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ABSTRACT 
 

Convective heat transfer coefficients (CHTC) for flat unglazed transpired solar collectors have been computed using 
high-resolution 3-dimensional steady RANS CFD simulations. The Standard k-ε, Renormalization Normal Group k-
ε (RNG k-ε), Realizable k-ε and Shear Stress Transport k-ω (SST k-ω) turbulence closure models were used and the 
results were compared with experimental data from the literature. The validation study showed that both the 
Standard k-ε and the RNG k-ε model performed better in terms of matching the experimental data and showing 
consistently faster convergence. Local CHTC along the plate were evaluated with the validated model for different 
suction flow rates (0.0448 to 0.0688 m/s) and free stream turbulence intensity (0.8% and 20%) at 6 m/s approaching 
flow velocity with the results showing that the turbulence intensity has a more profound impact on the overall 
convective heat transfer process. The local CHTC in the solid surface region of the collector remains constant after a 
certain length for the cases considered; however, the starting length was found to be longer compared to the values 
reported in previous analytical studies.  
 

1. INTRODUCTION 
 
Unglazed transpired solar collectors (UTCs) consist of dark porous cladding installed as the exterior layer of the 
building envelope (normally roof or facade) with a narrow gap beneath it. The cladding absorbs solar radiation, thus 
heating up the air flowing through the perforations driven by a suction fan. UTC’s can be integrated with 
Photovoltaic systems, thereby generating electricity and heat, resulting in overall efficiencies that can be up to 70% 
(Athienitis et al. 2010; Bambara et al. 2012). In these systems, the hot air is collected at the outlet and it can be used 
to preheat ventilation air, fed into an air source heat pump to preheat domestic hot water and/or provide cooling 
using desiccants or absorption technology, thus satisfying part of the building’s heating and cooling requirements.  
 
An important parameter that determines the performance and efficiency of UTC’s is the convective heat transfer 
coefficient (CHTC) between the heated plate and the ambient air due to the wind flow over the collector. Previous 
studies on CHTC for UTC’s (Kutscher 1992; Golneshan 1993; Van Decker et al. 2001; Gawlik 1993) mainly 
focused on analytical and experimental investigations due to the lack of advanced computational techniques. 
Schlichting and Gersten (2000) pointed out that continuous suction provides stability to the flow over a flat plate, 
raising the critical Reynolds number by a factor of 130. For laminar, uniform approaching flow, the boundary layer 
thickness is constant after the starting length; thus the Reynolds number based on boundary layer thickness and wind 
speed will no longer increase. If this Reynolds number is below 70,000, transition to turbulence on a smooth plate 
with uniform suction will not occur, regardless of the plate length.  
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Kutscher (1992) and  Kutscher et al. (1993) demonstrated an analytical solution of the Navier-Stokes equations for 
flow over a flat perforated plate with homogeneous suction, which means that the perforation spacing distance is 
smaller than the boundary layer thickness (normally with a magnitude of a few mm). Results showed that the 
velocity and thermal boundary layer thickness remain constant along the plate after the starting length and the 
convective heat loss from the plate due to the wind flow is quite small as the heat will be recaptured when the 
ambient air is drawn into the gap. This solution implies that the CHTC along the plate remains constant for given 
conditions. However, it is only valid for laminar, uniform approaching flow conditions and homogeneous suction, 
which may be an oversimplification, for the analysis of transpired solar collectors mounted on surfaces of buildings, 
which are immersed in the atmospheric boundary layer. Moreover, the low porosity and large perforation spacing 
distance of UTCs would typically result in discrete suction rather than homogeneous suction. 
 
Kutscher (1992; 1994) conducted experiments to evaluate the overall convective heat transfer process for UTCs 
subjected to uniform approaching flow with turbulence intensity of 0.8% and the following empirical correlation 
was obtained for the average NuD of the entire plate: 
 

Nu� � 2.75	
���
�.�

Re��.�� � 0.011σRe� 
��� �
�.��

�                                                  (1) 

 
where NuD is based on the perforation diameter; P is the pitch length; D is the perforation diameter; ReD is based on 
the suction velocity and perforation diameter; σ is the plate porosity; U∞ is the wind speed; and V is the suction 
velocity. A few numerical studies followed the work by Kutscher (1992) limited the studied geometry to a pitch by 
assuming that UTCs are a combination of multiple pitches with similar thermal performance.  For example, 
Arulanandam et al. (1999) simulated a quarter of pitch under no wind condition using a laminar Computational 
Fluid Dynamics (CFD) model and obtained a Nu number correlation including the suction flow rate, perforation 
diameter, as well as the plate thickness, admittance and porosity. However, to the authors’ best knowledge, there is 
no previous study in the literature that has investigated the convective heat transfer process for the entire perforated 
plate subjected to turbulent approaching flow conditions. 
 
The rapid development of computational power and speed makes CFD techniques a powerful alternative for further 
investigation of convective heat transfer on UTCs, eliminating difficulties associated with the impact of radiation 
and the precise control of experimental conditions, which requires considerable time and cost for an accurate data 
acquisition process. By solving the conservation equations of mass, momentum and energy, CFD can provide 
quantitative answers for various airflow and heat transfer parameters in this system when properly validated. It 
offers a higher degree of flexibility and detail, i.e. it can distinguish convective heat transfer from radiation and it 
can provide local convective heat transfer coefficients. 
 
The overall goal of this research program is to develop models for the design and analysis of building-integrated 
photovoltaic/thermal systems combined with transpired air collectors. The present study is the first step in this 
direction and the objective is (a) to test the accuracy of different CFD models in evaluating the complex convective 
heat transfer process on UTCs; and (b) to compute average and local CHTC for horizontally placed UTCs under 
turbulent approaching flow conditions. The main parameters considered in this study are the wind speed 
(approaching flow velocity), suction flow rate and turbulence intensity. 
 

2. NUMERICAL APPROACH 
 
The commercial CFD software, ANSYS (version 13.0) was used to conduct all the simulations and Gambit 2.4.6 
was used to develop the geometry model, which is shown in Figure 1. In the region above the plate, the left side of 
the domain was defined as the velocity-inlet with a specified approaching flow velocity and the right side of the 
domain was defined as the pressure-outlet with zero gauge pressure. The plate was set to be a wall with thickness of 
0.00086m and the perforations on the plate were set to be ‘interior’. The bottom of the cavity was defined as 
velocity-outlet with a specified suction velocity. The left and right side of the cavity were defined as adiabatic walls. 
A symmetry boundary condition was used for all other faces, which means zero velocity and temperature gradient. 
The upper domain is 0.3m height, which is sufficient for the boundary layer growth. 
 
The plate is divided into two parts in the stream-wise direction: a perforation row and a solid row. The perforation 
row includes all the perforations and can be considered as a ‘discrete suction’ component. The solid row covers 
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more than 90% of the plate area and it is similar to a smooth, impermeable flat plate, but the flow is different from 
the classical flat plate case due to the suction created by the perforation row. A perforated plate with an area of 0.6m 
x 0.6m and a cavity with 0.15m height were considered. The plate has pitch length of 0.01689 m and perforation 
diameter of 0.00159 m. Considering the small size of the perforations , their shape was assumed to be square, 
instead of the circular shape used in the experiments (Van Decker et al., 2001), for model simplicity. The simulated 
solar radiation in the experiments was around 600W/m2, the ambient air temperature 298K, and the turbulence 
intensity of incoming flow 0.8%, which is considered to be uniform. These values were used as inputs in the CFD 
model. 
 
The Standard k-ε, Renormalization Normal Group k-ε (RNG k-ε), Realizable k-ε and Shear Stress Transport k-ω 
(SST k-ω) turbulence closure models available in ANSYS with Low Reynolds Number Correction were applied to a 
3-dimensional computational domain. A second order upwind scheme was adopted for all the variables except 
pressure. The discretization of pressure is based on a staggered scheme. The SIMPLE algorithm was used to couple 
the pressure and momentum equations. If the sum of absolute normalized residuals for all the cells in flow domain 
became less than 10-6 for energy, 10-4 for other variables, the solution was considered converged. In all simulations, 
the y+ value is maintained around 1to satisfy the enhanced wall treatment requirement.  
 
The grid independence for each case was verified using three different grids to ensure that grid resolution would not 
have a notable impact on the results. The results of the grid independence study are listed in Table 1. The difference 
between each grid is less than 1%, thus Grid 2 was selected for the simulations.  

 
Table 1 Grid independence study 

 
Plate temperature / Cavity outlet temperature 

[K] 
Cell numbers 

Experimental data 
Grid 1 (338232) Grid 2 (416352) Grid 3 (789270) 

Case 1: 
wind speed=1m/s, suction velocity=0.0688m/s 

315.0/306.1 313.5/306.1 314.7/305.9 313.9/306.5 

Case 2: 
Wind speed=0, Suction velocity=0.0564m/s 

315.7/305.2 313.6/305.2 315.4/305.2 312.9/305.3 

 

 

 
Figure 1 Computational domain 

 
Table 2 Tested cases for model validation 

 
Cases 1 2 3 4 5 

Wind speed [m/s] 0 0 1 1 1 
Suction velocity [m/s] 0.0564 0.0680 0.0448 0.0688 0.0774 

Uniform 
Approach 
Flow

Perforated plate

Suction velocity

Cavity outlet

Pitch length

Solid row

Perforated row
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Figure 2 Comparison between CFD results and experimental data: (a) average plate surface temperature; (b) cavity 

outlet temperature 
 

3. MODEL VALIDATION 
 

The tested cases are listed in Table 2. The average plate surface temperature and cavity outlet temperature computed 
using different RANS models are compared with the experimental data and the results are shown in Figure 2 (a, b). 
For the plate surface temperature, the agreement between CFD results and experimental data is satisfactory with the 
error within 2 K. The Standard k-ε and the RNG k-ε model give similar results with the Realizable k-ε model but are 
more stable in terms of convergence and more consistent. The performance of the SST k-ω model is different than 
all the k-ε models with the results showing that surface temperature is overestimated.  
 
For the cavity outlet temperature, all models provided identical results. Thus, based on this comparison, both the 
Standard k-ε and the RNG k-ε model can provide sufficiently accurate results for thermal modeling, however, the 
Standard k-ε model was adopted for the parametric study due to its slightly lower computing time and better 
convergence process. 
 
The averaged Nusselt numbers for the entire plate (NuD) obtained from the CFD simulations are compared with the 
empirical correlation based on Eqn. (1) and results are shown in Figure 3 for four different suction velocities 
(0.0448m/s, 0.0564m/s, 0.0688m/s and 0.0774m/s) and three different wind speeds (1m/s, 4m/s and 6m/s). The 
numerical results compare relatively well with those obtained using the correlation with a maximum difference of 
20%. These differences may be due to the staggered perforation arrangement used in the experiments (Kutscher, 
1992). 
 

4. RESULTS AND DISCUSSION 
 
A parametric study was carried out for different approaching flow conditions with 0.8% and 20% turbulence 
intensity, a suction velocity of 0.0448m/s and 0.0688m/s and 6m/s wind speed. The perforation row and the solid 
row have been investigated separately as their flow features are dominated by different mechanisms. Results are 
plotted for the centerline of the perforation row, which crosses the center point of every perforation, as shown in 
Figure 4. However, the temperature and CHTC along the center line change periodically over each perforation due 
to suction, thus only the values for one point at 0.1mm after each perforation are plotted (point A). Similarly, results 
at the corresponding point B for the center line of the solid are shown in the following figures.  
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Figure 3 Comparison of average NuD obtained from the CFD simulations and the empirical correlation 

 
 

 
 

Figure 4 Configuration of the perforated plate with the points considered in the analysis 
 
With regards to the solid row section, the upper two graphs in Figure 5 show that the vertical temperature profiles 
for same turbulence intensity are mostly identical regardless of the suction velocity; this indicates that turbulence 
intensity has a more pronounced impact on the temperature profile shape in the near wall region than the suction 
velocity which is expected as the suction areas are relatively small and aside of the solid row region. For the 
perforation row, the impact of suction velocity and turbulence intensity on the temperature profile is more complex. 
This is due to the fact that suction itself has the most significant impact on this region and the temperature profiles 
are more sensitive to the existence of suction rather than the actual velocity magnitude of the suction flow. To 
investigate the problem more closely, the thermal boundary layer thickness growth in the stream-wise direction is 
plotted in Figure 6. For the solid row region, the boundary layer thickness varies for approaching flow conditions 
with different turbulence intensity at the same suction velocity and wind speed. Also the thermal boundary layer is 
thicker for higher turbulence intensity as expected. However, for the perforation row, the boundary layer thickness is 
the same for both cases: TI=0.8% and TI=20%. 
 
It should be also noted that for lower turbulence intensity (0.8%) the boundary layer thickness remains constant after 
x=0.35m, which indicates that the starting length is much longer than expected when analyzing this as a plate with 
homogeneous suction as suggested by Kutscher (1992). The contours presented in Figure 7 show the periodical 
behavior of CHTC over each perforation and also indicate that a constant CHTC is maintained after a certain 
starting length for TI=0.8%.  
 
Based on the results displayed in Figure 8, it can be concluded that the impact of turbulence intensity dominates the 
overall heat transfer process as the solid row region covers more than 90% of the plate area. A constant CHTC is not 
observed in the perforation row, as expected, due to the decreased wind speed over this region caused by the suction. 
However, after x=0.3m the CHTC on the solid row region maintains a more constant value compared to the classic 
empirical correlation for a turbulent boundary layer flow over an impermeable flat plate (Incropera et al., 2006). For 
a constant heat flux boundary condition as implemented in UTC applications, constant CHTC implies constant 
surface temperature. Thus, for collectors with a large area, using an average CHTC or representing the surface 
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temperature with measured data from one location would provide sufficiently accurate results, as long as the 
measurement points are located after the starting length, which is found to be larger than the value reported in 
previous studies (i.e., 0.3 m in the present study as opposed to 0.06 m for collectors with homogeneous suction). 
 

 

  

 
Figure 5 Boundary layer temperature profiles in the stream-wise direction for the solid row (top) and the perforation 

row (bottom) 
 

  

 
Figure 6 Thermal boundary layer growth along the stream-wise direction for different suction velocity and 

turbulence intensity at solid row (SR) and perforation row (PR) 
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 (a) 

   
 (b) 

 
 (c) 

 
Figure 7 CHTC contour plot on the exterior surface of a perforated plate under wind speed of 6m/s for(a) Suction 
velocity = 0.0448 m/s, Turbulence intensity =0.8%; (b) Suction velocity=0.0688 m/s, Turbulence intensity =0.8%; 

and (c) Suction velocity=0.0448 m/s, Turbulence intensity =20% 
 

  

 
Figure 8 CHTC profile on the exterior surface of a perforated plate for 6m/s wind speed (a) perforation row (left);  

(b) solid row (right) 
 

5. CONCLUSIONS 
 
CFD simulations were performed to investigate the convective heat transfer process for an unglazed transpired solar 
collector. Numerical results for the surface and outlet air temperature were found to be in good agreement with 
previous experimental data, with an accuracy of 1K. Among all the turbulence models investigated, the Standard k-ε 
and the RNG k-ε model performed better with respect to accuracy and stability. By investigating the thermal 
boundary layer growth and the convective heat transfer along the plate for a perforation and a solid row separately, 
we found that although suction velocity effects the CHTC more in the perforation row, turbulence intensity has a 
more significant impact on the solid row and consequently on the average CHTC over the plate as the solid row 
covers a larger area. CHTC in the solid row region remains constant after a certain length; therefore the surface 
temperature and CHTC obtained after this length can be used to represent the surface temperature and CHTC of the 
entire plate with an acceptable accuracy. It should be noted that the starting length for discrete suction and turbulent 
approaching flow conditions is much longer than reported before. However, a more detailed analysis should be 
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conducted for a larger plate that is similar to those found in real applications. Also, other flow features such as 
impingement and separation as well as corrugated plate geometries integrated with Photovoltaic systems should be 
investigated to better understand the UTC performance. 
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