Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

7-1-2002

Investigation of the Vibrational Modes of Edge-Constrained Fibrous Samples Placed in a Standing Wave Tube

Bryan H. Song NASA-Kennedy Space Center

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

Song, Bryan H. and Bolton, J Stuart, "Investigation of the Vibrational Modes of Edge-Constrained Fibrous Samples Placed in a Standing Wave Tube" (2002). *Publications of the Ray W. Herrick Laboratories*. Paper 78. http://docs.lib.purdue.edu/herrick/78

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

INVESTIGATION OF THE VIBRATIONAL MODES OF EDGE-CONSTRAINED FIBROUS SAMPLES PLACED IN A STANDING WAVE TUBE

Bryan H. Song NASA-Kennedy Space Center

J. Stuart Bolton Ray W. Herrick Laboratories Purdue University

Purdue University

Herrick Laboratories

Background

- Measurement of the surface normal velocity of vibrating panels or plates [Kruger and Mann (1999) and Muller and Moslehy (1996)]
- Estimation of the mechanical properties (Young's modulus and Poisson's ratio) of foam materials by the laser vibration measurement [Mariez et al. (1996) and Dubbelday (1992)]
- Electromagnetic approach for measuring the vibrational velocity of the frame of flexible porous materials (Khirnykh and Cummings, 1999)

Introduction

- Investigation of edge constraint effect on samples placed in a modified standing wave tube (J. S. Bolton et al., SAE 1997; B. H. Song et al., JASA 1999).
- Internal constraints may be used to selectively enhance the transmission loss of lining materials at low frequencies (B. <u>H. Song et al., JASA 2001)</u>.
- Implications for design of low frequency noise control barriers following from constraint of porous lining materials around their edges.

Glass Fiber Material inside of Sample Holder

Four Microphone Measurement

Transfer Matrix Approach II

$$\begin{bmatrix} 1 + R_{a} \\ \frac{1 - R_{a}}{\rho_{0} c_{0}} \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \begin{bmatrix} T_{a} e^{-jkd} \\ \frac{T_{a} e^{-jkd}}{\rho_{0} c_{0}} \end{bmatrix}$$

• Anechoic Reflection Coefficient

• Anechoic Transmission Coefficient

$$T_{a} = \frac{2 e^{jkd}}{T_{11} + \frac{T_{12}}{\rho_{0}c} + \rho_{0}cT_{21} + T_{22}} \implies TL = 10 \log(1/|T_{a}|^{2})$$

Experimental Setup for Low Frequency Tube

Anechoic Transmission Loss (3" Sample A in a Large Tube)

Surface Normal Impedance (3" Sample A in a Large Tube)

Poroelastic Material Properties used in Calculations

Material	Bulk density (Kg/m ³)	Porosity	Tortuosity	Flow resistivity (MKS Rayls/m)	Shear modulus (Pa)	Loss factor
Sample A	6.73	0.99	1.1	21000	1200	0.35

Investigation of Vibrational Modes of Glass Fiber Materials (1" Sample A)

Laser Measurement Setup (Large Tube, 1" Sample A)

Three-Dimensional Finite Element Model

Schematic of Edge- and Plane-Constrained Sample with Reflecting Tapes

Glass Fiber Materials with Reflecting Tape

Effect of Reflecting Tape on TL (1" Sample A)

Coherence Between Reference Microphone and the Laser Velocity Signal (1" Sample A)

FEM-Predicted Normalized Frame Velocity in Large Tube, Anechoic Termination Case (1")

The 1st and 2nd Mode Shapes of the Edge-constrained Sample (1")

The 1st and 2nd Mode Shapes of the Plane-constrained Sample (1")

Normalized Frame Velocity of Sample in Large Tube, Hard Termination Case (1")

