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ABSTRACT

Model based predictive control (MPC) is increasjnigéing seen as an attractive approach in comntgphivilding
HVAC systems. One advantage of the MPC approacthasability to integrate weather forecast, occuganc
information and utility price variations in detemmg the optimal HVAC operation. However, applicatito large-
scale building HVAC systems is limited by the lamganber of controllable variables to be optimizéé\aery time
instance. This paper explores techniques to retheeomputational complexity arising in applying ®IRo the
control of large-scale buildings. We formulate thsk of optimal control as a distributed optimiaatiproblem
within the MPC framework. A distributed optimizati@pproach alleviates computational costs by samelbusly
solving reduced dimensional optimization problermtha subsystem level and integrating the resubimigtions to
obtain a global control law. Additional computatérefficiency can be achieved by utilizing the qeaocy and
utility price profiles to restrict the control law® a piecewise constant function. Alternativelyyder certain
assumptions, the optimal control laws can be foandlytically using a dynamic programming based egpgh
without resorting to numerical optimization routinkeading to massive computational savings. Iniésults of
simulations on case studies are presented to centipaproposed algorithms.

1. INTRODUCTION

The subject of optimal control of building heatinggntilation and air-conditioning (HVAC) systemsshbheen
receiving increased attention in the wake of clenzttange and soaring energy prices. With commeiorad space
predicted to grow, the emphasis on reduction of lVAnergy consumption is warranted. However, opayati
building HVAC systems in an “optimal” way can bddasible in real time, primarily due to the largember of
decision variables to be controlled and the noedinmodels involved. Additionally, utilizing weath and
occupancy information to achieve higher savingdWAC operation is not straight forward.

Model predictive control (MPC) has long been vievesda practical solution for complex control probliavolving
non-linear dynamics and general cost functionsoriffhave been made to formulate and solve thenaptiVAC
operation problem in an MPC framework. MPC basegr@gches also have the benefit of being capable of
incorporating weather forecasts, utility pricingdanccupancy profiles into the optimization. Howewhe large
number of decision variables involved can make sajgproaches prohibitively slow for implementationlarge
buildings.

In this paper, we approach the problem of optimdlAlg control from the perspective of a distributgatimization
problem. Such an approach enables us to decomipeseiginal problem with a large number of decisi@niables
into smaller optimization problems that can be sdlgimultaneously. The resulting solutions can dmregated to
obtain the solution of the original problem. Prexgavorks in this direction include (Oldewurtel &t 2010; Privara

et al., February; Zavala et al., 2011; Ma et #&1® We also propose an MPC algorithm that useserdacking to
effectively reduce the dimension of the optimizatiproblem to be solved at each time step. A dynamic
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programming based MPC is also studied that undemineassumptions yields an easily computable aicaly
solution to the optimization problem. Initial réisufrom simulations of a simplified case study aresented to
compare the performance of the proposed methods.

The paper is organized as follows. In Section 2digeuss the building and HVAC system models carsid. The
optimal control problem is formulated as a MPC peaiin Section 3. This formulation is subsequeetttfended to
a multi-zone scenario in a distributed optimizatitmmework. Section 4 considers the use of dyngrogramming
to solve HVAC optimal control. Conclusions are dnaand future directions are given in Section 5.

2. MODELING

2.1 Thermal Zone Model
For the purpose of illustration, we consider a difigol state-space model of thermal zone and tlmpanying
air-handling unit (AHU). To reduce complexity, walp consider the thermal dynamics of the zone epeland
neglect spatial variations in the indoor air. Thésumption enables us to use a single temperagfieered to as the
zone temperaturg, to represent the indoor air state for each themmae. Using a detailed energy balance at all
discrete wall nodes and the internal air node, are abtain a state-space model that incorporatebeliransients
within walls and solar radiation through window#wrdugh linearization, discretization and approgriaiodel order
reduction techniques, the model may be expressttiform

X¢pq = Axy + Buy + Fwy,

T, = Cx, 1)

whereA, B, F andC represent the system matrices of reduced dimerditained via model order reduction and
denotes the discrete time instant. The state vect@presents a transformed vector containing inféionaabout
the temperatures of the wall and air nodes. Phlysigaificance of each component of the state wastoot explicit
due to the transformation. The vectqrrepresents the input vector comprising of corahé inputs that act
directly on the internal temperatures (rate of gneadded by AHU, internal gains) and the mafitigncapsulates
the effect of these inputs on the system. Vewtodenotes the exogenous (uncontrollable) inputsxgadin the
envelope (solar radiation, ground radiation). Télation between the zone temperat@teand the state vectay is
modeled by the output matrix This particular formulation allows for flexibilitin the treatment of the exogenous
inputs—as disturbances with known parameters ompbetely known trajectories. A model of the form(ih), has
been developed for the Purdue Living Lab RadiamyrRdfacility currently under construction). Foretleurrent
study, the Living Lab model has been adopted asetecase.

2.2 Multi-zone M odel

The above single-zone model can be extended tora raalistic scenario where the dynamics of neighigazones
are coupled. In the current study, we model outmuipling where the heat flux into a zone from igghbor is
proportional to the temperature differential betwélee zones. This choice of coupling is motivatgdabsituation
when the neighboring zones have a shared openiegli¥gtrate the idea using a two-zone buildingingghe same
principles as used in modeling the single therroakz we can write the coupled dynamics of both z@se

xt(}r)l = A(l)xt(l) + B [ugl) + a(Tt(z) - Tt(l))] + F(l)wt(l),
22 = A0xP + BOL® + a(TV - 1) + FOW®,
T® = Wy ®
Tt(Z) — C(z)xt(Z)
where the numerical superscripts distinguish betwtbe zones. The strength of the coupling is detexdhby the
factora. Similar models can be developed for more thanzemes where the coupling strengtican be adjusted to
model the relations between the dynamics as neddwedabove model describes a convective heat tansth the
factora determined by the mass flow rate of air betweemegoUsing air flow analysis software such as COMIS

(Haas et al., 2002), it is possible to model theptiong relation among multiple zones and obtain erical values
of the coupling strengths.

(@)

As a test scenario, we consider two identical zdyeesed on the model of the Purdue Living Lab Radroom,
with individual, identical AHU’s. We also assumethhe effect of weather and solar radiation tddemtical on
both the zones. Such a scenario presumes thabties are small enough and close by to ignore i@mmin solar
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incidence and wind conditions. Individual AHU’s itgypghe total power consumption is the sum of thaividual
power consumptions.

2.3 AHU mode
The air handling units (AHUs) were assumed to haprised of heating and cooling coils along with thquisite
pumps and fans. The governing equations for theep@onsumption of each component are written (sfyipd
assumptions such as constant efficiency and preesatios are assumed). The resulting equationtharesummed
up to generate the total power consumpficend AHU outputs; as a function of the mass flow raté,(,;) into
the zone, the temperature of the air supplied byMHU (T,.,,;), zOone temperaturg, ambient wet-bulb temperature
Toa:

P = f(Myent, Tvents T Toa), 3

u = g(Myent, Toenes T» Toa)- ( )

It must be noted that the actual controllable \desim andT,,.,. affect the dynamics only through the rate at which
heat is removed or addéd). Hence we can reduce the problem of AHU operatiotihat of determining optimal
value ofu. Once the optimal trajectory is obtained, the rgitpimass flow raten,,.,,; and the air temperatuf®,,;
that lead to the least power consumption can be-balculated and applied. This observation allovgs to
succinctly capture the power consumption of the AHlterms of the heat supplied to the zone usiegétation
P*(w;T,Top)= _ min P(T, Myene Tvent> Toa)- (4)
U~Myent.Tvent
HereP*(u; T, Ty,) represents the minimum power consumption of an Ablen supplying heating or cooling at
rateu to the zone at temperatufeand ambient temperatufg,. This representation of the power consumption will
be used throughout the simulations.

The next section describes the formulation of tteébjem in the MPC framework. We define the objestiunction
and explore the need for efficient MPC.

3. CONTROLLER DESIGN

3.1 Modd Predictive Control Formulation

Model predictive control utilizes a predictive mbde anticipate the behavior of the system overredigtion
horizonL, and uses this information to decide upon thenagiticourse of action. The optimality of the deaisie
highly sensitive to the accuracy of the model amel forecast. Receding horizon control, where thedast is
updated every time instant, has proved highly &ffedn reducing this sensitivity.

In the current application, model predictive coh@mtlows us to accurately incorporate the uncotaldé factors
such as variations in the occupancy, utility ratesl weather conditions. Throughout the study, wsurag
availability of forecasts for all the exogenousutgpover the prediction horizdn We use the inherent robustness of
the receding horizon controller to handle inacciem the forecasts. For the two-zone model pitesein Section
2.2 the predicted trajectory can be represented as

xlgi-l)—t+1|t = A(i)xlgilm +B® [ul(ciJ)rt + aATk(?m] + F(i)ngleq
@ ® ® ® ()
Tk+t|t = X0 Xeje = X¢
Herex,g‘ztlt represents the predicted state trajectory at timé starting from time under the action ofu® and
exogenous inpuv®. The terrrAT,E?tItdenotes the predicted temperature differential.

In the two zone coupled model in equation (3), mptiHVAC operation would entail minimizing the tbfzower
consumption of both the AHUs while maintaining ggant comfort, or equivalently

Je=1"+J2

L
. . . 6
= Z [rtp* (ul(clit;TkHIt' TOAt+k|t) +yD(t+k, xt(?kn)]‘ i=12 ©
t=0
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The termP;" represents the power consumption of the AHU okzZas described earlier white denotes the utility
price at timet. This factor models the realistic scenario whelectecity costs more during peak hours and

encourages savings through load shiftib¢, xt(i)) is a measure of the occupant discomfort in zosmetimet.
Adjusting the factow prioritizes one of the two competing objectivedheTintegral nature of energy costs is
reflected in the summation over a look ahead hariabL. The cost function is to be minimized subject lie t
dynamics given in equation (2) over the space bfadmissible inputst”) that do not violate any physically
imposed constraints (capacity of AHU). At timéhe optimal trajectory of both the AHUaEEk,k =0,1,..,L)are

determined. The first input of the sequem&% is applied to the corresponding system. At time 1 the cost
function and forecasts are updated to reflect tiierimation available and the process repeated. prbdiction
horizonL is chosen to be large enough to sufficiently capthe behavior (such as periodicity) of the exagsn

factors. We also presuppose knowledge of the smmert(i). The cost function can be extended to more than tw
zones.

The choice of the occupant discomfort meDi¢,-) is an important factor in ensuring realistic résuDirect
comfort models such as the Predicted Mean Vote (Pl Predicted Percentage Dissatisfied (PPD),gtmou
accurate, do not lend themselves to easy optimizatiA more convenient method to quantify discoinferto
measure the deviation of the zone temperature &@medetermined comfort interval. As occupant disioot needs
to be prioritized during working hours, a factopmesenting the occupation profiles is also incoafed. The
resulting discomfort measure can be written as
0, if T, € [T, Ty]
D(t,x) = { (T, =T,  if T <T, (7)
n(T; — Ty), ifT.>Ty

where [T, Ty] denotes the comfortable temperature range. Thepacocy profilen, takes the value$ or O
depending upon whether the building is occupiedairespectively. In the special case, wiige= T, the problem
becomes one of temperature tracking.

Despite the apparent independence of the AHU uaitsl their cost functions) the coupling between zbae
dynamics causes the optimal AHU controls to be Elps well. If the coupling magnitude is small eglo, each
zone is effectively independent of the other and dptimization is performed individually for eaclone.
Alternatively, we can treat the coupling as an exams input that can be forecast at every instadtudilize the
inherent robustness of receding horizon contrahttependently optimize the AHU controls simultanglgu We
describe such a distributed optimization basedrilguo in the following section.

3.2 Distributed MPC Formulation

Distributed optimization approaches have proveth@écsuccessful in large scale optimization probleRecently,
researchers have tried to apply distributed apfpwesmdo optimizing building system operation(Ma kt 2009,
2011; Morosan et al., 2010; Zaheer-Uddin et al93)9 Distributed approaches reduce computatiomaédi by
simultaneously solving reduced dimensional probleshsa subsystem level independently. The indepénden
solutions so obtained can be improved via inforamaéxchange between the subsystems.

In this paper, we propose a distributed MPC alparithat handles coupled dynamics between zones expuiation
(2). Each controller uses an estimate of the teatper differential to predict future trajectoriesdaobtain an
optimal control. Using the receding horizon prinejghe temperature differential estimate is updiateevery time
step. This allows the controllers to attain reabteperformance with a significant gain in optintiaa time.

An important consideration while implementing atdlsited optimization problem is the information b
exchanged between the controllers. Ideally to sete/orking costs between the controllers, the imfation to be
exchanged must be kept to a minimum while maintgimeasonable control performance. In the curneatzone
test case, we found that passing the average teongerature of one zone to another was suffidiertbtain
reasonable performance. In particular, each zongates a moving average of its zone temperature ayperiod

of lengthN,,,.., and passes it to the other zone at every instéet.other zone then uses this information to comput
an average temperature differential that is assutoetemain constant during the look-ahead intefeal the
predicted trajectory computation. Using the notatipom equation (6), the predicted state trajeetorhave
dynamics given by
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xl(cl-l)—t+1|t = Amx(o +B® [ulg?'t +adT, V] + F(i)WIELEtIt
»  _ @ o _ O ;_ 8
Tk+t|t Cx Kie+t|tr X =X L= 1,2 (8)

WhereATt(i) represent the past average differential over mgeaf lengthL time steps.
AT = 7 Z(T(” -1, AT® = ATV 9)

As each controller performs |ts optlmlzation simukously, the total time taken would remain theesamespective
of the number of zones (allowing for time takenetahange required information). This makes it araetive
approach for large buildings with several zones.

The optimization problem can be extended to moam tfwo zones but incurs a linear increase in thebar of
decision variables. Am zone building would require optimization with resp tomL control inputs over every
prediction horizon. The values of the predictionribon L are typically large enough to prohibit real-time
optimization in commercial buildings.

To overcome this problem, we restrict the contnplut to remain constant for a few time steps. Phigedure also
called move-blocking reduces the number of decisianiables thus speeding up computation(Ma et281Q9).
Using the occupancy and the price profile enabtet® untelligently guess the time instants at wrachextra degree
of freedom is required. This procedure is descritext.

3.3 Reduced Degree of Freedom Optimization

At any instantt, a single zone AHU controller hdsdegrees of freedom (corresponding to the,,k =
0,1,....L). However, changing the AHU control too frequentsn be costly and wear out the machine.
Traditionally, this problem is circumvented by trgi to maintain the AHU contral at a constant level for the
longest possible time. A useful heuristic is tlmala level change before occupancy or price chatgeallow for
load shifting via precool/heat and comfort mainteze Using such time instants as an initial gutss,optimal
level changes are computed. This problem has éfismmtly reduced dimension compared to the origprablem
as the number of occupancy and price changesankadhead horizon are limited. Once the optimaltrabrevels
are obtained, the time instants for level changesraproved using a line search. This step detersithe amount
of time for optimal precooling/heating. The resudipiecewise constant control trajectory can bthéurrefined by
repeating the procedure till the trajectory conesrd-rom the resulting trajectory, the optimal colntequired at the
current instance is extracted and applied with MeC updating its predictions as well. The whole gass is
repeated in real time to drive the system.

3.4 Simulation Results

As an initial case study, the distributed MPC prsgababove is applied to the two zone model in 8e@i2. The
zone dynamics are obtained from Purdue Living Laideh After order reduction, each zone has a stpsee
dimension of 10 and 16 exogenous inputs. The digat®n time step is chosen to be 30 min. Integahs were
ignored; the only energy directly added to thenaide was the output of the AHU and the couplingitdue to the
temperature differential. The coupling factors chosen to be 10.

Existing weather data (Indiana TMY2) from July 2048s used to calculate the solar inputs sharedollty innes
for a 31 day period. Electricity prices variatiomswepresented by a threefold increase in thepsyé#wh during

peak periods (10am-3pm everyday). Zone 1 was asbtonbe occupied daily from 7am-6pm daily while Zah
was assumed to be occupied from 9:30am to 3:30ph. déhe occupancy and price variations are plotied
Figure 1.

Initial results of applying the distributed MPC dissed in Section 4 to the two-zone model are givdfigure 2.
Zone 1 results are given in red while Zone 2 resatle plotted in blue. The move-blocking princigglelso applied
during the computation of the optimal control ladvprediction horizon of. = 24 hours was used. The resulting
control law maintains both the zone temperaturethimithe comfort region {[,, Ty] = [22,25]). Due to the
difference in occupancy profiles, there is an dffsgtween the zone temperatures. The spiky adifache control
law of Zone 1 are presumably due to existence cdllminima. It is observed that the late occupamicYone 2
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enables its AHU to bring its temperature to the faytable level much later. After the initial heajithe AHU is
turned off letting the solar inputs and the temperdifferential to maintain the temperature. Tisisn intuitive
choice for the most economical control whenevesifda.

Tl apess 0 smmm 0 meses 0 B 0 geeam 0 om0 e .
% 0.8 i
E 0.6
2
T o4
£
a8 o2 g 2 H : - :
2 T L — SUTND, WY LR | W 1 (I 5 R i UO— -
o 1 z 3 ) s s ‘
Time (days) T sz::;
3.5—
3= ‘ i J -
_ 2.5 ‘
& | / \
2 21— ‘
=
£ 1.5 |
s | |
1
0.5—
% 3 z 3 2] 5 e
Time (days)
Figure 1: Occupancy and price profiles for the simulation.
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Figure 2: Simulation results of the distributed MPC

3.5 Effect of Information Exchange:

To see the effect of information exchange amongctirgrollers, we compare the results of the previsimulation

to those where the controllers ignored the couptiémgperature differential while predicting futurajéctories. This
enables the controllers to work completely indegenig at the cost of reduced control performandgufe 3

depicts the results of this simulation. Temperafluetuation is higher than the previous case gmeeted. The lack
of any information exchange frequently causes tieeipted trajectories to deviate from real-lifgdidories causing
the controller to overcompensate.

Simulating the distributed MPC with move-blockingquires 20 minutes on average to compute the cdenple

optimal trajectory over a 7 day period on an If@ere 2 Duo desktop. This shows that distributetinapation
combined with move-blocking is a plausible candidfat real-time control design.
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Figure 3: Distributed control with no information exchangetlween controllers

4. DYNAMIC PROGRAMMING APPROACH

In general, search-based optimization algorithmdH#dAC MPC are computationally very costly due ke tmodel
complexity as well as the non-regularity of thetdosictions. It is therefore interesting to looitd another family
of algorithms which are based on dynamic prograngn(idP)(Bertsekas, 1976). Dynamic programming presidn
analytic solution to systems with linear dynamicgl ajuadratic cost functions; its computational clamxipy is
polynomial in the state space dimension. Due thii efficiency, it forms an attractive approanhsblving large
scale problems. We now formulate the building HVA&@ntrol problem in a way more amenable for utiligin
dynamic programming.

4.1 Affine Quadratic Regulator (AQR) Problem
Recall that the state-space model of a single mg&en by equation (1). We assume that at ang fnstant, the
cost function can be represented in the nonhomagsnguadratic form shown as follows,

T T
Ji (e up) = (Xt - Xt,ref) Qe(X¢ — Xgrer) + (ut - ut,ref) Re(ue — Ugrer) (10)

whereqQ, , R, are real symmetric positive semi-definite matriegth proper dimensions, ang ,..r u, ., are offsets.
We formulate the MPC as the following Affine Quailrd&regulator (AQR) problem:

L-1
min J= [th+k(xt+k|t:ut+k|t)
k=0

T
+ (x - X X - X
Uy 1k =0,..L—1 ( t+L|t t+L,‘ref) Qt+L( t+L|t t+L,‘ref)

SubjeCt to xt+k+1|t = Axt+k|t + But+k|t + Fwt+k|t ,V k= 0, ,L -1 (11)
Xt|e = Xt

where the notatior,, denotes at current tintethe forecast of the system state in a future tirendx;,, g, are
defined similarly. Positive integdr is the length of look-ahead horizon for the MPheTforecast of the
perturbationsy, are always assumed known. At each time ingtaptoblem (11) is solved to obtain the best
future input sequenc®,;, Uss1je, - Uerp—1¢- T heN the immediate input;,, which is the first in the sequence, is
imposed by the MPC to the system.

The AQR model provides a generic platform for MP&sign based on dynamic programming. Our specific
objective is to track the system outfiytaround some givefi.., (reference temperature). Suppose the system

output is given by = Cx. The system input, is the heating/cooling power, which is a scal#/e consider the
following cost-aware temperature tracking problem:

International High Performance Buildings Confereat®urdue, July 16-19, 2012
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minJ = [ E n(T, — Tref)2 + rou? (12)
ut
t=0

Here the coefficients, andr, encode the profiles of zone occupancy and utilitge. To design the corresponding
MPC based on the AQR framework, we can let

Qf = ntCCT, Rf =Tt (13)

and pick any,., satisfyingCx,., = T,.;. We use the dynamic programming approach to sthieeabove AQR
problem, whose detailed procedures are omitted diegzdo space limit.

4.2 Simulation Result

We first tested the AQR-based MPC on a single-Zaum&lue Living Lab model. The simulation resultiepicted
in Figure 4. The reference temperature is seBtb degrees Celsius. The periodic solid and tisaethtrajectories
in top plot denote th&rend of occupancy and utility price. We sgt= 500 when occupancy is high, angd=0

when low (meaning that there is no penalty for terafure deviation during that period). Weget 0.001 when
utility price is low, and= 0.003 when high.

35 T - T
ol /amb|ent temperature

\ \ \ T \ \
/ zone temperaturd () / reference temperaturé ) n

.
%
T

20

e =1 —_ r=- =1 == = ]
[ b [ |
e ___1 b\ [ P S A S BN S e |l ____ b

zone qccupanc;n(k)) ‘ | \ \ L ‘

100 200 300 400 s00 BOD 700 800
Tirme Step

utility price (r(k))

Temperature (C)

/control input {)

Injected Heal Power (Watt)

- | ! \ ! \ | ! \
100 200 300 400 500 600 700 800
Tirme Step

Figure 4: Simulation result of AQR-based MPC for single-zéhedue Living Lab model

The simulation result indicates that the AQR-bad#@C can effectively react to occupancy and utiliiice

changes. To see this, we may note that ther@éak in heating power when the zone starts to bepied. This is
because the zone temperature is usually precoolbdlow the reference temperature. When occupaat® in, a
shot of heat is injected to the zone to raise tireezemperature quickly. This approach enablesvtiils, which are
cooled during night time, to cool down the zone wheth ambient temperature and utility price resed. We can
also notice that when utility price is high, the ®lfends to save energy cost. Hence when the grags, there is
an increased amount of cooling to bring down theez@mperature. The MPC also tends to precoalohe using
small amount of energy throughout the night time.

We kept the same parameters for utility prices \@mi occupancy, and applied the AQR-based MPCeadwio-
zone coupled model as described in equation (2grevthe two zones differ in their initial stateslaotcupancy
profiles. In the two test cases adopted for sitiutawe setx = 10 for both cases. We also assume no information
exchange between individual MPCs in one case, anfégt information exchange (i.e., equivalent toeatralized
MPC for both zones) in the other. The simulatiesults are shown in Figure 5 and 6, where the dlimees and the
red curves correspond to zone 1 and 2, respectivitlgan be seen from the figures that with de@mbunt of
coupling @ = 10), the control outputs by two individual MPCs anglthe centralized MPC are almost identical,

whereas the computation load can be split in ttet ficenario, leading to further improvement ofcéghcy in the
multi-zone scenario.
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Figure5: Simulation result of AQR-based MPC for two-zonedelo(no information exchange,= 10)
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Figure 6: Simulation result of AQR-based MPC for two-zonedela(perfect information exchange,= 10)

It is worth noting that the AQR-based MPC outperferthe majority of other MPC implementations imierof
computational efficiency. It takes less than thméautes to simulate 1000 time steps(1 time std® amin) with a
look-ahead horizon of 432 time steps (3 days), evbither implementations often takes hours, or elays, to
compute. This can be crucial if we extend the aderto large-scale buildings, where controllersevVeral zones
may need to perform local optimization and exchanf@mation with each other. In such cases, caatmnally
costly MPC implementations will not be able to affonultiple iterations for the information exchang®cess to

converge in cooperative MPC schemes. We intenchtestigate other information exchange schemes iremo
realistic scenarios in the future.

5. CONCLUSIONS

A distributed approach to optimal HVAC operation psesented. By exchanging information between two
independent model predictive controllers, a computally intractable problem can be solved simudtausly in
real-time. An alternative approach based on dyngrogramming is also presented. On proper fornanatif the
optimal control problem, the dynamic programmingraach turns out to be highly efficient due to éxéstence of

an analytical solution. Future directions includenthmarking the proposed approaches to test tipgimality,
simulations of more realistic scenarios and settipglistributed MPC in a multi-agent framework.
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NOMENCLATURE
X state vector Super scripts
u rate of heat addition kw 0] Zonei
w solar and ambient inputs kw Subscripts
AB,C,F system matrices t time
T zone temperature K k+t|t :predicted vagabl
r utility rate $/kwh
n occupancy profile
y discomfort weighting factor
D discomfort penalty
L prediction horizon
AT temperature differential K
J cost function
\Y, value function
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