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ABSTRACT 
 
The energy consumption of air conditioning for a telecommunication base station (TBS) in China can be 
significantly decreased when an air to air thermosyphon heat exchanger is used for free cooling in low atmosphere 
temperature days. The model for the typical TBS in China was established and the air conditioning energy 
consumption was analyzed for the cities with climatic data in China. Taking the sandwich steel panel envelope with 
the thickness of 50 mm for an example, the energy consumption of an air conditioner combined with a 
thermosyphon heat exchanger in a TBS and the energy-saving potential for using ambient energy were calculated, 
and were shown on the map of China by different colors according to the energy-saving rates. The static payback 
periods were also presented. The results demonstrate that the operation mode of the combined system of an air 
conditioner and a thermosyphon heat exchanger for controlling the indoor temperature can bring enormous energy-
saving potential for a TBS in different Chinese cities except the southern areas. 
 

1. INTRODUCTION 
 
In recent years, numbers of telecommunication base stations (TBS) are built up with the fast development of the 
telecommunication industry. In order to ensure IT equipment works well, the air conditioner in the TBS runs for 
almost a whole year. The energy consumption is enormous, and the cost is main economic burden of the company. 
Therefore, the energy saving of the TBS is very improtant for the telecommunication industry. 
 
Among all air conditioning energy-saving techniques of the TBS, direct air ventilation system and split air to air heat 
exchanger using ambient energy (Wang et al., 2009;  Schmidt et al., 2003; Gillan et al., 2002), variable frequency 
air conditioner, air flow management, and air conditioner operation optimization (Deng et al., 2009) were adopted 
mostly. The thermosyphon heat exchanger was studied specially, the heat exchanging efficiency was high, and the 
thermosyphon effectiveness for single pipe could reach to 98% (Xie, 2011). Wang et al. (2009) evaluated the data 
center air conditioning energy-saving reform in Langfang economically, and found that using ambient energy 
cooling the data center can save power more than 30%. Zhou et al. (2011)  studied the energy-saving characteristics 
of an internet data center with a thermosyphon heat exchanger experimentally. They found that energy consumption 
of the thermosyphon heat exchanger was only 41% of that of the air conditioner, and energy can be saved about 40% 
for a whole year. In this paper, using the building energy consumption software of DeST-c as a tool, the TBSs 
located in the cities in China with climatic data records were simulated hour by hour according to the performance 
of the thermosyphon heat exchanger developed by us. The energy-saving amount and potential of the thermosyphon 
heat exchanger used in a TBS was analyzed. 
 

2. ENVIRONMENTAL REQUIREMENTS & ENERGY CONSUMPTION IN A TBS 
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According to People’s Republic of China Telecommunication Industry Standard YD/T1624-2007, the temperature 
for a first grade TBS should be 10 to 25℃, and the humidity should be 30 to 70% (MII, 2007). And Information 
Technology (IT) equipment works for 8760 hours in a year, the heat load keeps almost constant with the information 
quantity. So the air conditioning has to run for a whole year. 
 
The size and the telecommunication equipment distribution of a TBS in China are similar. And the actual heat load 
and parameters are adopted for the theoretical model for a TBS in order to compare the theoretical results and 
experimental data conveniently. Taking a real TBS in Beijing for example, the dimension of the TBS is 3.75 m 
(length) × 2.8 m (width) × 2.9 m (height). The building envelope is made of sandwich steel panel, of which the heat 
transfer coefficient is 0.848 W/(m2·K). The heat transfer coefficients of the roof and the floor are 0.819 W/(m2·K) 
and 0.295 W/(m2·K), respectively. As shown in Figure 1, the major equipments in the TBS include three 
telecommunication cabinets, two air conditioners (one work, one spare), twenty-four storage battery units, and one 
power supply box. The air conditioner with rated cooling capacity of 3.2 kW is type KFR-32 GW/Y made by some 
company. For the TBS, a thermosyphon heat exchanger is developed. The rated air volume is 1,000 m3/h, the rated 
heat exchange capacity is 2 kW, and the rated fan power is 120 W. 
 

 
1 Air conditioner; 2 Storage battery unit; 3 Telecommunication cabinet; 4 Switching power supply; 5 Door. 

 
Figure1: Plan view of the TBS 

 
The input power of the telecommunication cabinet is equal to the heat dissipation rate at steady state, in which the 
thermal storage variation can be neglected. The electromagnetic wave energy sent by the TBS is little, which can be 
ignored. So the heat energy transformed from the input power is mainly dissipated through air convection and 
surface radiation, which results in the temperature increase in the TBS. In the TBS, a telecommunication cabinet’s 
rated power is 684 W, the rated power of the transmission equipment is about 10 W, the rated power of the high 
frequency switching power supply is about 50 W, and the heat dissipated from storage battery units is very little 
(Guo et al., 2008). Accordingly, the total power of the TBS can be obtained as follows: 684 W × 3 + 10 W + 50 W, 
which sums to 2.112 kW. And the actual heat dissipation of a typical TBS is 2.112 kW(Tian et al., 2009). 
 

3. WORKING MECHANISM AND SIMULATION ANALYSIS 
 
The structure and heat exchanging mechanism of the thermosyphon heat exchanger are shown in Figure 2. The heat 
exchanger consists of numbers of thermosyphon. The clapboard is set in the middle, which divides the heat 
exchanger into two parts. One part is the indoor air flow section, the other part is the outdoor air flow section. The 
indoor air and the outdoor air are delivered by low power fans. Then the air in the TBS can be cooled by the outdoor 
air when they are isolated, which avoids the indoor air pollution and keeps indoor cleanliness and humidity constant. 
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Figure2: The prototype structure and heat exchanging mechanism 
 

The combined operation modes of thermosyphon heat exchanger and air conditioner is shown in Table 1. The 
thermosyphon heat exchanger starts to work in spring, autumn and winter when the indoor temperature is more than 
the outdoor temperature, and the air conditioner running time and energy consumption are reduced. When the indoor 
temperature is less than the outdoor temperature, only the air conditioner works. The energy-saving effect of the 
thermosyphon heat exchanger varies with the temperature difference between the indoor and outdoor of the TBS. In 
this paper, the investigated thermosyphon heat exchanger starts to work when the start-up temperature difference 
(indoor and outdoor temperature difference) is not less than 3℃. And the energy-saving effects of different cities 
with climatic data records in China are compared. 
 

Table 1: Combined operation modes of thermosyphon heat exchanger and air conditioner in the TBS 
 

Note: QTHE is the heat transfer rate of the thermosyphon heat exchanger; QAC is the heat transfer rate of the air 
conditioner. 
 
In the TBS, the air conditioner usually works in cooling mode for a whole year. But in cold region minor in China 
the air conditioner sometimes works in heating mode when the heat dissipation through the building envelope is 
very much.  
 
Basing on the energy-saving evaluation standard of conventional civil buildings , the simulation evaluation indexes 
of the thermosyphon heat exchanger are built up as shown in Equation (1) ~ (5), which include cooling/heating load, 
energy-saving rate, annual electricity saving amount, and static payback period. Considering the administrators of a 
TBS are generally less than three persons, only the heat dissipation through building envelope and cooling/heating 
load of the air conditioning are calculated in the simulation model. And the heat losses caused by ventilation, lights 
and door on-off in a TBS are ignored. 
 
(1) Cooling/heating load of the air conditioning 
 
When the air conditioning works in cooling mode, the cooling load is: 
 

                Q = Q2 - Q1                                                                                                                              (1) 

Start-up condition Operation mode 
Air conditioner 

heat transfer 
Thermosyphon heat 

exchanger heat transfer 
<3℃ Start-up temperature 

difference 
Only air conditioner A  

≥3℃ Start-up temperature 
difference, but QTHE<QAC 

Thermosyphon heat exchanger 
prior to air conditioner 

B1 B2 

≥3℃ Start-up temperature 
difference, and QTHE≥QAC 

Only thermosyphon heat 
exchanger 

 C 

Total heat load  A+ B1 B2+ C 
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where, Q is the cooling load of the air conditioning in the TBS, kWh; Q1 is the heat dissipation through building 
envelope of the TBS (+, from indoor to outdoor, -, from outdoor to indoor), kWh; Q2 is the telecommunication 
equipment’s heat dissipation of the TBS, kWh. 
 
When the air conditioning works in heating mode, the heating load is: 
 

                 Q = Q1 - Q2                                                                                                                              (2) 

  
(2) Energy-saving rate 
 
The air conditioning heat rate is conversed into electricity consumption amount for simulation analysis, and the 
cooling COP and the heating COP of an air conditioning are considered as 2.6 and 3.2, respectively. The 
temperature effectiveness of the thermosyphon heat exchanger can be calculated according to the formula fitted 
from experimental data. Then the energy-saving rate can be obtained as follows: 
 

                 

2 2

1 1

e3.2
) 100%

2.6
(1

2.6 3.2
c h

c h

Q Q P
Q Q

 
 

 
                                                      (3) 

where,  is energy-saving rate when the thermosyphon heat exchanger is used; 1cQ is the annual air conditioning 

cooling load without the thermosyphon heat exchanger, kWh; 2cQ is the annual air conditioning cooling load with 

the thermosyphon heat exchanger, kWh; 1hQ is the annual air conditioning heating load without the thermosyphon 

heat exchanger, kWh; 2hQ is the annual air conditioning heating load with the thermosyphon heat exchanger, kWh; 

eP is the annual electricity consumption amount of the thermosyphon heat exchanger, kWh. 

 
(3) Annual electricity saving amount 
 

                   ES = C1 - C2                                                                             (4) 
 
where, ES is the annual electricity saving amount, kWh; C1 is the annual electricity consumption amount without the 
thermosyphon heat exchanger, kWh; C2 is the annual electricity consumption amount with the thermosyphon heat 
exchanger, kWh. 
 
(4) Static payback period 
 

P = I / (ES×)                                                                        (5) 
 
where, P is the static payback period, year; I is the initial investment (which is 7,000 RMB in this paper), RMB; ES 
is the annual electricity saving amount, kWh/year;  is the commercial electricity price (which is usually 0.8), 
RMB/kWh. 
 

4. RESULTS AND DISCUSSIONS 
 
According to the climatic data of different cities in China from DeST-c software and the base room temperature of a 
TBS, the energy-saving potential is analyzed between air conditioner and combined system of air conditioner and 
thermosyphon heat exchanger while the thermosyphon heat exchanger runs when the start-up temperature difference 
is not less than 3℃. Taking the sandwich steel panel envelope with the thickness of 50 mm for example, the results 
of typical cities in China are shown in Table 2. 
 
The combined operation mode of thermosyphon heat exchanger and air conditioner in Table 1 is adopted in the data 
analysis of Table 2. When the start-up condition of the thermosyphon heat exchanger is not met, the air conditioner 
affords the loads, and the cooling and heating loads can be summed up from hourly loads in working time. When the 
start-up condition of the thermosyphon heat exchanger is provided but the heat transfer rate of the thermosyphon 
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heat exchanger can not afford the total cooling load, the thermosyphon heat exchanger and the air conditioner work 
together. And the former works prior to the latter. When the start-up condition of the thermosyphon heat exchanger 
is provided and the heat transfer rate of the thermosyphon heat exchanger can afford the total cooling load, only the 
thermosyphon heat exchanger works. And the thermosyphon heat exchanger load is summed up from hourly loads 
in running time. 
 

Table 2: The annual energy consumption of combined system for a TBS in China 
 

Only A/C THE prior to A/C Only THE Load and ESR 

Provinces RT 
(h) 

A/C 
load 

(kWh) 

RT 
(h) 

A/C 
load 

(kWh)

THE  
load 

(kWh)

RT 
(h) 

THE  
load 

(kWh)

Total 
A/C 
load 

(kWh)

Total 
THE  
load 

(kWh) 

ESR 
SPP 

(year)

Tibet 282 569.6 1072 757.1 1181.1 7406 8795.3 1326.7 9976.4 64.9% 3.1 
Qinghai 403 839.4 947 705.1 1013.9 7410 7916.2 1544.4 8930.1 60.4% 3.6 
Yunnan 996 2026.3 3136 2259.6 3230.7 4628 6324.0 4285.9 9554.7 51.5% 3.2 
Shanxi 1571 3286.6 1544 1264.2 1466.6 5645 6198.3 4550.9 7664.8 44.4% 4.2 

Jilin 1173 2433.5 1329 1079.6 1279.0 6258 5522.2 3513.1 6801.2 43.0% 5.1 
Guizhou 2053 4240.4 2175 1731.4 2053.9 4532 5845.3 5971.8 7899.1 41.9% 3.9 

Heilongjiang 1173 2445.4 1218 933.4 1224.1 6369 5259.9 3378.8 6484.0 41.7% 5.5 
Liaoning 1628 3387.9 1359 1130.7 1271.5 5773 5611.2 4518.6 6882.6 40.9% 4.9 
Xinjiang 1553 3266.0 1244 1003.2 1189.9 5963 5466.2 4269.2 6656.1 40.3% 5.2 

Hebei 2603 5520.3 1315 1089.3 1265.7 4842 5627.5 6609.6 6893.2 36.8% 4.6 
Jiangsu 2790 5881.0 1476 1271.9 1324.6 4494 5483.6 7152.9 6808.2 35.4% 4.6 
Guangxi 4839 10187.2 1923 1571.3 1812.3 1998 2868.9 11758.5 4681.2 21.0% 6.6 

Guangdong 5043 10604.8 1670 1373.7 1547.4 2047 2972.7 11978.6 4520.1 20.4% 6.8 
Hainan 6011 12407.3 2131 1708.4 1940.2 618 938.5 14115.8 2878.7 11.9% 11.3 

Note: RT is Running Time, A/C is Air Conditioner, THE is Thermosyphon Heat Exchanger, ESR is Energy-Saving 
Rate, SPP is Static Payback Period. 
 
According to Table 2, the energy-saving rates and payback periods of the combined system for a TBS in typical 
cities in China are shown in Figure 3, in which the energy-saving rates of the cities are arranged from high to low.  
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Figure 3: The energy-saving rate and payback period of the combined system for a TBS in China 
 

As shown in Figure 3, the energy-saving rates of most cities are in the range of 30% to 50%. The highest is 64.9% in 
Tibet, the followed is 60.4% in Qinghai, and the values are not over 25% in Guangxi, Guangdong and Hainan. The 
reason is that Tibet and Qinghai lie in severe cold area and cold area respectively with rich ambient energy, which 
can be used by the thermosyphon heat exchanger and the running time for the air conditioner can be reduced. 
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However, Guangxi, Guangdong and Hainan lie in the south of China, where the average temperature of the coldest 
month in a year is over 9℃. The running time of the thermosyphon heat exchanger is not much and the energy-
saving rate is low. 
 
The payback period of the thermosyphon heat exchanger increases with the decrease of energy-saving rate. When 
the energy-saving rate decreases from 64.9% to 11.9%, the payback period increases form 3.1 years to 11.3 years. 
The payback periods of most cities are in the range of 4.2 to 4.5 years, but the values in Jilin, Heilongjiang, Liaoning 
and Xinjiang fluctuate differently. The energy-saving rates in other cities basically keep coincident with the payback 
periods, even though there is small change. In Guangxi the payback period increases rapidly with the decrease of the 
energy-saving rate. 
 
The impact factors of the payback period for the thermosyphon heat exchanger include annual electricity-saving 
amount, initial investment, electricity price, etc. Generally, the higher the energy-saving rate, the shorter the payback 
period. Otherwise, the lower the energy-saving rate, the longer the payback period. The energy-saving rate is the key 
factor, but not the only factor for the payback period. In Jilin, Heilongjiang, Liaoning and Xinjiang, the energy-
saving rates are relative high, but the payback period is long. The reason is that the annual average temperature is 
too low, and the yearly air conditioner cooling load is a little. So the total annual electricity-saving amount is not 
much, and the payback period is long. Whereas in Guangxi, Guangdong and Shanghai the low energy-saving rate 
caused by reduction of annual electricity-saving amount results in the long payback period. 
 
It is mentioned that, the equipment price will decrease with the application and popularization of the thermosyphon 
heat exchanger, and the initial investment will get reduced. Meanwhile, the power cost will go up because of the 
clean energy policy and the energy saving policy in China, which will cause the increase of the electricity price. In a 
word, the above factors will shorten the payback period further, and the thermosyphon heat exchanger will have a 
bright application future. 
 
According to the climatic regions in “Thermal design code for civil building” (MC, 1993), the energy-saving 
distribution map of the thermosyphon heat exchanger in China is plotted basing on the energy-saving rates of over 
200 cities. The map is shown in Figure 4. 

 

 
 

Figure 4: The energy-saving distribution map of the thermosyphon heat exchanger in China 
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As shown in Figure 4, the distribution map consists of five color regions with different energy-saving rates. The 
energy-saving rate of the most suitable region is over 55%, the energy-saving rate of the more suitable region is 
form 40% to 55%, the energy-saving rate of the suitable region is from 30% to 40%, the energy-saving rate of the 
common region is from 20% to 30%, and the energy-saving rate of the unsuitable region is less than 20%. 
 
It is found that the most suitable region lying in the west of China includes Tibet, Qinghai, west of Sichuan, and 
north of Yunnan. The more suitable region lies in the northwest, the northeast and the midland of China, in which 
the ambient energy is rich and the thermosyphon heat exchanger can be applied in wide range. It should be noted 
that in Heilongjiang and Inner Mongolia the energy-saving rates show a little fluctuation, because the air conditioner 
in the TBS works in heating mode when the outdoor temperature is too low in winter. For most area of Yunnan and 
Guizhou in mild region the outdoor climatic condition is suitable for utilization of the thermosyphon heat exchanger 
and the energy-saving effect is obvious. For cities in hot summer and cold winter zone the energy-saving rates are 
not low, which belongs to the suitable region. For Guangxi, Guangdong and south of Yunnan lying in hot summer 
and warm winter zone, the indoor and outdoor temperature difference is small, the energy-saving rate is the lowest, 
and it belongs to the unsuitable region. 
 
It is mentioned that the envelope material is the sandwich steel panel with the thickness of 50 mm in the simulation 
model. The energy consumption of the air conditioner is higher than that in a brick envelope TBS, because the heat 
transfer coefficient of the sandwich steel panel is smaller and the heat dissipation through the envelope is less. 
Meanwhile, the running time of the air conditioner is long in simulation model. So the total level of the energy-
saving rate is high. 
 

6. CONCLUSIONS 
 
According to the theoretical analysis of a TBS with the thermosyphon heat exchanger in China, the conclusions are 
drawn as follows: 

 Among all cities with climatic data records in China, the energy-saving rates of Tibet and Qinghai are 
relatively high, and the energy-saving rates of Guangxi, Guangdong and Hainan are relatively low. The 
energy-saving rate of most cities is between 30% and 50%. It is pointed out that about 88% of all the cities 
with climatic data records in China are suitable for the application of the thermosyphon heat exchanger, and 
show obvious energy saving potential.  

 The payback period of the thermosyphon heat exchanger usually is 4.3 years in most cities in China. The 
payback period in Tibet and Qinghai is only 3.3 years. And the payback period will be shortened further 
when the cost of the thermosyphon heat exchanger decreases in future.  
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