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MULTIPLICITY OF SOLUTIONS FOR A CLASS OF

NONLINEAR NONHOMOGENEOUS ELLIPTIC EQUATIONS

SERGIU AIZICOVICI, NIKOLAOS S. PAPAGEORGIOU, AND VASILE STAICU

Dedicated to Professor Simeon Reich on the occasion of his 65th birthday

Abstract. We consider nonlinear, nonhomogeneous Dirichlet problems driven
by the sum of a p−Laplacian (p > 2) and a Laplacian, with a reaction term
which has space dependent zeros of constant sign. We prove three muliplicity
theorems for such equations providing precise sign information for all solutions.
In the first multiplicity theorem, we do not impose any growth condition on
the reaction near ±∞. In the other two, we assume that the reaction is (p− 1)−
linear and resonant with respect to principal eigenvalue of

(
−△p,W

1,p
0 (Ω)

)
. Our

approach uses variational methods based on the critical point theory, together
with suitable truncation and comparison techniques and Morse theory (critical
groups).

1. Introduction

Let Ω ⊂ RN be a bounded domain with a C2− boundary ∂Ω. In this paper, we
study the following nonlinear Dirichlet problem

(1.1) −△pu (z)−△u (z) = f (z, u (z)) in Ω, u |∂Ω= 0, 2 < p <∞.

Here △p denotes the the p−Laplace differential operator, defined by

△pu = div
(
∥Du∥p−2

RN Du
)
, for all u ∈W 1,p

0 (Ω) .

The reaction f : Ω × R → R is a Carathéodory function (i.e., for all x ∈ R, z →
f (z, x) is measurable and for a.a. z ∈ Ω, x → f (z, x) is continuous). We assume
that f (z, .) has z−dependent zeros of constant sign.

Our aim is to obtain multiplicity results providing precise sign information for all
the solutions produced. Specifically, we prove a multiplicity theorem in which no
growth control at ±∞ is imposed on f (z, .) , and two multiplicity theorems in which
f (z, .) exhibits a (p− 1)−linear growth near ±∞ and is resonant with respect to

the principal eigenvalue λ̂1 (p) > 0 of
(
−△p,W

1,p
0 (Ω)

)
.

Recently, equations involving the sum of a p−Laplacian and a Laplacian (a
(p, 2)−equation for short), were investigated by Aizicovici-Papageorgiou-Staicu [1],
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Cingolani-Degiovanni [8], Cingolani-Vannella [9] and Sun [17]. Cingolani-Degiovanni
[8] and Cingolani-Vannella [9] prove only existence theorems, while Sun [17] proves
a ”three solutions theorem” under the condition that f ∈ C1

(
Ω× R

)
, and does not

produce nodal solutions. Nodal solutions are obtained in Aizicovici-Papageorgiou-
Staicu [1] for coercive nonresonant problems. Here, the multiplicity results of
Section 4 concern indefinite (i.e., noncoercive) resonant equations. We mention
that (p, 2)−equations arise in quantum physics in the search of solitons (see Benci-
D’Avenia-Fortunato-Pisani [6]). We stress that in contrast to the equations driven
by the p−Laplacian, the differential operator in (1.1) is not homogeneous. The lack
of homogeneity is the source of serious difficulties especially when we look for nodal
solutions.

Our approach uses variational methods based on the critical point theory cou-
pled with suitable truncation and comparison techniques and Morse theory (critical
groups). In the next section, we briefly recall the main mathematical tools which
we will use in the sequel.

2. Mathematical background

In the analysis of problem (1.1) , in addition to the Sobolev space W 1,p
0 (Ω) , we

will use the Banach space

C1
0

(
Ω
)
:=

{
u ∈ C1

(
Ω
)
: u |∂Ω= 0

}
.

This is an ordered Banach space with positive cone

C+ =
{
u ∈ C1

0

(
Ω
)
: u (z) ≥ 0 for all z ∈ Ω

}
.

This cone has a nonempty interior, given by

int C+ =

{
u ∈ C+ : u (z) > 0 for all z ∈ Ω,

∂u

∂n
< 0 for all z ∈ ∂Ω

}
,

where n (.) denotes the outward unit normal on ∂Ω.
Let f0 : Ω × RN → RN be a Carathéodory function with subcritical growth in

x ∈ R , i.e.,

|f0 (z, x)| ≤ α (z)
(
1 + |x|r−1

)
for a.a. z ∈ Ω, all x ∈ R

with α ∈ L∞ (Ω)+ , p ≤ r < p∗, where p∗ is the critical Sobolev exponent, i.e.,

p∗ =

{ Np
N−p if p < N

+∞ if p ≥ N.

Let F0 (z, x) =
∫ x
0 f0 (z, s) ds and consider the C1−functional ψ0 : W 1,p

0 (Ω) → R
defined by

ψ0 (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω
F0 (z, u) dz for all u ∈W 1,p

0 (Ω) .

The next result relates local C1
0

(
Ω
)
and W 1,p

0 (Ω) minimizers of ψ0 and can be

found in Aizicovici-Papageorgiou-Staicu [4]. (We recall that C1,β
0

(
Ω
)
, with β ∈

(0, 1) , stands for the subspace of all functions of C1
0

(
Ω
)
whose first-order partial

derivatives are Holder continuous with exponent β).
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Proposition 2.1. If u0 ∈W 1,p
0 (Ω) is a local C1

0

(
Ω
)
− minimizer of ψ0 (i.e., there

exists ρ0 > 0 such that ψ0 (u0) ≤ ψ0 (u0 + h) for all h ∈ C1
0

(
Ω
)
with ∥h∥C1

0(Ω)
≤

ρ0), then u0 ∈ C1,β
0

(
Ω
)
for some β ∈ (0, 1) and it is a local W 1,p

0 (Ω)− minimizer

of ψ0 (i.e., there exists ρ1 > 0 such that ψ0 (u0) ≤ ψ0 (u0 + h) for all h ∈ W 1,p
0 (Ω)

with ∥h∥ ≤ ρ1).

Hereafter, by ∥.∥ we denote the norm of the Sobolev space W 1,p
0 (Ω) , and by ∥.∥q

we denote the norm of Lq (Ω) or Lq
(
Ω,RN

)
, 1 ≤ q ≤ ∞. By virtue of Poincaré’s

inequality, we have

∥u∥ = ∥Du∥p for all u ∈W 1,p
0 (Ω) .

Also, by ∥.∥ we denote the RN -norm. However, no confusion is possible, since it
will be clear from the context which norm is used.

For every x ∈ R, we set x± = max {±x, 0}. Then for every u ∈ W 1,p
0 (Ω) , we

define u± (.) = u (.)± . We know that

u± ∈W 1,p
0 (Ω) , |u| = u+ + u−, u = u+ − u−.

If h : Ω×R → R is a measurable function (for example a Carathéodory function),
then we define

Nh (u) (.) = h (., u (.)) for all u ∈W 1,p
0 (Ω) .

(the Nemytskii operator corresponding to the function h (., .)). By |.|N we denote
the Lebesgue measure on RN .

Let h1, h2 ∈ L∞ (Ω) . We write h1 ≺ h2 if, for any compact set K ⊂ Ω, we can
find ε = ε (K) > 0 such that

h1 (z) + ε ≤ h2 (z) for a.a. z ∈ K.

Evidently, if h1, h2 ∈ C (Ω) and h1 (z) < h2 (z) for all z ∈ Ω, then h1 ≺ h2.
The next proposition is essentially due to Arcoya-Ruiz [5], where only the p−La-

placian (1 < p <∞) is present. A minor modification of their proof in order to
accommodate the linear term −△u leads to the following strong comparison prin-
ciple:

Proposition 2.2. If ξ ≥ 0, h1, h2 ∈ L∞ (Ω), h1 ≺ h2 and u, v ∈ C1
0

(
Ω
)
are

solutions of

−△pu (z)−△u (z) + ξ |u (z)|p−2 u (z) = h1 (z) in Ω,

−△pv (z)−△v (z) + ξ |v (z)|p−2 v (z) = h2 (z) in Ω,

with v ∈ int C+, then v − u ∈ int C+.

Let (X, ∥.∥) be a Banach space and X∗ be its topological dual. By ⟨., .⟩ we denote
the duality brackets for the pair (X∗, X) . Also

w−→ will designate weak convergence
in X.

Given φ ∈ C1 (X) , we say that φ satisfies the Cerami condition (C−condition,
for short), if the following is true:

”every sequence {xn}n≥1 ⊆ X such that {φ (xn)}n≥1 ⊆ R is bounded and

(1 + ∥xn∥)φ′ (xn) → 0 in X∗ as n→ ∞
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admits a strongly convergent subsequence.”
This compactness-type condition, which in general is weaker than the more com-

mon Palais-Smale condition leads to a deformation theorem from which one may
derive the minimax theory of certain critical values of φ ∈ C1 (X). In particular, we
have the following result, known in the literature as the ”mountain pass theorem”.

Theorem 2.3. If φ ∈ C1 (X) satisfies the C− condition, x0, x1 ∈ X and ρ > 0 are
such that ∥x1 − x0∥ > ρ > 0, max {φ (x0) , φ (x1)} < inf {φ (x) : ∥x− x0∥ = ρ} =:
ηρ, and c = infγ∈Γmaxt∈[0,1] φ (γ (t)), where

Γ = {γ ∈ C ([0, 1] , X) : γ (0) = x0, γ (1) = x1} ,

then c ≥ ηρ and c is a critical value of φ (i.e., there exists x∗ ∈ X such that
φ′ (x∗) = 0 and φ (x∗) = c).

Let (Y2, Y1) be a topological pair such that Y2 ⊆ Y1 ⊆ X. For every integer k ≥ 0,
by Hk (Y1, Y2) we denote the kth- relative singular homology group with integer
coefficients for the pair (Y1, Y2).

Given φ ∈ C1 (X) and c ∈ R, we introduce the following sets:

φc = {x ∈ X : φ (x) ≤ c} ;
Kφ =

{
x ∈ X : φ′ (x) = 0

}
;

Kc
φ = {x ∈ Kφ : φ (x) = c} .

If x ∈ X is an isolated critical point of φ with φ (x) = c (i.e., x ∈ Kc
φ), then the

critical groups of φ at x are defined by

Ck (φ, x) = Hk (φ
c ∩ U, (φc ∩ U) \ {x}) , for all k ≥ 0,

where U is a neighborhood of x such that Kφ ∩ φc ∩ U = {x} .
The excision property of the singular homology implies that the above definition

of critical groups is independent of the particular choice of the neighborhood U.
Suppose that φ ∈ C1 (X) satisfies the C-condition and inf φ (Kφ) > −∞. Let

c < inf φ (Kφ) . The critical groups of φ at infinity are defined by

Ck (φ,∞) = Hk (X,φ
c) for all k ≥ 0.

The second deformation theorem/(see, for example, Gasinski-Papageorgiou [12],
p.628) implies that this definition is independent of the choice of the level c <
inf φ (Kφ) .

Suppose Kφ is finite. We set

M (t, x) =
∑
k≥0

rank Ck (φ, x) t
k for all t ∈ R, all x ∈ Kφ

and

P (t,∞) =
∑
k≥0

rank Ck (φ,∞) tk for all t ∈ R.

The Morse relation says that

(2.1)
∑
x∈Kφ

M (t, x) = P (t,∞) + (1 + t)Q (t) for all t ∈ R,
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where Q (t) =
∑
k≥0

ξkt
k is a formal series with nonnegative integer coefficients.

Let r ∈ (1,∞) and let Ar : W
1,r
0 (Ω) → W−1,r′ (Ω) = W 1,r

0 (Ω)∗
(
1
r +

1
r′ = 1

)
, be

the nonlinear map defined by

(2.2) ⟨Ar (u) , y⟩ =
∫
Ω
∥Du∥r−2 (Du,Dy)RN dz for all u, y ∈W 1,r

0 (Ω) .

If r = 2, then we write A := A2 ∈ L
(
H1

0 (Ω) ,H
−1 (Ω)

)
.

The following result is well-known (see, e.g., [2]).

Proposition 2.4. If Ar : W 1,r
0 (Ω) → W−1,r′ (Ω) is the nonlinear map defined by

(2.2) , then Ar is continuous, bounded (i.e., it maps bounded sets to bounded sets),
strictly monotone (hence maximal monotone), and of type (S)+ (i.e., if {un}n≥1

is such that un
w−→ u in W 1,r

0 (Ω) and

lim sup
n→∞

⟨Ar (un) , un − u⟩ ≤ 0,

one has un → u in W 1,r
0 (Ω)).

Finally let us recall some basic facts about the spectrum of
(
−△p,W

1,p
0 (Ω)

)
with 1 < p <∞; see e.g., [12]. So, let m ∈ L∞ (Ω) , m ≥ 0, m ̸= 0 and consider the
following nonlinear weighted eigenvalue problem:

(2.3) −△pu (z) = λ̂m (z) |u (z)|p−2 u (z) in Ω, u|∂Ω = 0.

A number λ̂ ∈ R is an eigenvalue of
(
−△p,W

1,p
0 (Ω)

)
, if problem (2.3) has

a nontrivial solution û. Then û is called an eigenfunction corresponding to the

eigenvalue λ̂.

The smallest eigenvalue of
(
−△p,W

1,p
0 (Ω)

)
exists and is denoted by λ̂1 (p,m) .

We know that λ̂1 (p,m) > 0, is isolated (i.e., there exists ε > 0 such that the interval(
λ̂1 (p,m) , λ̂1 (p,m) + ε

)
contains no other eigenvalues), simple (i.e., if û and v̂ are

both eigenfunctions corresponding to the eigenvalue λ̂1 (p,m) , then û = ξv̂ for some
ξ ∈ R\ {0}), and it admits the following variational characterization

(2.4) λ̂1 (p,m) = inf


∥Du∥pp∫

Ω
m |u|p dz

: u ∈W 1,p
0 (Ω) , u ̸= 0

 .

The infimum in (2.4) is attained on the corresponding one dimensional eigenspace.
By û1,p (m) we denote the Lp− normalized (i.e., ∥û1,p (m)∥p = 1) eigenfunction

corresponding to λ̂1 (p,m) .
From (2.4) we see that û1,p (m) does not change sign, and so, we may assume that

û1,p (m) ≥ 0. The nonlinear regularity theory and the nonlinear maximum principle
(see, for example, Gasinski-Papageorgiou ([12], p.737-738)) imply that

û1,p (m) ∈ int C+.
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The Ljusternik-Schnirelmann minimax scheme provides an increasing sequence of

distinct eigenvalues
{
λ̂k,p (m)

}
k≥1

of
(
−△p,W

1,p
0 (Ω)

)
such that λ̂k,p (m) → +∞.

If p = 2 (linear eigenvalue problem) or N = 1 (ordinary differential equations),

then this sequence exhausts the eigenvalues of
(
−△p,W

1,p
0 (Ω)

)
. If p ̸= 2 and

N ≥ 2, then we do not know if this is true.

We mention that λ̂1,p (m) is the only eigenvalue with eigenfunctions of constant
sign.

If m = 1, then we write λ̂1 (p) := λ̂1,p (m) > 0 and û1,p := û1,p (m) ∈ int C+.
If p = 2 (linear eigenvalue problem), then we have the following orthogonal direct

sum decomposition

H1
0 (Ω) =

⊕
k≥1

E
(
λ̂k (2)

)
,

where E
(
λ̂k (2)

)
denotes the eigenspace corresponding to the eigenvalue λ̂k (2) .

The elements of E
(
λ̂k (2)

)
(k ≥ 1) exhibit the so-called Unique Continuation

Property (UCP for short), i.e., if u ∈ E
(
λ̂k (2)

)
and u vanishes on a set of positive

measure, then u ≡ 0. By standard regularity theory, we have E
(
λ̂k (2)

)
⊆ C1

0

(
Ω
)

for all k ≥ 1.

3. Multiplicity with no growth conditions at ±∞

In this section, we prove a three solutions theorem for equations in which no
growth restriction is imposed on the reaction x→ f (z, x) . Instead, we assume that
f (z, .) admits z−dependent zeros of constant sign. More precisely, the hypotheses
on the nonlinearity f (z, x) are the following:

H1 (f) : f : Ω × R →R is a Carathéodory function such that f (z, 0) = 0 for a.a.
z ∈ Ω, and:
(i) for every ρ > 0 there exists aρ ∈ L∞ (Ω)+ such that

|f (z, x)| ≤ aρ (z) for a.a. z ∈ Ω, all |x| ≤ ρ;

(ii) there exist functions w± ∈W 1,p
0 (Ω)∩C

(
Ω
)
and constants c−, c+ such

that:

w− (z) ≤ c− < 0 < c+ ≤ w+ (z) for all z ∈ Ω,

f (z, w+ (z)) ≤ 0 ≤ f (z, w− (z)) for a.a. z ∈ Ω,

Ap (w−) +A (w−) ≤ 0 ≤ Ap (w+) +A (w+) in W−1,p′ (Ω) ;

(iii) there exists an integer m ≥ 2 and a function η ∈ L∞ (Ω) such that:

λ̂m (2) ≤ η (z) ≤ λ̂m+1 (2) for a.a. z ∈ Ω,

λ̂m (2) ̸= η, λ̂m+1 (2) ̸= η,

lim
x→0

f(z,x)
x = η (z) uniformly for a.a. z ∈ Ω.



NONLINEAR NONHOMOGENEOUS ELLIPTIC EQUATIONS 7

Remarks: Hypotheses H1 (f) (ii) and (iii) imply that f (z, .) has z−dependent
zeros of constant sign. If

f (z, c−) = 0 = f (z, c+) for a.a. z ∈ Ω,

then hypothesis H1 (f) (ii) is satisfied with w+ (z) = c+ and w− (z) = c− for a.a.
z ∈ Ω. Hypothesis H1 (f) (iii) is a nonuniform nonresonance condition at zero with
respect to any nonprincipal eigenvalue of

(
−△, H1

0 (Ω)
)
.

Note that no growth condition at ±∞ is imposed on f (z, .) .

Proposition 3.1. If hypotheses H1 (f) hold, then problem (1.1) has at least three
nontrivial distinct solutions

u0 ∈ int C+, v0 ∈ −int C+, y0 ∈ C1
0

(
Ω
)
\ {0} ,

with
w− (z) < v0 (z) ≤ y0 (z) ≤ u0 (z) < w+ (z) for all z ∈ Ω.

Proof. First, we produce the positive solution. To this end, we introduce the fol-
lowing truncation of f (z, .) :

(3.1) f̂+ (z, x) =


0 if x < 0,

f (z, x) if 0 ≤ x ≤ w+ (z) ,

f (z, w+ (z)) if w+ (z) < x.

This is a Carathéodory function. We set F̂+ (z, x) =
x∫
0

f̂+ (z, s) ds and consider the

C1−functional φ̂+ :W 1,p
0 (Ω) → R defined by

φ̂+ (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω

F̂+ (z, u (z)) dz for all u ∈W 1,p
0 (Ω) .

From (3.1) it is clear that φ̂+ is coercive. Moreover, using the Sobolev embedding
theorem, we see that φ̂+ is sequentially weakly lower semicontinuous. So, by the

Weierstrass theorem we can find u0 ∈W 1,p
0 (Ω) such that

(3.2) φ̂+ (u0) = inf
{
φ̂+ (u) : u ∈W 1,p

0 (Ω)
}
.

By virtue of hypothesis H1 (f) (iii) , given ε > 0, we can find δ = δ (ε) ∈ (0, c+]
such that

(3.3)
1

2
(η (z)− ε)x2 ≤ F (z, x) for a.a. z ∈ Ω, all |x| ≤ δ,

where F (z, x) =
∫ x
0 f (z, s) ds. Let t ∈ (0, 1) be small such that tû1,2 (z) ≤ δ for all

z ∈ Ω. Then

φ̂+ (tû1,2) =
tp

p
∥Dû1,2∥pp +

t2

2
∥Dû1,2∥22 −

∫
Ω

F̂+ (z, û1,2 (z)) dz

≤ tp

p
∥Dû1,2∥pp +

t2

2

∫
Ω

(
λ̂1 (2)− η (z)

)
û21,2dz

+
t2ε

2
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(see (3.3) and (2.4)). Note that

ξ :=

∫
Ω

(
λ̂1 (2)− η (z)

)
û21,2dz > 0

and so, choosing ε ∈ (0, ξ) and taking t ∈ (0, 1) even smaller if necessary (recall
that p > 2), we have

φ̂+ (tû1,2) < 0.

Then φ̂+ (u0) < 0 = φ̂+ (0) (see (3.2)), hence

u0 ̸= 0.

From (3.2) we have
φ̂′
+ (u0) = 0,

and this implies

(3.4) Ap (u0) +A (u0) = N
f̂+

(u0) .

On (3.4) we act with −u−0 ∈W 1,p
0 (Ω) and obtain∥∥Du−0 ∥∥pp + ∥∥Du−0 ∥∥22 = 0 (see (3.1)),

hence
u0 ≥ 0, u0 ̸= 0.

Also on (3.4) we act with (u0 − w+)
+ ∈W 1,p

0 (Ω) . Then⟨
Ap (u0) , (u0 − w+)

+⟩+ ⟨
A (u0) , (u0 − w+)

+⟩
=

∫
Ω

f̂+ (z, u0) (u0 − w+)
+ dz

=

∫
Ω

f (z, w+) (u0 − w+)
+ dz (see (3.1))

≤
⟨
Ap (w+) , (u0 − w+)

+⟩+ ⟨
A (w+) , (u0 − w+)

+⟩ (see H1 (f) (ii) ),

hence ∫
{u0>w+}

(
∥Du0∥p−2Du0 − ∥Dw+∥p−2Dw+, Du0 −Dw+

)
RN

dz

+
∥∥D (u0 − w+)

+
∥∥2
2
≤ 0

and we get
u0 ≤ w+ (see Proposition 2.4).

So, we have proved that

u0 ∈ [0, w+] =
{
u ∈W 1,p

0 (Ω) : 0 ≤ u (z) ≤ w+ (z) a.e. in Ω.
}

Hence, (3.4) becomes

Ap (u0) +A (u0) = Nf (u0) (see (3.1) ),

therefore

−△pu0 (z)−△u0 (z) = f (z, u0 (z)) a.e. in Ω, u0 |∂Ω= 0.
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From Ladyzhenskaya-Uraltseva ([13], p. 286), we have that u0 ∈ L∞ (Ω) . Then we
apply the regularity result of Lieberman ([14], p.320) and infer that

u0 ∈ C+\ {0} .
Hypotheses H1 (f) (i) and (iii) imply that there exists ξ∗ > 0 such that

f (z, x) + ξ∗x
p−1 ≥ 0 for a.a. z ∈ Ω, all x ∈ [0, ∥w+∥∞] .

Hence
△pu0 (z) +△u0 (z) ≤ ξ∗u0 (z)

p−1 ≥ 0 a.e. in Ω.

From the strong maximum principle of Pucci-Serrin ([16], p.34), we have

u0 (z) > 0 for all z ∈ Ω.

So, we can apply the boundary point theorem of Pucci-Serrin ([16], p.120) and
conclude that

u0 ∈ int C+.

Let
a (y) = ∥y∥p−2 y + y for all y ∈ RN .

Then a ∈ C1
(
RN

)
(recall that p > 2) and we have

∇a (y) = ∥y∥p−2

[
IN + (p− 2)

y ⊗ y

∥y∥2

]
+ IN for y ̸= 0.

Here IN denotes the N ×N identity matrix and for a, b ∈ RN , by a⊗ b we denote
the tensor [aibj ]

N
i,j=1 . Then for all ξ ∈ RN we have

(∇a (y) ξ, ξ)RN ≥ ∥ξ∥2 .
Note that

div a (Du) = △pu+△u for all u ∈W 1,p
0 (Ω) .

Since

Ap (u0) +A (u0)−Nf (u0) = 0 ≤ Ap (w+) +A (w+)−Nf (w+) in W−1,p′ (Ω)

(see hypothesis H1 (f) (ii)) and u0 ̸= w+, from the tangency principle of Pucci-
Serrin ([16], p.35) we have

u0 (z) < w+ (z) for all z ∈ Ω.

Similarly, to produce the negative solution, we introduce the following truncation
of f (z, .) :

f̂− (z, x) =


f (z, w− (z)) if x < w− (z) ,

f (z, x) if w− (z) ≤ x ≤ 0,

0 if 0 < x.

This is a Carathéodory function. We set F̂− (z, x) =
x∫
0

f̂− (z, s) ds and consider the

C1−functional φ̂− :W 1,p
0 (Ω) → R defined by

φ̂− (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω

F̂− (z, u (z)) dz for all u ∈W 1,p
0 (Ω) .
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Working with φ̂− as above, we produce another nontrivial constant sign solution
v0 ∈ −intC+, such that

w− (z) < v0 (z) for all z ∈ Ω.

Now, to produce a third nontrivial solution, we truncate f (z, .) at {v0 (z) , u0 (z)} .
So, we introduce the following Carathéodory function:

(3.5) f0 (z, x) =


f (z, v0 (z)) if x < v0 (z) ,

f (z, x) if v0 (z) ≤ x ≤ u0 (z) ,

f (z, u0 (z)) if u0 (z) < x.

We set F0 (z, x) =
x∫
0

f0 (z, s) ds and consider the C1−functional φ0 : W 1,p
0 (Ω) → R

defined by

φ0 (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω

F0 (z, u (z)) dz for all u ∈W 1,p
0 (Ω) .

Also, let f±0 (z, x) = f0 (z,±x±) , F±
0 (z, x) =

x∫
0

f±0 (z, s) ds and consider the C1−functionals

φ±
0 :W 1,p

0 (Ω) → R defined by

φ±
0 (u) =

1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω

F±
0 (z, u (z)) dz for all u ∈W 1,p

0 (Ω) .

As in the first part of the proof, we can show that

Kφ0 ⊆ [v0, u0] , Kφ+
0
⊆ [0, u0] , Kφ−

0
⊆ [v0, 0] .

In fact, we can assume that Kφ+
0

= {0, u0} , Kφ−
0

= {v0, 0} . Indeed, if û0 ∈
Kφ+

0
\ {0, u0} , then û0 ∈ int C+ (by nonlinear regularity and the nonlinear maxi-

mum principle) is the third nontrivial solution of (1.1) and so, we are done.
Claim 1: u0 ∈ int C+ and v0 ∈ −int C+ are local minimizers of φ0.

From (3.5) it is clear that φ+
0 is coercive. Also, it is sequentially weakly lower

semicontinuous. So, we can find û0 ∈W 1,p
0 (Ω) such that

(3.6) φ+
0 (û0) = inf

{
φ+
0 (u) : u ∈W 1,p

0 (Ω)
}
.

As before, via hypothesis H1 (f) (iii)), we have

φ+
0 (û0) < 0 = φ+

0 (0) , hence û0 ̸= 0.

From (3.6) we have û0 ∈ Kφ+
0
= {0, u0} , hence û0 = u0. Note that

φ+
0 |C+= φ0 |C+ ,

hence u0 ∈ int C+ is a local C1
0

(
Ω
)
−minimizer of φ0, therefore u0 is a local

W 1,p
0 (Ω)−minimizer of φ0 (see Proposition 2.1).
Similarly for v0 ∈ −int C+, using this time the functional φ−

0 .
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We may assume that Kφ is finite (or otherwise we already have an infinity of solu-
tions) and that φ0 (v0) ≤ φ0 (u0) . (The analysis is similar if the opposite inequality
holds). By virtue of Claim 1, we can find ρ ∈ (0, 1) small such that

(3.7) φ0 (v0) ≤ φ0 (u0) < inf {φ0 (u) : ∥u− u0∥ = ρ} = ηρ, ∥u0 − v0∥ > ρ

(see Aizicovici-Papageorgiou-Staicu [2], proof of Proposition 29). The functional φ0

is coercive (see (3.5)). So, it satisfies the C-condition. This fact and (3.7) permit

the use of Theorem 2.3 (the mountain pass theorem). So, we can find y0 ∈W 1,p
0 (Ω)

such that

(3.8) y0 ∈ Kφ0 and ηρ ≤ φ0 (y0) .

From (3.7) and (3.8) we see that y0 /∈ {v0, u0} . Also, since y0 ∈ Kφ0 (see (3.8)), we
have y0 ∈ [v0, u0] and so, y0 is a solution of (1.1) (see (3.5)) and by the nonlinear
regularity theory (see [13], [14]) we conclude that y0 ∈ C1

0

(
Ω
)
. Moreover, since y0

is a critical point of φ0 of mountain pass type, we have

(3.9) C1 (φ0, y0) ̸= 0.

We need to show that y0 ̸= 0. This will follow as a consequence of (3.9) and the
following Claim.

Claim 2: Ck (φ0, 0) = δk,dmZ for all k ≥ 0, with dm = dim
m⊕
i=1

E
(
λ̂i (2)

)
≥ 2.

Here and in what follows δk,j (for k, j ∈ Z+) denotes the Kronecker delta.

Let ψ :W 1,p
0 (Ω) → R be the C2−functional defined by

ψ (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

1

2

∫
Ω

η (z)u2 (z) dz for all u ∈W 1,p
0 (Ω) .

For ρ > 0, let B
c
ρ =

{
u ∈ C1

0

(
Ω
)
: ∥u∥C1

0(Ω)
≤ ρ

}
. By virtue of hypothesis

H1 (f) (iii) , given ε > 0, we can find ρ = ρ (ε) ∈ (0, 1) such that ∥φ0 − ψ∥C1
0(B

c
ρ)

≤
ε, hence

(3.10) Ck

(
φ0 |C1

0(Ω)
, 0
)
= Ck

(
ψ |C1

0(Ω)
, 0
)

for all k ≥ 0.

Since C1
0

(
Ω
)
is dense in W 1,p

0 (Ω) , from Palais [15], we have

(3.11)
Ck

(
φ0 |C1

0(Ω)
, 0
)
= Ck (φ0, 0) and

Ck

(
ψ |C1

0(Ω)
, 0
)
= Ck (ψ, 0) for all k ≥ 0.

From Cingolani-Vannella ([9], p.273), we have

(3.12) Ck (ψ, 0) = δk,dmZ for all k ≥ 0, with dm = dim
m⊕
i=1

E
(
λ̂i (2)

)
≥ 2.

Then from (3.10) (3.11) and (3.12) , it follows that

Ck (φ0, 0) = δk,dmZ for all k ≥ 0.

This proves Claim 2.
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From (3.9) and Claim 2, we infer that y0 ̸= 0. So, y0 ∈ C1
0

(
Ω
)
is the third

nontrivial solution of (1.1) . �
In fact we can show that the third nontrivial solution can be choosen to be nodal.

The strategy is the following. First, we produce extremal nontrivial constant sign
solutions, i.e., a smallest nontrivial positive solution u+ and a biggest nontrivial
negative solution v−. Then, we concentrate on the order interval

[v−, u+] :=
{
u ∈W 1,p

0 (Ω) : v− (z) ≤ u (z) ≤ u+ (z) for a.a. z ∈ Ω
}
.

Using truncation and comparison techniques together with variational methods, we
produce a nontrivial critical point y0 of φ0 in [v−, u+] , distinct from v−, u+. Then
by virtue of the extremality of v− and u+, y0 must be nodal.

In what follows, we implement this strategy. By virtue of hypothesesH1 (f) (i) , (iii) ,
given ε ∈ (0,min {−c−, c+}) , we can find cε > 0 such that

(3.13) f (z, x)x ≥ (η (z)− ε)x2 − cε |x|p for a.a. z ∈ Ω, all |x| ≤ ρ,

with ρ = max {∥w+∥∞ , ∥w−∥∞} . Then, we introduce the following Carathéodory
function:
(3.14)

hε (z, x) =


(η (z)− ε)w− (z)− cε |w− (z)|p−2w− (z) if x < w− (z) ,

(η (z)− ε)x− cε |x|p−2 x if w− (z) ≤ x ≤ w+ (z) ,

(η (z)− ε)w+ (z)− cεw+ (z)p−1 if w+ (z) < x.

We consider the following auxiliary Dirichlet problem

(3.15) −△pu (z)−△u (z) = hε (z, x) in Ω, u |∂Ω= 0.

Proposition 3.2. For ε ∈ (0,min {−c−, c+}) small, problem (3.15) has a unique
nontrivial positive solution u∗ ∈ int C+ and a unique nontrivial negative solution
v∗ ∈ −int C+.

Proof. First, we establish the existence and uniqueness of the positive solution.

So, let h+ε (z, x) = hε (z, x
+) . We set H+

ε (z, x) =
x∫
0

h+ε (z, s) ds and consider the

C1−functional σ+ε :W 1,p
0 (Ω) → R defined by

σ+ε (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω

H+
ε (z, u (z)) dz for all u ∈W 1,p

0 (Ω) .

It is clear from (3.14) that σ+ε is coercive. Also, it is sequentially weakly lower

semicontinuous. Therefore, we can find u∗ ∈W 1,p
0 (Ω) such that

(3.16) σ+ε (u∗) = inf
{
σ+ε (u) : u ∈W 1,p

0 (Ω)
}
.

As in the proof of Proposition 3.1, for ε > 0 small, we have

σ+ε (u∗) < 0 = σ+ε (0) , hence u∗ ̸= 0.

From (3.16) it follows (
σ+ε

)′
(u∗) = 0,



NONLINEAR NONHOMOGENEOUS ELLIPTIC EQUATIONS 13

hence

(3.17) Ap (u∗) +A (u∗) = Nh+ε
(u∗) .

Acting on (3.17) with −u−∗ ∈W 1,p
0 (Ω) , we infer that

u∗ ≥ 0, u∗ ̸= 0.

Also on (3.17) , we act with (u∗ − w+)
+ ∈W 1,p

0 (Ω) and obtain⟨
Ap (u∗) , (u∗ − w+)

+⟩+ ⟨
A (u∗) , (u∗ − w+)

+⟩
=

∫
Ω

h+ε (z, u∗) (u∗ − w+)
+ dz

=

∫
Ω

[
(η (z)− ε)w+ (z)− cεw+ (z)p−1

]
(u∗ − w+)

+ dz (see (3.14))

≤
∫
Ω

f (z, w+) (u∗ − w+)
+ dz (see (3.13))

≤
⟨
Ap (w+) , (u∗ − w+)

+⟩+ ⟨
A (w+) , (u∗ − w+)

+⟩ (see H1 (f) (ii) ),

hence
u∗ ≤ w+

(as before, see the proof of Proposition 3.1). Therefore, we conclude that

u∗ ∈ [0, w+] =
{
u ∈W 1,p

0 (Ω) : 0 ≤ u (z) ≤ w+ (z) a.e. in Ω
}
.

Then (3.17) becomes

Ap (u∗) +A (u∗) = (η − ε)u∗ − cεu
p−1
∗ (see (3.14)),

hence u∗ solves (3.15) and u∗ ∈ C+\ {0} (by nonlinear regularity). In fact we have

△pu∗ (z) +△u∗ (z) ≤ cεu∗ (z)
p−1 a.e. in Ω,

hence u∗ ∈ int C+ (see Pucci-Serrin ([16], pp. 34 and 120)).
So, we have established the existence of a nontrivial positive solution u∗ ∈ int

C+ for problem (3.15) . Next we examine the uniqueness of u∗. To this end, we
introduce the integral functional γ+ : L1 (Ω) → R = R∪{+∞} defined by

γ+ (u) =

 1
p

∥∥∥Du 1
2

∥∥∥p
p
+ 1

2

∥∥∥Du 1
2

∥∥∥2
2

if u ≥ 0, u
1
2 ∈W 1,p

0 (Ω) ,

+∞ otherwise.

Let u1, u2 ∈ dom γ+, t ∈ [0, 1] and set y = (tu1 + (1− t)u2)
1
2 . Let v1 = u

1
2
1 ,

v2 = u
1
2
2 . From Lemma 4 of Benguria-Brezis-Lieb [7] (see also Lemma 1 of Diaz-Saa

[10]), we have

∥Dy (z)∥ ≤
(
t ∥Dv1 (z)∥2 + (1− t) ∥Dv2 (z)∥2

) 1
2
a.e in Ω.

Let

G0 (t) =
1

p
tp +

1

2
t2, t ≥ 0.



14 S. AIZICOVICI, N. S. PAPAGEORGIOU, AND V. STAICU

Evidently t→ G0 (t) is increasing. So, we have

G0 (∥Dy (z)∥) ≤ G0

((
t ∥Dv1 (z)∥2 + (1− t) ∥Dv2 (z)∥2

) 1
2

)
a.e in Ω.

Note that t→ G0

(
t
1
2

)
= 1

p t
p
2 + 1

2 t, t ≥ 0, is convex (recall that p > 2). Therefore

G0

((
t ∥Dv1 (z)∥2 + (1− t) ∥Dv2 (z)∥2

) 1
2

)
≤ tG0 (∥Dv1 (z)∥+ (1− t)G0 (∥Dv2 (z)∥)) a.e in Ω.

We set G (y) = G0 (∥y∥) for all y ∈ RN . Then

G (Dy (z)) ≤ tG
(
Du1 (z)

1
2

)
+ (1− t)G

(
Du2 (z)

1
2

)
a.e in Ω,

hence γ+ is convex.
Also, via Fatou’s Lemma, we can check that γ+ is lower semicontinuous, and of

course dom γ+ ̸= ∅.
Let u ∈W 1,p

0 (Ω) be a nontrivial positive solution of (3.15) . Then, from the first

part of the proof we have u ∈ [0, w+] ∩ int C+. Hence u2 ≥ 0 and
(
u2

) 1
2 = u ∈

W 1,p
0 (Ω) , i.e., u2 ∈ dom γ+. For h ∈ C1

0

(
Ω
)
\ {0} , we have u2 + λh ∈ dom γ+ for

all λ ∈ (−ε, ε) with ε > 0 small. This means that γ+ is Gateaux differentiable at
u2 in the direction h, and by the chain rule, we have

(3.18)

γ′+
(
u2

)
(h) = 1

2

∫
Ω

−△pu−△u
u hdz

= 1
2

∫
Ω

hε(z,u)
u hdz (see (3.15))

= 1
2

∫
Ω

(η(z)−ε)u−cεup−1

u hdz (recall that u ∈ [0, w+] and see (3.14))

= 1
2

∫
Ω

[
(η (z)− ε)− cεu

p−2
]
hdz.

Similarly, if y ∈W 1,p
0 (Ω) is another nontrivial positive solution of (3.15) , then again

we have y ∈ [0, w+] ∩ int C+ and as above, we obtain

(3.19) γ′+
(
y2
)
(h) =

1

2

∫
Ω

[
(η (z)− ε)− cεy

p−1
]
hdz.

Since γ+ is convex, γ′+ is monotone and so, we have

0 ≤
⟨
γ′+

(
u2

)
− γ′+

(
y2
)
, u2 − y2

⟩
L1(Ω)

=
cε
2

∫
Ω

(
yp−2 − up−2

) (
u2 − y2

)
dz (see (3.18) , (3.19) ),

hence

y = u (since p > 2).

This proves the uniqueness of u∗ ∈ [0, w+] ∩ int C+.
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Similarly, we consider h−ε (z, u) = hε (z,−u−) , H−
ε (z, x) =

x∫
0

h−ε (z, s) ds and the

C1−functionals σ−ε :W 1,p
0 (Ω) → R defined by

σ−ε (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω

H−
ε (z, u (z)) dz for all u ∈W 1,p

0 (Ω) .

Reasoning as above, we prove the existence and uniqueness of a nontrivial negative
solution v∗ ∈ −int C+. �

This proposition leads to the existence of extremal nontrivial constant sign solu-
tions for problem (1.1) .

Proposition 3.3. If hypotheses H1 (f) hold, then problem (1.1) has a smallest
nontrivial positive solution u+ ∈ [0, w+] ∩ int C+ and a biggest nontrivial negative
solution v− ∈ [w−, 0] ∩ (−int C+) .

Proof. Let S+ be the set of nontrivial solutions of (1.1) in the order interval [0, w+] .
From Proposition 3.1 and its proof it follows that

S+ ̸= ∅, and S+ ⊂ int C+.

Claim: If ũ ∈ S+, then u∗ ≤ ũ.
We introduce the Carathéodory function

(3.20) τ+ε (z, x) =


0 if x < 0,

(η (z)− ε)x− cεx
p−1 if 0 ≤ x ≤ ũ (z) ,

(η (z)− ε) ũ (z)− cεũ (z) (z)
p−1 if ũ (z) < x.

Here ε > 0 is small, as in Proposition 3.2. We set T+
ε (z, x) =

x∫
0

τ+ε (z, s) ds and

consider the C1−functional ξ+ε :W 1,p
0 (Ω) → R defined by

ξ+ε (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω

T+
ε (z, u (z)) dz for all u ∈W 1,p

0 (Ω) .

From (3.20) it is clear that ξ+ε is coercive and sequentially weakly lower semicon-

tinuous. So, we can find ŷ0 ∈W 1,p
0 (Ω) such that

(3.21) ξ+ε (ŷ0) = inf
{
ξ+ε (u) : u ∈W 1,p

0 (Ω)
}
.

As in the proof of Proposition 3.1, using hypothesis H1 (f) (iii) , we show that

ξ+ε (ŷ0) < 0 = ξ+ε (0) , hence ŷ0 ̸= 0.

From (3.21) , we have (
ξ+ε

)′
(ŷ0) = 0,

hence

(3.22) Ap (ŷ0) +A (ŷ0) = Nτ+ε
(ŷ0) .



16 S. AIZICOVICI, N. S. PAPAGEORGIOU, AND V. STAICU

On (3.22) , first we act with −ŷ−0 ∈W 1,p
0 (Ω) and obtain∥∥Dŷ−0 ∥∥pp + 1

2

∥∥Dŷ−0 ∥∥22 = 0 (see (3.20)),

hence

ŷ0 ≥ 0, ŷ0 ̸= 0.

Also, acting on (3.22) with (ŷ0 − ũ)+ ∈W 1,p
0 (Ω), we have⟨

Ap (ŷ0) , (ŷ0 − ũ)+
⟩
+

⟨
A (ŷ0) , (ŷ0 − ũ)+

⟩
=

∫
Ω

τ+ε (z, ŷ0) (ŷ0 − ũ)+ dz

=

∫
Ω

[
(η (z)− ε) ũ− cεũ

p−1
]
(ŷ0 − ũ)+ dz (see (3.20))

≤
∫
Ω

f (z, ũ) (ŷ0 − ũ)+ dz (see (3.13))

=
⟨
Ap (ũ) , (ŷ0 − ũ)+

⟩
+

⟨
A (ũ) , (ŷ0 − ũ)+

⟩
,

hence

ŷ0 ≤ ũ.

Therefore we have proved that

ŷ0 ∈ [0, ũ] :=
{
u ∈W 1,p

0 (Ω) : 0 ≤ u (z) ≤ ũ (z) a.e. in Ω
}
.

Hence (3.22) becomes

Ap (ŷ0) +A (ŷ0) = (η − ε) ŷ0 − cεŷ
p−1
0 ,

hence

−△pŷ0 (z)−△ŷ0 (z) = (η − ε) ŷ0 (z)− cεŷ0 (z)
p−1 a.e. in Ω, ŷ0|∂Ω = 0,

therefore (see the proof of Proposition 3.2)

ŷ0 ∈ int C+ solves (3.15) .

It follows that ŷ0 = u∗ (see Proposition 3.2). Thus we have u∗ ≤ ũ and this proves
the Claim.

We consider a chain C ⊆ S+ (i.e., a nonempty totally ordered subset of S+).
From Dunford-Schwartz ([11], p.336), we know that we can find {un}n≥1 ⊆ C such
that

inf C = inf
n≥1

un.

We have

(3.23) Ap (un) +A (un) = Nf (un) , u∗ ≤ un ≤ w+ for all n ≥ 1

(see the Claim), hence

{un}n≥1 ⊂W 1,p
0 (Ω) is bounded (see H1 (f) (i) ).
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So, we may assume that

(3.24) un
w−→ u in W 1,p

0 (Ω) and un → u in Lp (Ω) as n→ ∞.

On (3.23) we act with un − u ∈ W 1,p
0 (Ω) and pass to the limit as n → ∞. Using

(3.24) we obtain

lim
n→∞

[⟨Ap (un) , un − u⟩+ ⟨A (un) , un − u⟩] = 0,

hence

lim
n→∞

⟨Ap (un) , un − u⟩ = 0 (recall that A ∈ L
(
H1

0 (Ω) ,H
−1 (Ω)

)
),

therefore

un → u in W 1,p
0 (Ω) (see Proposition 2.4), u∗ ≤ u,

and we conclude that

u ∈ S+ and u = inf C.

Since C is an arbitrary chain in S+, from the Kuratowski-Zorn lemma it follows
that S+ has a minimal element u+ ∈ S+. The set S+ is downward directed (see
Aizicovici-Papageorgiou-Staicu [3]), i.e., if u1, u2 ∈ S+, there exists u ∈ S+ such
that u ≤ u1, u ≤ u2. From this it follows that u+ ∈ int C+ is the smallest nontrivial
positive solution of (1.1) .

Similarly, let S− be the set of nontrivial negative solutions of (1.1) in the order
interval [w−, 0] . We have S− ̸= ∅ and S− ⊆ −int C+ (see Proposition 3.1). The
set S− is upward directed, i.e., if v1, v2 ∈ S−, there exists v ∈ S− such that v1 ≤ v,
v2 ≤ v (see [3]). Also, we have ṽ ≤ v∗ for all ṽ ∈ S− (see the Claim). Then as
above, via the Kuratowski-Zorn lemma, we show that problem (1.1) has a biggest
nontrivial negative solution v− ∈ −int C+. �

Using these extremal solutions and reasoning as in the proof of Proposition 3.1,
via the mountain pass theorem (see Theorem 2.3), we produce a nontrivial solution
in the order interval [v−, u+] . Evidently, this solution is nodal. So, we have:

Proposition 3.4. If hypotheses H1 (f) hold, then problem (1.1) admits a nodal
solution y0 ∈ [v−, u+] ∩ C1

0 (Ω) .

Closing this section, we can state the first multiplicity theorem for problem (1.1).
We stress that in this theorem no growth restriction is imposed on the reaction
x → f (z, x) near ±∞. In particular therefore, f (z, .) may be supercritical or even
exponential. Moreover, we localize the tree solutions.

Theorem 3.5. If hypotheses H1 (f) hold, then problem (1.1) has at least three
nontrivial solutions u0 ∈ int C+, v0 ∈ −int C+,

w− (z) < v0 (z) ≤ 0 ≤ u0 (z) < w+ (z) for all z ∈ Ω,

and

y0 ∈ [v−, u+] ∩ C1
0 (Ω) , nodal.
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4. Multiplicity for equations resonant at ±∞.

In this section we impose a (p− 1)−linearity growth condition on f (z, .) near
±∞ and we produce two more nontrivial constant sign smooth solutions, for a
total of five nontrivial smooth solutions, all with sign information. We stress that
the hypothesis on f (z, .) near ±∞ (see H2 (f) (iv) below) implies that we have

resonance with respect to the principal eigenvalue λ̂1 (p) > 0 of
(
−△p,W

1,p
0 (Ω)

)
.

The hypotheses on the reaction f (z, x) are the following:

H2 (f) : f : Ω × R →R is a Carathéodory function such that f (z, 0) = 0 for a.a.
z ∈ Ω, and:
(i) there exists a ∈ L∞ (Ω)+ such that

|f (z, x)| ≤ a (z)
(
1 + |x|p−1

)
for a.a.z ∈ Ω, all x ∈ R;

(ii) same as hypothesis H1 (f) (ii) ;
(iii) same as hypothesis H1 (f) (iii) ;
(iv) one has that:

lim
x→±∞

f (z, x)

|x|p−2 x
= λ̂1 (p) and lim

x→±∞

f (z, x)x− pF (z, x)

x2
= −∞,

uniformly for a.a. z ∈ Ω.

Remarks: Now f (z, .) is (p− 1)−linear near ±∞. In hypothesis H2 (f) (iv) , the
first limit implies that at ±∞ we have resonance with respect to the principal

eigenvalue λ̂1 (p) of
(
−△p,W

1,p
0 (Ω)

)
.

Example: The following function satisfies H2 (f) (for the sake of simplicity we
drop the z−dependence):

f (x) =


λ
(
x− |x|p−2 x

)
if |x| ≤ 1,

λ̂ (p) |x|p−2 x− cx+
(
c− λ̂1 (p)

)
|x|τ−2 x if |x| > 1

with λ ∈
(
λ̂m (2) , λ̂m+1 (2) ,

)
, m ≥ 2, c > λ̂1 (p) and τ ∈ (2, p) .

Theorem 4.1. If hypotheses H2 (f) hold, then problem (1.1) has at least five non-
trivial solutions

u0, û ∈ int C+, u0 ≤ û, u0 ̸= û, u0 (z) < w+ (z) for all z ∈ Ω,

v0, v̂ ∈ −int C+, v̂ ≤ v0, v0 ̸= v̂, w− (z) < v0 (z) for all z ∈ Ω,

and
y0 ∈ [v0, u0] ∩ C1

0

(
Ω
)
, nodal.

Proof. From Theorem 3.5, we already have three nontrivial solutions

u0 ∈ int C+ with u0 (z) < w+ (z) for all z ∈ Ω,

v0 ∈ −int C+ with w− (z) ≤ v0 (z) for all z ∈ Ω,
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and

y0 ∈ [v0, u0] ∩ C1
0 (Ω) , nodal.

We consider the following truncation of the reaction f (z, x) :

(4.1) g+ (z, x) =

{
f (z, u0 (z)) if x < u0 (z) ,

f (z, x) if u0 (z) ≤ x.

This is a Carathéodory function . We set G+ (z, x) =
x∫
0

g+ (z, s) ds and consider the

C1−functional ψ+ :W 1,p
0 (Ω) → R defined by

ψ+ (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω

G+ (z, u (z)) dz for all u ∈W 1,p
0 (Ω) .

We show that

(4.2) Kψ+ ⊆ [u0) :=
{
u ∈W 1,p

0 (Ω) : u0 (z) ≤ u (z) a.e. in Ω
}
.

So, let u ∈ Kψ+ . Then

(4.3) Ap (u) +A (u) = Ng+ (u) .

Acting on (4.3) with (u0 − u)+ ∈W 1,p
0 (Ω) , we have⟨

Ap (u) , (u0 − u)+
⟩
+

⟨
A (u) , (u0 − u)+

⟩
=

∫
Ω

g+ (z, u) (u0 − u)+ dz

=

∫
Ω

f (z, u0) (u0 − u)+ dz (see (4.1) )

=
⟨
Ap (u0) , (u0 − u)+

⟩
+

⟨
A (u0) , (u0 − u)+

⟩
,

hence u0 ≤ u, which proves (4.2) .
We may assume that u0 is the only solution of (1.1) in the order interval [u0, w+]

or otherwise we already have the second nontrivial positive solution û ∈ int C+ of
(1.1) , and u0 ≤ û, u0 ̸= û.
Claim 1: u0 ∈ int C+ is a local minimizer of ψ+.

We consider the following truncation of g+ :

(4.4) ĝ+ (z, x) =

{
g+ (z, x) if x < w+ (z) ,

g+ (z, w+ (z)) if w+ (z) ≤ x.

This is a Carathéodory function . We set Ĝ+ (z, x) =
x∫
0

ĝ+ (z, s) ds and consider the

C1−functional ψ̂+ :W 1,p
0 (Ω) → R defined by

ψ̂+ (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω

Ĝ+ (z, u (z)) dz for all u ∈W 1,p
0 (Ω) .
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From (4.4) it is clear that ψ̂+ is coercive. Also, it is sequentially weakly lower

semicontinuous. Therefore, we can find û0 ∈W 1,p
0 (Ω) such that

ψ̂+ (û0) = inf
{
ψ̂+ (u) : u ∈W 1,p

0 (Ω)
}
.

Then
ψ̂′
+ (û0) = 0,

therefore

(4.5) Ap (û0) +A (û0) = Ng+ (û0) .

On (4.5) we act with (u0 − û0)
+ ∈ W 1,p

0 (Ω) and with (û0 − w+)
+ ∈ W 1,p

0 (Ω) ,
respectively, and using (4.1) and (4.4) we show that

û0 ∈ [u0, w+] .

So, we have
Ap (û0) +A (û0) = Nf (û0)

(see (4.1) , (4.4) and (4.5)), therefore

û0 = u0

(since u0 is the only solution of (1.1) in the order interval [u0, w+]). Since

ψ+ |[u0,w+]= ψ̂+ |[u0,w+],

it follows that u0 ∈ int C+ is a local C1
0

(
Ω
)
−minimizer of ψ+. By virtue of Propo-

sition 2.1, u0 is a local W 1,p
0 (Ω)−minimizer of ψ+. This proves Claim 1.

By virtue of Claim 1, we can find ρ ∈ (0, 1) small, such that

(4.6) ψ+ (u0) < inf {ψ+ (u) : ∥u− u0∥ = ρ} = η+ρ .

Claim 2: ψ+ (tû1,p) → −∞ as t→ +∞.
Hypothesis H2 (f) (iv) implies that given any η > 0, there exists M = M (η) >

max {1, ∥u0∥∞} such that

(4.7) f (z, x)x− pF (z, x) ≤ −ηx2 for a.a. z ∈ Ω, all x ≥M.

We have

d

dx

F (z, x)

xp
=
f (z, x)x− pF (z, x)

xp+1
≤ −η
xp−1

for a.a. z ∈ Ω, all x ≥M

(see (4.7)). Integrating this inequality, we obtain

F (z, x)

xp
− F (z, y)

yp
≤ η

p− 2

(
1

xp−2
− 1

yp−2

)
for a.a. z ∈ Ω, all x ≥ y ≥M.

Passing to the limit as x→ +∞ and using hypothesis H2 (f) (iv), we arrive at

(4.8)
λ̂1 (p)

p
yp − F (z, y) ≤ −η

p− 2
y2 for a.a. z ∈ Ω, all y ≥M.

Note that

G+ (z, y) = F (z, y)− F (z, u0 (z)) + f (z, u0 (z))u0 (z)
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≥ F (z, y)− c∗ for a.a. z ∈ Ω, all y ≥M and some c∗ > 0

(see H2 (f) (i)). Hence, from (4.8) we have

(4.9)
λ̂1 (p)

p
yp −G+ (z, y) ≤ − η

p− 2
y2 + c∗ for a.a. z ∈ Ω, all y ≥M.

Then by (4.9) , for all t > 0, we have

ψ+ (tû1,p) =
tp

p
λ̂1 (p) ∥û1,p∥pp +

t2

2
∥Dû1,p∥22 −

∫
Ω

G+ (z, tû1,p (z)) dz

≤ − ηt2

p− 2
∥û1,p∥22 +

t2

2
∥Dû1,p∥22 + kη,

for some positive constant kη depending on η.

Since η > 0 is arbitrary, from the above inequality we infer that ψ+ (tû1,p) → −∞
as t→ +∞. This proves Claim 2.
Claim 3: ψ+ satisfies the C−condition.

Let {un}n≥1 ⊆W 1,p
0 (Ω) be a sequence such that

(4.10) |ψ+ (un)| ≤M1 for some M1 > 0, all n ≥ 1,

and

(4.11) (1 + ∥un∥)ψ′
+ (un) → 0 in W 1,p

0 (Ω)∗ as n→ ∞.

From (4.11) we have that

(4.12)
⟨Ap (un) , h⟩+ ⟨A (un) , h⟩ −

∫
Ω

g+ (z, un)hdz ≤ εn∥h∥
1+∥un∥

for all h ∈W 1,p
0 (Ω) , with εn → 0+.

In (4.12) we choose h = −u−n ∈W 1,p
0 (Ω) . Then∥∥Du−n ∥∥pp + ∥∥Du−n ∥∥22 ≤ εn for all n ≥ 1 (see (4.1) ),

hence

(4.13) u−n → 0 in W 1,p
0 (Ω) .

Suppose that ∥u+n ∥ → ∞. We set

yn =
u+n∥∥u+n ∥∥ , n ≥ 1.

Then ∥yn∥ = 1 for all n ≥ 1 and so, we may assume that

(4.14) yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp (Ω) as n→ ∞.

From (4.12) and (4.13) we have

⟨Ap (yn) , h⟩+
1∥∥u+n ∥∥p−2 ⟨A (yn) , h⟩ −

∫
Ω

g+ (z, u+n )∥∥u+n ∥∥p−1 hdz ≤ ε′n ∥h∥(4.15)

for all n ≥ 1, with ε′n → 0+.
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Hypothesis H2 (f) (i) implies that

{
g+(.,u+n (.))
∥u+n∥p−1

}
n≥1

⊂ Lp
′
(Ω) is bounded (1p +

1
p′ =

1). Hence, if in (4.15) we choose h = yn−y ∈W 1,p
0 (Ω) , pass to the limit as n→ ∞

and use (4.14) , then

lim
n→∞

⟨Ap (yn) , yn − y⟩ = 0 (recall that p > 2),

and by Proposition 2.4 it follows that

(4.16) yn → y in W 1,p
0 (Ω) , hence ∥y∥ = 1, y ≥ 0.

Since

{
g+(.,u+n (.))
∥u+n∥p−1

}
n≥1

⊂ Lp
′
(Ω) is bounded (see H2 (f) (i)), we may assume that

g+ (., u+n (.))∥∥u+n ∥∥p−1

w−→ g̃ in Lp
′
(Ω) .

From hypothesis H2 (f) (iv) and (4.1) , it follows that

(4.17) g̃ = λ̂1 (p) y
p−1

(see [2], Proposition 14). So, if in (4.15) we pass to the limit as n → ∞ and use
(4.16) and (4.17) , we obtain

⟨Ap (y) , h⟩ = λ̂1 (p)

∫
Ω

yp−1hdz for all h ∈W 1,p
0 (Ω)

(recall that p > 2), hence

Ap (y) = λ̂1 (p) y
p−1, y ≥ 0, y ̸= 0,

therefore

−△py (z) = λ̂1 (p) y (z)
p−1 in Ω, y |∂Ω= 0.

It follows that

y (z) > 0 for all z ∈ Ω,

hence

u+n (z) → +∞ for a.a. z ∈ Ω,

therefore

pG+ (z, u+n (z))− g+ (z, u+n (z))u+n (z)

u+n (z)2
→ +∞ for a.a. z ∈ Ω

(see H2 (f) (iv) and (4.1)), and we conclude that

(4.18)
1∥∥u+n ∥∥2

∫
Ω

[
pG+

(
z, u+n (z)

)
− g+

(
z, u+n (z)

)
u+n (z)

]
dz → +∞

(by Fatou’s Lemma). From (4.10) and (4.13) , we have
(4.19)

−
∥∥Du+n ∥∥pp − p

2

∥∥Du+n ∥∥22 + ∫
Ω

pG+

(
z, u+n

)
dz ≤M2 for some M2 > 0, all n ≥ 1.
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Also, in (4.12) we choose h = u+n ∈W 1,p
0 (Ω) and obtain

(4.20)
∥∥Du+n ∥∥pp + ∥∥Du+n ∥∥22 − ∫

Ω

g+
(
z, u+n

)
u+n dz ≤ εn for all n ≥ 1.

Adding (4.19) and (4.20) and multiplying with 1

∥u+n∥2 , we have

(4.21)

1

∥u+n∥2

∫
Ω

[pG+ (z, u+n (z))− g+ (z, u+n (z))u+n (z)] dz

≤ M3

∥u+n∥2 +
(p
2 − 1

)
∥Dy+n ∥

2
2 ≤M4 for some M3,M4 > 0, all n ≥ 1.

Comparing (4.18) and (4.21) we reach a contradiction. This proves that {un}n≥1 ⊂
W 1,p

0 (Ω) is bounded. So, we may assume that

(4.22) un
w−→ u in W 1,p

0 (Ω) and un → u in Lp (Ω) as n→ ∞.

In(4.12) we choose h = un − u ∈ W 1,p
0 (Ω) , pass to the limit as n → ∞ and use

(4.22) . Then

lim
n→∞

[⟨Ap (un) , un − u⟩+ ⟨A (un) , un − u⟩] = 0,

hence

lim sup
n→∞

[⟨Ap (un) , un − u⟩+ ⟨A (u) , un − u⟩] ≤ 0

(since A is monotone), therefore

lim sup
n→∞

⟨Ap (un) , un − u⟩ ≤ 0.

We conclude that

un → u in W 1,p
0 (Ω)

(see Proposition 2.4). This proves Claim 3.
By (4.6) and Claims 2, 3, we see that we can apply Theorem 2.3 (the mountain

pass theorem). So, we can find û ∈W 1,p
0 (Ω) such that

û ∈ Kψ+ and η+ρ ≤ ψ+ (û) ,

hence û ̸= u0 (see (4.6)), u0 ≤ û (see (4.2)), û solves (1.1)(see (4.1)) and û ∈ int
C+ (nonlinear regularity).

Similarly, starting with the Carathéodory function

g− (z, x) =

{
f (z, x) if x < v0 (z) ,

f (z, v0 (z)) if v0 (z) ≤ x,

settingG− (z, x) =
x∫
0

g− (z, s) ds and considering the C1−functional ψ− :W 1,p
0 (Ω) →

R defined by

ψ− (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω

G− (z, u (z)) dz for all u ∈W 1,p
0 (Ω) ,

we produce v̂ ≤ v0, v̂ ̸= v0, v̂ ∈ −int C+, a second nontrivial solution of (1.1). �
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Next, by strengthening the regularity of f (z, .), we can improve the above theo-
rem and produce a second nodal solution, for a total of six nontrivial solutions.

The new hypotheses are the following:

H3 (f) : f : Ω×R →R is a measurable function such that for a.a. z ∈ Ω, f (z, 0) = 0,
f (z, .) ∈ C1 (R) and:
(i) there exists a ∈ L∞ (Ω)+ such that∣∣f ′x (z, x)∣∣ ≤ a (z)

(
1 + |x|r−2

)
for a.a.z ∈ R, p ≤ r < p∗,

where

p∗ =


Np
N−p if N > p

+∞ if N ≤ p;

(ii) same as hypothesis H1 (f) (ii) ;
(iii) there exists an integer m ≥ 2 such that

f ′x (z, 0) ∈
[
λ̂m (2) , λ̂m+1 (2)

]
for a.a. z ∈ Ω,

f ′x (., 0) ̸= λ̂m (2) , f ′x (., 0) ̸= λ̂m+1 (2) , and

f ′x (., 0) = lim
x→0

f (z, x)

x
uniformly for a.a. z ∈ Ω;

(iv) same as hypothesis H2 (f) (iv) .

Theorem 4.2. If hypotheses H3 (f) hold, then problem (1.1) has at least six non-
trivial solutions

u0, û ∈ int C+, û− u0 ∈ int C+, u0 (z) < w+ (z) for all z ∈ Ω,

v0, v̂ ∈ −int C+, v0 − v̂ ∈ int C+, w− (z) < v0 (z) for all z ∈ Ω,

and

y0, ŷ ∈ intC1
0(Ω)

[v0, u0] ∩ C1
0

(
Ω
)
, nodal.

Proof. From Theorem 4.1, we already have five nontrivial solutions

u0, û ∈ int C+, u0 ≤ û, u0 ̸= û, u0 (z) < w+ (z) for all z ∈ Ω,

v0, v̂ ∈ −int C+, v̂ ≤ v0, v0 ̸= v̂, w− (z) < v0 (z) for all z ∈ Ω,

and

y0 ∈ [v0, u0] ∩ C1
0

(
Ω
)
, nodal.

By virtue of Proposition 3.3, we may assume that u0, v0 are extremal nontrivial
constant sign solutions of (1.1) . Let ρ = max {∥v̂∥∞ , ∥û∥∞} . Hypotheses H3 (f) (i)
and (iii) imply that we can find ξ∗ρ > 0 such that for almost all z ∈ Ω, x →
f (z, x) + ξ∗ρ |x|

p−2 x is nondecreasing on [−ρ, ρ] . Then

(4.23)
−△pu0 (z)−△u0 (z) + ξ∗ρu0 (z)

p−1 = f (z, u0 (z)) + ξ∗ρu0 (z)
p−1

≤ f (z, û (z)) + ξ∗ρû (z)
p−1 = −△pû (z)−△û (z) + ξ∗ρû (z)

p−1 a.e. in Ω.
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As in the proof of Proposition 3.1, let

a (y) = ∥y∥p−2 y + y for all y ∈ RN .

Then a ∈ C1
(
RN ,RN

)
and

div a (Du) = △pu+△u for all u ∈W 1,p
0 (Ω) .

Also, we have

∇a (y) = ∥y∥p−2 y

(
IN + (p− 2)

y ⊗ y

∥y∥2

)
+ IN .

It follows that

(∇a (y) ξ, ξ)RN ≥ ∥ξ∥2 for all y, ξ ∈ RN .
So, from the tangency principle of Pucci-Serrin ([16], p. 35), we have

(4.24) u0 (z) < û (z) for all z ∈ Ω.

From (4.23) and (4.24) and Proposition 2.2, we have

û− u0 ∈ int C+.

A similar argument with the pairs {u0, y0} and {y0, v0} shows that u0−y0, y0−v0 ∈
int C+. Hence, we infer that

y0 ∈ intC1
0(Ω)

[v0, u0] .

We know that y0 is a critical point of mountain pass type for the functional φ0 (see
the proof of Proposition 3.1). Therefore

(4.25) C1 (φ0, y0) ̸= 0 (see (3.9) ).

Let φ :W 1,p
0 (Ω) → R be the energy functional for problem (1.1) defined by

φ (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω

F (z, u (z)) dz for all u ∈W 1,p
0 (Ω) .

Note that φ ∈ C2
(
W 1,p

0 (Ω)
)
. Moreover, reasoning as in the proof of Theorem 4.1

(see Claim 3), we show that φ satisfies the C−condition.
We consider the homotopy h (t, u) defined by

h (t, u) = tφ0 (u) + (1− t)φ (u) for all (t, u) ∈ [0, 1]×W 1,p
0 (Ω) .

Suppose that we can find {tn}n≥1 ⊂ [0, 1] and {yn}n≥1 ⊂W 1,p
0 (Ω) such that

(4.26) tn → t, yn → y in W 1,p
0 (Ω) and h′u (tn, un) = 0 for all n ≥ 1.

We have

Ap (yn) +A (yn) = tnNf0 (yn) + (1− tn)Nf (yn) for all n ≥ 1

(see (3.5)), hence

−△pyn (z)−△yn (z) = tnf0 (z, yn (z)) + (1− tn) f (z, yn (z)) a.e. in Ω,

yn |∂Ω= 0.
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From Ladyzhenskaya-Uraltseva ([13], p.286), we know that we can findM5 > 0 such
that

∥yn∥∞ ≤M5 for all n ≥ 1.

Then, from Lieberman ([14], p.320), it follows that there exists α ∈ (0, 1) and
M6 > 0 such that

yn ∈ C1,α
0

(
Ω
)
and ∥yn∥C1,α

0 (Ω) ≤M6 for all n ≥ 1.

Exploiting the compact embedding of C1,α
0

(
Ω
)
into C1

0

(
Ω
)
, we may assume that

yn → y0 in C1
0

(
Ω
)
(see (4.26) ),

hence
yn ∈ intC1

0(Ω)
[v0, u0] for all n ≥ n0 large enough,

therefore {yn}n≥n0
⊂ C1

0

(
Ω
)
are all distinct nodal solutions of (1.1) and so, we are

done.
This means that we may assume that for ρ > 0 small, we have

Kh(t,.) ∩Bρ (y0) = {y0} for all t ∈ [0, 1] ,

where Bρ (y0) =
{
u ∈W 1,p

0 (Ω) : ∥u− y0∥ ≤ ρ
}
. The homotopy invariance property

of critical groups implies that

Ck (φ, y0) = Ck (φ0, y0) for all k ≥ 0,

hence
C1 (φ, y0) ̸= 0 (see (4.25) ),

therefore
Ck (φ, y0) = δk,1Z for all k ≥ 0

(see Aizicovici-Papageorgiou-Staicu [1]), and we conclude that

(4.27) Ck (φ0, y0) = δk,1Z for all k ≥ 0.

Recall that u0, v0 are local minimizers of φ0 (see the proof of Proposition 3.1). So,
we have

(4.28) Ck (φ0, u0) = Ck (φ0, v0) = δk,0Z for all k ≥ 0.

Also, as in Claim 2 in the proof of Proposition 3.1, we have

(4.29) Ck (φ0, 0) = δk,dmZ for all k ≥ 0.

Finally, recall that φ0 is coercive (see (3.5)). Hence

Ck (φ0,∞) = δk,0Z for all k ≥ 0.

Suppose that Kφ0 = {0, y0, u0, v0} . From (4.27) , (4.28) , (4.29) and the Morse
relation with t = −1 (see (2.1)), we have

(−1)dm + (−1)1 + 2 (−1)0 = (−1)0 ,

hence
(−1)dm = 0,

a contradiction. So, there exists ŷ ∈ Kφ0 , ŷ /∈ {0, y0, u0, v0} . Hence ŷ ∈ [v0, u0] (see
the proof of Proposition 3.1). Therefore ŷ is a nodal solution of (1.1) (see (3.5) and
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recall that v0, u0 are extremal) and ŷ ∈ C1
0

(
Ω
)
(nonlinear regularity). Moreover,

as we did for y0, using Proposition 2.2, we conclude that ŷ ∈ intC1
0(Ω)

[v0, u0] . �
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