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ABSTRACT 
 
Model based predictive control (MPC) is increasingly being seen as an attractive approach in controlling building 
HVAC systems. One advantage of the MPC approach is the ability to integrate weather forecast, occupancy 
information and utility price variations in determining the optimal HVAC operation. However, application to large-
scale building HVAC systems is limited by the large number of controllable variables to be optimized at every time 
instance. This paper explores techniques to reduce the computational complexity arising in applying MPC to the 
control of large-scale buildings. We formulate the task of optimal control as a distributed optimization problem 
within the MPC framework. A distributed optimization approach alleviates computational costs by simultaneously 
solving reduced dimensional optimization problems at the subsystem level and integrating the resulting solutions to 
obtain a global control law. Additional computational efficiency can be achieved by utilizing the occupancy and 
utility price profiles to restrict the control laws to a piecewise constant function. Alternatively, under certain 
assumptions, the optimal control laws can be found analytically using a dynamic programming based approach 
without resorting to numerical optimization routines leading to massive computational savings. Initial results of 
simulations on case studies are presented to compare the proposed algorithms. 
 
 

1. INTRODUCTION 
 
The subject of optimal control of building heating, ventilation and air-conditioning (HVAC) systems has been 
receiving increased attention in the wake of climate change and soaring energy prices. With commercial floor space 
predicted to grow, the emphasis on reduction of HVAC energy consumption is warranted. However, operating 
building HVAC systems in an “optimal” way can be infeasible in real time, primarily due to the large number of 
decision variables to be controlled and the non-linear models involved.  Additionally, utilizing weather and 
occupancy information to achieve higher savings in HVAC operation is not straight forward. 
 
Model predictive control (MPC) has long been viewed as a practical solution for complex control problem involving 
non-linear dynamics and general cost functions. Efforts have been made to formulate and solve the optimal HVAC 
operation problem in an MPC framework. MPC based approaches also have the benefit of being capable of 
incorporating weather forecasts, utility pricing and occupancy profiles into the optimization.  However, the large 
number of decision variables involved can make such approaches prohibitively slow for implementation in large 
buildings.  
 
In this paper, we approach the problem of optimal HVAC control from the perspective of a distributed optimization 
problem. Such an approach enables us to decompose the original problem with a large number of decision variables 
into smaller optimization problems that can be solved simultaneously. The resulting solutions can be aggregated to 
obtain the solution of the original problem. Previous works in this direction include (Oldewurtel et al., 2010; Prívara 
et al., February; Zavala et al., 2011; Ma et al., 2010) We also propose an MPC algorithm that uses move-blocking to 
effectively reduce the dimension of the optimization problem to be solved at each time step. A dynamic 
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programming based MPC is also studied that under certain assumptions yields an easily computable analytic 
solution to the optimization problem.  Initial results from simulations of a simplified case study are presented to 
compare the performance of the proposed methods. 
 
The paper is organized as follows. In Section 2, we discuss the building and HVAC system models considered. The 
optimal control problem is formulated as a MPC problem in Section 3. This formulation is subsequently extended to 
a multi-zone scenario in a distributed optimization framework. Section 4 considers the use of dynamic programming 
to solve HVAC optimal control. Conclusions are drawn and future directions are given in Section 5. 
 

2. MODELING 
 
2.1 Thermal Zone Model 
For the purpose of illustration, we consider a simplified state-space model of thermal zone and the accompanying 
air-handling unit (AHU). To reduce complexity, we only consider the thermal dynamics of the zone envelope and 
neglect spatial variations in the indoor air. This assumption enables us to use a single temperature, referred to as the 
zone temperature	�, to represent the indoor air state for each thermal zone. Using a detailed energy balance at all 
discrete wall nodes and the internal air node, we can obtain a state-space model that incorporates all the transients 
within walls and solar radiation through windows. Through linearization, discretization and appropriate model order 
reduction techniques, the model may be expressed in the form 

 
���� = ��� + 
�� + �
� ,	 �� = ��� (1) 

where �, 
, � and � represent the system matrices of reduced dimension obtained via model order reduction and � 
denotes the discrete time instant. The state vector �� represents a transformed vector containing information about 
the temperatures of the wall and air nodes. Physical significance of each component of the state vector is not explicit 
due to the transformation. The vector ��  represents the input vector comprising of controllable inputs that act 
directly on the internal temperatures (rate of energy added by AHU, internal gains) and the matrix 
 encapsulates 
the effect of these inputs on the system.  Vector 
� denotes the exogenous (uncontrollable) inputs acting on the 
envelope (solar radiation, ground radiation). The relation between the zone temperature 	��  and the state vector �� is 
modeled by the output matrix �. This particular formulation allows for flexibility in the treatment of the exogenous 
inputs—as disturbances with known parameters or completely known trajectories. A model of the form in (1), has 
been developed for the Purdue Living Lab Radiant Room (facility currently under construction).  For the current 
study, the Living Lab model has been adopted as the test case.   
 
2.2 Multi-zone Model 
The above single-zone model can be extended to a more realistic scenario where the dynamics of neighboring zones 
are coupled. In the current study, we model output coupling where the heat flux into a zone from its neighbor is 
proportional to the temperature differential between the zones. This choice of coupling is motivated by a situation 
when the neighboring zones have a shared opening. We illustrate the idea using a two-zone building. Using the same 
principles as used in modeling the single thermal zone, we can write the coupled dynamics of both zones as 

 
 
 

����(�) = �(�)��(�) + 
(�)[��(�) + ����(�) − ��(�)�] + �(�)
�(�),	 ����(�) = �(�)��(�) + 
(�)[��(�) + ����(�) − ��(�)�] + �(�)
�(�),	 ��(�) = �(�)��(�) ��(�) = �(�)��(�) 
(2) 

where the numerical superscripts distinguish between the zones. The strength of the coupling is determined by the 
factor �. Similar models can be developed for more than two zones where the coupling strength � can be adjusted to 
model the relations between the dynamics as needed. The above model describes a convective heat transfer with the 
factor � determined by the mass flow rate of air between zones. Using air flow analysis software such as COMIS 
(Haas et al., 2002), it is possible to model the coupling relation among multiple zones and obtain numerical values 
of the coupling strengths. 
 
As a test scenario, we consider two identical zones based on the model of the Purdue Living Lab Radiant Room, 
with individual, identical AHU’s. We also assume that the effect of weather and solar radiation to be identical on 
both the zones. Such a scenario presumes that the zones are small enough and close by to ignore variations in solar 
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incidence and wind conditions. Individual AHU’s imply the total power consumption is the sum of the individual 
power consumptions. 
 
2.3 AHU model  
The air handling units (AHUs) were assumed to be comprised of heating and cooling coils along with the requisite 
pumps and fans. The governing equations for the power consumption of each component are written (simplifying 
assumptions such as constant efficiency and pressure ratios are assumed). The resulting equations are then summed 
up to generate the total power consumption � and AHU output �� as a function of the mass flow rate (�� ����) into 
the zone, the temperature of the air supplied by the AHU (�����), zone temperature �, ambient wet-bulb temperature � !: 

 
� = "(�� ���� , ����� , �, � !), 	� = #(�� ���� , ����� , �, � !). (3) 

It must be noted that the actual controllable variables ��  and ����� affect the dynamics only through the rate at which 
heat is removed or added	(�). Hence we can reduce the problem of AHU operation to that of determining optimal 
value of �. Once the optimal trajectory is obtained, the requisite mass flow rate �� ���� and the air temperature ����� 
that lead to the least power consumption can be back-calculated and applied. This observation allows us to 
succinctly capture the power consumption of the AHU in terms of the heat supplied to the zone using the relation 

 �∗(�; �, �'()= min,~.� /012,3/012�(�,�� ���� , ����� , �'(). (4) 

Here �∗(�; �, �'() represents the minimum power consumption of an AHU, when supplying heating or cooling at 
rate � to the zone at temperature � and ambient temperature	�'(. This representation of the power consumption will 
be used throughout the simulations.  
 
The next section describes the formulation of the problem in the MPC framework. We define the objective function 
and explore the need for efficient MPC. 

 
3. CONTROLLER DESIGN  

 
3.1 Model Predictive Control Formulation 
Model predictive control utilizes a predictive model to anticipate the behavior of the system over a prediction 
horizon 4, and uses this information to decide upon the optimal course of action. The optimality of the decision is 
highly sensitive to the accuracy of the model and the forecast. Receding horizon control, where the forecast is 
updated every time instant, has proved highly effective in reducing this sensitivity. 
 
In the current application, model predictive control allows us to accurately incorporate the uncontrollable factors 
such as variations in the occupancy, utility rates and weather conditions. Throughout the study, we assume 
availability of forecasts for all the exogenous inputs over the prediction horizon	4. We use the inherent robustness of 
the receding horizon controller to handle inaccuracies in the forecasts. For the two-zone model presented in Section 
2.2 the predicted trajectory can be represented as �5����|�(7) = �(7)�5��|�(7) + 
(7) 8�5��(7) + �Δ�5��|�(7) : + �(7)
5��|�(7)  �;+�|�(<) = ��;+�|�(7) ; 																																											��|�(7) = ��(7)	 (5) 

Here �5��|�(7)  represents the predicted state trajectory at time � + ; starting from time �	under the action of  �(7) and 

exogenous input	
(7).  The term ΔT5��|�(7) denotes the predicted temperature differential. 
 
In the two zone coupled model in equation (3), optimal HVAC operation would entail minimizing the total power 
consumption of both the AHUs while maintaining occupant comfort, or equivalently 
 
 >� = >�(�) + >�(�) 

>�(7) = 	?8@��∗ A�5��(7) ; �5��|� , �'(��5|�B + CD(� + ;, ���5|�(7) ): ,				< = 1,2G
�HI

 
(6) 
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The term �7∗ represents the power consumption of the AHU of zone < as described earlier while @� denotes the utility 
price at time � . This factor models the realistic scenario where electricity costs more during peak hours and 

encourages savings through load shifting. D(�, ��(7)) is a measure of the occupant discomfort in zone < at time �. 
Adjusting the factor C  prioritizes one of the two competing objectives. The integral nature of energy costs is 
reflected in the summation over a look ahead horizon of 4. The cost function is to be minimized subject to the 
dynamics given in equation (2) over the space of all admissible inputs �(7)  that do not violate any physically 

imposed constraints (capacity of AHU).  At time � the optimal trajectory of both the AHUs (���5(7) , ; = 0,1, … , 4) are 

determined. The first input of the sequence ��(7)  is applied to the corresponding system. At time ; + 1 the cost 
function and forecasts are updated to reflect the information available and the process repeated. The prediction 
horizon 4 is chosen to be large enough to sufficiently capture the behavior (such as periodicity) of the exogenous 

factors. We also presuppose knowledge of the state vectors	��(7). The cost function can be extended to more than two 
zones. 
 
The choice of the occupant discomfort metric D(⋅,⋅) is an important factor in ensuring realistic results. Direct 
comfort models such as the Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD), though 
accurate, do not lend themselves to easy optimization.  A more convenient method to quantify discomfort is to 
measure the deviation of the zone temperature from a predetermined comfort interval. As occupant discomfort needs 
to be prioritized during working hours, a factor representing the occupation profiles is also incorporated. The 
resulting discomfort measure can be written as 

 
 

D(�, ��) = 	M 0, <"	�� ∈ [�G , �O]P�(�G − ��), <"	�� < �RP�(�� − �O), <"	�� > �O (7) 

where [�G , �O]  denotes the comfortable temperature range. The occupancy profile P�  takes the values 1  or 0 
depending upon whether the building is occupied or not respectively. In the special case, when �G = �O the problem 
becomes one of temperature tracking. 
 
Despite the apparent independence of the AHU units (and their cost functions) the coupling between the zone 
dynamics causes the optimal AHU controls to be coupled as well. If the coupling magnitude is small enough, each 
zone is effectively independent of the other and the optimization is performed individually for each zone. 
Alternatively, we can treat the coupling as an exogenous input that can be forecast at every instant and utilize the 
inherent robustness of receding horizon control to independently optimize the AHU controls simultaneously.  We 
describe such a distributed optimization based algorithm in the following section. 
 
3.2 Distributed MPC Formulation 
Distributed optimization approaches have proved to be successful in large scale optimization problems. Recently, 
researchers have tried to apply distributed approaches to optimizing building system operation(Ma et al., 2009, 
2011; Morosan et al., 2010; Zaheer-Uddin et al., 1993). Distributed approaches reduce computational times by 
simultaneously solving reduced dimensional problems at a subsystem level independently. The independent 
solutions so obtained can be improved via information exchange between the subsystems. 
 
In this paper, we propose a distributed MPC algorithm that handles coupled dynamics between zones as in equation 
(2). Each controller uses an estimate of the temperature differential to predict future trajectories and obtain an 
optimal control. Using the receding horizon principle, the temperature differential estimate is updated at every time 
step. This allows the controllers to attain reasonable performance with a significant gain in optimization time.  
 
An important consideration while implementing a distributed optimization problem is the information to be 
exchanged between the controllers. Ideally to save networking costs between the controllers, the information to be 
exchanged must be kept to a minimum while maintaining reasonable control performance. In the current two-zone 
test case, we found that passing the average   zone temperature of one zone to another was sufficient to obtain 
reasonable performance. In particular, each zone computes a moving average of its zone temperature over a period 
of length TUV�W and passes it to the other zone at every instant. The other zone then uses this information to compute 
an average temperature differential that is assumed to remain constant during the look-ahead interval for the 
predicted trajectory computation. Using the notation from equation (6), the predicted state trajectories have 
dynamics given by 
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�5����|�(7) = �(7)�5��|�(7) + 
(7)X�5��(7) + �Δ�� 	(7)Y + �(7)
5��|�(7)  �5��|�(7) = ��5��|�(7) ; 																																											��|�(7) = ��(7),					< = 1,2 (8) 

 

 

where Δ��(7) represent the past average differential over a period of length 4 time steps.  

Δ��� = 	14?(��Z5(�) − ��Z5(�)G
5H�

),																															Δ��(�) = 	−Δ��(�)	 (9) 

As each controller performs its optimization simultaneously, the total time taken would remain the same irrespective 
of the number of zones (allowing for time taken to exchange required information). This makes it an attractive 
approach for large buildings with several zones. 
 
The optimization problem can be extended to more than two zones but incurs a linear increase in the number of 
decision variables. An � zone building would require optimization with respect to �4 control inputs over every 
prediction horizon. The values of the prediction horizon 4	 are typically large enough to prohibit real-time 
optimization in commercial buildings.   
 
To overcome this problem, we restrict the control input to remain constant for a few time steps. This procedure also 
called move-blocking reduces the number of decision variables thus speeding up computation(Ma et al., 2009). 
Using the occupancy and the price profile enables us to intelligently guess the time instants at which an extra degree 
of freedom is required. This procedure is described next. 
 
3.3 Reduced Degree of Freedom Optimization 
At any instant � , a single zone AHU controller has 4  degrees of freedom (corresponding to the ���5	, ;	 =	0,1, . . . . 4) . However, changing the AHU control too frequently can be costly and wear out the machine. 
Traditionally, this problem is circumvented by trying to maintain the AHU control � at a constant level for the 
longest possible time.  A useful heuristic is to allow a level change before occupancy or price changes to allow for 
load shifting via precool/heat and comfort maintenance. Using such time instants as an initial guess, the optimal 
level changes are computed. This problem has a significantly reduced dimension compared to the original problem 
as the number of occupancy and price changes in a look-ahead horizon are limited. Once the optimal control levels 
are obtained, the time instants for level changes are improved using a line search. This step determines the amount 
of time for optimal precooling/heating. The resulting piecewise constant control trajectory can be further refined by 
repeating the procedure till the trajectory converges. From the resulting trajectory, the optimal control required at the 
current instance is extracted and applied with the MPC updating its predictions as well. The whole process is 
repeated in real time to drive the system. 
 
3.4 Simulation Results 
As an initial case study, the distributed MPC proposed above is applied to the two zone model in Section 2.2. The 
zone dynamics are obtained from Purdue Living Lab model. After order reduction, each zone has a state space 
dimension of 10 and 16 exogenous inputs. The discretization time step is chosen to be 30 min. Internal gains were 
ignored; the only energy directly added to the air node was the output of the AHU and the coupling term due to the 
temperature differential. The coupling factor � is chosen to be 10. 
 
Existing weather data (Indiana TMY2) from July 2010 was used to calculate the solar inputs shared by both zones 
for a 31 day period. Electricity prices variation was represented by a threefold increase in the cost per ;
ℎ during 
peak periods (10am-3pm everyday). Zone 1 was assumed to be occupied daily from 7am-6pm daily while Zone 2 
was assumed to be occupied from 9:30am to 3:30pm daily. The occupancy and price variations are plotted in   
Figure 1. 
 
Initial results of applying the distributed MPC discussed in Section 4 to the two-zone model are given in Figure 2. 
Zone 1 results are given in red while Zone 2 results are plotted in blue. The move-blocking principle is also applied 
during the computation of the optimal control law. A prediction horizon of 4 = 24	ℎ]�@^ was used. The resulting 
control law maintains both the zone temperatures within the comfort region ([�G , �O] = [22,25]).  Due to the 
difference in occupancy profiles, there is an offset between the zone temperatures.  The spiky artifacts in the control 
law of Zone 1 are presumably due to existence of local minima. It is observed that the late occupancy of Zone 2 
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enables its AHU to bring its temperature to the comfortable level much later. After the initial heating the AHU is 
turned off letting the solar inputs and the temperature differential to maintain the temperature. This is an intuitive 
choice for the most economical control whenever feasible. 

 
 

Figure 1: Occupancy and price profiles for the simulation. 
 
 

 
Figure 2: Simulation results of the distributed MPC 

 
3.5 Effect of Information Exchange: 
To see the effect of information exchange among the controllers, we compare the results of the previous simulation 
to those where the controllers ignored the coupling temperature differential while predicting future trajectories. This 
enables the controllers to work completely independently at the cost of reduced control performance. Figure 3 
depicts the results of this simulation. Temperature fluctuation is higher than the previous case as expected. The lack 
of any information exchange frequently causes the predicted trajectories to deviate from real-life trajectories causing 
the controller to overcompensate. 
 
Simulating the distributed MPC with move-blocking requires 20 minutes on average to compute the complete 
optimal trajectory over a 7 day period on an Intel Core 2 Duo desktop.  This shows that distributed optimization 
combined with move-blocking is a plausible candidate for real-time control design. 
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Figure 3: Distributed control with no information exchange between controllers 

 
4. DYNAMIC PROGRAMMING APPROACH 

 
In general, search-based optimization algorithms for HVAC MPC are computationally very costly due to the model 
complexity as well as the non-regularity of the cost functions.  It is therefore interesting to look into another family 
of algorithms which are based on dynamic programming (DP)(Bertsekas, 1976). Dynamic programming provides an 
analytic solution to systems with linear dynamics and quadratic cost functions; its computational complexity is 
polynomial in the state space dimension. Due to its high efficiency, it forms an attractive approach in solving large 
scale problems. We now formulate the building HVAC control problem in a way more amenable for utilizing 
dynamic programming. 
 
4.1 Affine Quadratic Regulator (AQR) Problem 
Recall that the state-space model of a single zone is given by equation (1).  We assume that at any time instant t, the 
cost function can be represented in the nonhomogeneous quadratic form shown as follows, 	 Ja(xa, ua) = �xa − xa,def�gQa(xa − xa,def)	+	�ua − ua,def�gRa(ua − ua,def)	 (10)	
where j� 	, k� are real symmetric positive semi-definite matrices with proper dimensions, and ��,V�l 	��,V�l 	are offsets.  
We formulate the MPC as the following Affine Quadratic Regulator (AQR) problem: 
 min,mno|m,5HI,…,GZ� > = p? >��5����5|� , ���5|��GZ�

5HI q + ����G|� − ���G,V�l�3j��G����G|� − ���G,V�l� 
subject to     ���5��|� = ����5|� + 
���5|� + �
��5|� 	, ∀	; = 0,… , 4 − 1 

��|� = �� 
(11) 

where the notation �s|� denotes at current time � the forecast of the system state in a future time ^, and �s|� , 
s|� are 
defined similarly.  Positive integer 4  is the length of look-ahead horizon for the MPC. The forecast of the 
perturbations 
s|� are always assumed known.  At each time instant �, problem (11) is solved to obtain the best 
future input sequence ��|� , ����|� , … , ���GZ�|�.  Then the immediate input ��|�, which is the first in the sequence, is 
imposed by the MPC to the system. 
 
The AQR model provides a generic platform for MPC design based on dynamic programming.  Our specific 
objective is to track the system output ��  around some given �V�l  (reference temperature).  Suppose the system 
output is given by t = ��.  The system input �� is the heating/cooling power, which is a scalar.  We consider the 
following cost-aware temperature tracking problem: 
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min,m > = p?P���� − �V�l��u
�HI

+ @����q (12) 

Here the coefficients nt and @t encode the profiles of zone occupancy and utility price.  To design the corresponding 
MPC based on the AQR framework, we can let 
 j� = P���3,			k� = @� (13) 
 
and pick any �V�l   satisfying ��V�l 	= 	�V�l.  We use the dynamic programming approach to solve the above AQR 
problem, whose detailed procedures are omitted here due to space limit. 
 
4.2 Simulation Result 
We first tested the AQR-based MPC on a single-zone Purdue Living Lab model.  The simulation result is depicted 
in Figure 4.  The reference temperature is set to 23.5 degrees Celsius.  The periodic solid and the dashed trajectories 
in top plot denote the trend of occupancy and utility price.  We set P� = 500 when occupancy is high, and 	P� = 0 
when low (meaning that there is no penalty for temperature deviation during that period).  We set @� = 0.001 when 
utility price is low, and @�= 0.003 when high. 

 
Figure 4: Simulation result of AQR-based MPC for single-zone Purdue Living Lab model 

 
The simulation result indicates that the AQR-based MPC can effectively react to occupancy and utility price 
changes.  To see this, we may note that there is a peak in heating power when the zone starts to be occupied.  This is 
because the zone temperature is usually precooled to below the reference temperature.  When occupants move in, a 
shot of heat is injected to the zone to raise the zone temperature quickly.  This approach enables the walls, which are 
cooled during night time, to cool down the zone when both ambient temperature and utility price rise later.  We can 
also notice that when utility price is high, the MPC tends to save energy cost.  Hence when the price drops, there is 
an increased amount of cooling to bring down the zone temperature.  The MPC also tends to precool the room using 
small amount of energy throughout the night time. 
 
We kept the same parameters for utility prices and room occupancy, and applied the AQR-based MPC to the two-
zone coupled model as described in equation (2), where the two zones differ in their initial states and occupancy 
profiles.  In the two test cases adopted for simulation, we set � = 10 for both cases.  We also assume no information 
exchange between individual MPCs in one case, and perfect information exchange (i.e., equivalent to a centralized 
MPC for both zones) in the other.  The simulation results are shown in Figure 5 and 6, where the blue curves and the 
red curves correspond to zone 1 and 2, respectively.  It can be seen from the figures that with decent amount of 
coupling (� = 10), the control outputs by two individual MPCs and by the centralized MPC are almost identical, 
whereas the computation load can be split in the first scenario, leading to further improvement of efficiency in the 
multi-zone scenario.  

ambient temperature  
zone temperature (T )  reference temperature (T ref)  

zone occupancy (n(k))  

utility price (r(k))   

control input (�) 
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Figure 5: Simulation result of AQR-based MPC for two-zone model (no information exchange, � = 10) 

 
Figure 6: Simulation result of AQR-based MPC for two-zone model (perfect information exchange, � = 10) 

 
It is worth noting that the AQR-based MPC outperforms the majority of other MPC implementations in terms of 
computational efficiency.  It takes less than three minutes to simulate 1000 time steps(1 time step = 10 min) with a 
look-ahead horizon of 432 time steps (3 days), while other implementations often takes hours, or even days, to 
compute.  This can be crucial if we extend the scenario to large-scale buildings, where controllers of several zones 
may need to perform local optimization and exchange information with each other.  In such cases, computationally 
costly MPC implementations will not be able to afford multiple iterations for the information exchange process to 
converge in cooperative MPC schemes. We intend to investigate other information exchange schemes in more 
realistic scenarios in the future. 
 

5. CONCLUSIONS 
 
A distributed approach to optimal HVAC operation is presented. By exchanging information between two 
independent model predictive controllers, a computationally intractable problem can be solved simultaneously in 
real-time. An alternative approach based on dynamic programming is also presented. On proper formulation of the 
optimal control problem, the dynamic programming approach turns out to be highly efficient due to the existence of 
an analytical solution. Future directions include benchmarking the proposed approaches to test their optimality, 
simulations of more realistic scenarios and setting up distributed MPC in a multi-agent framework. 
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NOMENCLATURE 

 � state vector  Superscripts 
u rate of heat addition kw (i)   Zone i 
w solar and ambient inputs kw Subscripts  
A,B,C,F system matrices  t     time 
T zone temperature K k+t|t       :predicted variable 
r          utility rate    $/kwh 
n          occupancy profile C          discomfort weighting factor  
D          discomfort penalty    
L          prediction horizon Δ	�	          temperature differential   K 
J          cost function 
V          value function 
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