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ABSTRACT 

 
In this study, calculations of the mechanical efficiency of a large reciprocating compressor, developed by 

Mayekawa MFG. Co., Ltd., with a per cylinder suction volume of 1300 cm3 were carried out. These calculations 
were used to confirm whether the empirical combination of major design parameters in the Mayekawa 
compressor delivers optimal mechanical efficiency. Initially, the theoretical equation of motion of the rotating 
crankshaft is developed. Subsequently, computer calculations are carried out to determine the mechanical 
efficiency for various combinations of the major design parameters for operating speeds of 800, 1000 and 1200 
rpm. From these calculations, the optimal combination parameters yielding the maximum mechanical efficiency 
could be determined, and then compared with the empirical combination used in the Mayekawa compressor. 
 

1. INTRODUCTION 
 

While optimal design guidelines have been developed and documented for scroll and rolling-piston rotary 
refrigerant compressors (see references [1-14] for scroll compressors, and references [15-20] for 
rolling-piston-rotary compressors), such design guidelines for the maximum performance of reciprocating 
compressors, on the other hand, are substantially less developed, even though the reciprocating compressor was 
among the earliest classical compression devices. Most dynamic analyses for the reciprocating compressor, such 
as references [2l-26], have focused on vibration characteristics. The equation of motion of the rotating crankshaft 
and the inertia forces exciting vibration of the whole compressor were derived to calculate mechanical vibrations 
of a compact refrigerant compressor, synchronized with the crankshaft rotation [21, 22]. Subsequently, higher 
frequency vibrations of the whole compressor, caused by elastic vibrations of the crankshaft, were experimentally 
identified and simulated in numerical studies [23, 24]. Finally, higher frequency vibrations of reed valves have 
been identified in experiments, and criteria for the onset of vibration and the volumetric similarity between 
reciprocating compressors and rolling-piston-rotary compressors have been developed [25-26]. 
 
Despite the relatively recent development and manufacturing of scroll compressors and rolling-piston-rotary 
compressors for use with refrigerants in cooling appliances in the early 1980s in Japan, optimal design guidelines 
for these compressors are more extensively developed. Indeed, the optimal design of these compressors was a 
major focus of the authors’ research since their introduction. As a starting point, the equations of motion of 
compressor moving elements were derived to identify the constraint forces at each pair of compressor elements, 
ultimately permitting analysis in terms of the equation of motion of the rotating crankshaft. Further, the inertia 
forces exciting the vibration of the compressor body were derived and used to calculate the mechanical vibrations 
of the compressor, which are basically synchronized with the crankshaft rotation. Subsequently the mechanical, 
volumetric and overall compression efficiencies have been calculated, where the frictional losses, the 
compressed-gas leakage losses and the heat losses are all taken into consideration. As a result, optimal design 
guidelines for maximum efficiency have been established for scroll compressors [1-14] and for 
rolling-piston-rotary compressors [15- 20].  
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The authors’ research on optimal design guidelines for scroll compressors and rolling-piston-rotary compressors 
were all based on an early optimal design concept for reciprocating compressors. About 30 years ago, the 
authors’ interest was diverted from reciprocating compressors to scroll and rotary compressors due to the intense 
market demand. With the authors’ focus on scroll and rotary compressors, the further development of optimal 
design guidelines for reciprocating compressors was delayed. Now with renewed commercial interest in 
reciprocating compressors for domestic refrigerators and for large capacity refrigeration units, it is appropriate 
for us to revitalize our study the optimization of reciprocating compressors.  
 
For reciprocating compressors, the constraint forces at each pair of compressor elements depend not only upon 
the compression pressure and the inertia forces, but also upon the combination of piston diameter and stroke for 
a given suction volume. The suction volume for a given reciprocating compressor is determined by the piston 
diameter and the stroke. Consequently, there are many combinations of piston diameter and stroke for a 
specified suction volume. The constraint forces and the frictional power loss at each element pair are also 
dependent upon the selected combination of major parameters, thereby resulting in a different mechanical 
efficiency. Thus, selection of the optimal combination of major parameters is necessary to fundamentally ensure 
the maximum mechanical efficiency for the reciprocating compressor. Currently, however, the optimization of 
reciprocating compressors is not well developed, and the selection of combinations of major parameters has 
been empirically based. Such low-level technology requires a focused program to develop rational design 
guidelines for optimal efficiency as soon as possible. Such rational design guidelines are absolutely necessary to 
facilitate further development of superior reciprocating compressor with the highest possible performance.  
 
From this perspective, optimization of small cooling capacity reciprocating compressors for domestic 
refrigerators was studied by Tsuji, et al. [27, 28]. The present study focuses on a large cooling capacity 
reciprocating compressor with the per cylinder suction volume of 1300 cm3, which was developed for 
commercial market by Mayekawa MFG. Co., Ltd.. Figure 1 shows the four, six and eight-cylinder models in 
their commercial WBHE series. The piston diameter and stroke were empirically determined to be 130 mm and 
100 mm, respectively. The intent of the present study is to determine whether this empirical selection of piston 
diameter and stroke yield a machine with optimal mechanical efficiency.  
 
First, the theoretical development of the equations of motion for the crankshaft rotation and expressions for the 
constraint forces at all pairs of compressor elements are summarized. Then the energy equation for reciprocating 
compressors is derived. Subsequently, detailed example calculations of the mechanical efficiency, along with the 
crankshaft speed fluctuation ratio, are presented for the reciprocating compressor with a per cylinder suction 
volume of 1327 cm3, driven by an induction motor at a crankshaft speed of 1000 rpm. Calculations were 
undertaken for various combinations of piston diameter and stroke, assuming coefficients of friction. From these 
calculations, the optimal combination that produces maximum mechanical efficiency could be identified. Finally, 
similar calculations were undertaken for crankshaft speeds of 800 and 1200 rpm, in order to examine the 
influence of the operating speed upon the optimization of the piston diameter and the piston stroke. 
 
 

 
(a) 4-cylinder model 4WBHE  (b) 6-cylinder model 6WBHE  (c) 8-cylinder model 8WBHE 

Figure 1: Reciprocating compressors in the WBHE series developed by Mayekawa MFG. Co., Ltd. 
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2. THEORETICAL DEVELOPMENT 
 

A concentrated mass model of the piston-crank mechanism is presented in Figure 2(a), where the Cartesian 
coordinates (x-y-z) are introduced with the z-axis along the crankshaft center, the x-axis in the direction of the 
reciprocating piston motion and the y-axis perpendicular to the x-z plane. The crankshaft rotation angle a 
significant parameter, is given by θ relative to the z-axis, and the connecting-rod rotation angle, another parameter, 
is given by φ. The piston displacement from the crankshaft center is represented by xp. As shown in Figure 2(b), 
the crankshaft, loaded by the gas force P on the piston, is driven by motor torque MD, resulting in the constraint 
forces and frictional torques represented by Qx, Qy and MQ at the crankshaft, Sx, Sy and MS at the crank pin, and Tx, 
Ty and MT at the piston pin, in addition to the frictional force f on the piston side wall. 
 
The equations of motion for each of the moving machine elements shown in Figure 2(b) can be derived: one for 
the piston reciprocating in the x-axis, three for the connecting-rod moving in x and y directions and rotating with φ, 
and two for the crank arm moving in x and y directions, in addition to the main parameter, the crankshaft rotation 
θ. From the first six equations of motion, six constraint forces can be derived in terms of inertia forces, along with 
the gas force, the frictional force on the piston side wall and the frictional moments at the crank pin and piston pin. 
Substituting the derived constraint forces into the last equation of motion for the rotating crankshaft, the equation 
of motion of the crankshaft rotation can be reduced to the following expression: 
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The terms on the left-hand side represent the inertia torques, where the first term is for the rotating crankshaft with 
a modified moment of inertia I0’, the second is for the reciprocating piston with a modified mass mp’ and the third 
is for the rotating connecting-rod with a modified moment of inertia Ic’. On the right-hand side, the first term is the 
supplied motor torque MD, and the second through sixth terms are the load torques: the second due to gas force P 
on the piston, the third due to frictional force f on the piston side wall and the fourth through sixth due to the 
frictional torques MT, MS and MQ. The length ratio of the crank arm to the connecting-rod is denoted by α.  
 
The energy equation for the compressor can be derived by multiplying Equation (1) by a small angular 
displacement dθ and integrating each term over one revolution of the crankshaft. The energy supplied by the 
motor, Es, goes primarily into the gas compression energy Ep and secondarily to overcome the friction losses Ef at 
the cylinder wall, EMT at the piston pin, EMS at the crank pin, and EMQ at the crank journal: 
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Where, motor torque is given in proportion to the crankshaft rotational speedθ& . 
Assuming Coulomb friction at each pair of elements, the friction forces can be derived by multiplying each 
resultant constraint force by each coefficient of friction, thus resulting in 
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Figure 2: A representative model of piston-crank mechanism: (a) concentrated mass system and introduction 
of major constants and variables; (b) constraint forces, frictional forces and frictional moments at all pairs of 
machine elements. 
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where the coefficients of friction are represented by µ on the piston side wall, µT at the piston pin, µS at the crank 
pin, and µQ at the crank journal. Consequently, the energy equation, Equation (3), can be utilized to express the 
mechanical efficiency ηm as follows: 
 

                                 

( )
s
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EEEEE
QST

+++−
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3. CALCULATED RESULTS 

 
3.1 Specifications for Calculation 
Calculations were made for a large 
capacity reciprocating compressor for 
refrigerators with a suction volume of 
1327 cm3, and driven by an induction 
motor. The major specifications are listed 
in Table 1. The piston half-stroke r0 and 
the piston diameter d0 are 50 mm and 130 
mm, respectively. The rated conditions of 
operation are 1000 rpm for the average 
speed, 0.098 MPa for the suction pressure 
Ps and 0.98 MPa for the discharge 
pressure Pd. The gas compression in the 
cylinder is assumed to be polytropic with 
an index n of 1.05. The coefficients of 
friction take a value of 0.083 on the 
cylinder wall, based on our previous 
experience, and 0.013 on the journal 
bearings at the crankshaft, crank pin and 
piston pin. The mechanical efficiency was 
calculated for a variety of combinations of the piston half-stroke r and the piston diameter d for the fixed suction 
volume of 1327 cm3. The specific crank-arm-to-connecting-rod length ratio α was fixed at 0.17. According to the 
selected combination, the piston mass mp, the connecting-rod mass mc and its moment of inertia Ic may be adjusted 
in the following expressions: 
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In contrast, the moment of inertia of the crankshaft, I0, does not need to be adjusted, since the motor power does 
not change meaningfully, for the fixed suction volume. 
 
3.2 Dynamic behavior of rotating crankshaft 
The equation of motion of the rotating crankshaft, given by Equation (1) can be numerically solved with an 
iterative calculation method. First, the 0th-order solution for the crank angle θ is calculated from Equation (1), 
assuming zero frictional force and moments. This 0th-order solution permits the calculation of friction forces and 
moments from Equations (4). Subsequently, these friction forces and moments are fed back into Equation (1), 
thus calculating the 2nd-order solution for θ. These iterative calculations continue until the solution for θ 
converges. Calculated results are shown in Figures 3(a) and 3(b), in which the rotational acceleration θ&&  and the 
rotational velocity θ&  are presented over one complete revolution of crank angle θ. In Figure 3(c), the velocity 
fluctuation ratio θθ && /∆  is presented for piston diameters d, ranging from 100 mm to 180 mm.  

Table 1: Major specifications of 
a reciprocating compressor for calculations 

Volume of Cylinder V s 1327.0 [cm3]
Average operation speed N 1000 [rpm]

Piston diameter d 0 130 [mm]
Mass of Piston m p 0 2.65 [kg]

Mass of Connecting rod m c0 3.864 [kg]
Length of Connecting rod L 0 300 [mm]

Conn-rod gravity from small end a 0 299.9 [mm]
Conn-rod gravity from big end b 0 0.0857 [mm]
Rotation radius of Crank pin r 0 50 [mm]

Length ratio of Crank arm and Conn-rod α 0.17
coef. of friction between piston and cylinder µ 0.083

Coef. of friction of  journal bearing µ Q,S,T 0.013
Suction pressure P s 0.098 [MPa]

Discharge pressure P d 0.98 [MPa]
Polytropic index n 1.050

Radius of Crank journal r Q 92 [mm]
Radius of Crank pin r S 90.00 [mm]
Radius of Piston pin r T 40 [mm]
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At larger values of d, the acceleration exhibits a sharp negative peak at θ = -35o, which corresponds exactly to the 
sharp peak in gas compression torque curve, shown in Figure 3(d). Therefore, the gas compression is dominant 
over the acceleration. In contrast, however, at small d values, the negative peak in the acceleration curve 
decreases and the curve becomes a bit smoother, due to the increased piston inertia torque, shown in Figure 3(e), 
and the increased connecting-rod inertia torque shown in Figure 3(f). The piston inertia torque in Figure 3(f) 
reaches about -7.5 Nm at θ = -40o, while the gas compression torque in Figure 3(d) is naturally independent of d. 
Thus, the gas compression torque is increasingly canceled by the increasing piston and the connecting-rod torques 
as d decreases from 180 to 100 mm. The velocity fluctuation exhibits similar behaviors and, as shown in Figure 
3(c), the velocity fluctuation ratio defined by ( ) θθθθ &&&

minmax −≡∆  also decreases with decreasing piston diameter 
d. The velocity fluctuation ratio reaches its minimum value of 8.2% at d =100 mm, while at d =130 mm the 
velocity fluctuation ratio is 10.4%. 
 
3.2 Mechanical Efficiency 
The friction force f and the friction torques MT, MS and MQ can be calculated from Equations (4) as functions of the 
crank angle θ, and are plotted in Figure 4. The friction force f is determined by the side force on the cylinder, Ty, 
and hence the curves for large piston diameter d exhibit a sharp peak at θ = -35o, demonstrating the dominance of 
the gas force effect. On the other hand, the frictional torques MT, MS and MQ exhibit a square form before reaching 
top dead center (θ = 0o), again indicative of the dominance of the gas force effect. As d decreases, the gas-force 
effect decreases and, in turn, the effect of inertia forces becomes dominant, as is clearly demonstrated in Figure 
4(f) for f, in Figure 4(b) for MS and in Figure 4(c) for MQ. The inertia-force effect, while still present, is as great for 
MT, shown in Figure 4(a), as for MS and MQ. These significant results regarding inertia-force effects are consistent 
with Equation (6), which shows the inertia forces of the connecting-rod, the mass mc and moment of inertia Ic, all 
increase with decreasing d. 
 
With the calculated results in Figures 3 and 4, the integrations given in Equation (3) can be carried out over one 
revolution of the crankshaft, resulting in the friction power losses, as shown in Figure 5(a). Three of the friction 
losses— EMS at the crank pin, EMQ at the crank journal and Ef at the piston wall—are relatively large, while EMT at 
the piston pin is comparatively small. The friction losses EMS, EMQ and EMT decrease with decreasing piston 
diameter d; and EMS exhibits its minimum near d = 140 mm and then increases with a further decrease in d. In 
contrast, Ef increases gradually with decreasing piston diameter d. As a result, the net loss EF due to friction 
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Figure 3: Calculated (a) rotational accelerations, (b) rotational velocity, (c) velocity fluctuation ratio, along 

with (d) gas compression force and inertia torques due to (e) the piston and (f) the connecting-rod torque for 
reciprocating compressors with SV =1327 cm3 
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exhibits a minimum at d =130 mm, as shown in Figure 5(b), in which the motor power ES and the gas compression 
power EP are also plotted.  
 
Consequently, the mechanical efficiency ηm given by Equation (5) can be calculated and is plotted in Figure 5(c). 
As d decreases, ηm increases, exhibiting a maximum value of 91.1% at d =130 mm. The filled black circle at d = 
130 mm represents the Mayekawa MFG. Co., Ltd. design, thus confirming that the empirically designed model 
is at the optimal point for an operating speed N of 1000 rpm. 
 
Similar simulations were made for the other operating speeds of N = 800 and 1000 rpm, resulting in the dashed 
lines shown in Figure 5(c). When the operating speed is 800 rpm, the maximum mechanical efficiency occurs 
for a 120 mm piston diameter, plotted as the open circle in Figure 5(c), with a maximum value of 92.1%, 1% 
higher than for 1000 rpm. This result is because the inertia forces working at each of the pairs decrease with 
decreasing operating speed, thus shifting the optimal piston diameter d toward the smaller range 120 mm value. 
In contrast, when the operating speed increases to 1200 rpm, the influence of inertia is increases, shifting the 
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Figure 4: Friction torques at (a) the piston pin, (b) the crank pin, and (c) the crankshaft, 

and (d) friction force on the piston side wall.  
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Figure 5: Calculated (a) friction losses, (b) motor power, and (c) resulting mechanical efficiency for 

reciprocating compressors with SV =1327 cm3. 
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optimal piston diameter d toward a larger 140 mm value. The mechanical efficiency at 1200 rpm decreases by 
0.8% relative to the value at 1000 rpm, taking on a value of 90.3 %.  
 
The optimal combination of the piston diameter dopt and stroke 2ropt are shown in Figure 6, in which the abscissa 
is the operating speed N. With increasing operating speed, the optimal piston diameter increases linearly, while 
the piston stroke decreases also linearly. The design data by Mayekawa MFG. Co., Ltd. are plotted over the 
rated operating speed of 1000 rpm, where the piston diameter is 130 mm and the piston stroke is 100 mm, which 
exactly agree with the calculated optimal design values. 
 

4. CONCLUSION 
 

The optimal design of a 1300 cm3 suction volume reciprocating compressor, developed by Mayekawa MFG. 
Co., Ltd. for commercial use in refrigerators, was carefully examined. The mechanical efficiency was calculated 
for various combinations of piston diameter and stroke at operating speeds of 800, 1000 (rated) and 1200 rpm. 
The optimal combinations of the piston diameter and stroke were determined. 
 
The optimal design combination at the rated operating speed of 1000 rpm was a 130 mm piston diameter with a 
100 mm piston stroke, yielding a maximum mechanical efficiency of 91.1%. It was a most pleasant surprise for 
the authors to find that the design values of piston diameter and piston stroke empirically determined by 
Mayekawa MFG. Co., Ltd., and precisely matched those found by the present theoretical optimization analysis. 
 

NOMENCLATURE 
 
a : Length between gravity center of 

connecting-rod and small end center, m 
a0 : Basis of length between gravity center of 

connecting-rod and small end center, m 
b : Length between gravity center of connecting- 

rod and big end center, m 
b0 : Basis of length between gravity center of 

connecting-rod and big end center, m 
d  : Piston diameter, m 
d0  : Basis piston diameter, m 
dopt. : Optimal piston diameter, m 
Ef : Energy consumed between cylinder wall, W 
EMQ : Energy consumed at crank journal, W 
EMT : Energy consumed at crank pin, W 
EMS : Energy consumed at piston pin, W 
EP : Energy consumed by compressed gas, W 
ES : Energy supplied by motor, W 
f  : Friction force between piston and cylinder, N 
I0 : Moment of inertia of crankshaft, kgm2 
I’0 : Modified moment of inertia of crankshaft,  

 
kgm2 

Ic : Inertia moment of connecting-rod, kgm2 
Ic0 : Modified Moment of inertia of connecting-rod, 

kgm2 
I’c  : Moment of inertia of connecting-rod and 

modified one, kg・m2 

l  : Length of connecting-rod, m 
l0  : Basis of length of connecting-rod, m 
mc : Mass of connecting-rod, m 
mc0 : Basis of mass of connecting-rod, kg 
mp : Mass of piston, kg 
mp0 : Basis of mass of piston, kg 
m’p : Modified mass of piston, kg 
MQ : Friction torque at crank journal, Nm 
MS : Friction torque at crank pin, Nm 
MT : Friction torque at piston pin, Nm 
MD  : Motor torque, Nm 
P : Gas force, N 
pd  : Discharge pressure, Pa 

700 800 900 1000 1100 1200 1300
0

50

100

150

200

Operation Speed N [rpm]

Pi
st

on
 st

ro
ke

 2
r o

pt

Piston Bore d

Piston Stroke 2r

N
  =

 1
00

0 
rp

m
 

 d  =130 mm

2r  = 100mm

 &
 P

is
to

n 
di

am
ae

te
r d

op
t [

m
m

]

 
Figure 6: Optimal combination of piston diameter and piston stroke. 
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ps : Suction pressure, Pa 
Qx : Constraint force of x – axis direction at crank 

journal, N 
Qy : Constraint force of y – axis direction at crank 

journal, N 
Sx : Constraint force of x – axis direction at crank 

pin, N 
Sy : Constraint force of y – axis direction at crank 

pin, N 
Tx : Constraint force of x – axis direction at piston 

pin, N 
Ty  : Constraint force of y – axis direction at piston 

pin, N 
r : Rotating radius of crank pin, m 
r0  : Basis of rotating radius of crank pin, m 
ropt. : Optimal rotating radius of crank pin, m 
rQ : Radius of crank journal, m 
rS : Radius of crank pin, m 
rT  : Radius of piston pin, m 

VS  : Suction volume of cylinder, m3 
xp  : Piston displacement, m 
α  : Specific length ratio of crank arm to 

connecting- rod, -  
θ : Rotating angle of crankshaft, rad 
θ&   : Rotational speed of crankshaft, rad/s 

minθ& : Minimum rotational speed of crankshaft, rad/s 

maxθ& : Maximum rotational speed of crankshaft, rad/s 

θ&   : Average rotational speed of crankshaft, rad/s 
θ&&   : Rotational acceleration of crankshaft, rad/s2 
φ : Oscillation angle of connecting-rod, rad 
ε  : Non-dimensional off-set value, - 
µ : Coefficient of friction at cylinder wall, - 
µQ : Coefficient of friction at crank pin, - 

µS : Coefficient of friction at crank pin, - 

µT  : Coefficient of frictions at piston pin, - 
 

 
REFERENCES 

 
1. Ishii, N., Fukushima, M., Sawai K., Sano, K., Imaichi, K., 1988, Dynamic Behavior of a Scroll Compressor 

(Dynamic Analysis), JSME Int. Journal, Ser. 3, pp. 58-67. 
2. Ishii, N., Yamamura, M., Morokoshi, H., Fukushima, M., Yamamoto, S., Sakai, M., 1988, On the Superior 

Dynamic Behavior of a Variable Rotating Speed Scroll Compressor, Proc. of Int. Comp. Engrg. Conf. at 
Purdue, pp. 75-82. 

3. Ishii, N., Yamamura, M., Morokoshi, H., Muramatsu, S., Sawai, K., Osaka, M., Yamamura, M., 1987, 
Mechanical Efficiency of Various Large Capacity Scroll Compressors, Proc. of 17th Int. Congress of 
Refrigeration, Wien Austria, pp. 468-474. 

4. Ishii, N., Yamamura, M., Muramatsu, S., Yamamoto, S., Sakai, M., 1990, Mechanical Efficiency of a 
Variable Speed Scroll Compressor, Proc. of Int. Comp. Engrg. Conf. at Purdue, Vol.1, pp. 192-199. 

5. Ishii, N., Yamamoto, S., Muramatsu, S., Yamamura, M., Takahashi, M., 1992, Optimum Combination of 
Parameters for High Mechanical Efficiency of a Scroll Compressor, Proc. of Int. Comp. Engrg. Conf. at 
Purdue, pp. 118a1-118a8. 

6. Ishii, N., Yamamura, M., Muramatsu, S., Yamada, S., Takahashi, M., 1994, A Study on High Mechanical 
Efficiency of a Scroll Compressor with Fixed Cylinder Diameter, Proc. of Int. Comp. Engrg. Conf. at 
Purdue, Vol.2, pp. 677-682. 

7. Ishii, N., Sakai, M., Sano, K., Yamamoto, S., Otokura, T., 1996, A Fundamental Optimum Design for High 
Mechanical and Volumetric Efficiency of Compact Scroll Compressors, Proc. of Int. Comp. Engrg. Conf. at 
Purdue, Vol. II, pp. 639-644. 

8. Ishii, N., Yamamoto, S., Sano, K., Sawai, K., Hiwata, A., Nakamoto, T., Kawano, H., 2002, Efficiency 
Simulations of a Compact CO2 Scroll Compressor and Its Comparison with Same Cooling Capacity R410A 
Scroll Compressor, Proc. of Int. Comp. Engrg. Conf. at Purdue, C22-2(CD-ROM). 

9. Ishii, N., Kawamura, S., Yamamoto, S., Sawai, K., Hiwata, A., Nakamoto, T., Kawano, H., Ting, K S., 2002, 
Efficiency Simulations with Consideration of Heat Losses of R410 Compact Scroll Compressor for Its 
Optimal Performance, Proc. of Int. Comp. Engrg. Conf. at Purdue, C22-3(CD-ROM). 

10. Oku, T., Ishii, N., Anami, K., Knisely, C.W., Sawai, K., Morimoto, T., Hiwata, A., 2008, Theoretical Model 
of Lubrication Mechanism in the Thrust Slide-Bearing of Scroll Compressors, HVAC&R Research Journal 
ASHRAE Vol.14, No.2, pp. 239-258. 

11. Ishii, N., Oku, T., Anami, K., Knisely, C.W., Sawai, K., Morimoto, T., Iida, N., 2008, Experimental Study of 
the Lubrication Mechanism for Thrust Slide Bearings in Scroll Compressors, HVAC&R Research Journal 
ASHRAE Vol.14, No.3, pp. 453-465. 

12. Ishii, N., Oku, T., Anami, K., Knisely, C.W., Sawai, K., Morimoto, T., Iida, N., 2008, Optimal Performance 
Design Guidelines of Thrust Slide-Bearing in Scroll Compressors for Maximum Efficiency, Proc. of Int. 
Comp. Engrg. Conf. at Purdue, 1428, pp. 1-8. 

13. Ishii, N., Oku, T., Anami, K., Knisely, C.W., Sawai, K., Morimoto, T., Fujiuchi, K., 2008, Effects of Surface 
Roughness upon Gas Leakage Flow Through Small Clearances in CO2 Scroll Compressors, Proc. of Int. 
Comp. Engrg. Conf. at Purdue, 1429, pp. 1-8. 



 
 1443, Page 9 

 

International Compressor Engineering Conference at Purdue, July 16-19, 2012 

14. Ishii, N., Oku, T., Anami, K., Knisely, C.W., Sawai, K., Morimoto, T., Iida, N., 2008, Optimal Performance 
Development of High-Pressure Type Ammonia Scroll Compressors for Maximum Efficiency, Proc. of Int. 
Comp. Engrg. Conf. at Purdue, 1425, pp. 1-8. 

15. Imaichi, K., Fukushima, M., Muramatsu, S., Ishii, N., 1982, Vibration Analysis of Rotary Compressors, 
Proc. of Int. Comp. Engrg. Conf. at Purdue, pp. 275-282. 

16. Ishii, N., Imaichi, K., Muramatsu, S., Fukushima, M., Matsunaga, H., 1984, The Study of Rolling Piston, 
Rotary Compressor Dynamic Behavior with Stopping to Reduce Noise and Vibration Level, Proc. of Int. 
Comp. Engrg. Conf. at Purdue, pp. 1-8. 

17. Ishii, N., Fukushima, M., Yamamura, M., Muramatsu, S., Sano, K., Sakai, M., 1989, The High Mechanical 
Efficiency of Rolling–Piston Rotary Compressors, Proc of the 2nd World Congress on Heating Ventilating, 
Refrigeration and Air Conditioning(CLIMA2000), Sarajevo, Yugoslavia, pp. 91-96. 

18. Ishii, N., Fukushima, M., Yamamura, M., Fujiwara, S., Kakita, S., 1990, Optimum Combination of 
Dimensions for High Mechanical Efficiency of a Rolling–Piston Rotary Compressor, Proc of Int. Comp. 
Engrg. Conf. at Purdue, Vol. 1, pp. 418-424. 

19. Ishii, N., Morita, N., Ono, M., Yamamoto, S., Sano, K., 2000, Net Efficiency Simulations of Compact 
Rotary Compressors for Its Optimal Performance, Proc. of Int. Comp. Engrg. Conf. at Purdue, Vol. I, pp. 
475-482. 

20. Ishii, N., Morita N., Kurimoto, M., Yamamoto, S., Sano K., 2000, Calculations for Compression Efficiency 
Caused by Heat Transfer in Compact Rotary Compressors, Proc. of Int. Comp. Engrg. Conf. at Purdue, Vol. 
I, pp. 467-474. 

21. Ishii, N., Imaichi, K., Kagoroku, N., Imasu, K., 1975, Vibrations of a Small Reciprocating Compressor, 
Design Engng. Technical Conf., Washington D. C, ASME, pp. 1-12. 

22. Imaichi, K., Ishii, N., Imasu, K., Murai, M., 1979, A Device for Stopping Single-Cylinder Reciprocating 
Compressors Silently by Greatly Reducing Vibrations, Proc. of 15th Int. Congress of Refrigeration, Vol. II, 
pp. 727-733. 

23. Ishii, N., Imaichi, K., Muramatsu, S., Fukushima, M., 1983, A Computer Simulation of Higher Frequency 
Vibrations of A Reciprocating Compressors, Proc. of 16th Int. Congress of Refrigeration, pp. 418-423. 

24. Imaichi, K., Ishii, N., Imasu, K., Muramatsu, S., Fukushima, M., 1984, A Vibration Source in Refrigerant 
Compressors, Transactions of the ASME, Journal of Vibration, Stress, Reliability and Design, Vol. 106, pp. 
122-128. 

25. Ishii, N., Fukuoka, H., Matsunaga, H., Fukushima, M., Nakazumi, K., 1993 Dynamic Stability Criterion for 
Reed Valves in Refrigerant Compressors, JSME Int. Journal, Ser C, Vol. 36, No.1, pp. 69-76. 

26. Ishii, N., Hitotsubashi, M., Yamamoto, S., Matsunaga, H., Hashimoto, T., Sano K., 1998, Volumetric 
Similarity for Vibrations of Reed Valve in Refrigerant Compressors, Proc. of Int. Comp. and Their Systems, 
London, pp. 99-104. 

27. Tsuji, T., Ishii, N., Oku, T., Anami, K., Sawai, K., Morimoto, T., Matsui, A., Knisely, C. W., 2009, 
Fundamental Optimal Design Guideline for Reciprocating Compressors to Maximize Mechanical 
Efficiency, Proc. of 7th International Conference on Compressors and Coolants Compressors 2009 (in 
CD-ROM), Papiernicka, Slovak Republic. 

28. Tsuji, T., Ishii, N., Anami, K., Sawai, K., Hiwata, A., Morimoto, T., Sano, K., Knisely, C. W. Fundamental 
Optimal Performance Design Guidelines for Off-Set Type Reciprocating Compressors to Maximize 
Mechanical Efficiency, Proc. of Int. Comp. Engrg. Conf. at Purdue, 1358(in CD-ROM). 

 
ACKNOWLEDGEMENTS 

 
The authors would like to express their sincere gratitude to Mr. Toshihiro Hattori, Director, Mr. Akira Matsui, 
Manager, and, Mr. Kazuya Yamada, General maneger, Mayekawa MFG. Co., Ltd. for their collaborative 
support in carrying out this work and their permission to submit this paper to the 2012 Purdue conference. The 
fundamental theoretical approach has been developed by collaboration with Panasonic Company. Thereby, the 
authors would like to express their sincere gratitude to Mr. Shuichi Yamamoto, Senior Councilor of R&D 
division, Panasonic Co. Ltd., Mr. Kiyoshi Imai, Vice President, Corporate Engineering Division, Appliances 
Company, Panasonic Corporation and Mr. Masahiro Atarashi, Director, Appliances Company, Panasonic 
Corporation for their good understanding. 


	Purdue University
	Purdue e-Pubs
	2012

	Calculated Optimal Mechanical Efficiency of a Large Capacity Reciprocating Compressor
	Takuma Tsuji
	Tatsuya Oku
	Noriaki Ishii
	Keiko Anami
	Charles W. Knisely


