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The influence of orbital precession on early Paleogene climate and ocean circulation patterns in the southeast
Pacific region is investigated by combining environmental analyses of cyclic Middle Eocene sediments and
palynomorph records recovered from ODP Hole 1172A on the East Tasman Plateau with climate model
simulations. Integration of results indicates that in the marine realm, direct effects of precessional forcing
are not pronounced, although increased precipitation/runoff could have enhanced dinoflagellate cyst pro-
duction. On the southeast Australian continent, the most pronounced effects of precessional forcing were
fluctuations in summer precipitation and temperature on the Antarctic Margin. These fluctuations resulted in
vegetational changes, most notably in the distribution of Nothofagus (subgenus Brassospora). The climate
model results suggest significant fluctuations in sea ice in the Ross Sea, notably during Austral summers. This
is consistent with the influx of Antarctic heterotrophic dinoflagellates in the early part of the studied record.
The data demonstrate a strong precessionally driven climate variability and thus support the concept that
precessional forcing could have played a role in early Antarctic glaciation via changes in runoff and/or
precipitation.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Apart from the tectonic and related oceanographic variables,
model studies indicate that orbital cyclicity should also be regarded
as a significant forcing factor influencing Paleogene climatic condi-
tions on Antarctica (DeConto and Pollard, 2003a; DeConto et al.,
2007). Röhl et al. (2004) documented the presence of cyclic sed-
iments of Eocene age offshore East Tasmania (Ocean Drilling Program
Leg (ODP) 189, Holes 1172A and D). In the recorded cyclic patterns,
represented by fluctuations in sediment input of marine and
continental origin, a full power spectrum of orbital frequencies is
apparent, where precession is the most prominent component (Röhl
et al., 2004). This is surprising because obliquity is normally con-
sidered to play a dominant role in high latitude climate variability,
whereas precession is usually considered important in the tropics
(Ruddiman, 2001).We examine this issuemore in depth in this paper
and use climate models to demonstrate that physical processes could

explain the precession-dominated cyclicity in these high latitude
proxy records.

In order to assess the role of precession on climatic conditions in
the southwest Pacific region and on surface circulation patterns in the
Southern Ocean, an environmental reconstruction of the Middle
Eocene palynomorph record from the cyclic sediments of ODP Hole
1172A is made. Palynomorphs are abundant and well preserved in the
sediments. Assemblages contain both marine dinoflagellate cysts
(dinocysts) and land-derived pollen and spores (sporomorphs)
enabling detailed correlation of coeval marine and continental
environmental signals. Considering Paleogene surface currents
(Huber et al., 2004) and wind patterns (Warnaar, 2006) over the
East Tasman Plateau, the analysed microfossils (both wind blown and
water transported) are at least in part derived from the Antarctic
region, in addition to the local Tasman communities. The paleoenvir-
onmental reconstruction is compared to an experiment carried out
with an atmospheric general circulation model (GCM) coupled to a
‘slab’ ocean. The GCM experiment, with Eocene boundary conditions,
is set up to simulate the effect of precession Two different model runs
are carried out with identical setup, except that each run has a
different solar insolation pattern representing an opposite preces-
sional extremes, with obliquity and eccentricity changed accordingly
(see Sloan and Huber, 2001, for details). The model output and the
palynological results are subsequently integrated into a detailed
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paleo-environmental reconstruction. Implications for the early Paleo-
cene climate history of Antarctica and the southwest Pacific are
discussed (Figs. 1 and 2).

2. Materials and methods

2.1. Sedimentary data materials and methods

Material was selected from Ocean Drilling Program Leg 189, Hole
1172A,whichwas drilled on the East Tasman Plateau (ETP), at 43°58’ S,
149°56’ E, at 2622 m water depth (Exon et al., 2001). Eocene sed-
iments are nannofossil-bearing, diatomaceous, silty claystones, depos-
ited under shallow marine (∼100–200 m water depth) conditions
(Exon et al., 2001, 2004). The Cascade Seamount volcano, East of the
Site on the ETP, was active throughout the Eocene (Quilty, 1997). As
a result of further opening and notably deepening of the Tasma-
nian Gateway, the siliciclastic sediments grade into glauconitic sand-
stones in the latest Eocene which, in turn, are overlain by Oligocene
and younger calcareous ooze (Royer and Rollet, 1997; Exon et al.,
2001).

With X-ray fluorescence (XRF) measurements, Röhl et al. (2004)
identified cyclic patterns in the Middle to Late Eocene sediments of
Site 1172, Holes A and D. The patterns represent alternations in the
concentration of calcium, reflecting CaCO3 of marine origin; and iron,
reflecting continental clays and volcanic material. Because the iron
record displays considerably more “noise” due to the ferrous nature of
the volcanic material, the calcium record is used. Although recovery
was good for a single hole, recovery gaps and hiatuses at core breaks
occur. Despite incompleteness of the record, Röhl et al. (2004) could

attribute fluctuations in calcium concentration in the 0.4–0.5 m range
to orbital precession because (1) the number of cycles, and the time
span they represent, corresponds with the duration of the magnetic
intervals (Fuller and Touchard, 2004), (2) the full power spectrum
(i.e., all different precession, obliquity and eccentricity frequencies)
could be articulated, in which the precession bands (19–23 kyr) could
be distinguished, and (3) the cycles generally show double peaks, of
which one is more pronounced, a feature that is typical for precession
cyclicity (19–23 kyr) modulated by eccentricity.

The interval with the most distinct cyclic pattern is selected (Röhl
et al., 2004), namely Core 43X, Sections 1–4 (between 394 and
398 meters below sea floor (mbsf)); magnetic interval C18n.1n; age
∼38.5Ma (Gradstein et al., 2004). The interval covers 10 CaCO3 cycles,
that are numbered 1a, 1b and 2–9 and includes two distinct
volcaniclastic sediment layers (at 394.5 and 395.2mbsf). Cycles 1a
and 1b represent in effect a single cycle, cut in two by a volcaniclastic
sediment layer (Ash 1; see Fig. 3). Between 394.3 and 396mbsf the
record is slightly expanded (by a factor of 1.3) due to increased
terrestrial and/or volcanic sediment input. Sedimentation rate is
∼2 cm/kyr, and ∼2.5 cm/kyr in the expanded part (Robert, 2004;
Röhl et al., 2004). With loss on ignition (LOI; Heiri et al., 2001) the
CaCO3 content of the sediments, taken from the working half of the
core, was determined independently, and correlated to the XRF data
set, which was measured on the archive half (see Fig. 3). Because the
volcaniclastic sediment layers probably reflect instantaneous volcanic
events, they were taken out of the record (after correlation of both
core-halves). Eighty-six palynological samples are taken at 5 cm
intervals.

Palynological processing was performed following the standar-
dized quantitative methods used at the Laboratory of Palaeobotany
and Palynology, Utrecht University (Brinkhuis et al., 2003). Briefly,
this involved processing using ∼20% HCl and ∼30% HF, and
ultrasound separation. No bleaching and heavy liquid separation
was applied. 12µm nylon mesh was used for sieving of the residues.
With a micropipette a fixed amount (20.0 µl of 1.0 ml) of material
was transferred to a slide, allowing quantitative dinocyst estima-
tions (cysts/g sediment). Where possible, over 200 dinocysts were
counted per sample and identified to the species level. Some slides
contained fewer dinocysts, and there the entire slide was counted.
Four samples contained less than 100 dinocysts, with a minimum
of 78. Spores of Lycopodium were added prior to processing and
counted in the slides to detect significant loss of palynomorphs.
Nomenclature and taxonomy, unless stated otherwise, was based on
(Brinkhuis et al., 2003; Williams et al., 2004; Fensome andWilliams,
2004). Samples and slides are stored in the collection of the
Laboratory of Palaeobotany and Palynology, Utrecht University, The
Netherlands. Principal component analysis was used to analyze the
data (Fig. 4).

2.2. General Circulation Model setup

2.2.1. General Circulation Model
This study uses the general circulation model (GCM) GENESIS 2

(Sloan and Huber, 2001). It is an atmosphere GCM coupled to a land
model, a sea ice model and a 50 m deep mixed layer slab ocean
model. The land model has a 2° by 2° resolution latitude by longitude
grid size and the atmosphere model has a ∼3.75° by 3.75° resolution
latitude by longitude grid size. We have analyzed the effects of
precession variability extensively utilizing these simulations pre-
viously and validated the model prediction in several regions (Huber
and Sloan, 2001). For further model setup and sensitivity reports see
(Sloan and Morrill, 1998; Huber and Sloan, 2000; Huber and Sloan,
2001). The boundary conditions of the GCM are set to represent the
Middle Eocene situation (Sloan and Huber, 2001). Crucial aspects,
such as greenhouse gases and the geographical setup are discussed
below.

Fig. 1. Model input continental configuration (land model: shaded; atmosphere model
lines) and derived ocean surface circulation patterns.
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2.2.2. Greenhouse gases
The concentration of atmospheric CO2 is believed to have followed

a declining, though fluctuating, trend since the Middle Eocene
Climatic Optimum (MECO; Pagani et al., 2005). From values well
above 1000ppmv, CO2 levels declined to present-day values in the
Oligocene (Roth-Nebelsick et al., 2004; Pagani et al., 2005). Con-
servative evaluation of proxy CO2 estimates for the late Middle Eocene
(∼39Ma) gives a range between 500 and 700ppmv (see references in
Sloan and Rea, 1995; Pearson and Palmer, 2000; Kürschner et al.,
2001; Pagani et al., 2005). Hence, in the model, CO2 concentration is
set at double pre-industrial values (560 ppmv). Other greenhouse gas
concentrations (CH4 and N2O), for which no proxy data are available,
are kept at pre-industrial levels.

2.2.3. Precession cases Pr1 and Pr2 model runs
Two model runs are performed, the Pr1 and Pr2 case. In the Pr1

case the Earth is closest to the Sun (perihelion) during Southern
Hemisphere (Austral) winter and farthest away from the Sun
(aphelion) during Austral summer. This generates reduced Austral
seasonality, with milder winters (June–July–August; JJA) and cooler
summers (December–January–February; DJF). The Pr2 case gener-
ates the reversed situation, where Austral seasonality is amplified,
with warmer Austral (perihelion) summers and cooler Austral
(aphelion) winters. Pr1 and Pr2 are each run for four full years
(48 months), after spin up. While changing the precession para-
meter in the orbital insolation between the Pr1 and Pr2 case (by half
a precession cycle, or 11.5 kyr further), obliquity and eccentricity
parameters are changed accordingly (Sloan and Huber, 2001). A
Student's t-test (two tailed, with a 95% confidence interval) is used

Fig. 2. Reconstruction of the Tasman Sector: Middle Eocene (∼39Ma): Tectonic map and ocean surface currents. Tectonic configuration map (B) based on (Norvick and Smith, 2001;
Hay et al., 1999; http://www.odsn.de/odsn/services/paleomap/paleomap.html; Langford et al., 1995). Surface ocean circulation patterns based on (Huber and Sloan, 2000; Huber
and Sloan, 2001; Huber et al., 2004).

Fig. 3. Sedimentary data (1): ODP Hole 1172A, 394–398mbsf. Left: Calcium content
(counts per second, cps) and CaCO3 content (%). The shaded bands, Ash 1 and Ash 2
indicate layers of volcaniclastic material. Right: Absolute values of dinocysts (cysts/g
sediment) and sporomorphs (pollen and spores/g sediment).
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to determine if differences between the Pr1 and Pr2 output are
statistically significant. The null hypothesis (H0) of the test assumes
that the averages (taken over 4 years) of each Pr-case are of the
same population. All the described features in this paper are
significant at N95% confidence level.

We will now show how the palynological assemblage in the sed-
iment is related to the precession-forced CaCO3 cycles, and compare
these results with the modeled surface temperature, pressure and
precipitation variation over the two extreme precession cases.

3. Results

3.1. Sedimentary data

Dinocyst absolute abundance is represented by the total number of
cysts per gram of sediment (Fig. 3). In cycles 1–5 (i.e., the expanded
part of the interval), cyst abundance shows an inverse correspondence
with the CaCO3 cycles. However, between cycle tops 6 and 9, no such,
or other relationship can be discerned. Sporomorph absolute

Fig. 4. Principal component analysis (PCA) is used to analyse the dinocyst data set. Determined are the (two) best explanatory variables for the composition of the dinocyst assemblages.
Canoco for Windows (V.4.02) and Canodraw (V.3.1) are utilized. The percentages of the taxa per sample are used, and not absolute numbers per gram, to avoid over-representation of
samples rich in dinocysts (see Fig. 3). Results are shown in the ordination diagram above. All taxa are included in the calculation, but taxawith amaximumoccurrence of 1% or less, are not
shown as arrows. The first axis explains 53.7% of the variancewithin the data set, while the second axis explains 18.3%. Dinocyst taxa are coded using the first four letters of the genus name
followed by the first four letters of the species name (or simply ‘-Sp’) (e.g., DeflAnta' = Deflandrea antarctica). The exception is that ‘SpDi-’=Spinidinium, (because ‘Spin-’= Spiniferites).
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Fig. 5. Sedimentary data (2): ODP Hole 1172A (394–398mbsf shown as 1–4m; volcanic layers are not shown). CaCO3 content (a) compared with sporomorphs (pollen and spores/g
sediment; b); Nothofagus pollen versus gymnosperm pollen (i.e., N/N+G; c) and Vozzhennikovia apertura (cysts/g sediment and percentage of all dinocysts; d). Grey thin lines
indicate the measured/calculated values. Thick black lines indicate three-point running average smoothing.

Fig. 6. GCM results: Geographical distribution of quasi-stable atmospheric pressure anomaly cells (ground level).
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abundance also has an inverse relationship with the CaCO3 cycles
(Fig. 3). Throughout the record the sporomorphs have distinct peak
occurrences at low CaCO3 values. In the lower part of the interval
however (cycles 7–9), this relationship is less evident.

Considerable fluctuations are recorded within the dinocyst
assemblages throughout the interval. Most variation seems unrelated
to precession cycles, and is therefore not considered here. However,
Vozzhennikovia apertura displays a distinct cyclic pattern, both in
total (cysts/gr) and relative abundance. The cycles, some are more
pronounced than others, are numbered I to VI (Fig. 5). Distance
between cycles I and IV is ∼0.8 m, and the distance between the
lowermost three cycles (IV–VI) is ∼0.4m. The lower frequency cycles
do not seem to be related to the CaCO3 cycles, while themaxima of IV–
VI co-occur with the calcium maxima of cycles 7–9. Interestingly,
three CaCO3 cycles in the lower part of the interval (6, 7 and 9) are also
in phase with three distinct peak abundances of Deflandrea antarctica
(Fig. 5). Three subgroups characterize the sporomorph assemblage:
saccate conifer pollen (mainly Podocarpus), Nothofagus (mainly the
pollen morphotype corresponding to the subgenus Brassospora), and
fern spores. Other groups (i.e., non-Nothofagus angiosperm pollen and
conifer pollen representing Araucariaceae) are represented by num-
bers that are too low to draw conclusions from. Closer inspection
reveals that the inverse relationship between sporomorphs and the
CaCO3 cycles is mainly caused by fluctuations of Nothofagus pollen
(Fig. 5). In the next section we explore potential physical mechanisms
by which these periodicities may have entered the record by
comparing with the climate model output.

3.2. GCM results

Oscillating climate systems can often be characterized as spatial
variations in atmospheric pressure (e.g., the El Niño Southern
Oscillation, the North Atlantic Oscillation and the Antarctic Oscilla-

tion). The differences between the twomodelled precession cases (Pr1
and Pr2) are in the order of ±2.5hPa, with extremes exceeding 6hPa
(Fig. 6). The centres of action indicated from the pressure anomalies
can be represented in a simplified fashion byfive anomaly cells (Fig. 6).
Twocells are situated aboveWest and East Antarctica, respectively. The
cell above East Antarctica extends above the southeastern part of the
IndianOcean. A third cell is formed above Australia. The two remaining
cells are located at about 40°S above the South Pacific and the
southwestern IndianOcean. BothAntarctic cells have a higher pressure
in thePr2 caseduring theAustral summers andwinters (Table 1; Figs. 6
and 7). In contrast to the two seasonally ‘stable’ cells above Antarctica,
the oceanic and Australian cells have a strong seasonal component. For
example, the anomaly cell above the southwestern Indian Ocean is
only present during Austral Winter (JJA; June–July–August), where
pressure is higher in the Pr1 situation (Table 1).

Climatic features, such as temperature, wind strength and precip-
itation follow the same pattern as observed for pressure (Table 1;
Fig. 6). For example, areas of decreased pressure are characterized by
increased wind strength and precipitation, while increased pressure
causes the reverse situation. Lower surface temperatures normally co-
occur with higher sea-level pressure (and vice versa). Upper ocean
circulation patterns and current strength are directly related to the
surface wind strength and direction (Huber and Nof, 2006), unless
wind–ocean interaction is prevented by sea ice. The extent of sea ice
is principally restricted to the Ross Sea and seems mainly determined
by the Austral winter surface temperature (which is lower in Pr1).

4. Discussion

4.1. Integration of field data and GCM results

Varying amounts of terrestrial sedimentary input in shallow
marine sediments are generally caused by either fluctuations in sea-

Table 1
Summary of GCM results. Relative differences between Pr1 and Pr2 cases. Differences between brackets are small, but still significant (Student's t-test, see Materials and methods).

Annual average Summer DJF Winter JJA

Model case Pr1 Pr2 Pr1 Pr2 Pr1 Pr2

Seasonality SH average Reduced Enhanced Milder Warmer Milder Colder

Sea level pressure
Tasmania/SE Australia – – Lower Higher Higher Lower
Ross sea – – – – (Higher) (Lower)
West Antarctica Lower Higher Lower Higher Lower Higher
East Antarctica Lower Higher (Lower) (Higher) Lower Higher
South Pacific Ocean (45°) – – Higher Lower Lower Higher
South Indian Ocean (45°) Higher Lower – – Higher Lower

Surface temperature
Tasmania/SE Australia – – Warmer Cooler – –

Ross sea Cooler Warmer – – Cooler Warmer
West Antarctica Warmer Cooler Mixed Mixed Warmer Cooler
East Antarctica Warmer Cooler Warmer Cooler Warmer Cooler
South Pacific Ocean (45°) – – – – (Warmer) (Cooler)
South Indian Ocean (45°) – – (Warmer) (Cooler) (Warmer) (Cooler)

Surface wind strength
Tasmania/SE Australia – – – – – –

Ross sea – – – – Lower Higher
West Antarctica – – (lower) (higher) Higher Lower
East Antarctica – – Higher Lower –

South Pacific Ocean (45°) – – Lower Higher Higher Lower
South Indian Ocean (45°) Lower Higher – – Lower Higher

Precipitation (rainfall)
Tasmania/SE Australia – – Higher Lower (lower) (higher)
Ross sea – – Lower Higher – –

West Antarctica – – Lower Higher Higher Lower
East Antarctica Higher Lower – – Higher Lower
South Pacific Ocean (45°) – – Lower Higher Higher Lower
South Indian Ocean (45°) – – – – (Lower) (Higher)
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Fig. 7. GCM results, showing the differences in sea level pressure (Pa), surface temperature (K), surface wind strength (m/s) and precipitation (mm/month) betweenmodel runs Pr1 and Pr2. Absolute values of Pr1 results are subtracted from
the results of Pr2. Red areas indicate higher values during Pr2, and blue areas higher values during Pr1. White areas (inlays for precipitation results) indicate areas where no significant difference is observed between Pr1 and Pr2 (see Materials
and methods). Superimposed are the continental outlines of the atmosphere model (thick lines).
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level or fluctuations in aridity/precipitation on an adjacent continent.
Röhl et al. (2004) attributed large-scale cyclic patterns observed at Site
1172 (Holes A and D) to third-order sea-level changes (in the order of
millions of years). It has been postulated that during the Eocene
small ice sheets already existed in the elevated areas of Antarctica (e.g.,
Kerr and Huybrechts, 1999; Zachos et al., 2001). However, the high
frequency (tens of thousands of years) fluctuations of these small
Antarctic ice sheets (driven by orbital forcing) are thought to have
caused sea-level changes in the order of only a few meters (DeConto
and Pollard, 2003a; DeConto et al., 2007). Fluctuations on this scale
would probably have no apparent effect on sedimentation on the East
Tasman Plateau. This argument is confirmed here. High resolution
sedimentary cycles had been identified in a section from New Zealand
(Burgess et al., 2008). This record shows no evidence for sea level
fluctuations that can be related to waxing and waning of ice sheets,
however they do note substantial climate variability on precessional
time scales. Low resolution dinocyst assemblage analyses at Site 1172
have previously been described to show prominent variability related
to sea level fluctuations (Röhl et al., 2004). By studying the dinocyst
assemblages onprecessional scale resolution,we identify an additional
short term dinocyst assemblage variability. The GCM output indicated
distinct fluctuations in precipitation (see Fig. 7; Table 1) that may have
caused the cyclic pattern through fluctuating runoff and sediment
input. Hence, concluding from the above, we attribute the recognized
precessional cyclicity in the sedimentary record to changes in
precipitation/runoff, rather than sea level change.

The relationship between the CaCO3 cycles and the palynomorph
record shows a break at and below cycle 6. In cycles 1–6, the inverse
relationship between absolute numbers of palynomorphs and the

CaCO3 content can be explained by fluctuating terrestrial sediment
supply (see above). Increased precipitation and accompanied runoff
occurs in the Austral summer Pr2 (see Figs. 7 and 8), causing an
increased transport of terrigenous material, including sporomorphs,
from the Antarctic continent, into the Southwest Pacific. These are
then transported northward to the East Tasman Plateau. Also, the
modelled higher temperatures that coincides with increased precipi-
tation (i.e., Pr2 Austral summer; Fig. 8) would cause more favourable
growing conditions for vegetation along the Antarctic coastline, re-
sulting in enhanced sporomorph production.

In addition, the elevated nutrient input associated with increased
runoff is likely to boost the growth of many algal groups, such as
dinoflagellates (e.g., Wasmund et al., 1999; Reichart and Brinkhuis,
2003). This could explain why the dinocysts and sporomorphs follow
the same pattern in cycles 1–5 (see Fig. 3). Furthermore, increased
sedimentation and microbial breakdown of organic material gen-
erates CO2, which may result in a slight acidification of the water
column causing partial dissolution of the calcareous fraction.

Trees and shrubs of Nothofagus (Brassospora) are characteristic for
highland temperate rainforests (Sluiter et al., 1995; Mildenhall et al.,
2004), where changes in temperature and precipitation have themost
pronounced effect. Hence, the conditions that are favourable for
Nothofagus (Brassospora) occur during Pr2 (Figs. 5 and 8). In the Pr1
case, growing conditions of Nothofagus populations in highland areas
would be significantly disturbed, while effects on other groups like
Podocarpus, ferns, growing in coastal areas (Sluiter et al., 1995) are
less severe (Fig. 5).

Vozzhennikovia apertura appears to be associated with the cold
circum-Antarctic shallow shelf areas (Wilson, 1967; Hannah, 1997;

Fig. 8. Simplified reconstruction scheme indicating differences in precipitation, surface temperature, snow cover, sea ice, vegetation cover and dinoflagellate distributions of Pr1 and
Pr2 austral summer and winter cases.

368 J. Warnaar et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 280 (2009) 361–370



Mohr, 1990; Macphail and Truswell, 2004). The conjectured cold
Tasman Current (Huber et al., 2004), flowing from the Ross Sea (see
Fig. 1 and 2), probably controlled the occurrence of this taxon on the
East Tasman Plateau (Warnaar, 2006). While a straightforward
(inverse) relationship with the CaCO3 cycles is not detected, principal
component analysis (PCA) of the data set (thus disregarding the time-
series cyclic aspect) shows that the CaCO3 concentration strongly
correlates inversely with the percentage of V. apertura (Fig. 5). PCA
analysis of the lower resolution data set that coversmost of theMiddle
and Late Eocene gives similar results (Röhl et al., 2004). Hence it
seems that high CaCO3 concentrations, predominantly determined by
the amount of nannofossils, portray warmer and/or more offshore
(likely more oligotrophic) conditions, whereas high concentrations of
V. apertura reflect the reversed situation. The overall wavelength of the
V. apertura cycles in our record is ∼0.8 m, much longer than the
precession-scale calcium counts. Tentatively, the V. apertura cyclicity
is obliquity (41 kyr) paced, an important orbital frequency at high
latitudes. However, comparing the 5.5 V. apertura cycles to the 9
precession cycles in the calcium record indicates a periodicity of
35 kyrs (9 cycles of 21 kyrs is 189 kyrs, divided by 5.5 V. apertura
cycles), which is shorter than the obliquity periodicity. Hence, on a
longer periodicity than precession, fluctuations in the abundance of V.
apertura can not conclusively be attributed to obliquity. From 0.5 m
upward in the interval studied, V. apertura gradually diminishes, to be
replaced by cosmopolitan taxa, which could indicate a weakening of
the Tasman Current and warming. In contrast to cycles 1–6, in cycles
7–9 (the lower part of the studied interval) the V. apertura cycles (IV–
VI) are of higher frequency and in phasewith the CaCO3 cycles (Fig. 5).
Deflandrea antarctica also shows this relationship in the same interval
(at CaCO3 cycles 6, 7 and 9). Like V. apertura, D. antarctica is also
characteristic for Middle to Late Eocene circum-Antarctic shallow
marine conditions (Röhl et al., 2004). Both taxa probably represent
heterotrophic dinoflagellates, as suggested by their peridinioid affinity
(Sluijs et al., 2005). In addition, relatively high concentrations of
representatives of definitively heterotrophic peridinioid genera, such
as Brigantedinium, Selenopemphix and Lejeunecysta, are recorded in
this interval. All these taxa are characteristic for conditions prevailing
in the Ross Sea. The taxa co-occur with high concentrations of diatom
tests (Stickley, unpublished data). Because diatoms are commonly
regarded as a primary food source for heterotrophic dinoflagellates, it
may be assumed that in the lower part of the interval conditions
(during the Pr2 case) were favourable for specific diatoms that were
subsequently grazed upon by the recorded dinoflagellates. Possibly, a
reduced sea-ice cover in the Ross Sea enhanced the wind-driven
Tasman Current, bringing the Antarctic assemblage to the North.
The non-correspondence of CaCO3 and the dinocyst abundance (that
shows only minor fluctuations; see Fig. 3) could simply imply that
both precession cases were equally productive in terms of cyst pro-
duction. However, the general inverse correlation of V. apertura and
the calcium record (see above) suggests that such conditions occurred
rarely.

Although some irregularities are observed in the sporomorph
record, environmental and climatic conditions on land were probably
comparable to those in the upper part of the studied interval (cycles
1–6).

5. Conclusions

The field data presented here clearly show environmental
variability on precessional time scales. GCM experiments are used to
indicate which mechanisms are most feasible for translating orbital
forcing into environmental response. The precession-scale fluctua-
tions in summer precipitation and temperature are the most likely
forcings for the identified vegetational changes, here related to
variations in the density of Nothofagus (Brassospora). In the marine
realm, the effect of precession forcing is less noticeable, although

increased precipitation/runoff seemed to enhance dinoflagellate cyst
production variations (Fig. 3). The GCM generates less sea ice in the
Ross Sea during Austral summer during Pr2. This is only partly
supported by the palynological data (i.e., the influxof Antarctic (proto)
peridinioids, such as V. apertura, in the lower part of the record).

No evidence is found that precession modulated the surface
wind strength driving the Tasman Current, except in Austral winter
Pr2 in the Ross Sea area, where wind strength was significantly
higher (see Fig. 6 and Table 1). The effect of increased wind,
however, was probably small because the sea-ice cover prevented
wind–ocean interaction. Lower frequency fluctuations in V. apertura
indicate that the intensity of the Tasman Current was modulated by
fluctuating climate parameters on time scales longer than
precession.

The extent of Eocene Antarctic ice sheets is still debated, but some
studies agree that small to medium scale mountain glaciation already
occurred during the Middle Eocene (Abreu and Anderson, 1998;
Zachos et al., 2001; Billups and Schrag, 2003). The present study did
not address land ice build up (the GCMhad no land-icemodel andwas
run over a time span too short to realistically reflect land-ice
dynamics). These lower summer temperatures are further signalled
by the reduced amounts of Nothofagus (Brassospora) pollen. Based on
this evidence, we conclude that orbital forcing, and more particularly
precessional forcing, may have modulated conditions on Antarctica,
and therefore may have played a role in Antarctic glacial dynamics.
This conclusion corroborates the concept of DeConto and Pollard
(2003b) and DeConto et al. (2007).
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