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ABSTRACT 
 

Statistics and, in particular, sensitivity analysis represent an important tool for the building designer to find 

information about which parameters have the largest potential in reducing the energy consumption or which are the 

most crucial to focus on in the different phases of the project process. The application of dynamic simulation to a 

large number of configurations (i.e. the extensive simulation) to find the optimal solution either considering only the 

energy aspects or also the economic impacts and not only to evaluate a small set of possible alternatives, represents 

in that perspective a new approach to the building design, in particular for refurbishment considerations. 

This work aims to evaluate and generalize this kind of approach with its application to the refurbishment of 

residential buildings. 

The considered design solutions represent the most common measures of improvement of the performance of 

opaque and transparent envelope, such as the insulation level of walls and windows and the solar properties of the 

glazings. Different starting cases characterized by different envelope thermal inertia, corresponding to three massive 

materials (timber, clay and concrete), and different geometrical features were studied. 

A large number of environmental conditions, envelope characteristics and refurbishment interventions have been 

analyzed within a factorial simulation plan. Among those parameters, the ratios between the dispersing envelope 

and the volume conditioned (considering 3 different floors of a building – the top, the intermediate and the ground 

floor), the windows size (small or large size) and their distribution (South, East or West oriented), the level of 

insulation of the opaque envelope (starting cases without insulation, poor insulated and high insulated cases) and the 

kind of glazings (starting cases with single glasses and improved cases with double or triple glasses with high or 

low Solar Heat Gain Coefficient, SHGC) have been examined. Three Italian climates (Milan in the North, Rome in 

the center region and Messina in the South) were considered as representative of the Southern Europe. 

The inferential statistical analysis has been used to identify the predominant factors in each refurbishment solution 

and the economical savings both in heating and in cooling. 

 

1. INTRODUCTION 
 

Compared with the industrial and transportation sectors, buildings are responsible of approximately the 40% of the 

total energy demand. The International Energy Agency underlines how the residential sector is the major responsible 
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in energy consumption and it has recently approved the Annex 56 activity with the purpose of analysing the 

potentiality of building renovation in energy saving. In Italy two-third of the building stocks were built before the 

adoption of the first energy legislations (Law no. 373 of 1976), with energy performance dramatically lower than the 

present laws prescriptions. For this reason energy retrofit actions present an enormous potential in energy saving and 

they will represent more and more the predominant subject of construction projects. 

The main issue with the energy refurbishment of building is that, in most of the cases, the decision maker, either a 

public manager or a private owner, is not prepared to evaluate and compare the solutions. In refurbishment, different 

retrofit measures lead to multiple action combinations that should be considered. Just to consider the measures on 

the envelope, the improvement of thermal transmittance of opaque envelope by means insulation materials, the 

introduction of windows with higher thermal insulation and/or the choice of different solar control glazing are the 

most common. It is also possible to introduce efficient energy supply technologies and RES-based solutions.  

The definition of the optimal combination of measures either for energy saving or for economical reasons is not 

easy. To make the right choice, it is important to evaluate correctly the initial performance and energy costs and to 

give a right estimation of the investment costs and of the operational savings potential for each retrofit combination. 

The improvement of the envelope of the building could reduce significantly its global energy consumption. 

Reducing the thermal losses through the envelope during the heating season and the solar gains through the windows 

during the cooling season leads to considerably lower energy demand. A lot of studies carried out analysis on the 

optimal thickness of insulation and on different types of glazing, comparing the investment cost to the reduction of 

energy costs. Kaynakli (2008, 2012) investigated the variation of the optimum insulation thickness for various 

design properties (glazing type and area) and for different types of fuels. Bolattürk (2008) underlined the variation 

of optimum insulation thickness and payback period for seven cities situated in different climatic regions. Özkan and 

Onan (2011) focused their attention on the variation of insulation thickness altering the glazing area percentage 

(range from 50% to 10%). Lollini et al. (2006) evaluated the benefits of good insulated building envelopes and the 

proper thickness of insulation for eight different cities that represent the main Italian climates. All those authors 

demonstrate that it is required an evaluation of a large number of parameter combinations, to define the optimum 

value of thickness insulation. 

The recourse to dynamic simulation codes allows the detailed analysis of the possible alternatives. An extensive 

simulation use is then required to study the behavior of the optimal solution for different building configuration and 

initial situation and a huge amount of data have to be analyzed. In order to define quickly the most important 

building parameters and the relevance of different factors, some authors (Heiselberg, 2009) suggest to use statistics, 

in particular the sensitivity analysis. Jaffal et al.(2009) and Ylidz and Arsan (2011) proved that the use of statistical 

models reduces the number of combination to investigate and combines the speed of simplified models with the 

precision of dynamic simulation. Using regression techniques, by doing a limited number of simulation, is possible 

to generate a function that relates the energy demand to environmental and design variables and to find out the 

optimum solution from the different configurations of retrofits actions. 

This work considers an uninsulated single-storey model of residential flat with variable characteristics (different 

windows size and orientation, envelope materials, ratios between the dispersing envelope and the conditioned 

volume) sited in three climatic conditions (Milan, Rome and Messina). 

Different retrofitting interventions, both on the opaque and on the transparent envelope, are evaluated considering 

the monthly energy needs and the total cost of the investment. Finally, the results have been elaborated to identify 

the predominant factors in each retrofitting context by means of the inferential statistical analysis. 

 

2. REFERENCE CASES AND SIMULATION HYPOTHESES 
 

The reference starting case is a base module of 100 m
2
 of square floor and 3 m of internal height located in three 

different Italian cities: Milan (HDD20 = 2404), Rome (HDD20 = 1415) and Messina (HDD20 = 707), which represent 

the variability of the Italian climatic areas (Northern, Central and Southern regions). 

The building has been modelled as a single thermal zone, like an apartment of a building. In particular, three 

different positions in the multi-storey building have been considered: 

 the top floor of the building (TF), with a dark coloured roof (α=0.6) directly exposed to the external 

environment and a floor adjacent to another conditioned zone considered as adiabatic (S/V= 0.73); 

 the intermediate floor (IF), with both the ceiling and the floor adjacent to another conditioned zone and 

assumed as adiabatic (S/V = 0.40); 

 the ground floor (GF), with the ceiling adjacent to another conditioned zone (and assumed as adiabatic) and 

the floor exposed to the external environment without solar gains and sky vault infrared losses (S/V= 0.73). 
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Table 1: Characteristics of the reference starting cases 

 

Characteristics of opaque envelope 

  Thickness  

 

(m) 

Thermal 

Conductivity 

(W m
-1 

K
-1

) 

Thermal 

Resistance 

(m
2 
K W

-1
) 

Thermal 

Capacity 

(kJ m
-2 

K
-1

) 

Density 

 

(kg m
-3

) 

Specific Heat 

capacity 

(J kg
-1

 K
-1

) 

Materials 

Timber 0.10 0.13 0.77 75 399 1880 

Clay 0.20 0.25 0.80 150 893 840 

Concrete  0.30 0.37 0.81 300 1190 840 

Characteristics of windows 

Glazing Single-pane glass Ugl = 5.693 W m
-2

 K
-1

 

Frame Metal without thermal break Uf = 3.2 W m
-2

 K
-1

 

Percentage ratio Agl/Afl 
Size 1: 11.67% 

Size 2: 23.34% 

Orientation of the windows 

East 

South 

West 

 
The vertical walls are all external and oriented towards the cardinal orientation. The opaque envelope is a simplified 

structure composed of a single massive layer with a thermal resistance equal to about 0.8 m
2 

K W
-1

. In order to 

consider different thermal capacities, three materials - timber, clay block and concrete - have been analysed. The 

thermo-physical characteristics of the materials have been reported in Table 1. 

The windows of the reference cases are composed by a single-pane glass (Ugl = 5.693 W m
-2

 K
-1

, SHGC = 0.810) 

and a metal frame without thermal break (Uf = 3.2 Wm
-2

 K
-1

). The frame area is the 19.9% of the whole window 

area. Two glazings sizes have been analysed, expressed as ratios of window area on floor area, and three possible 

orientations have been considered as reported in Table 1. For each case, all the windows have the same orientation. 

The ventilation rate is 0.3 ach/h the internal gains are 373.7 W, a half radiative and a half convective, in accordance 

with the Italian technical standard UNI/TS 11300-1:2008. 

The effect of the thermal bridges has been neglected. In fact, the weight of thermal bridges can be approximated as 

an increase of the whole thermal losses by a fixed percentage, which, in accordance with the technical standard 

UNI/TS 11300-1:2008, is the same (5%) both for the non-insulated envelopes and for the insulated ones with 

minimized thermal bridges. 

Combining the climates, the geometric characteristics, the boundary conditions of the thermal zones, the three 

different opaque structures and the orientation of the windows, 162 different reference cases have been defined. 

The energy need has been calculated by means of the simulation code EnergyPlus 7 (U.S. DoE, 2011). The 

considered glazings have been modelled with Window 6.3 (Lawrence Berkeley National Laboratory, 2011). The 

simulation hypotheses are the following: 

 fixed values for convection coefficients have been calculated from the standard EN ISO 6946:2007; the 

radiative coefficients are derived by EnergyPlus from the surfaces emissivity (0.9) and temperatures; 

 the solar distribution algorithm FullExterior has been followed –the diffuse solar radiation is uniformly 

distributed on the internal surfaces and the beam solar radiation entering through the windows falls on the 

floor and the amount reflected is then added to the diffuse component; 

 for the long wave radiation internal exchanges, a detailed view factor model and grey surfaces are 

considered by EnergyPlus; 

 the EPW weather files have been modified in order to get the hourly climatic data in accordance with the 

Italian Standard UNI 10349:1994 for Milan, Rome and Messina using the TRNSYS subroutine Type 54 

Weather Data Generator (Solar Energy Laboratory, 2005); 

 the heating and the cooling setpoint have been fixed to 20 °C and 26°C in accordance with the UNI/TS 

11300-1 prescriptions for residential buildings, but they are applied all year long thus no heating and 

cooling seasons have been defined. 

 

3. RETROFITTING DESIGN PARAMETERS 

 
The analysed refurbishment interventions for improving the thermal performance of the envelope are (Table 2): 
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 the application of an insulating polystyrene layer with two possible thicknesses (0.05 m and 0.10 m) 

installed on the external surface of the original envelope; 

 the substitution of the window frame with a thermal break wood/aluminium one (Uf = 1.2 Wm
-2

 K
-1

); 

 the use of different glazing types, two double and two triple, with argon/krypton filling and a low-e 

treatment, with two different solar heat gain coefficient. 

In Table 3 the dynamic characteristics of the reference vertical walls and the refurbished ones calculated in 

accordance with the standard EN ISO 13786:2007 have been indicated. The interventions on the opaque envelope, 

on the transparent components and on both, have been simulated for all the 162 reference cases. 

 

Table 2: Retrofitting interventions 

 

Opaque envelope 

 d 

(m) 


(W m
-1

 K
-1

) 

c 

(J kg
-1

 K
-1

) 


(kg m
-3

) 

Insulation layer 
0.05 

0.04 1470 40 
0.10 

Transparent envelope 

  
Ugl  

(W m
-2

 K
-1

) 

SHGC 

(-) 

Glazing 

 

DH – Double Glazings with high SHGC 

(4/9/4 filled with krypton, low-e treatment on both glasses) 
1.140 0.608 

DL – Double Glazings with low SHGC 

(6/16/6 filled with krypton, low-e treatment on both glasses) 
1.099 0.352 

TH – Triple Glazings with high SHGC 

(6/12/6/12/6 filled with krypton, low-e treatment on all the glasses) 
0.613 0.575 

TL – Triple Glazings with low SHGC 

(6/14/4/14/6 filled with argon, low-e treatment on all the glasses) 
0.602 0.343 

Frame  Wood/aluminium with thermal break Uf= 1.2 W m
-2

 K
-1

 

 
Table 3: Thermal characteristics of the refurbished opaque envelope (a vertical wall has been considered) 

 
Material for the 

internal layer 

Uw (W m
-2

 K
-1

) Yie (W m
-2

 K
-1

) Δtie (h) 

0.00 m 0.05 m 0.10 m 0.00 m 0.05 m 0.10 m 0.00 m 0.05 m 0.10 m 

Timber 1.061 0.456 0.290 0.885 0.240 0.129 -3.52 -5.62 -6.76 

Clay Block 1.027 0.456 0.288 0.593 0.127 0.063 -6.29 -8.69 -9.48 

Concrete 1.016 0.448 0.287 0.292 0.045 0.024 -10.08 -12.40 -13.12 

 

4. RESULTS AND DISCUSSION 
 

The 2430 yearly heating and cooling energy needs simulated by EnergyPlus have been used as input for the 

economic analysis, considering the costs elements and the parameters reported in Table 4. The cost functions for the 

insulation of the opaque elements have been determined using the data of the Regional Price List of Lazio. The real 

interest rate has been calculated from the Italian inflation rate (3.3%) and the Italian 20 year long Btp (in the range 

5.5% - 6%) using the data by the Ministry of Economy updated on February 2012. Both for the heating and the 

cooling systems efficiency different scenarios have been studied: the base scenario (100% of the base performance), 

the scenario with a high performance (120% of the base value) and the scenario with a poor performance (80% of 

the base value); combining the possibilities 9 different scenarios for the conditioning systems were obtained. No 

subsidisation form has been considered in the analysis for the refurbishment measurements. 

The energy and economic results are reported in Figures 1 and 2. As regards energy, the deviations between the 

heating and cooling energy needs for the retrofitted cases and the ones for the reference cases have been considered. 

As regards the economic aspects, the differential Net Present Value (NPV) distributions, i.e. the actualized 

difference between the total costs (that means the investments costs plus the running costs) related to the cases with 

retrofits, and the running costs of the corresponding reference cases have been represented. 
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Table 4:Costs and base parameters for the economic analysis 

 

Investment variables 

Investment for the insulation of 1 m
2
 of 

vertical wall 
ICVW = (1.60 x + 38.53) € m

-2
, where x is the insulation thickness 

Investment for the insulation of 1 m
2
 of 

horizontal wall 
ICHW = (1.88 x + 8.19) € m

-2
, where x is the insulation thickness 

 DH ICDH = 511.81 € m
-2

 

Investment for 1 m
2
 of window  

 

DL ICDL = 555.77 € m
-2

 

TH ICTH = 604.62 € m
-2

 

TL ICTL =  575.31 € m
-2

 

Fuel Cost
(1)

 85  c€ Sm
-3

 

Lower Heating Value of the Fuel
(2)

 32.724  MJ Sm
-3

 

Electricity Cost
(1)

 6.94  c€ MJel
-1

 

Length of the investment 20  years 

Real interest rate 2.5% 

Heating and Cooling Systems 

Overall base heating efficiency, ηh 80% 

Overall base cooling COP, ηc 3 
(1)

 Autorità per l´Energia Elettrica e il Gas, 2011, Relazione annuale sullo stato dei servizi e sull’attività svolta, Milan, Italy. 
(2)

 Ministry of Economic Development, 2011, Bilancio Energetico Nazionale 2010, Rome, Italy 

 

Considering all the costs as positive, a negative value of the differential NPV means that the intervention is 

economically advantageous, with the discounted savings overbalancing the initial investment. 

The results have been distinguished with respect to the different type of envelope materials, of glazings and to the 

various thicknesses of insulation, distinguishing the three considered locations, the three floor positions. Only the  

energy deviations and the NPVs for the cities of Milan and Messina for and the cases with smaller windows are 

shown in the boxplots of Figures 1 and 2. The results for Rome lay between those of Milan and Messina. The 

diagrams represent the maximum, the minimum, the first, the interquartile range (IQR) and the median of all the 

cases compared. 

The results for the three different cities show that the effectiveness of the different retrofit interventions in energy 

savings are more relevant in Milan for the heating needs and in Messina for the cooling needs, as one could expect. 

In Milan the NPVs prove the economic convenience for a large number of refurbishment measurements but in 

Messina and Rome the investment appears often disadvantageous. 

The three different floor positions of the apartment, TF, IF and GF, strongly influence the energy effectiveness of 

the measures: considering the medians, in the IF the retrofits actions have minor effects on the heating needs than in 

the top and the ground floors while on the cooling needs the effects are between those of the two other floors.  

As regards the economic impact of the refurbishment measures over the three position summarized in NVP boxplots, 

the median values of the top floor presents the greater economical convenience even if this is more evident in Milan 

than in Messina. The efficacy of refurbishment measures seems very influenced by the geometrical ratio S/V 

especially for colder climate. 

About the grouping criteria, analyzing the different kinds of envelope material (Figures 1a and 2a), the chosen 

refurbishment measures produce more benefits for the timber structures than for the clay block and the concrete 

ones, both for heating and cooling energy savings. 

The effect of the different kinds of window is strongly related to the SHGC (Figures 1b and 2b), in particular for the 

cooling needs, for which a low SHGC value grants larger savings. In the heating context, even if a high value is 

preferable, the SHGC impact is more limited. Especially for the climates where the cooling needs are prevalent, the 

energy improvement due to the windows substitution often does not involve an economic advantage: in fact the high 

investment costs for windows with enhanced thermal properties is not easily balanced by the running savings. 

In all the localities the increase of the insulation´s thickness reduces the energy demands for the heating, especially 

in Milan with its colder climate (Figures 1c and 2c). For the cooling, the insulation generally reduces the thermal 

losses towards the external environment increasing the energy needs of the building. However in those cases and 

periods where the external temperature is persistently larger than the internal one the insulation can provide some 

benefits. Under an economic point of view, in Milan the increase of the insulation thickness is economically 

advantageous while in Messina not at all. 
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Although the boxplots in the figures refer only to the cases with the smaller extension of windows (11.67 % of floor 

area), with larger glazing areas the trends are similar. The only difference is a larger dispersion, i.e. a larger IQR, of 

the data for the cooling needs deviations. A larger IQR means that the independent variables considered in the 

grouping criterion are less effective in conditioning the energy deviations or that the net present values and their 

variation is influenced by other factors. As regards the NPVs, the IQRs are also generally wider for the larger 

window size configurations in Messina, while in Milan, for the intermediate floor cases some tighter ranges are 

registered when grouping by glazings type. From the data it is also possible to point out that the retrofit actions on 

energy heating reduction tend to become in general more efficient for the larger windows, even if the effect is less 

relevant in Messina than in Milan. Similar considerations could be done for the cooling deviations but in this case 

the differences in results are more consistent for Messina respect of Milan. This is probably due to the fact that 

larger windows emphasize the improvement of the glazing thermal transmittance (which becomes more significant 

than the one of the opaque envelope) when considering heating, and the improvement in SHGC for the cooling 

needs. From economic point of view the larger are the windows, the higher is the NPV for all the localities and in all 

cases when windows are substituted. 

Changes and in particular improvements of the energy efficiency of the system, do not alter the above 

considerations. 

 

5. STATISTICAL ANALYSIS 
 

A statistical analysis of the yearly NPVs has been performed. This time the NPV of the investment (following 

denoted with NPVIC) has been re-calculated, considering not the economical savings but the total investment costs of 

each alternative (investment plus running costs), in order to have only positive values. The inferential statistical 

technique employed is a multivariate linear regression with a confidence level of 95%. In the model developed, the 

added variables have been selected through the stepwise algorithm among: 

a. the variables related to the opaque envelope: 

- the area weighed mean thermal transmittance of the opaque components Uenv [W m
-2

 K
-1

]; 

- the area weighed mean periodic thermal transmittance Yie,env [W m
-2

 K
-1

] and time shift Δtie,env [h] of the 

opaque elements; 

- the product of the total opaque envelope multiplied by its internal heat capacity, determined in 

accordance with the EN ISO 13786:2007 detailed approach, Δκi∙Atot [kJ K
-1

]; 

- the area of the surfaces exposed to the external environment Aenv [m
2
]; 

b. the variable related to the windows: 

- the area of the whole windows Awin [m
2
]; 

c. the variables describing the external solicitation of the opaque envelope: 

- the heating degree days HDDenv and the cooling degree days for the opaque envelope CDDenv,, 

determined in accordance with the Equations (1) and (2) with a sol-air temperature defined as in 

Equation (3) [K d]; 

d. the variables describing the external solicitation of the transparent envelope: 

- the heating degree days HDDgl and the cooling degree days for the glazings CDDgl, determined in 

accordance with Gasparella et al. (2011), where the sol-air temperature for glazings is defined by 

Equation (4) [K d]; 

e. the variables related to the overall heating and cooling systems efficiency ηH [-] and ηC [-]. 

The heating/cooling degree days for the opaque envelope have been elaborated starting from the hourly profile of 

solar radiation on each wall, external air temperature and sky temperature on a year period. For each external wall 

the values of the yearly HDD and CDD have been calculated and then the area weighed mean HDD and CDD have 

been elaborated. 

  




365

1i
air,envsolenv )θ(20HDD  (1) 

 




365

1i
air,envsolenv -26)(θCDD  (2) 

where: 

 
se

eskyr,skyα

envsol-air, e
h

)θ(θhI
θθ


  (3) 

and 20 °C and 26 °C are, respectively, the heating and the cooling temperature of setpoint. 
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For the calculations of the equivalent cooling/heating degree days of the transparent surfaces, the equations used are 

similar to Equations (1) and(2), despite of the sol-air temperature, which is expressed by: 

 
se

eskyskyr,

gl
egl air,-sol

h

)θ(θh

U

gI
θθ


  (4) 

Glazing characteristics (SHGC and Ugl) have not been considered as independent main factor because already 

present in the definition of the sol-air temperature for the glazings. 

The model developed has been described in Table 5. The standardized coefficients are defined as the product of the 

non-standardized coefficients and the ratio between the standard deviations of the independent variable considered 

and that of the dependent one. The larger the standardized coefficient, the larger is the relative impact of both the 

variability and the correlation of the independent variable on the dependent one. The main influencing parameters 

for the NPVIC are the windows area, the opaque envelope area, and the HDDenv for the opaque envelope and the 

CDDgl for the glazings. The cooling degree days for the opaque envelope have a slightly negative coefficient: it 

could be correlated to the advantages realized by means of the insulation in reducing the solar gains by transmission 

which can be much more useful for warmer climate. The higher are the performances of the systems, the lower are 

the NPVIC. A larger thermal capacity (e.g., a concrete structure) corresponds a lower NPVIC; it should be noticed that 

insulating the opaque envelope externally the thermal capacity has little changes: it is slightly reduced for the 

concrete and the clay block and it is increased for the timber structure. The periodic thermal transmittance has a 

positive correlation with the dependent variable. 

 

Table 5: Regressive model elaborated for the NPVIC [€] 

 

R
2

adj 0.77 

Variables 
Non-standardized Coefficients Standardized 

Coefficients 
p-value 

Coefficients Standard Error 

(Constant) 8144.653 322.269 - <0.001 

Awin [m
2
] 623.820 3.193 0.655 <0.001 

HDDenv [K d] 4.168 0.044 0.394 <0.001 

Aenv [m
2
] 51.595 0.517 0.355 <0.001 

CDDgl [K d] 0.188 0.002 0.313 <0.001 

ηH [-] -7907.077 171.868 -0.149 <0.001 

ηC [-] -1707.607 45.831 -0.121 <0.001 

κi∙Atot [kJ K
-1

] -0.315 0.015 -0.075 <0.001 

CDDenv [K d] -9.302 0.412 -0.098 <0.001 

Yie, env[W m
-2 

K
-1

] 345.962 91.726 0.014 <0.001 

 

5. CONCLUSIONS 

 
The application of dynamic simulation to a large number of configurations for energy retrofitting of buildings have 

been analysed to identify the predominant factors, for each retrofitting interventions and for different starting cases, 

in determining the energy need and the total cost of investment. The building simulations have put in evidence some 

highlights after confirmed by the statistical analysis. In general the energy retrofitting of buildings is particularly 

economically onerous if the government financial incentives are not taken into account. In particular some 

economical savings have been found in Milan, very few in Rome and almost null in Messina. The effectiveness of 

the retrofit interventions adopted are more relevant for climate with predominant heating need. In this climate the 

interventions that are the most economically advantageous are the insulation of opaque envelope and the 

convenience of retrofit measures depends very much on the geometrical ratio S/V. The substitutions of windows, 

which in Italy is the most common refurbishment action, often does not involve an economic advantage whatever is 

the location. 

With the use of statistical analysis some of this considerations have been confirmed and can be generalized. The 

analysis has put in evidence the weight of some parameters on determining a variation of the Net Present Value of 

the total cost (investment plus running costs), NPVIC, for each case. The regressive model elaborated shows that the 

main influencing parameters for the NPVIC are the windows area, the opaque envelope area, and the HDDenv for the 

opaque envelope and the CDDgl for the glazing. 
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NOMENCLATURE 
 

Symbols   Subscripts  

A area (m
2
) c cooling 

c specific heat  (kJ kg
-1 

K
-1

) e external 

CDD cooling degree days (K d) env opaque envelope 

d layer thickness (m) f frame 

g  total solar transmittance  (-)  fl floor 

h surface heat transfer coefficient (W m
-2

 K
-1

) gl glazings  

HDD heating degree days (K d) h heating 

I global irradiance (W m
-2

) H horizontal 

IC investment cost (€ m
-2

) i internal 

NPV Net Present Value (€) r radiative  

t time shift (h) s surface 

SHGC solar heat gain coefficient (-) sol-air solar-air 

S disperding envelope surface (m
2) 

sky  sky dome  

U thermal transmittance (W m
-2

 K
-1

) tot total 

V conditioned volume of building (m
3
) V vertical 

Y dynamic thermal transmittance (W m
-2

 K
-1

)  W wall

Greek symbols  win window 

α solar absorptance (-)   

η efficiency or COP (-)   

 areal heat capacity (J m
-2 

K
-1

)   

 thermal conductivity (W m
-1

 K
-1

)   

 density (kg/m
3
)   

θ temperature (°C)   
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Figure 1:Deviation in heating and cooling energy needs and differential NPV for the case of Milano with smaller windows grouped by structures’ material (a), 

kind of glazing (b) and insulation thickness (c). 
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Figure 2:Deviation in heating and cooling energy needs and differential NPV for the case of Messina with smaller windows grouped by structures’ material (a), 

kind of glazing (b) and insulation thickness (c). 
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