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Quantum mechanical analysis of channel access geometry and series
resistance in nanoscale transistors

R. Venugopal,a) S. Goasguen, S. Datta, and M. S. Lundstrom
School of Electrical and Computer Engineering, Purdue University, 1285 Electrical Engineering Building,
West Lafayette, Indiana 47907-1285

~Received 22 July 2003; accepted 17 October 2003!

We apply a two-dimensional quantum mechanical simulation scheme to study the effect of channel
access geometries on device performance. This simulation scheme solves the nonequilibrium
Green’s function equations self-consistently with Poisson’s equation and treats the effect of
scattering using a simple approximation inspired by Bu¨ttiker. It is based on an expansion of the
device Hamiltonian in coupled mode space. Simulation results are used to highlight quantum effects
and discuss the importance of scattering when examining the transport properties of nanoscale
transistors with differing channel access geometries. Additionally, an efficient domain
decomposition scheme for evaluating the performance of nanoscale transistors is also presented.
This article highlights the importance of scattering in understanding the performance of transistors
with different channel access geometries. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1631754#

I. INTRODUCTION

The push towards achieving small transistors with the
requisite device characteristics has resulted in the exploration
of device structures that have been recently reported in the
literature.1,2 The channel length for some of these devices is
of the order of 10 nm or lower. As critical transistor dimen-
sions continue to shrink, the role of channel access geometry
must be understood. Therefore, the primary objective of this
article is to understand and highlight the effects of differing
access geometries on device performance. We achieve this
objective by using a simulation scheme based on the non-
equilibrium Green’s function formalism~NEGF!, which cap-
tures quantum effects and treats scattering within a single
modeling framework.3,4 This technique is applied to examine
device physics and design issues at the 10 nm scale.

Several device designs with single, double or trigate ge-
ometries are being considered as candidates for scaling sili-
con devices to the limit.5–7 Despite the nature of the gate, all
of these geometries share a common characteristic-they are
composed of a thin silicon body sandwiched between insu-
lators and coupled to large source/drain~S/D! reservoirs.
One such device, a double gate~DG!, silicon-on-insulator
~SOI! transistor, is illustrated in Fig. 1~b!. Within the thin
silicon body, carriers are strongly quantum confined~in one
and possibly two dimensions! and reside in a discrete set of
subbands. This subband structure affects important device
metrics such as threshold voltage and gate capacitance. As
electrons propagate from the intrinsic device@the region
within the dashed box in Fig. 1~b!# into the S/D regions
~which are typically wide in order to reduce the resistance!,
the subband structure is relaxed, and there is significant mix-
ing of electrons in different modes. Therefore, modeling such
structures requires the capability to seamlessly couple these

wide and narrow regions, while capturing all of the quantum
effects within the narrow region accurately. The effects of
scattering also need to be accounted for in both the wide and
the narrow regions, because scattering which is present in
real devices, permits electrons from several modes in the
wide region to couple into a few modes within the narrow
region. In our modeling framework scattering is simulated
phenomenologically using the concept of Bu¨ttiker probes,
often used in mesoscopic physics.8,9 Our treatment of scat-
tering enables us to map quantum mechanical parameters to
equivalent low-field mobilities in different regions of the de-
vice. Such a mapping is useful because low-field mobilities
continue to be relevant even at the short length scales con-
sidered in article.10,11 The overall simulation technique used
in this study solves a coupled set of NEGF and Poisson
equations.12,13

Electron transport from wide to narrow regions has been
extensively examined in the physics literature through the
study of quantum point contacts.14,15 These studies,~which
were non-self-consistent! compared the low bias conduc-
tance behavior~at temperatures close to 0 K! of abrupt wide-
to-narrow devices against devices where the channel access
geometry was gradually flared out~also referred to as adia-
batic!. They concluded that for specific thicknesses of the
narrow region, the low bias conductance is unaffected by the
channel access geometry. When studying the low bias con-
ductance properties around the Fermi surface~at low tem-
peratures!, it should be noted that if the Fermi level is well
above the subband edge within the narrow region~achieved
by changing the thickness!, the large S/D reservoirs act as
‘‘reflectionless contacts.’’9 The term reflectionless implies
that electrons at the Fermi surface can transmit from the
narrow to the wide regions with negligible probability of
reflection. In such cases, devices with differing channel ac-
cess geometries could exhibit the same low bias conductance
around the Fermi energy. However, electrons close to thea!Electronic mail: venugopr@ecn.purdue.edu
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subband edge~long wavelengths! may experience large re-
flections.

In nanoscale transistors the current spectrum is distrib-
uted over a wide range of energies~and not just around the
Fermi energy! due to the high voltages that are applied. Also,
the alignment of the Fermi energy relative to the subband
edge is determined by self-consistent electrostatics. There-
fore the large S/D reservoirs cannot be assumed as reflec-
tionless contacts, thus implying that their geometry may af-
fect device characteristics. Moreover, a 10%–20% difference
in the series resistance due to differing channel access geom-
etries is an important effect that needs to be emphasized
when evaluating different device designs. Also, the effect of
scattering, which can be safely neglected in QPCs operating
at low temperatures cannot be ignored in transistors within
which temperatures exceed 300 K. We will highlight the im-
portance of scattering by comparing results from both ballis-

tic ~no scattering! as well as scattering simulations for nanos-
cale, silicon transistors with differing channel access
geometries. Due to the aforementioned reasons, conclusions
from the mesoscopic physics literature need to be carefully
examined for nanoscale silicon transistors operating at room
temperature.

Device design and optimization through the use of simu-
lations requires the ability to quickly perform a large number
of simulations within a reasonable amount of time. Even for
the idealized device structure with the dimensions illustrated
in Fig. 1~b!, the simulation time could be very large. Com-
putational burden is greatly increased because a large num-
ber of subbands need to be included when simulating the
flared out S/D reservoirs quantum mechanically. Therefore,
an approximate treatment of the S/D reservoirs which are
usually much larger than those in Fig. 1~b! is clearly useful.
We examine one such approximation wherein the device in
Fig. 1~b! is decomposed into an intrinsic component~region
within the dashed box!, and a parasitic component~the S/D
reservoirs!. The intrinsic device is explicitly simulated, and
the extrinsic characteristics which include the effect of the
S/D reservoirs are estimated from the intrinsic current versus
voltage (I –V) characteristics through the addition of appro-
priate parasitic resistances. We present a recipe which can be
applied to examine design issues in nanoscale transistors and
highlight the appropriate boundary conditions that need to be
used when simulating the intrinsic device.

The article is divided into the following sections: Section
II presents the solution scheme. Section III presents simula-
tion results which explain the role of self-consistency, scat-
tering and channel access geometry on device performance.
Section IV discusses device design issues, and Sec. V sum-
marizes key findings.

II. MODELING SCHEME

The simulated device structures are shown in Fig. 1. A
uniform rectangular grid with a grid spacing ofa, along thex
direction andb, along thez direction is used. The width of
the device is assumed to be large, and all potentials~includ-
ing the scattering potential! are assumed to be translationally
invariant along the width~y dimension!. The Fermi levels at
the ends of the device are specified by the applied bias and a
single band effective mass Hamiltonian that assumes an el-
lipsoidal, parabolic bulk band structure is used to model
electron transport.

We begin by expanding the 3D effective mass Hamil-
tonian for the device in terms ofd(x2x8)d(z2z8) ~real-
space basis! and eik j y/AW, where the plane wavefunction,
eik j y/AW, represents the device width. The quantum number,
kj , corresponds to the eigenenergy,Ekj

5\2kj
2/2my* , where

my* is the electron effective mass in they direction. The
real-space delta functions,d(x2x8) and d(z2z8) with ei-
genvaluesx8 andz8, respectively, combined witheik j y/AW,
form a complete and orthogonal expansion function set.
Since all potentials are assumed to be invariant along the
device width, on expansion, the Hamiltonian for eachkj is

FIG. 1. ~a! Ultrathin body DG MOSFET structure with a S/D doping of
1020 cm23 and an intrinsic channel~channel thickness51.5 nm!. The S/D
regions are 20 nm in length, the gate length is 10 nm and the S/D-channel
junctions are abrupt. A slice of the device within which a 1D,z directed
effective mass equation is solved, is also indicated.~b! A thin body DG
MOSFET with abruptly flared out S/D regions. The length of the flared
regions is 10 nm, their thickness is 6.2 nm and the overall device length is
50 nm~same as that for device~a!. The region within the dashed box is the
intrinsic device.
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h@x,z#5F a0 b 0 ¯ ¯

b a1 � 0 ¯

0 � � � 0

¯ 0 � aNX
b

¯ ¯ 0 b aNX11

G . ~1!

This block tridiagonal Hamiltonian can be separated into two
parts: ~1! A part representing the device~the matrix within
the box! and~2! a part representing the semi-infinite leads. If

we think of the device as being composed of vertical slices
@refer Fig. 1~a!# adjoining each other, thea’s represent the
discretized, one-dimensional~1D! effective mass Hamil-
tonian along thez direction within each slice and theb’s
represent coupling between adjacent slices. Thea’s, with
indices less than one, represent successive slices going into
the source contact while those with indices greater thanNX

represent successive slices into the drain. There areNX slices
within the active device region. Thea’s and b’s are them-
selves tridiagonal matrices and are

a@x#5F 2tx12tz2qV1~x! 2tz 0 ¯ ¯

2tz 2tx12tz2qV2~x! � ¯ ¯

0 � � � 0

¯ 0 � � 2tz

¯ ¯ 0 2tz 2tx12tz2qVNZ
~x!

G , ~2!

b5F 2tx 0 ¯

0 2tx ¯

¯ 0 2tx

G . ~3!

The V’s @in Eq. ~2!#, represent the potential along a vertical
slice at sitex and tx and tz , the coupling energies between
adjacent grid points inx andz, respectively. These site cou-
pling energies are given by:

tx5
\2

2mx* a2
and tz5

\2

2mz* b2
. ~4!

There is no restriction on the solution domain and it can
be easily extended to include the insulator regions provided
changes in the electron effective mass is correctly accounted
for within the insulator and at the silicon/insulator interface
when discretizing the effective mass Hamiltonian. The over-
all size of the discretized active device Hamiltonian in a
real-space basis for each conduction band valley is (NX

3NZ)2.
The choice of a real-space basis, although natural, leads

to a computational problem. If we use a grid spacing ofa
50.25 nm andb50.1 nm to discretize the Hamiltonian for
the device pictured in Fig. 1~b!, thenNX5200 andNZ562.
Therefore the size of the active device Hamiltonian is
;12 000312 000. The computational burden of performing a
large number of matrix operations on such a Hamiltonian is
prohibitively expensive. Therefore we opt for a basis trans-
formation where the new basis is designed to ensure that the
size of the Hamiltonian is reduced considerably while cap-
turing all of the physics relevant to our problem. The use of
this basis has been described in Refs. 12 and 16.

We note that even for the device shown in Fig. 1~b!,
where the wide regions are 6.2 nm deep, electrons are
strongly quantum confined in thez dimension and reside in a
discrete set of subbands. At room temperature only a few low

energy subbands are occupied even within the wide regions
of the device shown in Fig. 1~b!. Therefore, the real-space
Hamiltonian can be significantly reduced in size by trans-
forming the basis from real-space to one comprising the low-
est few modes~mode space! without any loss of accuracy.12

Mathematically, the new basis is obtained by solving for the
eigenfunctions ofa @see Eq.~2!#, which represents a dis-
cretized one-dimensional,z directed effective mass equation
within each vertical slice of the device@Fig. 1~a!#. If we
consider a simple example whereNZ53, NX53 and assume
that the lowest two modes are all that need to be included,
the basis transformation matrix~mode-space basis in terms
of the real-space basis! looks like:

U53
mode 1 mode 2

1 2 3 1 2 3

3 0 0 3 0 0

3 0 0 3 0 0

3 0 0 3 0 0

0 3 0 0 3 0

0 3 0 0 3 0

0 3 0 0 3 0

0 0 3 0 0 3

0 0 3 0 0 3

0 0 3 0 0 3

4 . ~5!

In Eq. ~5!, the crosses mark nonzero entries corresponding to
the mode eigenfunctions which are expressed in a real-space
representation. The size of the basis transformation matrix is
(NX3NZ)3(NX3number of modes). Note that each column
of U expresses the modes in real-space and that the columns
are ordered into blocks of sizeNX ~in this case 3! as labeled
in Eq. ~5!. Different columns ofU are orthonormal to each
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other, thus indicating thatU is a unitary transformation ma-
trix. The device Hamiltonian in the new basis is

hmode5U†h@x,z#U. ~6!

The size of active device Hamiltonian in mode space is
(NX3number of modes).2 For the device structure in Fig.
1~b!, we use the lowest five modes to effect the basis trans-
formation, thus resulting in a Hamiltonian matrix which is
100031000 in size~the original Hamiltonian in real space
had a size of 12 000312 000 for each conduction band val-
ley!. When expressed in mode space, the Hamiltonian has
clear physical meaning. Diagonal blocks~sizeNX

2) represent
coupling within a mode, while off-diagonal blocks represent
coupling between modes. For device structures such as those
in Fig. 1~a! ~in which the confining potential alongz retains
its shape as one moved from the source to the drain!, it has
been demonstrated that the off-diagonal blocks within the
mode space can be ignored and individual modes can be
treated as decoupled.12 However, when the confining poten-
tial changes abruptly as electrons flow from a wide to narrow
region@Fig. 1~b!#, the off-diagonal blocks of the Hamiltonian
are significantly greater than zero. These nonzero elements in
the mode space Hamiltonian indicate that different modes
couple as a result of changes in the device geometry, even in
the absence of real scattering~geometric scattering!.

Once the mode-space Hamiltonian is computed, we can
evaluate the Green’s function in mode space at each injection
energy ~denoted byEL and referred to as the longitudinal
energy!:

Gmode5@ELI 2hmode2SS/D~EL!2Sscatt~EL!#21. ~7!

In Eq. ~7!, SS/D, represents the self-energy matrix which
accounts for the coupling between the active device and the
source–drain~S/D! contacts andSscatt, is the self-energy
matrix which models the effect of scattering within the de-

vice. The procedure to set up the self-energies is discussed in
the subsequent paragraph. Once the Green’s function has
been evaluated, all the quantities of interest such as the local
charge density and the terminal currents can be derived using
the procedures listed in.4,12,17,18These quantities which are
computed in mode space, can then be mapped onto the real-
space basis by applying the inverse of the transformation
used in Eq.~6!.

Deep inside the S/D contacts the electrostatic potential is
assumed to be invariant~alongx!. Therefore, diagonal blocks
of the Hamiltonian@a’s in Eq. ~1!# repeat themselves within
the source~a’s with indices less than 1! and the drain~a’s
with indices greater thanNX). Since the mode-space basis is
composed of the eigenvectors ofa, changing the basis from
real to mode-space diagonalizesa within the S/D regions:

amode5F e112tx 0 ¯ ¯ ¯

0 e212tx 0 � �

¯ 0 e312tx � �

� � � � �

� � � � eNZ
12tx

G .

~8!

Thee’s in Eq. ~8! represent the cutoff energies of the various
modes within the contacts. The coupling matrixb, in Eq.~6!,
remains unchanged as it is proportional to the identity matrix
~this matrix couples adjacent grid point along thex dimen-
sion within the same mode!. Therefore, we can visualize the
contacts asNZ separate 1D conductors in parallel. In this
representation the self-energy matrix can be expressed by
extending the results in Ref. 4. For the simple example that
we considered to illustrate the basis transformation@Eq. ~5!#,
the self-energy matrix is

SS/D~EL!53
mode 1 mode 2

1 2 3 1 2 3

2txe
ik1

1a 0 ¯ ¯ ¯ ¯

¯ 0 0 ¯ ¯ ¯

¯ 0 2txe
ik3

1a 0 ¯ ¯

¯ ¯ 0 2txe
ik1

2a 0 ¯

¯ ¯ 0 0 ¯ ¯

¯ ¯ ¯ ¯ 0 2txe
ik3

2a

4 , ~9!

where i 5A21. The superscript on thek in Eq. ~9! refers
to the mode index~the wave vector is specified with respect
to the cutoff energy of the mode! and the subscript to the site
index alongx. Since the first and the last slices of the active
device are the only regions which couple to the S/D contacts,
the self-energy matrix representing the contacts has nonzero
entries only at sites 1 and 3~or alternatively 1 andNX for

the general case!. It should be noted that the contact self-
energy matrix has the same size as the mode-space Hamil-
tonian.

Scattering within our modeling framework is treated
phenomenologically using Bu¨ttiker probes.8,19 Within this
phenomenological framework, scattering processes can be
viewed as another set of contacts which couple to the device
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just like the source and drain. This implies that the self-
energy describing scattering has the same form as Eq.~9!.
However, the fundamental difference between the real S/D
reservoirs and those represented by Bu¨ttiker probes is that
the probes can only change the electron energy and momen-
tum, but not the electron number within the device. Also,
these Bu¨ttiker probes~contacts! do not have a well defined
Fermi level like the S/D. One can view each Bu¨ttiker probe
as extracting electrons from the device, perturbing the energy

of those electrons and reinjecting an equal number back into
the device with a different energy distribution. The coupling
energy between the device and the probes@analogous totx in
Eq. ~9!# can be adjusted to vary the scattering strength
smoothly from zero~ballistic! to a high value~diffusive!.
This strength can also be specified to mimic an average low
field mobility as discussed in Ref. 18. The probe self-energy
in terms of the coupling strength for the example used to
illustrate Eqs.~5! and ~9! is:

Sscatt~EL!5

l

mode 1 mode 2

1 2 3 1 2 3

2
uP1

1u2

tx
eik1

1a 0 ¯ ¯ ¯ ¯

¯ 2
uP2

1u2

tx
eik1

1a 0 ¯ ¯ ¯

¯ 0 2
uP3

1u2

tx
eik1

1a 0 ¯ ¯

¯ ¯ 0 2
uP1

2u2

tx
eik1

1a 0 ¯

¯ ¯ ¯ 0 2
uP2

2u2

tx
eik1

1a 0

¯ ¯ ¯ ¯ 0 2
uP3

2u2

tx
eik1

1a

m
, ~10!

where the coupling energyuPu2/tx , is adjusted to mimic the
same low field mobility for electrons in each mode. The
subscripts and superscripts on the probe strength in Eq.~10!
have the same interpretation as in Eq.~9!. The Fermi level of
the probes at the ends of the device@m1 and mNX

in Fig.

1~b!# is fixed by the applied bias, while that of the probes in
the interior of the device@m2 up to mNX21 in Fig. 1~b!# is

adjusted to ensure current continuity~net source injected cur-
rent equals the net drain collected current!. Since the probe
Fermi levels are adjusted by forcing the net current at each
probe to equal zero@* I probe(EL)dEL50#, the scattering
model presented in this work causes a relaxation of the chan-
nel directed~or longitudinal! electron energies4,18 and also
results in strong intervalley scattering~scattering between
subbands from different valleys!. Note that the Fermi poten-
tial of all the probes within a single vertical slice is shorted
as shown in Fig. 1~b!. Such a treatment is justified because
there is no net current flow along thez dimension. The probe
Fermi levels~derived from current continuity! are a direct
measure of how applied voltage drops from the source to the
drain ~along x!. These Fermi levels are visualized and dis-
cussed in Sec. III.

The calculation cycle begins with a guess for the two-
dimensional~2D! potential V(x,z). Knowing the potential
profile, the real-space Hamiltonian@Eq. ~1!# is transformed
to modespace using Eqs.~5! and ~6!. Büttiker probes are

introduced@Eq. ~10!# and a Newton method is used to adjust
the probe Fermi levels to ensure current continuity. These
Fermi levels are then used to compute the density matrix in
mode space for each conduction band valley. These density
matrices are then transformed@inverse of the transformation
in Eq. ~6!# to real space and in that representation their diag-
onal entries yield the three-dimensional~3D! charge density
at each node of the (x,z) grid. The 3D charge~summed over
all valleys and spin! is used to solve Poisson’s equation to
obtain a new potential profile, and the entire calculation
cycle is repeated until a self-consistent solution is achieved.

In order to accurately sample the injection from the S/D
leads, a very fine longitudinal energy grid with a spacing of
DEL50.5 mV or less needs to be used. For typical values of
power supply voltages listed in the International Technology
Roadmap for Semiconductors~ITRS!,20 the energy grid is
composed of;1500 points. Manipulating matrices of size
100031000,;4500 times~331500 as there are three con-
duction band valleys! is a computationally challenging task
@because all the columns of the Green’s function in Eq.~7!
need to be computed#. Thus, even when solved in mode
space, the computational time per bias point for the device
structure in Fig. 1~b! is ;7 h on 45, 1.2 GHz processors of a
Linux Cluster. All calculations in this work were performed
on a Linux cluster usingMATLAB -6.1. Parallelization of the
energy grid was achieved using a message passing toolbox
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~MPI! interface forMATLAB , developed at the University of
Granada in Spain.21

III. RESULTS

The simulated device structures are illustrated in Fig. 1.
Both devices are ultrathin body, fully depleted, symmetric,
n-MOSFETs with S/D regions doped at 1020cm23 and an
intrinsic channel. Their gate lengths are 10 nm, and there is
no gate-to-S/D overlap. The junctions are abrupt, and the
oxide thickness for both top and bottom gates is 1 nm. A
body thickness of 1.5 nm, and a power supply (VDD) of 0.4
V has been used in this simulation study. The oxide regions
are treated as infinite potential barriers for electrons. The
effect of channel access geometry on device performance is
examined by comparing the characteristics of a device with
abruptly flared out S/D regions@Fig. 1~b!#, against those of a
device with uniformly narrow S/D regions@Fig. 1~a!# while
fixing the overall device length~50 nm!. A S/D mobility of
55 cm2/V s and a channel mobility of 200 cm2/V s is used to
capture the effects of scattering. Henceforth, we shall refer to
the device with the flared out geometry as the wide-to-
narrow ~WN! device and the device without the flared out
S/D as the uniformly narrow~UN! device.

A. WN device

In order to highlight quantum effects, especially within
the WN device@Fig. 1~b!#, we plot the self-consistently cal-

culated subband energies@obtained by solving for the eigen-
values ofa in Eq. ~2!# and charge densities along the slices
labeled A–A, B–B, and C–C in Fig. 2~in the on-state,
VGS5VDS50.4 V). For the WN device, the thickness of the
wide S/D is 6.2 nm and these regions are terminated using
hard-wall~infinite potential! boundary conditions along thez
dimension. Therefore, charge in these regions is quantized.
However, unlike the narrow region which being extremely
thin, exhibits single subband occupancy, charge within the
wide S/D is distributed over several subbands. Away from
the WN constriction~section A–A!, the shape of the electro-
static potential~along z! and hence the modes@eigenfunc-
tions of a in Eq. ~2!# do not change appreciably along thex
dimension. Therefore, different modes within section A–A
can be treated as decoupled because the off-diagonal terms in
the mode-space Hamiltonian@Eq. ~6!# are close to zero.12

Along slice A–A, the electron population from each mode
can be viewed as being distributed according to the indi-
vidual mode eigenfunctions. In slice A–A all of the charge
resides in the lowest five unprimed~valleys with a heavy
effective mass alongz, and twofold degenerate! and the low-
est two primed subbands~valleys with a light effective mass
alongz, and fourfold degenerate!. Since the mode eigenfunc-
tions for the low energy unprimed modes are evanescent at
the device center@note that these energies are below the con-
duction band maximum in Fig. 2~a!#, the spatial charge dis-
tribution for the unprimed valleys is peaked away from the

FIG. 2. ~a! Conduction and subband profiles along slices A–A~left! and B–B~right! for the WN device@Fig. 1~b!#. Unprimed mode energies are illustrated
using solid horizontal lines while primed mode energies are represented by dashed horizontal lines. The first unprimed mode within slice C–C is also
superposed~right! and marked~triangles!. ~b! The charge distribution along slices A–A, B–B, and C–C is presented. The net charge~dashed and dotted line!
is obtained by summing charge contributions from the unprimed~solid line! and primed~dashed line! valleys.
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centerline of the device. On the other hand, the charge dis-
tribution for the primed valleys is parabolic, with a peak at
the center of the wide regions@all of the primed mode ener-
gies are above the conduction band maximum as shown in
Fig. 2~a!#. The net charge~summed over all the bands! as
expected, exhibits a uniform distribution except at the ends,
where it smoothly drops to zero conforming to the hard-wall
boundary conditions.

The internal picture along slice B–B~one node to the
left of the constriction! is much different from that along
A–A @Fig. 1~b!#. The shape of the modes~wrt. z! change
rapidly along thex dimension as electrons propagate from a
wide ~6.2 nm! to a narrow~1.5 nm! quantum well.12 There-
fore, along slice B–B, individual mode energies and mode
eigenfunctions do not provide an accurate description of the
effective potential energy and spatial distribution of elec-
trons. Nonzero values of the off-diagonal elements within the
coupled mode-space Hamiltonian@Eq. ~6!# results in intra-
mode scattering~scattering between modes belonging to the
same conduction band valley! even in the ballistic limit. In
fact the charge density distribution~alongz! is peaked at the
device center for both the primed and unprimed valleys@Fig.
2~b!, center#. Electrons from the unprimed valleys respond to
the channel directed electric field with a light effective mass
(0.19m0) and hence have large wavelengths~inversely pro-
portional to the effective mass!, while those from the primed
valleys respond with a heavy effective mass~on average! and
have short wavelengths. Therefore, the horizontal distance
~alongx, away from the oxide regions! over which the elec-
tron density increases~from zero! to the values along section
A–A is greater for the unprimed valleys@as illustrated in Fig.
2~b!, center#. Since the electron waves have propagating so-
lutions only within the narrow constriction, individual valley
and the net charge distributions along B–B exhibit sharply
increasing trends between the top and bottom silicon–oxide
interfaces (z50 andz51.5 nm). At the constriction~section
C–C!, there is only one propagating mode~from the
unprimed valleys! within the energy range over which elec-
trons are injected into the narrow region. All the other modes
are evanescent and decay exponentially~note that the electon
density from the primed valleys is much below that from the
unprimed valley along section C–C!. The electron distribu-
tion within section C–C is peaked at the device center and
conforms to the hard-wall boundary conditions used to ter-
minate the Hamiltonian at the oxide–silicon interface.

The internal images presented so far clearly indicate that
the solution scheme captures all of the quantum effects
within the WN geometry accurately. In order to discuss the
role of scattering, we plot the subband energies along section
B–B in Fig. 2~a! ~right!. The subband energy of the lowest
unprimed mode at the constriction~C–C! is also superposed
on this plot~marked line!. Note that although these energies
represent a rough estimate of the potential energy for elec-
trons~due to the mode coupling issues discussed earlier!, it is
clear that scattering~especially intervalley! is an important
aspect of transport within the WN structure. Scattering en-
hances the ability of the evanescent modes to transfer charge
into the propagating modes at the constriction. If the effect of
scattering were not included, there would be no interaction

between the primed and unprimed modes at sections B–B
and C–C despite their being energetically very close. Al-
though these internal plots correspond to the on-state (VGS

5VDS5VDD) of operation, the overall image within the WN
device is similar for all states of biasing. The internal image
throughout the UN device resembles that along section C–C
~the UN device exhibits single mode occupancy every-
where!.

Interesting features of the solution scheme are illustrated
in Fig. 3 where the energy~channel directed energy! resolved
local density of states~LDOS! within the WN device is vi-
sualized in the on-state~with scattering! for both the
unprimed and primed valleys. White areas in the figure rep-
resent a large density of states, while dark regions indicate a
low LDOS. The profile of the first unprimed subband is also
superposed on the plots in order to provide a rough estimate
of the minimum potential energy for electrons in different
regions of the device~note that the subband profile is discon-

FIG. 3. ~a! Energy resolved LDOS spectrum within the WN device@Fig.
1~b!# in the on-state, for the unprimed valleys. Note that all of the states
within the narrow region are due to the unprimed valleys in the energy range
of interest.~b! The energy resolved LDOS spectrum within the WN device
from the primed valleys. States belonging to the primed valleys are reflected
at the WN interface and decay exponentially within the narrow region. The
first unprimed subband~dashed line! is also superposed on the plots. This
subband is discontinuous at the WN interface due to an abrupt change in the
width of the quantum well~from 6.2 to 1.5 nm!.
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tinuous at the WN interface, because of an abrupt change in
the width of the quantum well from 6.2 to 1.5 nm!. The well
demarcated subband structure in the LDOS spectrum away
from the WN interface is gradually lost due to mode cou-
pling as one approaches the WN interface. Reflections at the
WN interface (x5210 nm andx520 nm) result in a re-
duced LDOS at the constriction, which then sharply in-
creases into the large S/D reservoirs@also evident in the 2D
charge density plotted in Fig. 6~b!#. Figure 3~a! clearly indi-
cates that only the unprimed valleys contribute to the LDOS
within the narrow region. Modes belonging to the primed
valleys are completely reflected and decay exponentially
within the narrow region. These modes indirectly inject cur-
rent into the narrow region through inelastic scattering pro-
cesses. Inelastic scattering also destroys coherent oscillations
in the LDOS and the LDOS decays to zero within the for-
bidden regions below the first unprimed subband energy.

B. Effect of differing channel access geometry

Figure 4 presents the self-consistently simulatedI DS vs
VGS andI DS vs VDS characteristics for both the UN and WN
device geometries, including the effects of scattering. For the
same gate work function both geometries exhibit identical
off-currents ~;7 A/m!, subthreshold slopes~subthreshold
swing is ;100 mV/dec! and threshold voltages@Fig. 4~a!#.
Also, for the same off-current, the simulated on-current for
the device with a WN geometry is only;10% lower than
that of the device with a UN geometry. Note that this differ-
ence in the on-current represents the worst case scenario. In
reality, the geometry of the S/D regions would not be hypera-
brupt, but would flare out gradually in order to reduce the
parasitic gate-to-S/D capacitances. For such geometries it is
possible that the differences in the on-current between UN
and WN devices could be even lower than 10%. The output
characteristics for both device structures are weakly satu-
rated because of the low power supply voltage used in this
study and due to series resistance effects. SimulatedI –V
characteristics for the WN device can be understood by
viewing the large S/D regions as ideal reservoirs. These re-
gions which maintain a near equilibrium distribution~due to
multiple subband occupancy and scattering!, inject and ex-
tract electrons from the narrow region while maintaining
macroscopic charge neutrality. Therefore, current flow de-
pends on the ease with which electrons can enter~exit! and
propagate through the narrow region. We compare the trans-
port properties of the UN and WN devices by focusing on
the internal image once again.

The conduction band profiles~averaged alongz! in the
off-state (VDS50.4 V, VGS50 V) for the WN and UN de-
vices are compared in Fig. 5~a! ~left!. Note that although the
conduction band profiles for the UN and WN devices match
within the narrow region, there is a large built-in potential at
the interface between the wide and narrow regions of the
WN device @Fig. 5~a!, left#. To explain the origin of this
built-in potential we note that both the wide and the narrow
S/D regions are degenerately doped (1020cm23). For the
same degenerate bulk doping value, the equilibrium Fermi
level within a neutral narrow semiconductor is much higher

than the conduction band edge of a comparably doped, neu-
tral wide semiconductor, because only one subband is occu-
pied in the narrow semiconductor while several are occupied
in the wide semiconductor. Therefore, when the wide and
narrow portions are intimately connected, electrons spill
from the narrow into the wide region~regions of high to low
Fermi energy!, and a built-in potential develops to equalize
the Fermi levels.

The corresponding subband profiles@eigenvalues ofa in
Eq. ~2!# are visualized in Fig. 5~a! ~right!. It should be re-
called that within the WN device, these subbands have clear
physical meaning away from the WN constrictions. They
have been visualized in order to qualitatively understand the
off-state behavior of theI –V characteristics. Note once
again that these subband energies are discontinuous at the
interface between the wide and the narrow regions due to an
abrupt change in the width of the quantum well~6.2–1.5
nm!. Since the first subband is all that matters within the

FIG. 4. ~a! SimulatedI DS vs VGS characteristics for the UN~dashed line!
and WN ~solid line! devices atVDS50.4 V ~including the effect of scatter-
ing!. Both devices exhibit the same off-current~;7 A/m! and subthreshold
slopes.~b! SimulatedI DS vs VDS characteristics for the UN~dashed line! and
WN ~solid line! devices atVGS50.4 V. For the same off-current, the simu-
lated on-current for the WN device is;10% lower than that of the UN
device.
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narrow region (x5210– 20 nm), high energy modes are not
plotted within this region in Fig. 2~a! ~right!. Note that scat-
tering ~both geometric and real! between different modes at
the WN interface ensures that electrons get injected into the
single mode propagating within the narrow region@this mode
self-consistently lines up between the third unprimed and the
first primed subbands as shown in Figs. 2~a! and 5~a!#. How-
ever, these electrons are reflected off the large source-to-
channel barrier~within the narrow region! in the off-state.
Such a barrier is also present within the UN device~where
the subband has a clear meaning everywhere! as seen from
Fig. 2~a! ~right!. Since the height of this barrier~governed by
the gate work function! is the same for both the UN and WN
devices, it is clear that their off-currents should be identical.
In Sec. II, we mentioned that the Fermi level of each Bu¨ttiker
probe~which represents an isolated scattering center! is ad-
justed to ensure current continuity. Therefore, these Fermi
potentials can be treated as a measure of how the applied
source-to-drain voltage drops within the device. In the off-
state, the channel is unconducting and we expect all of the

applied voltage to drop in the channel region irrespective of
the device geometry. This is clearly evident from Fig. 5~b!,
where the scatterer Fermi levels are plotted along the channel
for both, the UN and WN geometries.

The self-consistently calculated conduction and subband
profiles in the on-state~with scattering! are plotted in Fig.
6~a!. In the on-state, the potential barrier for electrons is
supressed@compared to Fig. 5~a!# due to the large voltage
applied to the gate electrodes. The on-current of the WN
device depends on the ability of the large S/D reservoirs to
inject ~extract! electrons from the narrow region and the
transport properties of the narrow region itself. As mentioned
earlier inter subband scattering aids this injection and extrac-
tion process. For the UN device, the S/D reservoirs are natu-
ral extensions of the intrinsic device (x5210– 20 nm).
However, this is not the case within the WN device as evi-
denced by the 2D charge density~integrated alongz! plots in
Fig. 6~b!. In our discussion of the off-state we mentioned that
an intimate connection between comparably doped, neutral,
wide, and narrown1 regions results in a tranfer of charge

FIG. 5. ~a! Averaged conduction band profile~left! in the off-state~including the effect of scattering! for the UN ~dashed line! and WN~solid line! devices.
Note the large built-in potential at the WN interface. The corresponding subband profiles are visualized on the right. Many subbands~dots! are occupied in
the S/D regions of the WN device. These modes inject current into the single propagating mode within the narrow region due to scattering@modes line up as
shown in Fig. 2~b!#. The UN device exhibits single mode occupancy everywhere~dashed line!. ~b! The Büttiker probe potentials within the UN~triangles! and
WN ~solid line! devices indicates that all of the applied voltage drops within the unconducting channel in the off-state.
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from the narrow to the wide region. Such a charge transfer
occurs at the wide-to-narrow source and drain interfaces
within the WN device. This charge transfer results in a deple-
tion region which extends into S/D regions of the intrinsic
device @Fig. 6~b!#. As the drain voltage is increased from
zero toVDD50.4 V, then1(wide) –n1(narrow) junction at
the source becomes reverse biased thereby extending the
depletion region further into the intrinsic source. On the
other hand, the positive drain voltage forward biases the
n1(narrow) –n1(wide) junction on the drain side thus
shrinking the depletion region as shown in Fig. 6~b!. Note
that transport properties of the UN device are identical to
those of the intrinsic WN device because they have same S/D
extension and channel mobilities and also exhibit single
mode occupancy. Therefore, observed differences~;10%
with scattering turned on! in the on-current between the UN
and WN devices~for the same off-current! are due to the
depletion effects coupled with quantum mechanical reflec-
tions at the WN interface.

The effect of self-consistency is also evident in Fig. 6~b!.
Self-consistent electrostatics causes macroscopic charge neu-
trality ~net 2D charge equals the net 2D doping! to be
achieved within both, the large S/D reservoirs as well as the
narrow S/D extensions~away from the WN interface! of the
WN device. Due to the abruptness of the S/D-to-channel
junctions and the high doping within these narrow S/D ex-
tensions, the effect of fringing fields from the gate within the
WN device has little or no effect on the on-state charge den-
sity. In fact, the 2D charge profile within the UN device
matches that of the WN device almost identically in the nar-
row region as shown in Fig. 6~b!.

In the on-state the channel is conducting, so a significant
fraction of the applied source-to-drain voltage drops within
the S/D reservoirs and extensions. As illustrated in Fig. 7~a!,
where the Bu¨ttiker probe Fermi potentials are plotted in the
on-state (VGS50.4 V, VDS550 mV), the applied voltage
drops linearly within the S/D regions of the UN device.
Within the WN device, however, almost all of the voltage

FIG. 6. ~a! Average conduction band profile~left! in the on-state~including the effect of scattering! for the UN~dashed line! and WN~solid line! devices. Note
that the source-to-channel barrier is depressed due to the large gate voltage and that differences in the on-current between the UN and WN devices reflects the
ability of the large S/D regions~in the WN device! to inject and extract electrons from the narrow region.~b! The 2D charge density within the UN~dashed
line! and WN~dotted and solid lines! devices in the on-state. The S/D regions within both, the UN and WN devices exhibit charge neutrality~2D charge equals
the net 2D doping!.
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drop in the heavily doped S/D regions occurs at the interface
between the wide and the narrow regions. We can interpret
the nature of this voltage drop by deriving a sheet resistivity
(]m/]x/I DS/W) at low VDS, which is plotted in Fig. 7~b!.22

Both the UN and WN devices exhibit the following resis-
tances:~1! quantum contact resistance,~2! S/D resistance,~3!
tip resistance, and~4! channel resistance. In addition, the
WN device exhibits a large quantum-mechanical spreading
resistance at the interface between the wide and the narrow
regions. Note that within the S/D reservoirs of the WN de-
vice, the large number of propagating modes causes the sheet
resistivity to be lower than that of the UN device~single
mode conduction!. Within the intrinsic portion of the WN
device, however, the nature of the voltage drop as well as the

sheet resistance looks identical to that of the UN device
~same mobilities and single mode occupancy!.

Next, we examine the effect of the wide-to-narrow as-
pect ratio. If we progressively increase the thickness of the
S/D regions~beyond 1.5 nm which corresponds to the UN
device! and examine the on-current, we obtain the trend
shown in the inset of Fig. 7~b!. As the thickness of the S/D
regions is increased, the bulk S/D resistance decreases~num-
ber of propagating modes increases!, while the spreading re-
sistance increases~quantum mechanical reflections!, thus re-
sulting in an optimum value of the on-current~;5% higher
than that of the UN device!. A further increase in the thick-
ness of the S/D regions causes the increasing spreading re-
sistance to dominate, thus resulting in a decrease in the on-
current. However, beyond a certain thickness value~wide-to-
narrow aspect ratios exceeding 4!, the spreading resistance
and hence the on-current saturates at a value which is;10%
less than that of the UN device. This behavior of the resis-
tivity and the on-current in the presence of scattering clearly
demonstrates that an understanding of the intrinsic device
@Fig. 1~b!# is sufficient to explain the transport properties of
devices with different S/D geometries.

Figure 8~a! plots the self-consistently calculated current
spectrum at the source and drain contacts~slices 1 andNX in
Fig. 1! as a function of the channel directed energy for both
the UN and the WN devices in the on-state~while reading
the plot it should be noted that the source injected current is
positive for electrons entering the device, while the drain
collected current is negative for electrons leaving the de-
vice!. Since Büttiker probes simulate the effect of inelastic
scattering, we observe that the drain collected current is re-
laxed in energy when compared to the source injected cur-
rent for both, the UN and the WN devices. Within the UN
device which exhibits single mode occupancy, the source
injected current smoothly increases for energies above the
subband edge and finally tails to zero as the current at the
source end is cutoff by the source Fermi function. Within the
WN device, current at the source is injected into several
subbands@their energies are indicated by the vertical lines in
Fig. 8~a!#. Therefore the current spectrum for the WN device
exhibits a stepped behavior, with each step occurring at the
energy at which a specific mode starts propagating. There is
a monotonic increase in the current spectrum~till it is cutoff
by the source Fermi function! because both the primed and
the unprimed modes within the wide source reservoir can
inject current into the single unprimed mode within the nar-
row region due to scattering.

If we compare this image to the current spectrum ob-
tained by ballistically simulating the WN device non-self-
consistently~where the 2D potential profile is fixed from the
scattering simulations!, we observe large differences in the
current spectrum@Fig. 8~b!# for the UN and WN devices.
Since scattering is turned off, there is no energy relaxation of
the source injected current. Therefore, the source and drain
current spectra are symmetric. Also, the source current spec-
trum for the WN device does not increase monotonically.
Coherent quantum mechanical reflections at the WN inter-
face generate strong oscillations in the current spectrum and
greatly degrade the current flowing through the WN device

FIG. 7. ~a! Profile of the Bu¨ttiker probe potentials within the UN~dashed
line! and WN ~solid line! devices in the linear response regime (VGS

50.4 V andVDS50.05 V). Note that the applied voltage drops nonlinearly
within the S/D regions of the WN device. Most of the voltage drops at the
WN interface. ~b! Derived sheet resistivity plots within both, the UN
~dashed line! and WN~solid line! devices indicate the following resistances:
~1! quantum contact resistance,~2! S/D resistance,~3! tip resistance, and~4!
channel resistance. In addition, the WN device also exhibits a large spread-
ing resistance. This resistance which degrades the on-current of the WN
device when compared to the UN device, saturates as the thickness of the
S/D regions is increased beyond a certain value~inset!.
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when compared to the UN device@for example, note the
clear reduction in current at energies around the first primed
mode when compared against Fig. 8~a!#. A ballistic simula-
tion ~non-self-consistent! of the I –V characteristics for the
UN and WN devices indicates that the computed current val-
ues could differ by as much as;250% ~as opposed to
;10%, when scattering is turned on! due to coherent reflec-
tions caused by an abrupt change in the device geometry
~Fig. 9!. Such differences have been recently reported in the
literature.23,24These results clearly emphasize the importance
of including the effects of scattering when performing a de-

tailed design analysis of nanoscale transistors operating at
room temperature.

IV. DISCUSSION

In this section we discuss an approach which can be
applied to design and assess the performance of nanoscale
silicon transistors efficiently. Device design and optimization
requires the ability to perform a large number of simulations
within a reasonable time period. Even for the small device
dimensions considered in this article@Fig. 1~b!#, the simula-
tion time per bias point on a Linux cluster was very large
~;7 h!. The computational burden was large because we
explicitly included the large S/D reservoirs within our quan-
tum simulation domain. In real devices these regions have an
area which is much larger than 6.2 nm310 nm in order to
reduce the silicide resistance~not considered in our study!,
and are virtually impossible to handle within a quantum me-
chanical framework. Therefore, we examine the possibility
of decomposing the simulation domain into instrinsic~region
within the dashed box in Fig. 1~b! and parasitic components
~large S/D reservoirs!. Knowing the characteristics of the
intrinsic device and the parasitic resistances, the actual de-
vice performance~extrinsic characteristics! can be obtained
by solving the following equations.

VGS5VGS
intrinsic1I DSRS ,

~11!
VDS5VDS

intrinsic1I DS@RS1RD#

whereVDS and VGS are the extrinsic voltages. Note that in
order to simulate the intrinsic device only a few modes need
to be included when expanding the device Hamiltonian in
mode space@Eq. ~6!#. Also note that within the intrinsic de-
vice each mode can be treated as decoupled.12 Therefore, the
computational burden for quantum mechanically simulating
the intrinsic device is extremely small. The parasitic resis-
tances of the extrinsic S/Ds can be extracted using a classical
simulator and used in Eq.~11!.

FIG. 8. ~a! Current spectrum within the UN~dashed line! and WN ~solid
line! devices in the on-state with scattering. Inelastic scattering causes the
source injected current spectrum to relax in energy. Within the UN device
current at the source is injected into a single mode. Within the WN device
the source current is injected into several unprimed~solid vertical lines! and
primed ~dashed vertical lines! modes. Scattering, at the WN interface en-
ables these modes to inject current into a single mode within the narrow
region.~b! The ballistically~non-self-consistent! calculated current spectrum
within the UN ~dashed line! and WN~solid line! devices. In the absence of
scattering, there is no energy relaxation of source injected current spectrum
and S/D current spectra are symmetric. Coherent reflections, due to abrupt
changes in device geometry greatly degrade current flow within the WN
device when compared to the UN device.

FIG. 9. Ballistically simulated~non-self-consistent, potential profiles ob-
tained from self-consistent scattering simulations are used! I –V character-
istics for the UN~dashed line! and WN~solid line! devices indicate that the
on-currents for the two device structures could differ by as much as;250%.
In contrast, once scattering is included, theI –V characteristics for the two
devices differ by no more that;10%.
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Simulation of the intrinsic device requires an appropriate
set of boundary conditions. Within the intrinsic device the
transport equation~NEGF! is solved by imposing fixed
boundary conditions on the Fermi potentials of the source
and drain contacts~specified byVDS). However, we impose
floating boundary conditions when solving Poisson’s equa-
tion. This boundary condition is realized by setting

x̂•“V50, ~12!

at the source and drain ends of the simulation domain. Con-
ventional transport models use fixed potential boundary con-
ditions assuming equilibrium statistics and charge neutrality
at the contacts. Under nonequilibrium conditions, equilib-
rium statistics no longer apply within the intrinsic device,25

and our use of the floating boundary condition helps us cap-
ture the effect of coupling the intrinsic device to the large
scattering dominated contacts. Note that even if the potential
is allowed to float, it cannot float to any arbitrary value. The
potential floats relative to the source/drain Fermi levels in
order to achieve charge neutrality@Fig. 6~b!#. To explain the
floating boundary condition, we plot the averaged conduc-
tion band profile for the device shown in Fig. 1~b! under
equilibrium (VGS50.4 V, VDS50 V) and nonequilibrium
(VGS50.4 V, VDS50.4 V) conditions ~with scattering! in
Fig. 10. The large S/D regions maintain a near-equilibrium
distribution even when a large bias is applied to the drain,
because of scattering between the many modes which con-
tribute to conduction in this region. Therefore, the electro-
static potential within this region is unaffected even when a
large bias is applied to the drain as shown in Fig. 10. How-
ever, within the intrinsic device the conduction band floats to
lower values as the drain bias is increased26 ~Fig. 10!. Under
equilibrium conditions, both the1kx and the2kx states in
the intrinsic source are filled by a single Fermi level resulting
in zero net current. As the drain bias is increased to higher
and higher values, the drain injected half of the electron dis-

tribution is suppressed within the intrinsic source. To achieve
charge neutrality in this region@Fig. 6~b!# the conduction
band floats to lower energies, an effect that is captured
through the imposition of floating boundary conditions.26

In order to verify our domain decomposition algorithm
we simulate a resistor~using NEGF! with ideal, nonuniform
contacts in the linear response regime@inset of Fig. 11~a!#.
The resistor has the dimensions of the wide S/D reservoirs
for the device in Fig. 1~b!. The left contact to the resistor is
6.2 nm deep, while the right contact is 1.5 nm deep. The
dimension of the right contact is chosen to simulate the cou-
pling of the source reservoir to the narrow intrinsic device.
All the regions of the resistor which are not covered by con-
tacts, are terminated using hard-wall boundary conditions.
Simulated charge density and Bu¨ttiker probe potentials for
this resistor are plotted in Fig. 11~a!. As expected, reflections

FIG. 10. Averaged conduction band profile within the WN device~on-state!
at equilibrium ~solid line! and on the application of a large drain voltage
~dashed line,VDS50.4 V). It is clear that the conduction band edge is un-
changed within the large S/D reservoirs as they maintain a near-equilibrium
distribution even when a large drain bias is applied. The conduction band
within the intrinsic source@Fig. 1~b!# floats to lower values to enforce
charge neutrality@Fig. 6~b!#.

FIG. 11. ~a! Simulated 2D charge and Bu¨ttiker probe potential profiles
within a resistor with nonuniform contacts~inset! in the linear response
regime. Note, that the nature of the applied voltage drop is similar to the
drop with the S/D regions of the WN device pictured in Fig. 7~a!. The
quasi-Fermi potential drops steeply in the regions where the 2D charge
density decreases to enforce current continuity.~b! Quantum mechanically
simulatedI –V characteristics~solid line! are compared against theI –V
characteristics obtained using the domain decomposition algorithm~dashed
line with triangles!. The I –V characteristics of the intrinsic device is also
illustrated~dashed line!.
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at the right edge causes the charge density to drop at the right
end of the resistor. The 2D charge density gradually in-
creases to the charge neutral value over a few Debye lengths
away from the right contact. Since the charge density is non-
uniform, the applied voltage drops nonlinearly. The quasi-
Fermi potential~of the Büttiker probes! drops rapidly in re-
gions where the charge density is reduced in order to
conserve current. The nature of this voltage drop is similar to
the actual profile of the Bu¨ttiker probe potentials illustrated
in Fig. 7~a! ~for the WN device!. Based on our calculations
in the linear response region, the estimated parasitic source
~drain! resistance was;57 V mm. This resistance value was
used to estimate theI –V characteristics of the WN device
shown in Fig. 1~b!, using the intrinsicI –V and Eq.~11!. A
comparison~Fig. 11! between theI –V characteristics ex-
tracted using our domain decomposition algorithm and the
actualI –V ~from a quantum simulation of the entire device!
characteristics presented in Fig. 4~b! ~for the WN device!
indicates that our domain decomposition scheme provides a
fairly accurate and efficient technique for analyzing and de-
signing nanoscale transistors.27,28The S/D reservoirs and the
intrinsic device can be treated independently.

V. SUMMARY

We presented a computationally efficient method to
quantum mechanically simulate electron transport within
nanoscale transistors including the effect of scattering. This
modeling scheme, which is based on an expansion of the
effective mass Hamiltonian in coupled mode space, was ap-
plied to nanoscale transistors with differing channel access
geometries. Our simulation study indicated that devices with
very different channel access geometries exhibit nearly iden-
tical current–voltage characteristics~no more than;10%
differences in the worst case! once the effect of scattering
was included. However, when simulated ballistically, devices
with different access geometries yielded largely differing
current–voltage characteristics due to coherent reflections
~as much as;250% in the worst case!.

We then proposed a domain decomposition algorithm
which can be applied to efficiently assess and design nanos-
cale transistors at the end of the roadmap. This algorithm
divided the device into intrinsic and parasitic components,
simulated each component independently, and extracted the
overall device characteristics through a simple interpolation
scheme. A comparison of the extracted data against data ob-

tained from rigorous quantum mechanical simulations of the
entire device clearly showed that this domain decomposition
algorithm is an accurate method for analyzing the transport
properties of transistors at the end of the roadmap.
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