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 ABSTRACT  
 

The combination of geothermal heat pumps (GEO HPs) and thermally activated building systems (TABS), that 
allow both low temperature heating and high temperature cooling, could yield primary energy savings of around 20-

71% in comparison with conventional heating/cooling systems. However, the potential energy savings are rarely 

reached in practice due to bad integration of the different subsystems and inefficient control. The present paper 

presents the analysis of two monitoring campaigns by stressing the influence of relevant parameters such as the 

performance of components (heat pump, ground heat exchangers, TABS, etc.), building characteristics and the 

implemented control strategies. The buildings have been monitored and analyzed in the frame of the WKSP-project 

realized by Institute of Building Services and Energy Design (IGS) at Technical University of Braunschweig. The 

results show good performance of ground coupled heat pump with seasonal COP up to around 5. Moreover, the use 

of ground heat exchangers to perform free chilling allows seasonal EER up to 20. Furthermore, the control strategies 

implemented in the different buildings are quite different. It is also shown that this system can lead to a running cost 

reduction up to 50% compared to conventional systems and that CO2 emissions can be reduced by 40%.  

 

1. INTRODUCTION 

 
Regarding the total energy use world-wide, 38% is used in buildings. Moreover, in the USA, 66% of which was 

used for HVAC and lighting in 2005 (IEA, 2008; US Department of Energy, 2007). During the past decades, the 

interest of sustainable office buildings has grown dramatically, due to the depletion of energy resources and the 

environmental impact of energy use. An important number of new solutions have been proposed as alternative 

heating and cooling systems. Among these, TABS have emerged as energy efficient and economical solutions. 

 
The principle of TABS is to use massive parts of the building structure as thermal buffer. Usually it consists in pipes 

embedded into a concrete floor and in which a fluid, typically water, flows through in order to heat or to cool down 

a room. The large heat exchange surfaces involved in TABS are of great interest because low energy cooling or 

heating sources can be used (Lehmann B. et al., 2007; Gwerder M. et al., 2008). Moreover, the use of the building’s 

thermal mass allows reducing the peak in energy demand (Rijksen DO. et al, 2010; Saelens D. et al, 2011). 

 

Within the scope of the European R&D-project “GEOTABS”, this article presents a detailed comparison of the 

performance of two monitored buildings. Investigated buildings are first described in terms of configuration of the 

cooling and heating plants. Energy performance is analyzed on monthly and seasonal bases and the influence of 

different control strategies is discussed. First conclusions are finally drawn regarding comfort performance and 

potential running cost reduction as well as CO2 emissions.  

mailto:cgantiez@ulg.ac.be
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2. ENERGY CONCEPT 

 
The two monitored office buildings presented in this paper are both located in Germany and have a net floor area of 

20,693 m² for building A and round 4,000 m² for building B. The energy concepts of these two buildings are 

presented in Figure 1 and Figure 2 for building A and building B respectively. 

 

In the case of building A (Figure 1), the geothermal system is composed of 196 energy piles of 9 meters length each. 

In winter, the geothermal water to water heat pump (106 kW) extracts heat from the ground in order to supply the 

TABS. The rest of the heat consumption is provided by district heating through radiators, floor heating and 

ventilation systems. In summer, the entire cooling load is provided by geothermal energy through the TABS (free 

chilling mode (150kW)).  

 

 

Figure 1: Energy concept of building A for heating (right) and cooling (left) [Source IGS] 

 

  

Figure 2: Energy concept of building B for heating (right) and cooling (left) [Source IGS] 

 
For the second building (Figure 2), there are 100 energy piles, with length from 17 to 22 meters. In the wintertime a 

ground coupled brine to water heat pump (82 kW) extracts heat from the ground and supplies it into the building. 

During the day it is used to preheat the incoming air to the entrance hall and the training rooms; whereas at 

nighttime it supplies heat to the TABS (approximately 1,500 m²) in the offices and training rooms. The geothermal 

energy covers the base load of the building. In case of an increased heat demand during the day, the additional heat 

from district heating is supplied to conventional radiators in the offices and floor heating in the entrance hall. 
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Moreover, the district heating can be used for preheating the air supplied to the ventilation systems. In the 

summertime, two cooling modes are planned. As long as the conditions in the ground are cold enough, the free 

chilling mode (80 kW) is used. When the ground temperature rises notably, the reversible heat pump is then used as 

a chiller (89 kW). As in wintertime, the soil is used to pre-cool the air supplied to the ventilation system during the 

day and to cool down the TABS in the office and training rooms at night. 

 

3. ENERGY BALANCE AND PERFORMANCE 

 
3.1 Measurement data 
The available measurement data cover a period ranging from January 1st, 2010 to December 31st, 2010 and from 

January 1st, 2009 to December 31st, 2009 for building A and B respectively with a quarter-hourly sampling rate. 

Moreover, measurements comprise thermal data such as temperatures and water flow rates, but also electrical energy 

use.  

 

3.2 Seasonal analysis 
Based on the thermal data, the thermal powers of the system’s components are computed as follows:  

 

 𝑄 𝑒𝑎𝑡𝑖𝑛𝑔  / 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 =  𝑀 𝑤  ∙ 𝑐𝑝𝑤  ∙ (𝑇𝑤 ,𝑠𝑢 −  𝑇𝑤 ,𝑒𝑥 )         [W] (1) 

 

Where: 

𝑄 𝑒𝑎𝑡𝑖𝑛𝑔  / 𝑐𝑜𝑜𝑙𝑖𝑛𝑔  is the thermal power of the component (TABS, radiator, ventilation, floor heating, DHW), [W] 

𝑀 𝑤  is the water mass flow rate, determined by counters placed inside the circuit, [kg/s] 

𝑐𝑝𝑤  is the water specific heat capacity, [J/kg.K]  

𝑇𝑤 ,𝑠𝑢  is the supply water temperature injected into the circuit, [°C] 

𝑇𝑤 ,𝑒𝑥  is the exhaust water temperature from the circuit, [°C] 

 

Knowing the electricity consumption of the compressor of the heat pump, its performance in heating and cooling 

mode are respectively: 

 

 𝑆𝐶𝑂𝑃 =
𝑄 ,𝑔𝑒𝑛 ,𝑜𝑢𝑡

𝑊 ,𝑔𝑒𝑛 ,𝑖𝑛
         [-] (2) 

 

 𝑆𝐸𝐸𝑅 =
𝑄𝑐,𝑔𝑒𝑛 ,𝑜𝑢𝑡

𝑊𝑐 ,𝑔𝑒𝑛 ,𝑖𝑛
         [-] (3) 

 

Where: 

𝑆𝐶𝑂𝑃 is the Seasonal Coefficient Of Performance [-] 

𝑄 ,𝑔𝑒𝑛 ,𝑜𝑢𝑡  is the heating energy provided at the condenser of the heat pump [kWh] 

𝑊 ,𝑔𝑒𝑛 ,𝑖𝑛  is the electrical energy use of the compressor of the heat pump in heating mode [kWh] 

𝑆𝐸𝐸𝑅 is the Seasonal Energy Efficiency Ratio [-] 

𝑄𝑐 ,𝑔𝑒𝑛 ,𝑜𝑢𝑡  is the cooling energy provided at the evaporator of the heat pump [kWh] 

𝑊𝑐 ,𝑔𝑒𝑛 ,𝑖𝑛  is the electrical energy use of the compressor of the heat pump in cooling mode [kWh] 

 

In the case of free chilling operating mode, the performance of the system is given by: 

 

 𝑆𝐸𝐸𝑅 =
𝑄𝑐 ,𝑓𝑐 ,𝑜𝑢𝑡

𝑊𝑐 ,𝑓𝑐
         [-] (4) 

Where: 

𝑄𝑐 ,𝑓𝑐 ,𝑜𝑢𝑡  is the cooling energy provided to the building in free chilling mode [kWh] 

𝑊𝑐 ,𝑓𝑐  is the electrical energy use of the circulating pumps on ground and TABS side [kWh] 

 

 

The heating energy provided at the condenser of the heat pump of building A and B is respectively: 
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 𝑄 ,𝑔𝑒𝑛 ,𝑜𝑢𝑡 = 𝑄 ,𝑇𝐴𝐵𝑆          [kWh] (5) 

 𝑄 ,𝑔𝑒𝑛 ,𝑜𝑢𝑡 = 𝑄 ,𝑇𝐴𝐵𝑆 + 𝑄 ,𝑣𝑒𝑛𝑡 ,𝑔𝑟𝑜𝑢𝑛𝑑          [kWh] (6) 

 

The cooling energy is respectively for building A and B: 

 

 𝑄𝑐 ,𝑓𝑐 ,𝑜𝑢𝑡 = 𝑄𝑐 ,𝑇𝐴𝐵𝑆          [kWh] (7) 

 𝑄𝑐 ,𝑓𝑐 ,𝑜𝑢𝑡 + 𝑄𝑐,𝑔𝑒𝑛 ,𝑜𝑢𝑡 = 𝑄𝑐,𝑇𝐴𝐵𝑆 + 𝑄𝑐 ,𝑣𝑒𝑛𝑡 ,𝑔𝑟𝑜𝑢𝑛𝑑          [kWh] (8) 

 

Results are presented in Table 1. It is shown that for both buildings, the annual cooling load is very small compared 

to the heating load (from 3.5 to 5.5%). Moreover, the entire cooling load is provided by the geothermal system in 

both cases. Regarding the heat load, the TABS provide only 14.2% of the total heat load in case of building A and 

13.6% in case of the second building. Concerning the performance of the system, it is shown that the heat pump of 

the first building has a better SCOP than building B. This could be due to the fact that the heat pump of building B 

has lower nominal performance and thus higher electrical consumption than the one of building A. Results also 

show that the SEER of building A is twice as higher as the one of building B because the entire cooling load is 

provided only by free chilling. 
 

Table 1: Annual energy consumption and performance 

 

  Building A (2010) Building B (2009) 

Annual heating load [MWh/year] 1200 355 

Annual cooling load [MWh/year] 46.47 19.69 

Heating load by ventilation (district heating) [MWh/year] 109.28 5.3 

Heating load by ventilation (geothermal) [MWh/year]  42.3 

Heating load by TABS [MWh/year] 171.3 48.2 

Heating load by radiators [MWh/year] 885.78 219.3 

Heating load by floor heating [MWh/year] 33.66 23.9 

Heating load by DHW [MWh/year]  15.9 

Cooling load by ventilation [MWh/year]  4.2 

Cooling load by TABS [MWh/year] 46.47 15.2 

SCOP [-] 5.15 3.7 

SEER [-] 20.9 10.8 

 

These results are also presented on a monthly base (Figure 3 and Figure 4). It can be seen that most of the time, 

heating and cooling are not provided at the same time. Except in January for building B where the TABS and the 

ventilation provided 3.2 MWh of cooling energy (the reason of this unexpected load could not be explained by the 

building manager).  

Figure 3: Heating (left) and cooling (right) load of building A 
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Figure 4: Heating (left) and cooling (right) load of building B 

 

4. ECONOMIC AND ENVIRONMENTAL INTEREST ASSESSMENT 

 
4.1 Cost reduction 
Table 2 presents an estimation of the running cost reduction allowed by the use of geothermal energy. In order to 

assess this reduction, costs have been compared to an average cost of 0.08€/kWh for district heating and to an 

electricity cost of 0.12€/kWh for the chiller, compressor of the heat pump and circulating pump on ground side, 

according to the German Federal Statistical Office. Moreover, a COP of 2.5 and an efficiency of 95% are chosen 

respectively for the chiller and for the district heating. 

 

The results show that the use of geothermal energy allows, for building A and B respectively, a reduction of round 

12,000€/year and 5,000€/year in comparison with a traditional heating and cooling system.  

 

Table 2: Estimation of the cost reduction 
 

 

 

Energy [MWh/year] Average cost 

[€/kWh] 

Traditional cost 

[€/year] 

Geothermal cost 

[€/year] 

 A B  A B A B 

Traditional     

District heating 171.3 / 0.95  

= 180.3 

90.5/0.95 

=95.3 

0.08 14,424 7,624 - - 

Chiller 46.47 / 2.5 

=18.58 

19.69/2.5 

=6.7 

0.12 2,229.6 804 - - 

Geothermal     

 37.2 27.04 0.12 - - 4,464 3,244 

Total energy cost   16,653.6 8,428 4,464 3,244 

Energy cost 

savings 

    12,189 5,184 

 

4.2 CO2 reduction 
The assessment of the reduction of CO2 emissions is also based on the comparison with traditional district heating 

and chiller. The CO2 emission factors are 219 gCO2/kWh and 633 gCO2/kWh, respectively for district heating and 

electricity (Gemis 4.5, Institut Wohnen und Umwelt GmbH, Germany).  

 

Results show that the use of geothermal energy allows for a reduction of round 27 tons of CO2 per year and 8 tons of 
CO2 per year for building A and B respectively. 
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Table 3: Estimation of the CO2 reduction 

 

 

 

Energy [MWh/year] CO2 emission 

[gCO2/kWh] 

Traditional  

CO2 emission 

[kgCO2/year] 

Geothermal  

CO2 emission 

[kgCO2/year] 

 A B  A B A B 

Traditional     

District heating 171.3 / 0.95  

= 180.3 

90.5/0.95 

=95.3 

219 39,485 20,870 - - 

Chiller 46.47 / 2.5 

=18.58 

19.69/2.5 

=6.7 

633 11,761 4,241 - - 

Geothermal     

 37.2 27.04 633 - - 4,464 3,244 

Total CO2 

emission 

  51,246 25,111 23,547 17,116 

CO2 reduction     27,699 7,995 

 

5. CONTROL STRATEGIES 

 
5.1 Building A 
There was only information concerning the applied control strategies of the TABS in this building. TABS 

(geothermal source) operate in heating mode, when continuous average outdoor temperature measured over the last 

24h is lower than 14°C. The cooling mode is turned on, if continuous average outdoor temperature measured over 
the last 24h is higher than 20°C. Figure 5 shows quarter-hourly values of the supply TABS temperature in function 

of the average outdoor temperature measured over the last 24h for 2010. It can be seen that the supply water 

temperature of the TABS is close to the theoretical curve in heating and cooling mode with a difference of 2K, in 

average. Furthermore when the average outdoor temperature is between 14°C and 20°C there should be a deathband, 

where the geothermal system does not operate. It can be seen that, in this time, the circulating pump of the TABS is 

running. It is inefficient because of no heating or cooling supply for the TABS, it is only recirculation. In summer 

time, the ground is too hot for cooling mode so that the cooling curve is exceeded by 3K. Moreover, it can be 

deduced from the measurement that the TABS operate 24h/24h.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Control strategy of TABS (building A) 
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5.2 Building B 
The control strategies of the different subsystems of this building are: 

 

 Radiators (district heating source) operate at day time if the present outdoor temperature is lower than 18°C 

while they operate at night time if the present outdoor temperature is lower than 5°C.  

 TABS (geothermal source) operate only at night time, between 10:00 PM and 6:00 AM. The heating mode is 

switched on if the average outdoor temperature measured between 6:00 AM and 6:00 PM of the previous day 

was lower than 17.5 °C. The cooling mode is turned on if the average outdoor temperature measured between 

6:00 AM and 6:00 PM of the previous day was higher than 22 °C and if the present room temperature is higher 

than 20 °C. If the average outdoor temperature is between 17.5°C and 22°C, the TABS is neither heated, nor 

cooled. 

 Ventilation (geothermal source and district heating) operates only at day time, between 6:00 AM and 10:00 PM. 

It runs in heating mode if the actual outdoor temperature is lower than 18 °C while the cooling mode is turned 

on if the actual outdoor temperature is higher than 22 °C. If the outdoor temperature is comprised between 18°C 

and 22°C, the ventilation is neither heated, nor cooled, there is only natural ventilation. 

In addition to this, the heating and cooling curves of the TABS (only geothermal source) and the ventilation (with 

geothermal and district heating) are compared to the measurement data of 2009 in Figure 6 and Figure 7 

respectively. Regarding the TABS, the strategy is quite simple: water is injected in the TABS at 26°C in heating 

mode (average outdoor temperature lower than 18°C) and at 18°C in cooling mode (average outdoor temperature 

higher than 22°C). It can also be seen that the measurements are close to the theoretical curve in heating mode while 
it diverges more in cooling mode. Concerning the ventilation, the heating and cooling curves are function of the 

present outdoor temperature. It is shown in Figure 7 that the measurements are close to the theoretical heating curve, 

but totally different to the cooling curve. These differences can be explained by the fact that first scheduled cooling 

mode started in spring/summer 2009. Finally, as mentioned previously, if the outdoor temperature is comprised 

between 18°C and 22°C the building will be, theoretically, neither heated nor cooled. However, Figure 6 and Figure 

7 show that both systems are still running between 18°C and 22°C.  

Regarding the control strategy of the TABS, the fact that the supply temperature is constant in heating mode could 

also explain the lower SCOP of building B compared to building A, for which, the supply temperature of TABS 

decreases with the outdoor temperature. 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Control strategy of TABS (building B) 
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Figure 7: Control strategy of ventilation (building B) 

 

6. COMFORT ANALYSIS  

 
A long term thermal comfort analysis has been performed in building B, based on the two following criteria of the 

norm EN15251: 

 

 Performance outside the range: the number or percentage of occupied hours when the PMV (Predicted Mean 

Vote) or the operative temperature is outside a specific range. 

 Degree hours: the time during which the actual operative temperature exceeds the specified range during the 

occupied hours is weighted by a factor which is a function depending on how many degrees the range has been 

exceeded. 

The occupied hours of the building are 08:00 AM till 6:00 PM, Monday till Friday. The acceptable temperature 

ranges given by the second category of norm EN15251 (CEN, 2007) are 20-24°C in winter and 23-26°C in summer. 

In our case, winter conditions are assumed during heating period, e.g. if outdoor temperature is lower than 18°C, 
while summer conditions are assumed during cooling period, e.g. if outdoor temperature is higher than 22°C. Figure 

8 shows the indoor temperature in function of the outdoor temperature that occurred in a representative zone of the 

building B in 2009 and Table 4 and 5 summarize the results of the comfort analysis for the entire building. As it can 

be seen, overheating never occurs, neither in winter, nor in summer. However, temperatures under the acceptable 

range appear in both seasons. In winter, too low temperatures occur in average 10% of the time but in summer, this 

phenomenon occur more than 60% of the time. This difference can be explained by the fact that the requirement for 

the comfort in the building was set based on standard DIN 1946-T2 (DIN, 1994), which allows lower temperatures 

in summer (see Figure 9). Nevertheless, having too low temperatures in summer compared to EN15251 means that 

increasing the energy savings is still possible by reducing the cooling energy produced. 
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Figure 8: Indoor temperature of southeast zone each hour in 2009 (building B) 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 9: Limits for operative temperature according to DIN 1946-T2 

 

Table 4: Temperature outside the range building B (2009) 

 

 Winter Summer 

 Excess Under Total Excess Under Total 

 [h] [h] [h] [%] [h] [h] [h] [%] 

North 1st floor 0 0 0 0 0 167 167 46 

Southeast 1st floor 0 260 260 15 0 357 357 98 

Southwest 1st floor 0 53 53 3 0 276 276 76 

Southeast 2nd floor 0 122 122 7 0 270 270 74 

Southwest 2nd floor 0 53 53 3 0 256 256 70 

Southeast 3
rd

 floor 0 381 381 22 0 354 354 97 

Southwest 3rd floor 0 1 1 0 1 125 126 35 

Total working hours 

(by zone) 

1749 364 
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Table 5: Degree hours outside the range building B (2009) 

 

 Winter Summer 

 Excess Under Total Excess Under Total 

 [degree h] [degree h] [degree h] [degree h] [degree h] [degree h] 

North 1st floor 0 0 0 0 54 54 

Southeast 1st floor 0 172 172 0 541 541 

Southwest 1st floor 0 26 26 0 200 200 

Southeast 2nd floor 0 74 74 0 232 232 

Southwest 2nd floor 0 29 29 0 174 174 

Southeast 3rd floor 0 223 223 0 479 479 

Southwest 3rd floor 0 0 0 0 157 157 

 

7. CONCLUSIONS 

 
The two monitored buildings are quite different in term of net floor area and the quality of the data varies for each 

system. It has been shown in this paper that the part of the TABS in the heating load was limited; around 13.5% for 

each case but, regarding the cooling load, the TABS provides almost the entire building consumption (more than 

75%) or even the total load. The use of geothermal energy for heating (heat pump) or cooling (free chilling and/or 

heat pump in reverse) allows a running cost reduction up to 71% compared to traditional systems and also a decrease 

of CO2 emission by 54%. Concerning the control strategies, the TABS of both buildings are controlled in different 

ways: one is operating 24h/24h with a supply water temperature depending linearly on the outdoor temperature and 
the other is running only at night time with fixed supply water temperature according to winter or summer time.  

Finally, the comfort analysis performed for the building B showed a significant percentage of subcooling in summer 

that could yield to possible energy savings by reducing the cold production.     
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