104)
	Ni ions incorporation / H ₂ at 973	2.6.1	573	0.069	11.5 L/gCat/b	2.1	0.0395 g/gCat/h 73.7 26.3	
	Κ	2.0.1	515	0.009	11.5 L/gCal/II	2.1	0.0575 g/gCat/fi 75.7 20.5	
	Ni ions incorporation / H ₂ at 673	2.6.1	573	0.069	5.760/h	13	0.0018 g/gCat/h 21.1 68.0	
	K	2.0.1	515	0.009	5 / 00/11	1.5	0.0018 g/gCal/li 51.1 08.9	

	Ni ions incorporation / H_2 at 773 K	2.6:1	573	0.069	5 760/h	1.9		0.0023 g/gCat/h	26.4	73.6		
	Ni ions incorporation / H ₂ at 923 K	2.6:1	573	0.069	5 760/h	4.7		0.0356 g/gCat/h	85.1	14.9		
3%Ni/MCM-41	Ni ions incorporation / H_2 at 973 K	2.6:1	573	0.069	5 760/h	5.6		0.0914 g/gCat/h	96	4		(164)
	Ni ions incorporation / H_2 at 973 K	2.6:1	673	0.069	5 760/h	16.8		0.633 g/gCat/h	96.1	3.9		
5%Ni/Ce _{0.72} Zr _{0.28} O ₂	pseudo sol-gel / $H_{\rm 2}$ at 673 K	4:1	623	Atm.		71.5	2.07 mol CO ₂ /gNi/s]		98.5	0.9	0.6	(165)
10%Ni/Ce _{0.72} Zr _{0.28} O ₂	pseudo sol-gel / $H_{\rm 2}$ at 673 K	4:1	623	Atm.		85.2	2.07 mol CO ₂ /gNi/s]		99.7	0.3		(165)
15%Ni/Ce _{0.72} Zr _{0.28} O ₂	pseudo sol-gel / H_2 at 673 K	4:1	623	Atm.		82.3	2.07 mol CO ₂ /gNi/s]		99.5	0.5		(165)
10%Ni/La ₂ O ₃	Impregnation / H2 at 673 K	4:1	481 503 525 553 573 593 653	15 15 15 15 15 15		4.5 13.4 33 76.6 90 97.1	0025.001	0.0141 g/gCat/h 0.0419 g/gCat/h 0.1034 g/gCat/h 0.240 g/gCat/h 0.2817 g/gCat/h 0.3042 g/gCat/h 1.180 g/gCat/h	100 100			(122)
10%Ni/γ-Al ₂ O ₃	Impregnation / H ₂ at 673 K	4:1	653	15		6.9		0.130 g/gCat/h	88.9			
5%Ni/Ce _{0.72} Zr _{0.28} O ₂	Pseudo sol–gel / H ₂ at 673 K	4:1	623	Atm.	43 000/h	71.5	2.2 mol CO ₂ / gNi/s		98.5	0.9	0.6	(124)
5%Ni/Ce _{0.5} Zr _{0.5} O ₂	Pseudo sol-gel / H_2 at 673 K	4:1	623	Atm.	43 000/h	79.7	2.41 mol CO ₂ / gNi/s		99.3	0.6	0.1	(124)
$5\% Ni/Ce_{0.14} Zr_{0.86} O_2$	Pseudo sol–gel / $\rm H_2$ at 673 K	4:1	623	Atm.	43 000/h	73	$2.16 \text{ mol } \text{CO}_2 / \text{gNi/s}$		99	0.9	0.1	(124)
$5\% Ni - 0.5\% Rh / Ce_{0.72} Zr_{0.28} O_2$	Pseudo sol–gel / $\rm H_2$ at 673 K	4:1	623	Atm.	43 000/h	77.8	2.37 mol CO ₂ 7 gNi/s		99.2	0.8		(124)
69.1%Ni/Al ₂ O ₃	Coprecipitation / H_2 at 773 K	4:1	673	10	2 mol CO ₂ /gCat/h	92.4			>99			(81)
5%Ni/SiO ₂	Impregnation / H_2 at 673 K	4:1	623	Atm.	11 000/h	35	0.076 / s		88.3	11.6	0.1	(15)
5% NI/CeO ₂ -ZrO ₂	Impregnation / H_2 at 673 K	4:1	623	Atm. Atm	43 000/h 43 000/h	79.7 59.8	0.429 /s		99.3 97 3	0.6 2.6	0.1	(15) (15)
30%Ni/5%Fe/Al ₂ O ₃	Coprecip using $(NH_4)_2CO_3 / H_2$ at 973 K	4:1	493	10	9.6 L/gCat/h	58.5	0.01070		99.5	2.0	0.5	(154)
	Coprecipitation using Na ₂ CO ₃ / H ₂ at 973 K	4:1	493	10	9.6 L/gCat/h	55.7			99.5		0.5	
	Coprecipitation using NH ₄ OH / H_2 at 973 K	4:1	493	10	9.6 L/gCat/h	54.5			99.4		0.4	
	Coprecipitation using NaOH / H ₂ at 973 K	4:1	493	10	9.6 L/gCat/h	49.1			99.6		0.6	
16%Ni/Al ₂ O ₃	Impregnation / H ₂ at 973 K	5:1	523 573 673 773	Atm.	52 300/h	1 6 50 75			100 100 100 100			(14)
5%Ni/MSN	Impregnation / H_2 at 773 K	4:1	573	Atm.	50 L/gCat/h	64.1	1.61 /s	19.16 mol CH ₄ /mol Ni/ s	99.9	0.1		(98)

5%Ni/MCM-41	Impregnation / H ₂ at 773 K	4:1	573	Atm.	50 L/gCat/h		1 41 /	15.12 mol CH4/mol	00.2	1.7	(98)
	r o interaction					56.5	1.41 /s	N1/ S	98.3	1.7	
5%Ni/HY	Impregnation / H ₂ at 773 K	4:1	573	Atm.	50 L/gCat/h	18 5	1 21 /6	9.9 mol CH4/mol	96.4	3.6	(98)
						40.5	1.21/5	7.51 mol CH4/mol	90.4	5.0	
5%Ni/SiO ₂	Impregnation / H ₂ at 773 K	4:1	573	Atm.	50 L/gCat/h	42.4	1.06 /s	Ni/ s	96.6	3.4	(98)
50/237/ 41.0			570		50 X / 0 / 1			4.36 mol CH4/mol			(00)
5%0N1/γ-Al ₂ O ₃	Impregnation / H_2 at //3 K	4:1	5/3	Atm.	50 L/gCat/h	27.6	0.69 /s	Ni/ s	95.2	4.8	(98)
20%Ni/Al ₂ O ₃	Commercial / Unreduced		523	Atm.		4			4	0	(166)
23 wt.% Ni/CaO-Al ₂ O ₃ *	Commercial / H2 at 723 K	4:1	473	Atm.	15 000/h	2			100	0	(166)
			523			9.5			100	0	(166)
			573			40			96	4	
			623			68			97	3	
			673			81			98	2	
			723			81			97	3	
109/NE/ALO	Imprognation / H at 772 V	24.1	522	A trop	21.09 L/gCat/h	11.4	0.0026/5		92	8	(121)
7.5%	Impregnation / H ₂ at 7/3 K	24.1	523	Atm.	31.90 L/gCat/h	22.1	0.0050/8		99.1		(121)
5%Ni/5%Fe/Al ₂ O ₃	Impregnation / H ₂ at 773 K	24.1	523	Atm.	31.98 L/gCat/h	8	0.0039/8		96.3		(121)
12Ni/CNT	Impregnation / H_2 at 623 K	4.1	623	Atm	$30 L/\sigma Cat/h$	611	0.0017/3		96.6		(99)
12Ni4.5Ce/CNT	Impregnation / H_2 at 623 K	4:1	623	Atm.	30 L/gCat/h	83.8			99.8		(99)
$12Ni/Al_2O_3$	Impregnation / H_2 at 623 K	4:1	623	Atm.	30 L/gCat/h	30.2			86.4		(99)
12Ni4.5Ce/Al ₂ O ₃	Impregnation / H ₂ at 623 K	4:1	623	Atm.	30 L/gCat/h	64.5			97.5		(99)

Atm. = atmospheric pressure

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Catalyst	Prep. method / reduction details	H ₂ :CO ₂	T [K]	P [bar]	SV	Conv. [%]] TOF or specific rate		% Sel		vity	Ref.
								CO_2	CH_4	CH_4	CO	C ₂₊	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5%Ru/Al ₂ O ₃	Commercial/	4:1	497	21.68	300/h	82			>95		<5	(167)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.3%Ru/SiO ₂	Precipdep./	3:1	500	Atmospheric	10 000/h			0.199/s	100			(89)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				523					0.390/s	100			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5%Ru/Al ₂ O ₃	Impregn./	4:1	548	1	3 000 – 6 000/h	< 6-10	0.194/s	0.194/s	100			(82)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.5%Ru/SiO ₂	Impregn./	4:1	502	1	1 720/h	5.7	0.0078/s		99.8	0	0.2	(83)
3.8% Ru/TiO ₂ (P25) Impregn./H ₂ at 493K 12:1 298 Atmospheric 2.5×10^{-6} /s >99 (102) 3.33 3.33 3.33 1.6×10^{-4} /s 100 (106) 0.5% Ru/Al ₂ O ₃ Impregn./H ₂ at 673K 4:1 523 Atmospheric 6 L/gCat/h 22 100 (106) 3.8% Ru/TiO ₂ (P25) Impregn./H ₂ at 498K 4:1 423 87 100 (69) 3.8% Ru/TiO ₂ (Anatase) Impregn./H ₂ at 498K 4:1 423 0.0002/s (69) 3.8% Ru/TiO ₂ (Rutile) 423 0.0007 (69) 3.8% Ru/TiO ₂ (A/R) 423 0.0009 (69) 3.8% Ru/Al ₂ O ₃ 4000 ppm CO ₂ in H ₂ 493 Atmospheric 6 L/gCat/h 0.0003/s 100 9% Ru/CA* Impregn./H ₂ at 703K 4000 ppm CO ₂ in H ₂ 493 Atmospheric 6 L/gCat/h 0.0033/s 100 (126)			4:1, 95% N ₂	525	1	5 700-49 000/h	6	0.011/s		82	9.8	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.8%Ru/TiO ₂ (P25)	Impregn./H ₂ at 493K	12:1	298	Atmospheric				2.5 x 10 ⁻⁶ /s	>99			(102)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				333					1.6 x 10 ⁻⁴ /s				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5%Ru/Al ₂ O ₃	Impregn./H ₂ at 673K	4:1	523	Atmospheric	6 L/gCat/h	22			100			(106)
623 87 100 3.8% Ru/TiO_2(P25)Impregn./H2 at 498K $4:1$ 423 $0.0012/s$ (69) 3.8% Ru/TiO_2 (Anatase) 423 0.00024 (69) 3.8% Ru/TiO_2 (Rutile) 423 0.0007 (69) 3.8% Ru/TiO_2 (A/R) 423 0.0009 (69) 3.8% Ru/Al_O_3 423 0.0009 (69) 9% Ru/CA*Impregn./H2 at 703K 4000 ppm CO2 in H2 493 Atmospheric 6 L/gCat/h $0.0039/s$ 100 (126)				573			70			100			
3.8%Ru/TiO ₂ (P25) Impregn./H ₂ at 498K 4:1 423 0.0012/s (69) 3.8%Ru/TiO ₂ (Anatase) 423 0.00024 (69) 3.8%Ru/TiO ₂ (Rutile) 423 0.0007 (69) 3.8%Ru/TiO ₂ (A/R) 423 0.0009 (69) 3.8%Ru/Al ₂ O ₃ 423 0.0001 (69) 9%Ru/CA* Impregn./H ₂ at 703K 4000 ppm CO ₂ in H ₂ 493 Atmospheric 6 L/gCat/h 0.0039/s 100 (126)				623			87			100			
3.8%Ru/TiO ₂ (Anatase) 423 0.00024 (69) $3.8%$ Ru/TiO ₂ (Rutile) 423 0.0007 (69) $3.8%$ Ru/TiO ₂ (A/R) 423 0.0009 (69) $3.8%$ Ru/Al ₂ O ₃ 423 0.0009 (69) $9%$ Ru/CA* Impregn./H ₂ at 703K 4000 ppm CO ₂ in H ₂ 493 Atmospheric 6 L/gCat/h 0.0039/s 100 (126)	3.8%Ru/TiO ₂ (P25)	Impregn./H ₂ at 498K	4:1	423					0.0012/s				(69)
3.8%Ru/TiO ₂ (Rutile) 423 0.0007 (69) $3.8%$ Ru/TiO ₂ (A/R) 423 0.0009 (69) $3.8%$ Ru/Al ₂ O ₃ 423 0.00001 (69) $9%$ Ru/CA* Impregn./H ₂ at 703K 4000 ppm CO ₂ in H ₂ 493 Atmospheric 6 L/gCat/h 0.0039/s 100 (126)	3.8%Ru/TiO ₂ (Anatase)			423					0.00024				(69)
3.8%Ru/TiO ₂ (A/R) 423 0.0009 (69) $3.8%$ Ru/Al ₂ O ₃ 423 0.00001 (69) $9%$ Ru/CA* Impregn./H ₂ at 703K 4000 ppm CO ₂ in H ₂ 493 Atmospheric 6 L/gCat/h 0.0039/s 100 (126)	3.8%Ru/TiO ₂ (Rutile)			423					0.0007				(69)
3.8%Ru/Al ₂ O ₃ 423 0.00001 (69) $9%$ Ru/CA* Impregn./H ₂ at 703K 4000 ppm CO ₂ in H ₂ 493 Atmospheric 6 L/gCat/h 0.0039/s 100 (126)	3.8%Ru/TiO ₂ (A/R)			423					0.0009				(69)
9%Ru/CA* Impregn./H ₂ at 703K 4000 ppm CO ₂ in H ₂ 493 Atmospheric 6 L/gCat/h $0.0039/s$ 100 (126)	3.8%Ru/Al ₂ O ₃			423					0.00001				(69)
	9%Ru/CA*	Impregn./H ₂ at 703K	4000 ppm CO_2 in H_2	493	Atmospheric	6 L/gCat/h			0.0039/s	100			(126)
513 0.0112 100				513					0.0112	100			
3%Ru/CB Impregn./H ₂ at 703K 4000 ppm CO ₂ in H ₂ 493 Atmospheric 6 L/gCat/h 0.00075 100 (126)	3%Ru/CB	Impregn./ H_2 at 703K	4000 ppm CO_2 in H_2	493	Atmospheric	6 L/gCat/h			0.00075	100			(126)
513 0.0021 100			1000 GO : 11	513					0.0021	100			(10.0)
3%Ru/CB _{H2} Impregn./H ₂ at 703K 4000 ppm CO ₂ in H ₂ 493 Atmospheric 6 L/gCat/h 0.00094 100 (126)	3%Ru/CB _{H2}	Impregn./H ₂ at 703K	4000 ppm CO_2 in H_2	493	Atmospheric	6 L/gCat/h			0.00094	100			(126)
513 0.0025 100		1 //1 / 7021/	4000 GO : H	513					0.0025	100			(120)
5% Ku/MgO Impregn./H ₂ at /93K 4000 ppm CO ₂ in H ₂ 493 Atmospheric 6 L/gCat/h 0.0037 100 (126)	5%Ru/MgO	Impregn./H ₂ at /93K	4000 ppm CO_2 in H_2	493	Atmospheric	6 L/gCat/h			0.003/	100			(126)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100/D N(O	1 //1 / 7021/	4000 CO . H	513	A. 1 ·				0.0079	100			(120)
10% Ru/MgO Impregn./H ₂ at 793 K 4000 ppm CO ₂ in H ₂ 493 Atmospheric 6 L/gCat/h 0.0053 100 (126)	10%Ru/MgO	Impregn./H ₂ at /93K	4000 ppm CO_2 in H_2	493	Atmospheric	6 L/gCat/n			0.0053	100			(126)
513 0.0143 100	50/ D/) (- 11 ()	L	4000 mmm CO in H	513	A 4	(I/-C-t/b			0.0143	100			(12()
57_{0} Ku/MgAl ₂ O ₄ Impregn./H ₂ at 755K 4000 ppm CO ₂ in H ₂ 455 Autospheric 6 L/gCavit 0.0058 100 (120)	5%Ku/WgAl ₂ O ₄	Implegit/ Π_2 at /93K	4000 ppin CO_2 in H_2	495 512	Aunospheric	o L/gCal/II			0.0056	100			(120)
10%/Pu/MgA1 O Improgr/H at 702K 4000 npm CO in H 402 Atmospheria 61/gCat/h 0.0051 100 (126)	10% Pu/MaALO	Improgn /H at 702V	4000 nnm CO in H	J15 402	Atmospharia	6 L/aCat/h			0.00833	100			(126)
$\frac{10}{10} \frac{10}{10} 10$	10/0Ku/WgAl ₂ O ₄	Impregn./II ₂ at /93K	4000 ppin CO_2 in Π_2	512	Aunospheric	0 L/gCal/II			0.0031	100			(120)
15% Pu/MgA1 Q Impregn /H at 703K 4000 ppm CQ in H 403 Atmospheric 6 L/gCat/h 0.0065 100 (126)	15%Pu/MaALO	Impregn /H. at 703K	4000 ppm CO. in H.	/03	Atmospheric	6 L/aCat/h			0.0088	100			(126)
$\frac{120}{512}$	1370Ku/WgA12O4	mpregn./112 at 795K	$4000 \text{ ppin } CO_2 \text{ in } \Pi_2$	513	Autospherie	0 L/gCal/II			0.0005	100			(120)
10% Pu/Al Q Improgr/H at 702V 4000 ppm CQ in H 402 Atmospheric 61/gCat/h 0.0050 100 (126)	$100/P_{\rm H}/A1.O$	Improgn /H. at 702V	4000 ppm CO. in H.	402	Atmospharia	6 L/aCat/h			0.015	100			(126)
1000000000000000000000000000000000000	10/0Ku/AI2O3	mpregn./112 at 755K	$4000 \text{ ppin } CO_2 \text{ in } \Pi_2$	513	Autospherie	0 L/gCal/II			0.0039	100			(120)
15% Pu/Al-O. Imprean/H, at 703K 4000 ppm CO. in H, 403 Atmospheric, 6 L/aCat/h 0.0085 100 (126)	15%Pu/Al-O-	Impregn /H. at 703K	4000 ppm CO. in H.	/03	Atmospheric	6 L/aCat/h			0.0105	100			(126)
1200 1200	$R_{1}/v_{-}A_{-}O_{-}(0.575\% R_{1})$	Impregn/H ₂ at 773K	4000 ppin CO ₂ in H ₂ 4 2·1	608	Autospherie	0 L/gCat/II	5	2 36/8	0.0005	ca 100	trace		(120)
$R_{\rm H}/_{2.3}(0.575'/{\rm Ru})$ Impregn $H_{2.4}(75K)$ 4.2.1 608 5 2.2.6% ca. 100 trace (105)	$Ru/v_{-}Al_{2}O_{2} (0.57570 Ru)$	Impregn/H ₂ at 773K	4.2.1	608			5	2.50/3		c_{2} 100	trace		(103)
$R_{1}(x_{-})_{0} = 0.099\% R_{10}$ Impregn H_{0} at 773K 4.2.1 608 5 1.73 ca 100 trace (103)	R_{11}/v -Al ₂ O ₂ (0.609% R_{11})	Impregn /H ₂ at 773K	4 2.1	608			5	1 73		ca 100	trace		(103)
$R_{1/2} = 100$ (100)	$R_{\rm H}/v$ -Al ₂ O ₂ (0.05576 Ru)	Impregn /H ₂ at 773K	4 2.1	608			5	1 38		ca 100	trace		(103)
$R_{1}(x_{2})_{0}(0.815\% R_{10})$ Improved H_{2} at 773K 4.2.1 608 5 1.23 ca 100 trace (103)	R_{11}/v -Al ₂ O ₂ (0.815% R ₁₁)	Impregn /H ₂ at 773K	4 2.1	608			5	1 23		ca 100	trace		(103)
3% Bu/A-D2 Commercial/Inreduced 5:1 523 1 55000/b 3 100 0 (165)	3%Ru/Al ₂ O ₂	Commercial/Unreduced	5.1	523	1	5 5000/h	3			100	0		(163)
573 4 100 0 (105)				573	-	2 0 0 0 0 11	4			100	ŏ		(100)
623 39 100 0				623			39			100	0		

Table 9. Summarized literature data for CO₂ hydrogenation kinetics over Ru catalysts

			673			79	97	4		
			723			76	91	9		
			773			69	80	22		
	Commercial/H2 at 673K	5:1	523	1	55 000/h	2	100	0		
	-		573			10	100	0		
			623			43	100	0		
			648			74	95	4		
			673			83	94	6		
			723			77	86	14		
			773			71	75	25		
1%Ru/ZrO ₂	Impregn./H ₂ at 673K	4:1	573	10	6 000/h	93.9	99.5		0.5	(117)
2%Ru/ZrO ₂	Impregn./H ₂ at 673K	4:1	573	10	6 000/h	97.2	> 99.9		< 0.1	(117)
3%Ru/ZrO ₂	Impregn./H ₂ at 673K	4:1	573	10	6 000/h	96.9	100		-	(117)
3%Ru/TiO ₂ (R/A)	Impregn., H ₂ at 653K	4:1	623	1	45 000/h	81.5	99.4	0.6		(125)
						78	99.6	04		
3%Ru/TiO ₂ (P-25)		4:1	623	1	45 000/h	64.1	99	1		(125)
3%Ru/TiO ₂ (rutile)		4:1	623	1	45 000/h	9.3	28			(125)
3% Ru/ α -Al ₂ O ₂		4:1	623	1	45 000/h	16.4	63.7			(125)
3%Ru/SiO ₂		4:1	623	1	45 000/h	46	99.9			(125)
3%Ru/MgO-Al ₂ O ₃		4:1	623	1	45 000/h	40	96.6			(125)

R/A: Mechanical mixture of anatase and rutile

CA*: Carbon support with SA of 66 m2/g

CB: Carbon support with SA of 440 m2/g

CB_{H2}: Carbon support with SA of 435 m2/g

Catalyst	Prep. method / reduction details	H ₂ :CO ₂	T [K]	P [bar]	SV	Conv.	TOF or specific rate		%Selectivity			Ref.
				[Uai]		[/0]	CO ₂	CH ₃ OH	CH ₃ OH	СО	НС	-
50%CuO/40%ZnO	Coprecip./ H ₂ at 573K	3:1	573	110	6.7 L/gCat/h	31.7			92.1		7.8	(42)
50%CuO/40%ZnO/La2O3	1 1 2				8	29.5			99.9		tr	< ,
50%CuO/40%ZnO/MgO						23.1			99.9		tr	
50%CuO/40%ZnO/ThO ₂						29.6			99.7		0.2	
50%CuO/40%ZnO/Nd2O3						32.5			99		0.9	
50%CuO/40%ZnO/Y2O3						31.5			98.5		1.4	
50%CuO/40%ZnO/Al ₂ O ₃						27.9			93.9		6.1	
50%CuO/40%ZnO/In ₂ O ₃						39			91		7.3	
50%CuO/ $40%$ ZnO/SiO ₂						27.4			1.5		98.5	
1.27%Cu/ZrO ₂	Impregn /H ₂ at 573K	3:1	523	10	6.4 L/gCat/h			1824000 g/gCu/h				(127)
3.41%Cu/Al ₂ O ₃	Impregn / H_2 at 573K		533	26				401200				()
9.58%Cu/MgO	Impregn/H ₂ at 573K		503	10				38000				
45-50%Cu/ZnO/Al ₂ O ₂	Coprecip/H ₂ at 573K		523	10				244000				
40%CuO/ZrO ₂	Precip -dep $/CO_2+H_2$ at 513K	4.1	513	50	17.1 L/gCat/h	97			68ª			(105)
40%CuO/Al ₂ O ₃			010	20	I'II Digewin	3.6			47 ^a			(100)
40%CuO/TiO ₂						6.9			59 ^a			
49%CuO/ZnO						7.0			63ª			
40%CuO/Cr ₂ O ₂ -Al ₂ O ₂						9.6			49 ^a			
$36\%CuO/54\%ZrO_2/Al_2O_2$	Conrecin -den /CO ₂ +H ₂ at 513K					13.0			62ª			
$36\%CuO/54\%ZrO_2/ZnO$						13.3			58ª			
36%CuO/54%ZrO ₂ /SiO ₂ -Al ₂ O ₂						12.0			61ª			
$36\%CuO/54\%ZrO_2/Cr_2O_2-Al_2O_2$						11.7			63ª			
$36\%CuO/54\%ZrO_2/WO_2-Al_2O_2$						10.2			65 ^a			
36%CuO/54%ZrO ₂ /SiO ₂ -MgO						11.0			62ª			
36%CuO/54%ZrO ₂ /graphite						89			69 ^a			
Cu-Zn	Commercial/H2 at 573K	2.1	553	21	0.2 mol/gCat/h	15.1			193	80	0.7	(168)
Cu-Zn + DAY	Commercial/ H ₂ at 573K	2.1	593	21	0.05 mol/gCat/h	17			11	69.4	23	(100)
12%CuO/Al ₂ O ₂	Impregn /H ₂ at 673K	1.1	523	Δtm	6 L/gCat/h	10.0			1.1	100	25	(106)
12/0Cu0/Al203	mpregn./112 at 075K	7.1	573	Aun.	0 L/gCat/II	17.0				100		(100)
			623			28				100		
	In-situ activation/CO.+H. at		025			20				100		
Cu Zr		3.1	153	15	0.13 mol/aCat/h	1.2	0.0007		87 /	12.6		(36)
Cu ₇ ZI ₃	495K	5.1	455	15	0.15 mol/geat/n	1.2	0.0007		86.8	12.0		(30)
			405			2.4	0.001		80.8	17.1		
			4/3			2.4	0.0014		85 71 5	17.1		
			403			5.5 1.9	0.002		62 7	26.3		
	In situ activation/CO. U		473			4.0	0.0029		03.7	30.5		
	$111-5110$ activation/ CO_2+H_2 at 552V		172			15	0.0012		80.5	10.5		
	JJJK		4/3			1.3	0.0012		07.J	10.5		
			485			2.1	0.001/		80.2 72.2	19.8		
			495			5	0.0024		/3.3	20.7		
			503			4.1	0.0033		65.9	34.1		
			513			5.2	0.0042		57.7	42.3		

Table 10. Summarized literature data for CO₂ hydrogenation kinetics over Cu catalysts

			523 533			7 9 1	0.0057		50.2 41.6	49.8 58.4		
			553			14.8	0.0075		23.4	76.6		
	In-situ activation/CO+H ₂ at 553K		463			1 2	0.0005		29.4 79.7	20.3		
			473			1.2	0.0007		74.6	25.4		
			483			2.5	0.001		66.2	33.8		
			493			3.6	0.0015		56.9	43.1		
			503			5	0.002		52	48		
			513			7.1	0.0028		43.7	56.3		
			523			8.9	0.0036		36.8	63.2		
			533			12.5	0.005		29.6	70.4		
			553			17.5	0.0071		15.7	84.3		
Cu/ZrO ₂	Coprecip.		483			1.7	0.0016		98	2		
			493			2.5	0.0024		87.8	12.2		
			503			3.4	0.0032		80.7	19.3		
			513			4.4	0.0041		72.7	27.3		
			523			6.3	0.006		62.4	37.6		
			533			8.1	0.0077		50.7	49.3		
			553			13.5	0.0127		26	73.4		
30%CuO/ZnO	Coprecip./H ₂ at 523K	3:1	463	30	12 L/gCat/h	3.4			81.6	18.3	0.1	(46)
34%CuO/65%ZnO/Al ₂ O ₃						3.9			82.5	17.4	0.1	
32%CuO/66%ZnO/Al ₂ O ₃						4.6			83.3	16.7	0	
39%CuO/20%ZnO/Al ₂ O ₃						4.2			82	17.9	0.1	
43%CuO/20%ZnO/34%Al ₂ O ₃ /Cr ₂ O ₃		0.7.1	520	20	(000 /	4.8			84.3	15.6	0.1	(27)
34.7%Cu/44.5%ZnO/20.8%Cr ₂ O ₃	Precip./diluted syngas at 623K Precip.+Impreg./diluted syngas	2.7:1	538	20	6000/h	18.1			8.9	91	0.1	(37)
2.8%Pd/33.7%Cu/ZnO/Cr2O3	623K					17			7.8	92.1	0.1	
0.1%Na/2.8%Pd/Cu/ZnO/Cr2O3						18.4			12.2	87.3	0.5	
Cu(100)		1:1	543	2				0.00027/s				(47, 48)
30%Cu/SiO ₂	Coprecip./H2 at 523K	3:1	523	50	18 L/gCat/h			3.5 mg/m ²				(130)
50%Cu/ZnO								14.1				
50%Cu/45%ZnO/Al ₂ O ₃								15.6				
50%Cu/10%ZnO/Al ₂ O ₃								11.9				
50%Cu/Al ₂ O ₃								9.5				
50%Cu/25%ZnO/Ga ₂ O ₃								19.6				
50%Cu/Ga ₂ O ₃								19.6				
50%Cu/ $40%$ ZnO/Cr ₂ O ₃								18				
50%Cu/10%ZnO/Cr ₂ O ₃								11.5				
50%Cu/Cr ₂ O ₃								12.4				
50%Cu/25%ZnO/ZrO ₂								14.2				
50%Cu/ZrO ₂	Common /IL at 522 V	2.1	522	50	10 I /-C-4/b			9.0 51(- CU OU/l				(122)
50%Cu/ZnO	Coprecip./H ₂ at 525 K	3:1	525	50	18 L/gCat/n			516 g-CH ₃ OH/kg-cat n				(155)
50%Cu/25%ZnO/Qa ₂ O ₃								738				
50%Cu/45%ZnO/Al ₂ O ₃								665				
$50\%Cu/45\%ZnO/Cr_{2}$								602				
$45\%Cu/45\%ZnO/Al_2O_2$	Oxalate conrecip /H ₂ at 513K	3.1	513	20	3600/h	193		002	22.3	777		(169)
			010		10000/h	16.8			23.4	76.6		(10))
45%Cu/45%ZnO/Al ₂ O ₃	Oxalate gel-coprecip./H ₂ at 513K				3600/h	19.3			36.3	63.7		
= -												

43%Carbon karbon karb						10000/h	17.6		37.9	62.1		
Cull 1011151510100008*150008*505050CuBNaBH, reduction3:13:15:18:09:00.008*14.553501000CuBNaBH, reduction3:15:18:09:014.56:053501000CuBNaBH, reduction1:1<	45%Cu/45%ZnO/Al ₂ O ₃	Carbonate coprecip./H2 at 513K				3600/h	15.8		22.8	77.2		
Cu(110)11.15305.1Bath mode0.008/s						10000/h	15.1		21.9	78.1		
CuB 10%Cr-CuBNaBH, reduction3:15233020 mlrmin1.10.14 molkgCuh4.295.8(108)20%Cr-CuB1.6651.448.551.448.551.448.551.448.551.448.551.448.551.448.551.448.551.4 </td <td>Cu(110)</td> <td></td> <td>11:1</td> <td>530</td> <td>5.1</td> <td>Batch mode</td> <td></td> <td>0.008/s</td> <td></td> <td></td> <td></td> <td>(50)</td>	Cu(110)		11:1	530	5.1	Batch mode		0.008/s				(50)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CuB	NaBH ₄ reduction	3:1	523	30	20 ml/min		0.14 mol/kgCu/h	4.2	95.8		(108)
20%CrCuB 1.66 1.4 4.8 10%CrCuB 1.5 4.29 5.1 10%CrCuB 7.6 4.29 5.2 20%ZrCuB 1.15 4.29 5.2 20%ZrCuB 1.22 3.4 6.8 20%ZrCuB 1.13 4.50 5.2 20%TrCuB 1.13 4.50 6.8 20%TrCuB 1.13 4.54 6.8 20%TrCuB 1.13 4.54 6.8 20%TrCuB 1.13 4.54 6.8 20%TrCuB 3.1 5.2 2.0 18 L/gCath 1.2 1.8 8.8 0.8 20%TrCuB 1.9 4.33 1.31 5.3 1.33 1.33 1.33 1.4 4.8 0.8 1.35 6.%Gu2.2%GaTAD 1.9 1.33 3.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.34 1.4 1.4 1.4 4.7%Cu2.2%Zn/1.%GaSiO 1.3 1.3 1.33 1.33 1.33 1.34 1.4 1.4 1.4 1.	10%Cr-CuB							1.45	46.5	53.5		
30%4Cの協 1,15 4.9 57.1 20%4Cの協 149 52.8	20%Cr-CuB							1.66	51.4	48.6		
10%2r <dab< td="">149525244830%2r<da< td="">1-49524485430%2r<da< td="">1-25340545420%Tr-CuB1.1241.851.95353535320%Tr-CuB1.1343.555.753<!--</td--><td>30%Cr-CuB</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.15</td><td>42.9</td><td>57.1</td><td></td><td></td></da<></da<></dab<>	30%Cr-CuB							1.15	42.9	57.1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10%Zr-CuB							0.76	47.2	52.8		
36%2-CuB 1.22 53.4 46.6 10%1h-CuB 1.12 43.1 51.9 4.7 20%1h-CuB 1.13 43.5 56.5 6%Cu1.9%Ga/ZnO Impren./15 at 573K 3.1 53.3 20 18.1/gCat/h 948 81.4 1.9 48.1 6%Cu1.9%Ga/ZnO Impren./15 at 573K 3.1 53.3 20 18.1/gCat/h 948 84.8 0.8 <t< td=""><td>20%Zr-CuB</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.49</td><td>55.2</td><td>44.8</td><td></td><td></td></t<>	20%Zr-CuB							1.49	55.2	44.8		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30%Zr-CuB							1.22	53.4	46.6		
20%Th-CuB 113 415 56.5 Cu-Zn Coprecip. 12 51.9 48.1 6%Cu/1.9%Ga/ZnO Impregn./H; at 573K 3.1 523 20 18 L/gCa/h 2392 50.4 48.8 0.6 6%Cu/2.5%Ga/ZnO Impregn./H; at 573K 3.1 523 20 18 L/gCa/h 2392 50.4 48.8 0.6 6%SCu/2.5%Ga/ZnO 523 523 1177 66.6 67.4 44.8 0.6 4.7%Cu/2.6%Zn/1.7%Ga/SiO2 533 53 53 1132 74.5 -0 0.1 4.7%Cu/2.3%Zn/1.5%Ga/SiO2 523 53 52 10066 13.3 -0 - 543 523 53 53.3 112 24.88 29.6 -0 - 4.7%Cu/2.3%Zn/1.5%Ga/SiO2 533 52.3 53.3 112 24.88 29.6 -0 - 5%Cu/2.3%Zn/1.5%Ga/SiO2 53.3 52.3 52.3 102.7 21.8 20.8 - - 5%Cu/2.3%Zn/1.5%Ga/SiO2 Impregn./H; at 473 K 51.1 52.3	10%Th-CuB							1.12	48.1	51.9		
30%Th-CuB 048 404 404 896 Cu-Zn Copreip. 1.2 51.9 48. 0.8 0.16 6%Cu/1.9%GaZnO Impregn./H.; at 573K 3:1 523 20 18 L/gCat/h 948 mmol/kgCat 0.48 0.6 0.6 6.%VGU/2.5%GaZnO 533	20%Th-CuB							1.12	43.5	56.5		
Cur2n Coprecip. 102 51.9 4.11 6%Cur1.9%Ga/ZnO Impregn./H2 at 573K 3.1 523 20 18 L/gCat/h 948 mmol/kgCat/h 57.8 44.3 0.8 (16) 6%Cur2.9%Ga/ZnO 523 53.3 523 20 18 L/gCat/h 2392 50.4 45.8 0.6 6%Cur2.9%Ga/ZnO 533 523 533 1308 52.6 41.2 0.3 4.7%Cur2.6%Zn/1.7%Ga/SiO2 533 523 533 1120 74.5 -0.1 4.7%Cur2.3%Zn/1.5%Ga/SiO2 533 523 533 1120 74.5 -0.1 5%Cur2.3%Zn/1.5%Ga/SiO2 533 523 533 1120 74.5 -0.1 5%Cur2.3%Zn/1.5%Ga/SiO2 533 523 523 1120 74.5 -0.3 5%Cur2.3%Zn/1.5%Ga/SiO2 533 523 50 2048 36.7 44.4 -0 5%Cur2.3%Zn/0/%ZnO/GaO20 Impregn./H_2 at 473.K 31.1 523 50 2048 36.7 44.3 0.2 5%Cur2.3%ZnO/M2/CA/GaO20 Impregn./H_2 at 473.K	30%Th-CuB							0.48	40.4	59.6		
Carker Carker<	Cu-Zn	Coprecip						1 2	51.9	18.1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6%Cu/1 0%Co/7nO	Improgn /H. at 573V	2.1	522	20	18 L/aCat/h		0.48 mmol/kaCat/h	17.9	40.1	0.8	(126)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	070Cu/1.970Ga/ZIIO	impregn./112 at 575K	3.1	523	20	16 L/gCat/II		1767	47.0	44.5 50.9	0.8	(130)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				535				2202	50.4	10.0	0.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.89/Cm/2.59/Ca/7mO			545				1177	30.4	40.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8%Cu/2.5%Ga/ZIIO			525				11//	40	43.4	0.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				535				1398	52.6	41.2	0.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				543				3539	6/	44.4	<0.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4./%Cu/2.6%Zn/1./%Ga/SiO ₂			523				1056	13.3	-	< 0.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				533				3112	/4.5	-	<0.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				543				3488	29.6	-	0.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.7%Cu/2.3%Zn/1.5%Ga/SiO ₂			523				6126	99.8	-	0.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				533				8525	99.3	-	0.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				543				10293	99.1	-	0.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5%Cu/5%Zn/SiO ₂			523				2048	35.7	44.4	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				533				2594	60.7	49.3	0.2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				543				2132	58.8	51.8	0.2	
Citric complexing/H2 at 473K 382 70 50%Cu/25%ZnO/Al_O3 Coprecip./H2 at 573K 3:1 523 50 12 L/gCat/h 19.7 0.34 g/gcat/h 39.7 59.7 (139) 50%Cu/25%ZnO/22.5Al2O/22.5Al2O/22.5Al2O/22.5Al2O/22.5Al2O/22.5Al2O/22.5Al2O/22.5Al2O/22 43.8 55.7 50%Cu/25%ZnO/22.5Al2O/2C 23.6 0.44 43.8 51.5 50%Cu/25%ZnO/22.5Al2O/2C 23.6 0.45 45.9 53.6 50%Cu/25%ZnO/22.5Al2O/2C 24.7 0.49 48 51.5 50%Cu/25%ZnO/22.5Al2O/3/Y 26.9 0.52 47.1 52.4 LaCu _{0.7} Zn _{0.3} O _x Sol-gel/H2 at 623K 3:1 523 50 3600/h 6.4 0.05 g/gcat/h 57.9 39.5 2.5 (141) Lao ₈ Co ₂ Cu _{0.7} Zn _{0.3} O _x 51 523 50 3600/h 6.4 0.08 63.3 34.9 1.7 Lao ₈ Co ₂ Cu _{0.7} Zn _{0.3} O _x 51 523 50 4000/h 8.1 0.08 63.2 33 1.8 Lao ₈ Xo ₂ Cu _{0.7} Zn _{0.3} O _x 52 54 4000/h 23 0.14 g/gcat/h	65%Cu/23%ZnO/9%ZrO ₂ /Ga ₂ O ₃	Impregn./H ₂ at 473 K	3:1	523	80	3300/h		324 MeOH/kgCat/h	75			(137)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Citric complexing/H ₂ at 473K						382	70			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50%Cu/25%ZnO/Al ₂ O ₃	Coprecip./H ₂ at 573K	3:1	523	50	12 L/gCat/h	19.7	0.34 g/gcat/h	39.7	59.7		(139)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50%Cu/25%ZnO/22.5Al ₂ O ₃ /Mn						22.3	0.42	43	56.5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50%Cu/25%ZnO/22.5Al ₂ O ₃ /La						23.3	0.44	43.8	55.7		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50%Cu/25%ZnO/22.5Al ₂ O ₃ /Ce						23.6	0.45	45.9	53.6		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50%Cu/25%ZnO/22.5Al ₂ O ₃ /Zr						24.7	0.49	48	51.5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50%Cu/25%ZnO/22.5Al2O3/Y						26.9	0.52	47.1	52.4		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$LaCu_{0.7}Zn_{0.3}O_x$	Sol-gel/H ₂ at 623K	3:1	523	50	3600/h	6.4	0.05 g/gcat/h	57.9	39.5	2.5	(141)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$La_{0.8}Ce_{0.2}Cu_{0.7}Zn_{0.3}O_{x}$	0					8.1	0.08	63.3	34.9	1.7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$La_0 Mg_0 Cu_0 Zn_0 O_x$						9.1	0.09	65.2	33	1.8	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$La_0 \approx Zr_0 \simeq Cu_0 = Zn_0 \simeq O_x$						12.6	0.1	52.5	46	1.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$La_0 $ ^s $Y_0 $ ² $Cu_0 $ ⁷ $Zn_0 $ ³ O_x						5	0.04	59.6	37	3.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Cu_2Zn_1Al_0 \epsilon Zr_{0,1}$	Coprecip./ H_2 at 623K	3:1	523	50	4000/h	23	0.14 g/gcat/h	47.6	52.4		(111)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Cu_2Zn_1Al_{0.9}Zr_{0.1}$	- r r	••••				24.1	0.19	55.7	44.3		()
220 0.10 0.10 0.11 0.12	$Cu_2Zn_1Al_{1,2}Zr_{0,1}$						25.6	0.28	61.3	38.2		
$U_{22}I_{11}A_{11}S_{101}$ 23.8 $U_{11}Y$ 30.9 43.1	$Cu_2Zn_1Al_{1,5}Zr_{0,1}$						23.8	0.19	56.9	43.1		

CH₃OH selectivity^a: calculated from available data in the provided reference Atm. : Atmospheric pressure