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ABSTRACT 

Utilization of daylight in perimeter office spaces introduces opportunities for energy savings. Daylighting 
performance is affected by many interfacing factors such as glazing size and properties, shading properties 
and control, interior surface reflectivity, climate and orientation. These factors also affect the thermal loads 
and hence the energy performance of the space. This paper investigates the sensitivity of daylighting and 
energy performance to the above mentioned factors based on simulations using a comprehensive model 
developed in a previous study. The design factors with more significant impact were identified using the 
MC-LHS method for uncertainty analysis and the variance-based FAST method for further sensitivity 
analysis. The results can be expanded to provide recommendations to building designers at the design and 
operational phases, for both new buildings and retrofit applications. 
 

1. INTRODUCTION 

High energy requirements and limited energy resources have sparked a lot of research activities 
concentrating on early building design stage for energy saving purposes. Previous studies used approaches 
based on evaluation of several alternative design options to identify the better solution (Mihalakakou and 
Ferrante, 2000) or analysis of influence coefficients in terms of a base case to determine the important 
design parameters (Lam and Hui, 1995; Tavares and Martins, 2007). Recently, more advanced sensitivity 
analysis approaches have been employed in determination of the most important parameters in relation to 
building performance. Heiselberg et al. (2009) used the elementary effects method to investigate which 
design parameters are the most important among the 21 selected factors to change in order to reduce the 
primary energy consumption. Mechri et al., (2010) employed the Monte Carlo method with Latin 
Hypercube Sampling (MC-LHS) and the Analysis Of Variance-Fourier Amplitude Sensitivity Test method 
(ANOVA-FAST) for uncertainty and sensitivity analysis of heating and cooling energy needs –the 
envelope transparent surface ratio was distinguished as the most significant factor. In some studies 
(Dominguez-Munoz et al., 2010; Yidiz and Arsan, 2011; Yildiz et al., 2012), the MC-LHS method was also 
used to calculate the sensitivity indices such as SRC and SRRC given that the model coefficient of 
determination is higher than 0.7 (Saltelli et al., 2004). Windows have gained enough importance as an 
influential envelope element. Usually one or more factors related to window including transparent surface 
ratio, U-value and solar heat gain coefficient were considered in analysis. However, those parameters were 
used only for thermal considerations. Utilization of daylight in perimeter office spaces introduces 
opportunities for energy savings (Shen and Tzempelikos, 2012). The daylighting performance is affected 
by many interfacing factors such as glazing size and properties, shading properties and control, room aspect 
ratio and orientation. These factors also affect the thermal loads and hence the energy performance of space. 
In order to improve the overall performance via most effective approach in design, a sensitivity analysis 
should be applied to an integrated building model, especially when dynamic façade controls are involved.  
This paper presents a comprehensive global uncertainty and sensitivity analysis of daylighting and energy 
performance for private offices with automated interior roller shades using ad advanced transient 
simulation model. Studied performance indices include useful daylight illuminance, annual lighting, 
heating and cooling demand and annual source energy consumption. The uncertainty analysis is based on 
MC-LHS method showing the possible ranges in these performance indices. The sensitivity analysis uses a 
variance-based method in the extended FAST implementation. First order and total order effects of each 
studied parameter were calculated to determine the building parameters that have the most significant 
impact on the performance indices.   

2. UNCERTAINTY AND SENSITIVITY ANALYSIS 



3238, Page 2 

2nd International High Performance Buildings Conference at Purdue, July 16‐19, 2012 

Mathematical methods for uncertainty and sensitivity analysis are well-known (Saltelli et al., 2008). In the 
past decades, uncertainty and sensitivity analysis have become popular in various engineering fields. In 
building physics practice, uncertainty analysis provides the expected distribution of possible values for a 
model response following the variations of the input parameters within their respective distributions and 
ranges. The purpose of sensitivity analysis is to apportion the uncertainty in the model response to different 
sources of uncertainty in the model input. It distinguishes itself as a good practice by revealing which of the 
input parameters has a significant impact on the output so as to direct research priorities to factors that are 
responsible of the biggest output variability, and eventually achieve the design aim of energy saving.  
There are many techniques that can be applied in uncertainty analysis. Among those, the Monte Carlo 
technique is based on performing multiple evaluations with randomly sampled points of model inputs 
according to their corresponding probability density functions, and then using the results of these 
evaluations to determine the uncertainty in model predictions. If the model is linear or at least monotonic to 
each of its input, these evaluations can also be used to determine the contributions of the inputs to this 
uncertainty by calculating SRC, SRRC or other indicators. In the meantime, several methods have also 
been developed for sensitivity analysis. For example, differential method (Lomas and Eppel, 1992), 
Factorial method (Furbringer and Roulet, 1995), Morris method (Morris, 1991) and variance-based 
methods are the often used approaches. In general, for a moderate number of factors and a model with short 
execution time, the variance-based methods are ideal.     
     

3. METHODOLOGY 

3.1 Integrated Building Model 
The integrated building model developed in a previous study (Shen and Tzempelikos, 2012) is used here 
with two improvements. The model is composed of a daylighting calculation part and a thermal calculation 
part, which run simultaneously and coupled by façade design parameters as well as by shading and lighting 
controls. In this study, equations based on EnergyPlus (2007) are used in the current model to calculate the 
effective values of glazing and shading properties taking into account inter-reflections between glass and 
shades. In the thermal calculation, the explicit finite difference thermal network approach is used to model 
the transient thermal response of the studied space. The current model tracks the percentage of the 
transmitted direct solar radiation falling on each surface. The transmitted diffuse solar radiation goes to 
each surface according to the respective area ratio. After the first absorption, the reflected part becomes 
diffuse radiation and is finally absorbed by each surface in terms of their respective area-absorptance 
weighting factors.  Figure 1 illustrates a schematic of the heat transfer mechanisms near a façade with a 
double-glazed window and an interior roller shade. The opaque walls are discretized into two surface nodes 
and one mass node connecting with a capacity (if the wall has a mass layer). The glazing system has one 
node for each of its glass pane. The interior roller shade has one node to represent the entire surface. At 
each thermal node, the heat balance on each node is solved for every calculation time step with equation (8). 
 

 
Figure 1. Heat flows, solar gains and thermal nodes near a façade with a double-glazed window and an 

interior roller shade. 
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where cp is the specific heat, J/kg·K; ρ is the density, kg/m3; Vol is the volume of the mass node (i), m3; T is 
temperature, °C; p represents the time step; t is the calculation time step, s; j represents all nodes 
connected to node i; Rij is the total thermal resistance between nodes i and j, K/W, Ci is the capacitance of 
node (i), J/K·m2; and Si is total heat input to node (i), W. The convection heat transfer coefficients are 
calculated with DOE-2 convection model (EnergyPlus, 2007). Radiation heat transfer between all surfaces 
is modeled in detail using non-linear heat transfer coefficients (Siegel and Howell, 1972).   
    
3.2 Uncertainty analysis 
The Monte Carlo (MC) technique is used for uncertainty analysis in this study. One of the most important 
steps in MC analysis is the generation of a sample according to the distributions and ranges of studied 
factors. Various sampling procedures are available: random sampling, stratified sampling and quasi-random 
sampling. Latin Hypercube Sampling (LHS) is a particular case of stratified sampling. The range of each 
input factor is divided into s (s>2) intervals of equal marginal probability, and within each interval one 
observation is made randomly. This sampling method has the advantage of representing all portions of a 
factor distribution by input values and has been used in this study. The number of executions (n) is 
recommended as no less than 1.5 times of the number of factors (k) (JRC, 2008). The uncertainty of the 
output may be represented with a frequency graph or histogram. The coefficient of variation (ν), which is 
the ratio of the standard deviation (σ) to the mean value (µ) given by Eqs. (9) and (10) is also a good 
indicator to evaluate the dispersion of the outputs. 
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3.3 Sensitivity analysis 
Building physics problems are complex. The model used in this study to simulate the integrated building 
performance is neither linear nor monotonic. So the variance-based method is preferred because variance-
based methods can cope with non-linear and non-monotonic models and appreciate the interaction effects 
among input factors. The currently most efficient variance-based measure available is the extended FAST 
method. This measure features a very rapid convergence and can compute the first-order sensitivity indices 
(Si) and total-order indices (STi) using the same sample set. These sensitivity indices are defined on the 
expected value (E) and the variance (V) of an output Y(X1,X2,…Xk) as:  
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Si represents the main effect contribution of the ith input factor to the variance of the output. It has a value 
always between 0 and 1. The difference between Si and STi is a measure of how much the ith input factor is 
involved in interactions with any other input factors. If a factor is non-influential, it will have a very small 
value of STi and can be fixed at any value within its distribution. This is very beneficial to simplify the 
model and speed up further study such as optimization analysis. For fully additive models, the sum of Si is 
equal to 1 and less than 1 otherwise. The sum of all STi is always greater than 1 (equal to 1 for perfectly 
additive model).  
In this study, the variance-based sensitivity analysis is performed in extended FAST implementation. The 
classic FAST method was introduced in the 1970s (Cukier et al., 1978) to compute only the first-order 
sensitivity indices. Later, Saltelli et al. (1999) improved it to extended FAST method which is also capable 
of computing higher order and total order indices. More details about the FAST can be found in Saltelli et 
al (2004; 2008). This study uses the free and powerful software SimLab2.2 (JRC, 2008) to generate sample 
set and compute the sensitivity indices.  
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4. CASE STUDY 

In this study, the uncertainty and sensitivity analysis is applied to a typical private office space, located in 
Philadelphia, with automated interior roller shade as a case study. The space has a floor area of 16 m2 and a 
height of 3 m. The interior roller shade is controlled to automatically close when incident beam radiation on 
the façade is higher than 20 W/m2 during office hours (9am-5pm) – and they are kept closed during non-
office hours. The shading schedules during working hours throughout the year can be expressed as the 
percentage of time during which shades remain open (Figure 2). The lighting system in the space is 
dimmable to compensate daylighting so as to reach the requirement of 500 lux on the work plane. The 
lighting system has a power density of 10 W/m2 with 30% of the released heat convected to air directly 
(ASHRAE, 2009). The interior surface reflectances of the floor, ceiling and walls are 45%, 80% and 50% 
respectively. The exterior façade is composed of a brick layer (thickness: 10 cm), insulation and gypsum 
board with exterior absorptance of 60%. Occupant density in the space is 0.11 p/m2, and sensible heat gain 
form each occupant is 76 W. Heating and cooling are always available throughout the year. The heating set 
point during office hours is 22 °C and 18 °C otherwise. The cooling set point during office hours is 24 °C 
and 26 °C otherwise. The heating system consumes natural gas (system efficiency 80%). The cooling 
system consumes electricity with (average COP=3.5). These values are typical and were used to convert to 
source energy use (source-site ratios are 3.34 for electricity and 1.047 for natural gas). Daylighting and 
energy performances are investigated in the uncertainty and sensitivity analysis. Evaluated performance 
metrics include useful daylight illuminance between 500-2000 lux (UDI), annual lighting, heating and 
cooling demand per unit floor area and annual source energy consumption per unit floor area. A detailed 
explanation of the selection of performance metrics can be found in Shen and Tzempelikos (2012). 
 

 
Figure 2. Percentage of annual time (working hours) during which automated shades remain open for the 

four major orientations. 
 
4.1 Selection of design factors 
There are many design parameters that affect the perimeter building performance. It is obvious that façade 
orientation has great impact on building performance (Nielsen et al., 2011). However, the orientation is not 
a factor that can be fully controlled –the analysis is performed for each main orientation in this study. Form 
the study of Heiselberg et al. (2009), lighting system control is also an important factors influencing 
building primary energy consumption. The benefits of daylighting are mostly exploited when the lighting 
system is actively controlled. Therefore, this analysis is under the condition of continuously dimmable 
lighting system. Considered design parameters include: window size represented with window-to-wall ratio 
(wwr) or window-to-floor ratio (wfr), space aspect ratio (ar, room length to room depth), roller shade 
transmittance (τs),  front side roller shade absorptance (αf), back side roller shade absorptance (αb), façade 
insulation R-value (ins) and glazing type (g). For some factors, uniform distribution is a suitable 
representation of their possibility density function and range. On the other hand, some factors are discrete 
variables. Considering glazing properties as an example, the values of visible transmittance, solar 
transmittance, solar absorptance of each glass pane and glazing system conductivity are tightly related. 
Taking each of the properties as a factor and assigning them with a separate distribution is not a practical 
solution to the analysis. For this reason, these properties are grouped as one factor - glazing type - in this 
study. Table 1 summarizes the range and distribution of each design variable. The values are selected in 
order to represent the condition of a private office space. 
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Table 1. Description of studied design variables 
Design variable Symbol Unit Distribution Range 

Window size wwr (wfr*) - Uniform [0.1, 0.9] 
Space aspect ratio ar - Uniform [0.6, 1.5] 

Shade transmittance τs - Uniform [0, 0.25] 
Front side shade absorptance αf - Uniform [0.05, 0.7] 
Back side shade absorptance αb - Uniform [0.05, 0.7] 

Façade insulation R-value ins m2·K/W Uniform [1.2, 2.8] 
Glazing type g - Discrete 1, 2, … 6 

* In the following sections, results are presented to wfr. Because area of the exterior façade is changing 
with the variation of ar, distribution and range of wwr is given and used to calculate the corresponding wfr.   

In Table 1, insulation R-value is referring to DOE benchmark models (2008) and related standards. For the 
selection of glazing type, according ASHRAE (2009), 6 kinds of glazing are selected from WINDOW 6 
(LBNL, 2011) to cover a range of glazing properties. The angular properties are used in the integrated 
building model for detailed simulation. Their properties at normal incidence angle are listed in Table 2. 
 

Table 2. Properties of selected glazing system at normal incidence angle 
Glazing 

type 
Visible 

transmittance 
Solar 

transmittance 
1st pane 

absorptance 
2nd pane 

absorptance 
Coating 

emissivity 
U-value 

(W/m2·K) 
g-1 0.786 0.607 0.167 0.113  2.689 
g-2 0.717 0.473 0.337 0.086 0.2 1.907 
g-3 0.647 0.307 0.396 0.031 0.04 1.667 
g-4 0.482 0.313 0.437 0.051 0.11 1.793 
g-5 0.384 0.19 0.53 0.021 0.062 1.705 
g-6 0.361 0.185 0.327 0.023 0.043 1.668 

 

4.2 Results and discussion 
4.2.1 Uncertainty analysis. Based on the seven selected design parameters, the MC-LHS method is 
employed to obtain the mean values, the standard deviations and coefficients of variation of the useful 
daylight illuminance (500-2000 lux), lighting, heating and cooling demand and source energy consumption 
for each orientation. A large enough sample with 140 runs is generated and executed to obtain their values. 
Table 3 shows these information for the first three building performance. 
 

Table 3. Mean, standard deviation and coefficient of variation of UDI, lighting, heating and cooling 
demand of the studied private office for four main orientations. 

Orientation 
UDI (%) 

Lighting demand 
(kWh/m2·year) 

Heating demand 
(kWh/m2·year) 

Cooling demand 
(kWh/m2·year) 

µ σ ν (%) µ σ ν (%) µ σ ν (%) µ σ ν (%) 
South 37.9 22.3 58.7 10.2 6.3 62.1 22.6 5 22.2 41.9 13.4 32 

North 52 21 40.3 5.7 3.8 68 31.5 6.5 20.6 31.7 9.4 29.7 

East 47 18.4 39.2 7.1 4.3 59.9 28.2 5.9 20.8 39.4 13.3 33.8 

West 43.7 20.2 46.3 8.4 5.3 63.2 27.9 6 21.5 43.1 14.5 33.8 

 
As shown in Table 3, lighting demand has the highest coefficient of variation up to over 60%, followed by 
UDI (40%-60%) and cooling demand (around 30%), and then heating demand around 20%. The high 
values of coefficient of variation highlight large dispersions of the outputs, indicating that decisions should 
be made very carefully in the early design stage to ensure that the various building performance indices 
remain in the preferred range. Comparing the four orientations, south and west show higher variation 
coefficient in terms of UDI while north and east show lower and similar variation coefficient. For lighting, 
heating and cooling demand, the four main orientations have similar values of variation coefficient. 
Compared to the above three building performance, source energy consumption shows lower coefficient of 
variation. Figure 3 illustrates the statistic characteristics of annual source energy consumption per unit floor 
area for four main orientations. The coefficients of variation for source energy consumption are lower than 
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20% for all four main orientations. South and west facades show similar source energy consumption in 
terms of the median, maximum and minimum values. The variation coefficient for south is higher than west 
since the middle 50 quartiles for south covers a wider range. North and west facades show similar 
coefficient of variation while north requires less source energy. The large dispersion of all evaluated 
building performance calls for a further analysis to identify the most influential factors. Because the 
different orientations show different uncertainty characteristics, the sensitivity analysis needs to be 
performed for every main orientation. 
 

 
Figure 3. (a) Mean, Standard deviation and coefficient of variation of source energy consumption and (b) 

Boxplot of source energy consumption showing maximum, upper quartile, median, lower quartile and 
minimum values for four main orientations. 

 
4.2.2 Sensitivity analysis. Using the extended FAST method, a sample set with length equal to 460 data is 
generated and executed. The first order and total order sensitivity indices are computed for all the studied 
building performances and four main orientations. 
UDI and lighting demand. Figure 4 shows the sensitivity indices of the seven studied design factors in 
terms of UDI performance for four main orientations. Window-to-floor ratio has dominating influence on 
UDI performance with high values for both first order and total order indices. For south and west, shade 
transmittance also has significant influence on UDI performance indicated by the first order indices. For 
north and east facades, first order indices show that shade properties almost have no impact on UDI. This 
can be explained by the longer shade open time for north and east than south and west. Glazing type does 
not have a significant impact on UDI for all orientations as seen from its first order indices. This is 
reasonable since for south and west, the effective transmittance of glazing-shade system is mainly depend 
on shading transmittance; and for north and east, transmitted daylight is high enough for most of the office 
hours. However, when total order indices are computed, glazing type is an important and influential factor 
for all orientations. It is reasonable to expect that the impact of glazing type is mostly involved in 
interactions with shading properties. For north and east, the front side shade absorptance shows much 
higher total order indices than first order indices. This is somewhat out of expectation and difficult to 
explain since the definition of UDI is an illuminance range (between 500 and 2000 lux). Low illuminance 
(lower than 500 lux) and high illuminance (higher than 2000 lux) will both result in low UDI values.  
Heating demand and cooling demand. Figures 5-6 show the sensitivity indices of the seven studied design 
factors in terms of heating demand and cooling demand respectively for four main orientations. Window-
to-floor ratio and glazing type dominate the variation of both heating demand and cooling demand. For 
heating demand, space aspect ratio is the third important factor for south, east and west, while space aspect 
ratio and façade insulation R-value are the two almost equally third important factors for north. It may be 
confusing that the façade insulation condition is not as important as expected. However, this can be 
explained by the studied case of a small private office with only one exterior façade. Solar radiation is 
doubtlessly a very important source of heat to buildings. This solar heat gain alleviates heating needs and 
deteriorates cooling needs. In this sense, shade transmittance should have important impact on heating 
demand and cooling demand. This is true for south but not for other orientations. A possible reason is that 
the incident solar radiation on south façade is high during the heating period, but much lower for other 
orientations; and in cooling period it is attributed to the longer sunshine time for south than other 
orientations during office hours (note that the set points are different for office hours and non-office hours). 
Internal gains which are inevitable in office spaces also play an important role.  
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Source energy consumption. For source energy consumption, the results are quite different. Although 
source energy consumption is calculated from energy consumption on lighting, heating and cooling, the 
relationship may not be applied to sensitivity indices. First, the energy consumption for lighting, heating 
and cooling is not independent. For example, if lighting needs increase, the cooling needs may also increase 
and the heating needs may decrease –this is considered in the transient building simulation model used. 
Figure7 shows the sensitivity indices of the studied design factors in terms of source energy consumption 
for four main orientations. Window-to-floor ratio and glazing type are very important factors for all the 
four main orientations. For south and west facades, another important factor is the shade transmittance. For 
north facades, space aspect ratio and insulation conditions are also important. Front side shade absorptance 
is the third most important factor for east-facing rooms.    
 

 

 
Figure 4. First order and total order sensitivity indices – UDI (500-2000 lux) 

 

 
Figure 5. First order and total order sensitivity indices – heating demand (kWh/m2·year) 
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Figure 6. First order and total order sensitivity indices – cooling demand (kWh/m2·year) 

 

 
Figure 7. First order and total order sensitivity indices – source energy consumption (kWh/m2·year) 

After obtaining the importance indices of the studied factors, it is beneficial to estimate the variation of the 
source energy consumption to the inputs. The scatterplot is a suitable way to reveal the relationship 
between the model output and its inputs. Figure 8 shows the scatter plot of source energy consumption to 
some important factors for different orientations. For factors with discrete distribution like the glazing type, 
the box plot is preferred to illustrate the results. The relationship between source energy consumption and 
shown design parameters are well revealed. Such situation usually happens when there is a strong 
relationship between an input of great significance and output. Figure 8 (d) reveals that g-3 performs better 
in terms of space source energy consumption. This type of glazing has the characteristic of high visible 
transmittance but comparatively low solar transmittance as well as low coating emissivity (low U-value) 
and low solar absorptance. Because these glazing properties just mentioned are related with each other and 
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are not continuously available from market, it is more reasonable to compare them as a group (one glazing 
type) and pick the best performing one.   
 

 

 
Figure 8. Variation of source energy consumption with (a) sh for south; (b) space ar for north; (c) wfr ratio 

for east and (d) boxplot of source energy consumption with different glazing systems for west 
 

5. CONCLUSION 

This paper presents a sensitivity analysis for five building performance metrics to seven selected design 
parameters. The purpose is to identify the more important factors with respect to a specific building 
performance so as to facilitate decision making in early building design stage and simplify further study 
such as optimization analysis. An integrated daylighting and energy model developed in a previous study 
with two improvements is employed to simulate the building performance. The studied building 
performances include UDI (500-2000 lux), lighting, heating and cooling demand and source energy 
consumption. Considering the possible influential factors, seven design parameters are selected. Glazing 
properties, such as visible transmittance, solar transmittance and U-value, are not continuously available 
from market and more importantly, they are not independent with each other, therefore they were are 
grouped as one factor – glazing type- in the analysis. An uncertainty analysis was performed first to 
evaluate the necessity for further sensitivity analysis. The analysis is based on MC-LHS method with 140 
runs. Significant dispersion of the building performance is evaluated, indicating that the studied factors 
should be carefully designed to achieve certain design targets. A sensitivity analysis was then performed: 
based on the characteristics of the building model, a variance-based method was selected. Using the 
extended FAST module in SimLab 2.2, a sample set with length of 460 data was generated and the first and 
total order sensitivity indices were computed for each studied design factor. The following conclusions are 
drawn from the results: 
 For all evaluated building performances, window to floor ratio and glazing type show great impact; 
 The impact of glazing type is usually involved with other design parameters; 
 For different orientations, the rank of factor importance changes slightly because of different outside 

condition such as incident solar radiation and the resulting different shading schedule and lighting 
operation;  
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The value of sensitivity indices depends greatly on the range of inputs. When the range changes, both the 
indices value and importance rank may change. This paper focused on typical private office with only one 
external façade. The interior roller shade and lighting system were controlled with certain algorithms, so 
the results may not applicable to other space with different conditions.     
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