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A continuum-based model for analysis of laterally loaded piles in
layered soils

D. BASU*, R. SALGADO† and M. PREZZI†

An analysis is developed to calculate the response of
laterally loaded piles in multilayered elastic media. The
displacement fields in the analysis are taken to be the
products of independent functions that vary in the verti-
cal, radial and circumferential directions. The governing
differential equations for the pile deflections in different
soil layers are obtained using the principle of minimum
potential energy. Solutions for pile deflection are obtained
analytically, whereas those for soil displacements are
obtained using the one-dimensional finite difference
method. The input parameters needed for the analysis
are the pile geometry, the soil profile, and the elastic
constants of the soil and pile. The method produces
results with accuracy comparable with that of a three-
dimensional finite element analysis but requires much less
computation time. The analysis can be extended to
account for soil non-linearity.

KEYWORDS: elasticity; piles; theoretical analysis

Dans la présente communication, on conçoit une analyse
permettant de calculer la réaction de pieux à charge latérale
dans des milieux élastiques multicouches. Les champs de
déplacement dans cette analyse sont censés être les produits
de fonctions indépendantes variant dans les sens vertical,
radial et circonférentiel. Les équations différentielles déter-
minantes pour les flèches des pieux dans différentes couches
de terrain s’obtiennent en appliquant le principe de l’éner-
gie potentielle minimale. Les solutions s’obtiennent de dif-
férentes façons : de façon analytique pour la flèche des
pieux, et avec une méthode des différences finies unidimen-
sionnelles pour les déplacements du sol. Les paramètres
d’entrée nécessaires pour l’analyse sont la géométrie des
pieux, le profil du terrain, et les constantes élastiques du sol
et des pieux. Cette méthode permet d’obtenir des résultats
dont la précision est comparable à celle des analyses tridi-
mensionnelles aux éléments finis, mais qui nécessite des
temps de calcul beaucoup plus courts. En outre, il est
possible de renforcer cette analyse pour tenir compte de la
non linéarité du terrain.

INTRODUCTION
Piles subjected to lateral forces and moments at the head are
analysed in practice with the p–y method (Reese & Cox,
1969; Matlock, 1970; Reese et al., 1974, 1975; Reese & Van
Impe, 2001). In the p–y method the pile is assumed to behave
as an Euler–Bernoulli beam with the soil modelled as a series
of discretely spaced springs, each connected to one of the pile
segments into which the pile is discretised. The springs model
the soil response to loading through p–y curves (p is the unit
resistance per unit pile length offered by the springs, and y is
the pile deflection), which are developed empirically by
adjusting the curves until they match actual load–displace-
ment results (Cox et al., 1974; Briaud et al., 1984; Yan &
Byrne, 1992; Brown et al., 1994; Gabr et al., 1994; Briaud,
1997; Wu et al., 1998; Bransby, 1999; Ashour & Norris,
2000). However, the p–y method often fails to predict pile
response (Anderson et al., 2003; Kim et al., 2004), for it is
not capable of capturing the complex three-dimensional inter-
action between the pile and the soil.

The continuum approach is conceptually more appealing;
however, in order to model the soil as a continuum, the use of
numerical techniques such as the three-dimensional (3D) finite
element (FE) method, finite elements with Fourier analysis, the
boundary element (BE) method or the finite difference (FD)
method is often required (Poulos, 1971a, 1971b; Banerjee &
Davis, 1978; Randolph, 1981; Budhu & Davies, 1988; Brown

et al., 1989; Verruijt & Kooijman, 1989; Trochanis et al., 1991;
Bransby, 1999; Ng & Zhang, 2001; Klar & Frydman, 2002).
The 3D FE or FD method can capture the most important
features of the complex pile–soil interaction, but three-dimen-
sional analyses are computationally expensive for routine prac-
tice. The BE method accounts for the pile–soil interaction by
discretising the pile into small strips and modelling the inter-
action between these strips with the soil continuum through
numerical integration of Mindlin’s solution (Mindlin, 1936) for
a point force within a continuum.

Considering the soil surrounding the pile as a continuum,
Sun (1994), Zhang et al. (2000) and Guo & Lee (2001)
developed closed-form solutions based on linear elasticity
that can be used to obtain lateral pile deflection with depth.
Their analyses capture the three-dimensional aspects of the
interaction of the pile–soil system and produce results
quickly, which is advantageous in practice. However, these
authors made an assumption that the variation of displace-
ments within the soil mass depends on the same displacement
function for both the radial and the circumferential directions.
This leads to a soil response that is stiffer than it is in reality.

Most continuum analyses of laterally loaded piles do not
consider soil layering. Soil heterogeneity with depth has been
approximately taken into account in the BE and FE analyses by
assuming (typically) a linear variation of soil modulus with
depth (Poulos, 1973; Randolph, 1981; Budhu & Davies, 1988).
The BE analysis has also been used to analyse two-layer
systems (Banerjee & Davies, 1978; Pise, 1982). However, BE
analysis of laterally loaded piles is strictly not applicable to
layered systems, because Mindlin’s solution used in BE analy-
sis is valid only for homogeneous continuums. Verruijt &
Kooijman (1989) solved a layered elastic system by discretis-
ing the soil layers using FE and the pile by FD methods.

In this paper, an advanced continuum-based method of
analysis of laterally loaded piles is proposed by assuming
the soil displacement field to have a shape that is consistent
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with the drop in displacement expected as distance from the
pile increases, and with the fact that the displacement is
expected to depend on the direction of the load with respect
to the point considered in the soil. The analysis considers a
pile embedded in a multilayered elastic soil (continuum),
and rigorously takes into account the three-dimensional
pile–soil interaction. The governing differential equations
for the pile and soil displacements are developed using
variational principles. Closed-form solutions are obtained for
pile deflection, and soil displacements are obtained using the
one-dimensional (1D) FD method. Pile response obtained
using this method compares favourably with 3D FE analysis,
although the computation effort required by this method is
small. Because soil displacements and strains can be calcu-
lated alongside pile deflection using this method, the analysis
forms the basis for future analysis that can model the inter-
action of piles in a group, and can account for soil non-
linearity by relating the progressive degradation of soil
stiffness to induced soil strains.

ANALYSIS
Problem definition

We consider a pile with a circular cross-section of radius
rp and length Lp embedded in a soil deposit that has n layers
(Fig. 1). Each layer extends to infinity in all radial direc-
tions, and the bottom (nth) layer extends to infinity in the
downward direction. The vertical depth to the base of any
intermediate layer i is Hi, which implies that the thickness
of the ith layer is Hi � Hi�1 with H0 ¼ 0 and Hn ¼ 1. The
pile head is at the ground surface, and the base is embedded
in the nth layer. The pile is subjected to a horizontal force
Fa and a moment Ma at the pile head such that Fa and Ma

are orthogonal vectors. In the analysis, we choose a cylind-
rical (r–Ł–z) coordinate system with its origin coinciding
with the centre of the pile head and the positive z-axis
(coinciding with the pile axis) pointing downwards. The goal
of the analysis is to obtain pile deflection as a function of
depth caused by the action of Fa and/or Ma at the pile head.

The soil medium is assumed to be an elastic and isotropic
continuum, homogeneous within each layer, with Lame’s
constants ºs and Gs. There is no slippage or separation
between the pile and the surrounding soil, or between the
soil layers. The pile behaves as an Euler–Bernoulli beam
with a constant flexural rigidity EpIp.

Potential energy
The total potential energy of the pile–soil system, includ-

ing both the internal and external potential energies, is given
by

— ¼ 1

2
Ep Ip
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(1)

where w is the lateral pile deflection, and � pq and � pq are the
stress and strain tensors (see Fig. 2) in the soil (summation is
implied by the repetition of the indices p and q in the product
of corresponding stress and strain components). The first
integral represents the internal potential energy of the pile.
The second and third integrals represent the internal potential
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Fig. 1. Laterally loaded pile in layered elastic medium
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energy of the continuum (note that the third integral repre-
sents the energy of the column of soil with radius rp starting
at the pile base and extending to infinity downward, while the
second integral represents the energy of the soil surrounding
both the pile and this column of soil). The remaining two
terms represent the external potential energy.

Soil displacement
We assume the following displacement fields (Fig. 2) in

the soil:

ur ¼ w zð Þ�r rð Þ cos Ł (2a)

uŁ ¼ �w zð Þ�Ł rð Þ sinŁ (2b)

uz ¼ 0 (2c)

where w(z) is a displacement function (with a dimension of
length), varying with depth z, representing the deflection of
the pile axis; �r(r) and �Ł(r) are dimensionless displace-
ment functions varying with the radial coordinate r; and Ł is
the angle measured clockwise from a vertical reference
section (r ¼ r0) that contains the applied force vector Fa.
Equation (2c) is based on the assumption that the vertical
displacement of the pile caused by the lateral load and
moment applied at the pile head is negligible.

The functions �r(r) and �Ł(r) describe how the displace-
ments within the soil mass (due to pile deflection) decrease
with increasing radial distance from the pile axis. We set
�r(r) ¼ 1 and �Ł(r) ¼ 1 at r ¼ rp (this ensures compat-
ibility at the pile/soil interface) and �r(r) ¼ 0 and �Ł(r) ¼
0 at r ¼ 1 (this ensures that displacements in the soil
decrease with increasing radial distance from the pile). Thus
�r and �Ł vary between 1 at the pile/soil interface and 0 at
infinite radial distance from the pile.

Stress–strain–displacement relationships
The strain–displacement relationship, considering equation

(2), leads to
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The strains in equation (3) are related to stresses using the
elastic stress–strain relationships, which allow expression of
the soil potential energy density 1

2
� pq� pq in terms of the

displacement functions w(z), �r(r) and �Ł(r), and the soil
elastic constants ºs and Gs (see Appendix 1). Substituting
this expression for the potential energy density into equation
(1), we obtain
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(4)

Principle of minimum potential energy
A system in equilibrium exists with its potential energy at

a minimum. Hence minimising the potential energy of the
pile–soil system (i.e. setting the first variation of the poten-
tial energy �— equal to 0) produces the equilibrium equa-
tions. We apply �— ¼ 0 to obtain an equation of the form
(see Appendix 1)

�— ¼ A wð Þ�w þ B wð Þ�
dw

dz

� �� �

þ C �rð Þ��r

� 	
þ D �Łð Þ��Ł

� 	
¼ 0

(5)

Since the variations �w(z), �(dw/dz), ��r(r) and ��Ł(r) of
the functions w(z) (and its derivative), �r(r) and �Ł(r) are
independent, the terms associated with each of these varia-
tions must individually be equal to zero (i.e. A(w)�w ¼ 0,
B(w)�(dw/dz) ¼ 0, C(�r)��r ¼ 0 and D(�Ł)��Ł ¼ 0) in
order to satisfy the condition �— ¼ 0. The resulting equa-
tions produce the optimal functions wopt(z), �r,opt(r) and
�Ł,opt(r) that describe the equilibrium configuration of the
pile–soil system.

While considering the terms of the variation of the
potential energy related to w, we do so for the following
sub-domains: 0 < z < H1, H1 < z < H2, . . ., Hn�1 < z <
Lp, and Lp < z , 1. Accordingly, w is forced to satisfy
equilibrium within each of these sub-domains, and hence
over the entire domain. For �r and �Ł the domain over
which the potential energy and its variation are calculated is
rp < r , 1.

Soil displacement profiles
We first consider the variation of �r(r). Referring back to

the equation �— ¼ 0, represented by equation (5), we first
collect all the terms associated with ��r and collectively set
them equal to zero to obtainð1

rp

�ms1 r
d2�r

dr2
þ d�r

dr

� �
þ ms2 þ ms3ð Þ

d�Ł

dr

�
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�r

r
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r
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�
��rdr
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dr
þ ms3�r � ms3�Ł
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1
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¼ 0

(6)
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where

ms1 ¼ ºs þ 2Gsð Þ
ð1

0
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i dz
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Hi�1

dwi

dz
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dz (11)

The subscript i in the above equations refers to the ith layer
of the multilayered continuum (Fig. 1); wi represents the
function w(z) in the ith layer with wijz¼Hi

¼ wiþ1jz¼Hi
. Note

that the nth (bottom) layer is split into two parts, with the
part below the pile denoted by the subscript n+1; therefore,
in the analysis, Hn ¼ Lp and Hnþ1 ! 1.

The last term on the left-hand side of equation (6) is a
multiple of the subtraction of the value of ��r at r ¼ rp

from the value of ��r at r ¼ 1, and is therefore identically
zero for the boundary conditions of our problem (�r ¼ 0 at
r ¼ 1 and �r ¼ 1 at r ¼ rp) because a known (or
prescribed) �r implies that its variation ��r ¼ 0. After this
term is made equal to zero, what is left is an equation of
form C(�r)��r ¼ 0. The function �r(r) has a non-zero
variation (i.e. ��r 6¼ 0) for rp , r , 1 because �r is not
known a priori in this interval, so C(�r) ¼ 0, which means
the integrand in equation (6) must be set to zero, leading to
the differential equation

d2�r
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where the ªs are dimensionless constants given by ª2
1 ¼

ms4=ms1, (ª2=rp)2 ¼ ns=ms1 and ª2
3 ¼ (ms2 þ ms3)=ms1.

When solved, equation (12) yields �r,opt.
We now consider the variation of �Ł(r). We collect the

terms containing ��Ł in the equation �— ¼ 0 (equation (5))
and, proceeding similarly as for �r, we get the following
governing differential equation for �Ł:
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with the following boundary conditions: �Ł ¼ 0 at r ¼ 1
and �Ł ¼ 1 at r ¼ rp, where ª2

4 ¼ ms4=ms2, (ª5=rp)2 ¼
ns=ms2, and ª2

6 ¼ (ms2 þ ms3)=ms2.

Pile displacement
Finally, we consider the variation of the function w and its

derivative. We again refer back to the equation �— ¼ 0,
collect all the terms associated with �w and �(dw/dz) and
equate their sum to zero, to obtain
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We first consider the domain below the pile, that is,
Lp < z , 1. The terms associated with �w and �(dw/dz) in
equation (14) for Lp < z , 1 are equated to zero. Since
the variation of w(z) with depth is not known a priori within
the interior of the domain Lp , z , 1, �wnþ1 6¼ 0, and so
the integrand in the integral between z ¼ Lp and z ¼ 1
must be equal to zero in order to satisfy equation (14). This
results in the differential equation

2t nþ1

d2wnþ1

dz2
� k nwnþ1 ¼ 0 (17)

The displacement in the soil must vanish for z equal to
infinity. We use this as our boundary condition:

wnþ1 ¼ 0 (at z ¼ 1) (18)

The above equation implies that �wnþ1 ¼ 0 at z ¼ 1,
making the term associated with �w at z ¼ 1 equal to zero
(which is of course required to satisfy equation (14)).

The solution of equation (17) satisfying boundary condi-
tion (18) is

wnþ1 ¼ wnjz¼Lp
e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k n=2 t nþ1ð Þ

p
z�Lpð Þ (19)

We now consider the function w for the domains 0 < z <
H1, H1 < z < H2, . . ., Hn�1 < z < Lp. The terms containing
�w and �(dw/dz) in equation (14) are equated to zero for
each domain. Considering the integrals associated with each
individual layer (or each domain Hi�1 , z , Hi), the
integrand for each of these integrals must equal zero,
because �wi 6¼ 0 (as the function wi(z) within the domains
is not known a priori). This gives us the differential equation
for the ith layer, which, expressed in terms of normalised
depth ~zz ¼ z=Lp and displacement ~ww ¼ w=Lp, is given by

d4 ~wwi

d~zz4
� 2~tti

d2 ~wwi

d~zz2
þ ~kki ~wwi ¼ 0 (20)

The terms associated with the boundaries (i.e. z ¼ Hi) of
each domain in equation (14) must also each be equal to
zero. For each boundary, there are two terms: one multi-
plying �wi and another multiplying �(dwi/dz). Setting each
separately equal to zero yields the boundary conditions for
the differential equations represented by equation (20). These
terms can be seen to be a product of an expression and the
variation of the displacement or of its derivative. If the
displacement or its derivative is specified at the boundary,
then its variation is equal to zero; otherwise, the expression
multiplying the variation of the displacement or of its
derivative is equal to zero. The boundary conditions at the
pile head (z ¼ ~zz ¼ 0) are

~ww1 ¼ constant (21a)

or

d3 ~ww1

d~zz3
� 2~tt1

d ~ww1

d~zz
� ~FFa ¼ 0 (21b)

and

d ~ww1

d~zz
¼ constant (21c)

or

d2 ~ww1

d~zz2
� ~MMa ¼ 0 (21d)

At the interface between any two layers (z ¼ Hi or ~zz ¼ ~HHi),

~wwi ¼ ~wwiþ1 (22a)

d ~wwi

d~zz
¼ d ~wwiþ1

d~zz
(22b)

d3 ~wwi

d~zz3
� 2~tti

d ~wwi

d~zz
¼ d3 ~wwiþ1

d~zz3
� 2~ttiþ1

d ~wwiþ1

d~zz
(22c)

d2 ~wwi

d~zz2
¼ d2 ~wwiþ1

d~zz2
(22d)

At the pile base (z ¼ Lp or ~zz ¼ 1), the boundary conditions
are

~wwn ¼ constant (23a)

or

d3 ~wwn

d~zz3
� 2~tt n

d ~wwn

d~zz
¼ �2~tt nþ1

d ~wwnþ1

d~zz
(23b)

and

d ~wwn

d~zz
¼ constant (23c)

or

d2 ~wwn

d~zz2
¼ 0 (23d)

Equation (23b) is further simplified and expressed solely
in terms of ~wwn by differentiating wnþ1 in equation (19) with
respect to z, normalising the expression, and then substitut-
ing it back into equation (23b) to yield

d3 ~wwn

d~zz3
� 2~tt n

d ~wwn

d~zz
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~kk n~tt nþ1

q
~wwn ¼ 0 (23b9)

The dimensionless terms in the above equations are
defined as ~tti ¼ ti L

2
p=Ep Ip, ~kki ¼ ki L

4
p=Ep Ip, ~FFa ¼ Fa L2

p=
Ep Ip, ~MMa ¼ Ma Lp=Ep Ip and ~HHi ¼ Hi=Lp.

The governing differential equation for the pile (equation
(20)) resembles that of an Euler–Bernoulli beam resting on
an elastic foundation (the soil mass). The parameter ki (with
dimensions of FL�2, where F ¼ force and L ¼ length) is
related to the modulus of subgrade reaction (or to the
‘spring constant’ proposed by Winkler, 1867) and determines
the portion of the soil resistance due to compressive stresses
in the elastic medium (Fig. 3). On the other hand, the

Pile (deformed
configuration)

Shear resistance between
soil ‘columns’ owing to
differential lateral
movement (accounted for
by )ti

Infinite soil
‘columns’ of
infinitesimal
thickness
providing
resistance to pile
movement

Soil ‘columns’ get
compressed (or
extended) to pile
movement from, say,
point A to point B
(accounted for by )ki

owing

A

B

Pile
(undeformed
configuration)

…
…

.

Ground
surface

Shear resistances between
soil ‘columns’ below the
pile produce pile base shear
(occurs only if pile base
deflects laterally)

…
…

.

�

Fig. 3. Illustration of the two sources of soil resistance: soil
compression and shear
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parameter ti (with dimension of F) determines the fraction
of the soil resistance due to the shear stresses that develop
between soil layers of infinitesimal thickness displaced dif-
ferentially in the lateral direction (Vlasov & Leont’ev, 1966).

The boundary conditions (equations (22a)–(22d)) at the
interface of any two layers (~zz ¼ ~HHi) ensure the continuity of
pile deflection, slope of the deflection curve (¼ dwi/dz),
bending moment (¼ Ep Ip(d2wi=dz2)) and shear force
(¼ Ep Ip(d3wi=dz3) � 2ti(dwi=dz)) (the shear force has con-
tributions from both pile flexure and soil deformation). At
the pile head (~zz ¼ 0) the shear force equals the applied force
(equation (21b)), and either the slope of the pile deflection
curve is a known constant (equation (21c)) (this boundary
condition is generally used with the value of slope taken
equal to zero when fixed-head conditions are used to idealise
the case of a pile that is part of a group of piles joined at
the head by a cap) or the pile bending moment is equal to
the applied moment (equation (21d)) (free-head case). Equa-
tion (21a) must be used in the analysis instead of equation
(21b) to estimate the magnitude of an applied force required
to produce a given (known) head deflection. Similarly, if, for
both the free- and fixed-head cases, it becomes necessary to
estimate the magnitude of an applied moment that produces
a given (known) slope at the head, equation (21c) must be
used.

At the pile base (~zz ¼ 1), either the pile deflection is set
(equation (23a)) (used for the ideal fixed-base case, for
which the deflection is taken equal to zero, which may be
used with satisfactory results if the pile is socketed into a
very firm layer, like hard rock) or the shear force at a
section infinitesimally above the pile base is equal to that
infinitesimally below (equation (23b9)) (free-base case). The
other boundary condition active at the pile base is that either
the slope is a constant (equation (23c)) (assumed to be zero
for the fixed-base case) or the pile bending moment is zero
(equation (23d)) (free-base case).

Expressions for the ªs in terms of dimensionless deflections
The ªs appearing in equations (12) and (13) are expressed

in terms of the dimensionless pile deflection and slope as
follows:

ª1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ºsiþ3Gsið Þ
ð ~HHi

~HHi�1

~ww2
i d~zzþ ºsnþ3Gsnð Þ

ffiffiffiffiffiffiffiffiffi
~ttnþ1

2~kk n

s
~ww2

nj~zz¼1

Xn

i¼1

ºsiþ2Gsið Þ
ð ~HHi

~HHi�1

~ww2
i d~zzþ ºsnþ2Gsnð Þ

ffiffiffiffiffiffiffiffiffi
~ttnþ1

2~kk n

s
~ww2

nj~zz¼1

vuuuuuuuut
(24)

ª2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ł2

Xn

i¼1

Gsi

ð ~HHi

~HHi�1

d ~wwi

d~zz

� �2

d~zzþGsn

ffiffiffiffiffiffiffiffiffiffiffi
~kk n

8~tt nþ1

s
~ww2

nj~zz¼1

Xn

i¼1

ºsiþ2Gsið Þ
ð ~HHi

~HHi�1

~ww2
i d~zzþ ºsnþ2Gsnð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~tt nþ1

2~kk n

~ww2
nj~zz¼1

s

vuuuuuuuut
(25)

ª3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ºsiþGsið Þ
ð ~HHi

~HHi�1

~ww2
i d~zzþ ºsnþGsnð Þ

ffiffiffiffiffiffiffiffiffi
~tt nþ1

2~kk n

s
~ww2

nj~zz¼1

Xn

i¼1

ºsiþ2Gsið Þ
ð ~HHi

~HHi�1
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i d~zzþ ºsnþ2Gsnð Þ

ffiffiffiffiffiffiffiffiffi
~ttnþ1

2~kk n

s
~ww2

nj~zz¼1

vuuuuuuuut
(26)

ª4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ºsiþ3Gsið Þ
ð ~HHi

~HHi�1

~ww2
i d~zzþ ºsnþ3Gsnð Þ

ffiffiffiffiffiffiffiffiffi
~tt nþ1

2~kk n

s
~ww2

nj~zz¼1

Xn

i¼1

Gsi

ð ~HHi

~HHi�1

~ww2
i d~zzþGsn

ffiffiffiffiffiffiffiffiffi
~ttnþ1

2~kk n

s
~ww2

nj~zz¼1

vuuuuuuuut
(27)

ª5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ł2

Xn

i¼1

Gsi

ð ~HHi

~HHi�1

d ~wwi

d~zz

� �2

d~zzþGsn

ffiffiffiffiffiffiffiffiffiffiffi
~kk n

8~ttnþ1

s
~ww2

nj~zz¼1

Xn

i¼1

Gsi

ð ~HHi

~HHi�1

~ww2
i d~zzþGsn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ttnþ1

2~kk n

~ww2
nj~zz¼1

s

vuuuuuuuut (28)

ª6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ºsiþGsið Þ
ð ~HHi

~HHi�1

~ww2
i d~zzþ ºsnþGsnð Þ

ffiffiffiffiffiffiffiffiffi
~ttnþ1

2~kk n

s
~ww2

nj~zz¼1

Xn

i¼1

Gsi

ð ~HHi

~HHi�1

~ww2
i d~zzþGsn

ffiffiffiffiffiffiffiffiffi
~tt nþ1

2~kk n

s
~ww2

nj~zz¼1

vuuuuuuuut
(29)

where ł ¼ Lp/rp. These expressions can be directly used in
the computations.

ANALYTICAL SOLUTION FOR PILE DEFLECTION
The general solution of equation (20) is given by

~wwi(~zz) ¼ C
(i)
1 �1 þ C

(i)
2 �2 þ C

(i)
3 �3 þ C

(i)
4 �4 (30)

where C
(i)
1 , C

(i)
2 , C

(i)
3 and C

(i)
4 are integration constants (for the

ith layer), and �1, �2, �3 and �4 are individual solutions
(functions of ~zz) of the differential equation. The functions �1,
�2, �3 and �4 are standard trigonometric or hyperbolic func-
tions that arise in the solution of the linear ordinary differential
equations (Table 1). The integration constants for each layer
can be determined using the boundary conditions. The bound-
ary conditions given in equations (21)–(23) lead to a system
of linear algebraic equations (see Appendix 2) of the form

¨½ � C½ � ¼ F½ � (31)

where [¨]4 n34 n is a matrix containing the functions �1, �2,
�3 and �4 calculated at the boundaries of the soil layers,
[C]4 n31 is the vector of unknown integration constants of all
the layers, and [F]4 n31 is the right-hand side vector contain-
ing the applied forces and/or displacements (the subscript 4n
denotes the number of equations, which is four times the
number of soil layers). Simultaneous solution of the system
of equations represented by equation (31) produces the values
of the integration constants C

(i)
1 , C

(i)
2 , C

(i)
3 and C

(i)
4 , which,

when substituted in equation (30), produce the particular
solution of pile deflection (i.e. the pile deflection profile) for
a given set of boundary conditions and applied loads. The
slope of the deflected pile axis, and the bending moment and
shear force in the pile, can be obtained as a function of depth
by successively differentiating equation (30) and using the
values of the integration constants.

FINITE DIFFERENCE SOLUTION FOR SOIL
DISPLACEMENTS

The differential equations (12) and (13) for �r and �Ł are
solved using the FD method. The equations are interdepen-
dent and must, as a result, be solved simultaneously. Using
the central-difference scheme, equations (12) and (13) can
be respectively written as
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� jþ1
r � 2� j

r þ � j�1
r

˜r2
þ 1

r j

� jþ1
r � � j�1

r

2˜r

� ª1

r j

� �2

þ ª2

rp

� �2
" #

� j
r ¼

ª2
3

r j

� jþ1
Ł � � j�1

Ł

2˜r
� ª1

r j

� �2

� j
Ł

(32)

� jþ1
Ł � 2� j

Ł þ � j�1
Ł

˜r2
þ 1

r j

� jþ1
Ł � � j�1

Ł

2˜r

� ª4

r j

� �2

þ ª5

rp

� �2
" #

� j

Ł ¼ � ª2
6

r j

� jþ1
r � � j�1

r

2˜r
� ª4

r j

� �2

� j
r

(33)

where j represents the jth node, which is at a radial distance
rj from the pile axis; and ˜r is the distance between
consecutive nodes (discretisation length). The total number
of discretised nodes m should be sufficiently large that the
infinite domain in the radial direction can be adequately
modelled (Fig. 4). The discretisation length ˜r should be
sufficiently small to maintain a satisfactory level of accu-
racy.
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Equation (32), along with the boundary conditions
�(1)

r ¼ 1 (at r ¼ rp) and �(m)
r ¼ 0 (at r ¼ 1), is applied to

the discretised nodes, yielding the equation

The non-zero elements of the left-hand side matrix
[K� r ]m3m in the above equation are given by

K
� r

j, j�1 ¼ 1

˜r2
� 1

2r j˜r
(35)

K
� r

j, j ¼ � 2

˜r2
� ª1

r j

� �2

þ ª2

r p

� �2
" #

(36)

K
� r

j, jþ1 ¼ 1

˜r2
þ 1

2r j˜r
(37)

in which the subscript j is valid for nodes 2 to m � 1, with
the exception that K

� r

2,1 ¼ 0 and K
� r

m�1,m ¼ 0 (as is evident
from equation (34)).

The elements of the right-hand side vector fF� rgm31 in
equation (34) are given by

F
� r

j ¼ ª2
3

r j

� jþ1
Ł � � j�1

Ł

2˜r
� ª1

r j

� �2

� j
Ł (38)

where j represents nodes 3 through m�2. The elements
corresponding to node 2 and m�1 are given by:

F
� r

2 ¼ � 1

˜r2
þ 1

2r2˜r
þ ª2

3

r2

�(3)
Ł � 1

2˜r
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� �2

�(2)
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F
� r

m�1 ¼ ª2
3

rm�1

��m�2
Ł

2˜r
� ª1

rm�1

� �2

�m�1
Ł (40)

Using equation (33) and the boundary conditions that
�(1)
Ł ¼ 1 (at r ¼ rp) and �(m)

Ł ¼ 0 (at r ¼ 1), a matrix
equation (similar to equation (34)) for �Ł can also be
formed for the discretised nodes:

K�Ł½ � �Łf g ¼ F�Łf g (41)

The number and positioning of the non-zero elements of
[K�Ł ]m3m in equation (41) are exactly the same as that of
[K� r ]m3m of equation (34). The expressions of the off-
diagonal elements of [K�Ł ]m3m and [K� r ]m3m are also the
same (i.e. K� r

p,q ¼ K�Ł
p,q for p 6¼ q). The diagonal elements of

[K�Ł ]m3m for j ¼ 2 to m � 1 are given by
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r p

� �2
" #

(42)

The structure of fF�Łgm31 in equation (41) is also similar
to fF� rgm31 of equation (34) with F

�Ł
1 ¼ 1 and F�Ł

m ¼ 0.
The remaining elements of fF�Łgm31 are given by
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r (45)

Since the right-hand side vectors fF� rgm31 and
fF�Łgm31 contain the unknowns �Ł and �r, iterations are
necessary to obtain their values. An initial estimate of � j

r is
made and given as input to fF�Łg, and � j

Ł is determined by
solving equation (41). The � j

Ł values are then given as input
to fF� rg to obtain � j

r from equation (34). The newly
obtained values of � j

r are again used to obtain new values
of � j

Ł, and the iterations are continued until convergence is
reached. The criteria 1

m

Pm
j¼1 � j

r
previous � � j

r
current

�� �� < 10�6

and 1
m

Pm
j¼1 � j

Ł
previous � � j

Ł
current

�� �� < 10�6 are used (a strin-
gent value of 10�6 is used because this iterative solution
scheme is central to another set of iterations described next)
to ensure that accurate values of �r and �Ł are obtained.

SOLUTION ALGORITHM
In order to obtain pile deflections by solving equation

(20), the soil parameters ki and ti must be known. However,
these soil parameters depend on �r and �Ł, which are not
known a priori. Hence an iterative algorithm (separate from
the iterations between �r and �Ł described in the previous
section) is necessary to solve the problem. First, initial
guesses for ª1 to ª6 are made, and for these assumed values
�r and �Ł are determined using the iterative technique
described in the previous section. Using the calculated
values of �r and �Ł, ki and ti are calculated by numerical
integrations (with ˜r of Fig. 4 as the step length). Using the
values of ki and ti, the pile deflection is calculated. From
the calculated values of pile deflection and slope of the
deformed pile, ª1 to ª6 are obtained. The new values of ª1

to ª6 are then used to recalculate �r and �Ł, and so on. The
entire process is repeated until convergence on each of
the ªs is attained. The tolerance limit prescribed on
the ªs between the pth and (p+1)th iteration is
jª( pþ1)

1=2=...=6
� ª( p)

1=2=...=6
j , 0:001. The details of the solution

steps are given in the form of a flow chart in Fig. 5. We
chose an initial guess of ‘one’ for all the ªs, but any other
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choice would produce results with the same level of accu-
racy at approximately the same computation time.

BENEFITS OF THE PRESENT ANALYSIS
This analysis is an improvement over the analysis of Sun

(1994) for laterally loaded piles in homogeneous soil on at
least two accounts: (a) our assumption of the displacement
field is more general and more realistic than that assumed
by Sun (1994), who chose �r(r) ¼ �Ł(r) ¼ �(r) for both
the displacements ur and uŁ (equation (2)); and (b) we
obtained solutions for a multilayered soil, whereas the solu-
tion of Sun (1994) is valid only for a single soil layer.

The need for an improved form for the displacement field
(equation (2)) arises from the fact that the displacement
assumption of Sun (1994) produces zero displacement in the
soil mass perpendicular to the direction of the applied force
Fa (Fig. 6). Consequently, the resultant displacement vector
u ¼ erur þ eŁuŁ (er and eŁ are the unit basis vectors in the
radial and tangential directions respectively) at any point
within the soil mass is forced to be parallel to the applied
force Fa. Thus the displacement field in the soil mass
(which, in general, has a component perpendicular to the
direction of Fa) is artificially constrained, the normal strain
in the circumferential direction �ŁŁ (equation (3)) becomes
zero, and the pile response is stiffer than what it is in reality.
In fact, Guo & Lee (2001) found that the Sun (1994)
analysis produces unreliable pile response, particularly if the

Poisson’s ratio of soil is greater than 0.3. This artificially
stiff pile response is not observed in our analysis. To
illustrate this point, we present below two examples compar-
ing the results of our analysis, the analysis based on the
displacement assumption of Sun (1994), and 3D FE analysis.

We consider as an illustration of use of the analysis a
15 m long drilled shaft, with a diameter of 0.6 m and pile
modulus Ep ¼ 24 3 106 kN/m2, embedded in a four-layer
soil deposit with H1 ¼ 2.0 m, H2 ¼ 5.0 m, and H3 ¼ 8.3 m;
Es1 ¼ 20 MPa, Es2 ¼ 35 MPa, Es3 ¼ 50 MPa and Es4 ¼
80 MPa; �s1 ¼ 0.35, �s2 ¼ 0.25, �s3 ¼ 0.2 and �s4 ¼ 0.15
(Es i and �s i are the soil Young’s modulus and Poisson’s ratio
for the ith layer; Es i and �s i are related to ºs i and Gs i by
ºsi ¼ Esi�si=(1 þ �si)(1 � 2�si) and Gsi ¼ Esi=2(1 þ �si)). A
horizontal force Fa ¼ 300 kN acts on the pile. The pile head
and base are free to deflect and rotate. Fig. 7 shows the pile
deflection profile obtained using our analysis, the analysis
based on the displacement assumption of Sun (1994), and a
3D finite element analysis (FEA). The pile response obtained
from our analysis closely matches that of the 3D FEA (a
difference of 9.6% in the head deflection was observed
between our analysis and the FEA); the analysis of Sun
(1994) produces a stiffer pile response.

Next, we consider a large-diameter drilled shaft, 40 m
long, with a diameter of 1.7 m and Ep ¼ 25 3 106 kPa,
embedded in a four-layer soil profile with H1 ¼ 1.5 m, H2 ¼
3.5 m, and H3 ¼ 8.5 m; Es1 ¼ 20 MPa, Es2 ¼ 25 MPa,
Es3 ¼ 40 MPa and Es4 ¼ 80 MPa; �s1 ¼ 0.35, �s2 ¼ 0.3, �s3

¼ 0.25 and �s4 ¼ 0.2. A 3000 kN force acts at the pile head,
which is free to deflect and rotate. Fig. 8 shows the pile
deflection profiles, as obtained from our analysis, the analy-
sis based on the displacement assumption of Sun (1994),
and 3D FEA. As before, our results match those of the FEA
more closely than the results based on the Sun (1994)
assumption; the difference in the head deflection obtained
from our analysis and FEA is 6.6%.

The 3D FE analyses were performed using ABAQUS. The
domain for these analyses can be visualised as a cylinder of
soil mass containing the pile at its centre as a concentric
cylinder. The top (horizontal) surface of the soil cylinder
was flush with the pile head, and the bottom (horizontal)
surface was located at a finite distance below the pile base
(thus the soil mass below the pile base participating in the
pile–soil interaction was incorporated in the analysis). The
horizontal force Fa (acting at the pile head) was applied as a
uniformly distributed shear stress (i.e. force per unit pile
cross-section area) acting on the pile-head surface (the

Ma

Fa

uθ

uruy

y r

r x0,

Displacement
vectors

Pile
ux

θ

θ

Ma

Fa

uθ

uruy

y r

r x0,

Displacement
vectors

Pile ux

θ

θ

(a)

(b)

Fig. 6. Displacement field in soil: (a) according to Sun (1994)
assumption; (b) according to assumption made in this paper

1086420�2

Pile deflection: mm

15·0

12·5

10·0

7·5

5·0

2·5

0

D
ep

th
,

: mz

Present analysis
Sun (1994)
Finite element analysis

Fig. 7. Deflection profile of a 15 m long pile

ANALYSIS OF LATERALLY LOADED PILES IN LAYERED SOILS 135



distributed shear stress multiplied by the pile cross-section
area produced Fa). The vertical plane passing through the
pile axis parallel to Fa is a plane of symmetry (the plane
contains the Fa vector) and divides the cylindrical domain
into two equal and symmetrical halves. Only one such half
was used as the analysis domain. Different boundary condi-
tions were prescribed at different boundaries of the FE
domain: all components of displacements were assumed to
be zero along the bottom (horizontal) surface and along the
outer, curved (vertical) surface of the soil domain; on the
(vertical) boundary surface created by the plane of symme-
try, the displacement perpendicular to the boundary was
assumed to be zero. A perfect contact (with no slippage or
separation) between the pile and the surrounding soil was
assumed. The radial distances of the outer curved (vertical)
boundary of the soil domain from the pile axis were taken
as 20 m and 25 m for the 15 m and 40 m piles respectively;
the corresponding vertical distances from the pile base to
the bottom (horizontal) boundary of the soil domain were
5 m and 20 m. Twenty-noded brick elements were used to
represent both the pile and the soil for both the problems.
The element size in the pile and at the pile/soil interface
was approximately 0.1 m for both the examples, and was
increased gradually with increasing radial distance from the
pile axis to 2.0 m (for the 15 m pile) and 3.8 m (for the
40 m pile) at the outer curved boundary of the soil domain.
The number of degrees of freedom used for the 15 m pile
was 56 653, and that used for the 40 m pile was 90 564. The
optimal domains and meshes described above were obtained
by ensuring that there were no boundary effects and by
performing convergence checks.

The CPU run times of the 3D FE analyses (run in a 16-
core x86 server containing eight 2.6 MHz dual-core Opteron
8218 processors with 32 GB RAM) were 9 min (for the
15 m pile) and 14 min (for the 40 m pile), while the CPU
run time for our analysis (performed with a Fortran code run
in an Intel Centrino Duo 2.0 GHz processor with 2 GB
RAM) was 9.75 s for both the examples. Considering the
fact that construction of the geometry (domain) and optimal
meshing for a FEA requires considerable time, our analysis
is much more efficient than FEA because, in addition to
being faster, the input to our analysis (the dimensions and
elastic properties of pile, and the thickness and elastic
constants of soil layers) is accomplished through a simple
text file.

Finally, we consider the field example of a laterally loaded

pile load test performed by McClelland & Focht (1958). The
length (Lp) and radius (rp) of the pile are 23 m and 0.305 m,
and the pile was embedded in a normally consolidated clay.
The pile was acted upon by a lateral force Fa ¼ 300 kN and
a negative moment Ma ¼ �265 kNm at the head. Randolph
(1981) back-calculated the pile modulus Ep as 68.42 3
106 kN/m2 from the reported pile flexural rigidity. Randolph
(1981) further suggested, based on back-calculation of test
results to match his FEA (coupled with Fourier series), that
the soil shear modulus profile for this soil deposit can be
represented as Gs ¼ 0.8z 3 103 kN/m3 with �s ¼ 0.3. We
divided the soil profile into four layers and calculated the
shear modulus at the middle of each layer, which were
considered the representative values for each layer (Table 2).
Using these values of soil modulus, we calculated the pile
deflection profile using both our analysis and that based on
the assumption of Sun (1994). Fig. 9 shows the pile
responses. Also plotted are the measured pile response and
that obtained by Randolph (1981). Our analysis produces a
pile deflection profile that closely matches the measured
profile.

We now investigate how an explicit incorporation of soil
layering can be useful in obtaining proper pile response. For
that purpose, we studied the response of two piles – a short
stubby pile with Lp ¼ 10 m, rp ¼ 0.5 m and Ep ¼ 25 3
106 kN/m2 and a long slender pile with Lp ¼ 20 m, rp ¼
0.25 m and Ep ¼ 25 3 106 kN/m2 – for various soil profiles.
Both piles are subjected to a horizontal force Fa ¼ 1000 kN,
and both are assumed to be free at the head and base.

For the short pile (Lp ¼ 10 m), we consider the following
cases:

(a) a homogeneous soil layer with Gs ¼ 25 MPa
(b) a two-layer system with H1 ¼ 2 m, Gs1 ¼ 25 MPa and

Gs2 ¼ 50 MPa
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Fig. 8. Deflection profile of a 40 m long drilled shaft

Table 2. Soil properties at the pile load test site of McClelland
& Focht (1958)

Depth: m Extent of soil layers: m Shear modulus, Gs: MPa

2.0 0 to �4.0 1.6
6.0 �4.0 to �8.0 4.8
10.0 �8.0 to �12.0 8.0
17.5 �12.0 to great depth 14.0
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Fig. 9. Deflection profile for the pile load test of McClelland &
Focht (1958)
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(c) a two-layer system with H1 ¼ 2 m, Gs1 ¼ 25 MPa and
Gs2 ¼ 100 MPa

(d ) a two-layer system with H1 ¼ 2 m, Gs1 ¼ 50 MPa and
Gs2 ¼ 25 MPa.

The Poisson’s ratio was kept constant at 0.25 for all the
cases and for all the layers. Figs 10(a), 10(b) and 10(c) show
the pile deflection, bending moment and shear force profiles.

Next, we consider the long pile (Lp ¼ 20 m) and obtain
the pile response for the following cases:

(a) a homogeneous soil layer with Gs ¼ 10 MPa
(b) a four-layer system with H1 ¼ 1 m, H2 ¼ 3 m, H3 ¼

5 m, Gs1 ¼ 10 MPa, Gs2 ¼ 20 MPa, Gs3 ¼ 40 MPa and
Gs4 ¼ 80 MPa

(c) a four-layer system with H1 ¼ 1 m, H2 ¼ 3 m, H3 ¼
5 m, Gs1 ¼ 10 MPa, Gs2 ¼ 40 MPa, Gs3 ¼ 40 MPa and
Gs4 ¼ 80 MPa

The Poisson’s ratio was again assumed to be 0.25 for all the
cases and for all the layers. Figs 11(a) and 11(b) show the
pile deflection and bending moment profiles for the above
cases respectively.

The effect of soil layering on lateral pile response is
evident from Figs 10 and 11. The modulus and thickness of
different soil layers (particularly those near the pile head)
have a definite effect on lateral pile response. The examples
show that proper characterisation of soil deposits and expli-
cit accounting for the different layers are necessary for
accurate prediction of pile response and optimal design of
laterally loaded piles. Using our analysis, the three-dimen-
sional interaction between pile and soil can be explicitly
accounted for with full consideration of soil layering. The
assumptions made in the estimation of soil displacements
(that the displacements can be represented as products of
separable variables, and that the vertical displacement is
zero), albeit reasonable, do not strictly represent the exact
displacement field for a pile in an ideal elastic soil: conse-
quently, the pile response obtained from this analysis will
deviate, even if slightly, from the actual pile response in
elastic soil. Notwithstanding the limitations of these assump-
tions, pile response comparable with those obtained from
FEA can be produced at much less time and cost.

In addition to pile deflection, the analysis produces the
soil displacement field surrounding a pile (using equation
(2)). Thus, if additional piles are present in the neighbour-
hood of a loaded pile, the effect of the loaded pile on the
neighbouring piles can be determined by modifying the
analysis. Such an analysis can be further extended to devel-
op a method of analysis of pile groups.

The analysis described in this paper is valid for linear
elastic soils. As a result, its use is restricted to those
problems for which an equivalent elastic soil modulus can
be obtained from field sites. Given that the analysis matches
carefully performed FEA rather well, it can be used as a
benchmark in future studies. Additionally, the analysis serves
as the basis for more elaborate analysis that can take into
account soil non-linearity, because the degradation of soil
stiffness resulting from progressive yield due to loading of
the pile can be obtained from the soil strain field surround-
ing the pile (equation (3)), which is available as a result of
this analysis (in general, modulus degradation of soil de-
pends on the strains induced and on the shear strength of
soil).

CONCLUSIONS
An advanced method of analysis for a single, circular pile

embedded in a multilayered elastic medium and subjected to
a horizontal force and a moment at the head was presented.
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The differential equations governing pile deflection and soil
displacements were derived using energy principles. The
equation of pile deflection was solved analytically, and the
one-dimensional FD method was used to solve the soil
displacement equations. The solution is fast, and produces
results comparable with 3D FEA. Using this method, pile
deflection, slope of the deflection curve, bending moment
and shear force for the entire length of the pile can be
obtained if the following are known: the pile radius and
length, the thicknesses of the soil layers, the Young’s mod-
ulus of the pile material, the elastic constants of the soil in
the various layers, and the magnitudes of the applied force
and moment.

The solution depends on a set of parameters ª1 to ª6 that

determine the rate at which the displacements in the soil
medium decay with increasing radial distance from the pile
axis. These parameters are not known a priori and must be
determined iteratively. Hence an iterative scheme was devel-
oped and coded to obtain solutions for a variety of boundary
conditions and soil profiles. Notwithstanding the iterations
on the ªs, the solutions are obtained in seconds.

Illustrations of use of the analysis for layered soils show
that soil layering has a definite impact on pile response.
Hence proper site characterisation and explicit accounting
for the different layers are necessary to predict lateral pile
response accurately. The present analysis has the capability
to produce pile response with full consideration of soil
layering. The analysis can be further extended to account for
soil non-linearity, and to analyse pile groups.
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APPENDIX 1
The potential energy density of the soil can be expressed in terms

of the displacement functions and elastic constants as

1

2
� pq� pq ¼ 1

2
ºs þ 2Gsð Þw2 d�r

dr

� �2

cos2 Ł

"

þ 2ºsw2 d�r

dr

�r � �Łð Þ
r

cos2 Ł

þ ºs þ Gsð Þw2 �r � �Łð Þ2

r2
cos2 Łþ Gsw2 �r � �Łð Þ2

r2

þ Gsw2 d�Ł

dr

� �2

sin2 Łþ 2Gsw2 �r � �Łð Þ
r

d�Ł

dr
sin2 Ł

þ Gs

dw

dz

� �2

�2
r cos2 Łþ Gs

dw

dz

� �2

�2
Ł sin2 Ł

#
(46)

Substituting equation (46) in equation (1) and performing integra-
tions with respect to Ł produces equation (4). Applying the principle
of minimum potential energy to equation (4) results in
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Simplifying further, and considering a layered system (Fig. 1), we get(ð H1
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þms3�r��r

����
1

rp

�ms3�Ł��r

����
1

rp

( )

þ
ð1

rp

�ms2 r
d2�Ł

dr2
þd�Ł

dr

� �
� ms2 þms3ð Þd�r

dr
þms4

�Ł

r
�ms4

�r

r
þ ns r�Ł

� �
��Łdrþms2 r

d�Ł

dr
��Ł

����
1

rp

þms2�r��Ł

����
1

rp

�ms2�Ł��Ł

����
1

rp

( )
¼0

(48)

APPENDIX 2
The expanded form of the matrix [¨] in equation (31) is given by

¨½ �4n34n ¼

¨½ �(Head)

~zz¼0 0½ �234 � � � � � � 0½ �234

¨½ �(1)

~zz¼ ~HH1
� ¨½ �(2)

~zz¼ ~HH1
0½ �434 � � � � � � 0½ �434

0½ �434 ¨½ �(2)

~zz¼ ~HH2
� ¨½ �(3)

~zz¼ ~HH2
0½ �434 � � � 0½ �434

..

.
0½ �434

. .
. . .

. . .
. ..

.

..

. ..
. . .

. . .
. . .

.
0½ �434

0½ �434 0½ �434 � � � 0½ �434 ¨½ �(n�1)

~zz¼ ~HH n�1
� ¨½ �(n)

~zz¼ ~HH n�1

0½ �234 0½ �234 � � � � � � 0½ �234 ¨½ �(Base)

~zz¼1

2
666666666666664

3
777777777777775

(49)

where [¨]
(i)

~zz¼ ~HH l
(i ¼ 1, 2, . . . n) is a 4 3 4 matrix valid for the ith soil layer. It contains the parameter ~tti, the functions �1, �2, �3, �4 and

their derivatives (Table 1) calculated at the layer interface ~zz ¼ ~HH l (l ¼ i�1 or l ¼ i). In its expanded form, [¨]
(i)

~zz¼ ~HH l
can be expressed as

¨½ �(i)

~zz¼ ~HH l
¼

�1 �2 �3 �4

�91 �92 �93 �94
� 01 � 02 � 03 � 04

�1 � 2~tti�-1 �1 � 2~tti�-2 �1 � 2~tti�-3 �1 � 2~tti�-4

2
664

3
775

~zz¼ ~HH l

(50)

The matrix [¨]
(Head)
~zz¼0 has a dimension of 2 3 4 and is expressed in its expanded form as:

¨½ �(Head)

~zz¼0 ¼

�1 � 2~tt1�-1 �2 � 2~tt1�-2 �3 � 2~tt1�-3 �4 � 2~tt1�-4
�91 �92 �93 �94

� �
~zz¼0

; fixed-head condition

�1 � 2~tt1�-1 �2 � 2~tt1�-2 �3 � 2~tt1�-3 �4 � 2~tt1�-4
� 01 � 02 � 03 � 04

� �
~zz¼0

; free-head condition

8>>><
>>>: (51)

in which the functions �1, �2, �3, �4 and their derivatives are calculated at ~zz ¼ 0 (pile head). The 2 3 4 matrix [¨]
(Base)
~zz¼1 is given by

¨½ �(Base)

~zz¼1 ¼

�1 �2 �3 �4

�91 �92 �93 �94

� �
~zz¼1

; fixed-base condition

�-1 � 2~tt n�91 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~kk n~ttnþ1

q
�1 �-2 � 2~tt n�92 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~kk n~ttnþ1

q
�2

� 01 � 02

"

�-3 � 2~ttn�93 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~kk n~ttnþ1

q
�3 �-4 � 2~ttn�94 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~kk n~ttnþ1

q
�4

� 03 � 04

#
~zz¼1

; free-base condition

8>>>>>>>>><
>>>>>>>>>:

(52)

in which the functions �1, �2, �3, �4 and their derivatives are calculated at ~zz ¼ 1 (pile base). The matrices [0]234 and [0]434 have
respectively two rows and four columns and four rows and four columns, and contain ‘0’ as all the elements.
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The vector [C] (with a dimension of 4n) in equation (31) is given
by:

C½ � ¼ C
(1)
1 C

(1)
2 C

(1)
3 C

(1)
4 C

(2)
1 C

(2)
2 C

(2)
3 C

(2)
4 � � �

h

� � � C
(n)
1 C

(n)
2 C

(n)
3 C

(n)
4

	T

(53)

The superscript T implies the transpose of a matrix.
The right-hand side vector of equation (31) is given by

F½ �4n31 ¼ ~FFa F2 0 � � � � � � 0
� 	T

(54)

with F2 ¼ 0 for the fixed-head condition and F2 ¼ ~MMa for the free-
head condition.
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