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palavras—chave

resumo

Problema da reconstrucao de arvores de peso minimo, Realizacao
de arvores, Inferéncia da topologia da rede, Arvores filogenéticas,
Programacao linear inteira mista, Feasibility Pump, Local Branching,
Otimizacdo robusta.

A monitorizacao e avaliacao do desempenho de uma rede sdo essenci-
ais para detetar e resolver falhas no seu funcionamento. De modo a
conseguir efetuar essa monitorizagdo, é essencial conhecer a topologia
da rede, que muitas vezes é desconhecida. Muitas das técnicas usadas
para a descoberta da topologia requerem a cooperac¢iao de todos os
dispositivos de rede, o que devido a questdes e politicas de seguranca
é quase impossivel de acontecer. Torna-se assim necessario utilizar
técnicas que recolham, passivamente e sem a cooperacdo de dispos-
itivos intermédios, informacdo que permita a inferéncia da topologia
da rede. Isto pode ser feito recorrendo a técnicas de tomografia, que
usam medicOes extremo-a-extremo, tais como o atraso sofrido pelos
pacotes.

Nesta tese usamos métodos de programacao linear inteira para resolver
o problema de inferir uma topologia de rede usando apenas medicGes
extremo-a-extremo. Apresentamos duas formulagcdes compactas de
programacdo linear inteira mista (MILP) para resolver o problema.
Resultados computacionais mostraram que a medida que o nimero de
dispositivos terminais cresce, o tempo que as duas formula¢ées MILP
compactas necessitam para resolver o problema, também cresce rap-
idamente. Consequentemente, elabordmos duas heuristicas com base
nos métodos Feasibility Pump e Local Branching. Uma vez que as me-
didas de atraso tém erros associados, desenvolvemos duas abordagens
robustas, um para controlar o nimero maximo de desvios e outra para
reduzir o risco de custo alto. Cridamos ainda um sistema que mede
os atrasos de pacotes entre computadores de uma rede e apresenta a
topologia dessa rede.
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abstract

Minimum weighted tree reconstruction problem, Tree realization,
Routing topology inference, Phylogenetic trees, Mixed integer linear
programming, Feasibility Pump, Local Branch, Robust optimization.

Monitoring and evaluating the performance of a network is essential
to detect and resolve network failures. In order to achieve this monit-
oring level, it is essential to know the topology of the network which
is often unknown. Many of the techniques used to discover the to-
pology require the cooperation of all network devices, which is almost
impossible due to security and policy issues. It is therefore, necessary
to use techniques that collect, passively and without the cooperation
of intermediate devices, the necessary information to allow the infer-
ence of the network topology. This can be done using tomography
techniques, which use end-to-end measurements, such as the packet
delays.

In this thesis, we used some integer linear programming theory and
methods to solve the problem of inferring a network topology using
only end-to-end measurements. We present two compact mixed integer
linear programming (MILP) formulations to solve the problem. Com-
putational results showed that as the number of end-devices grows, the
time need by the two compact MILP formulations to solve the problem
also grows rapidly. Therefore, we elaborate two heuristics based on the
Feasibility Pump and Local Branching method. Since the packet delay
measurements have some errors associated, we developed two robust
approaches, one to control the maximum number of deviations and
the other to reduce the risk of high cost. We also created a system
that measures the packet delays between computers on a network and
displays the topology of that network.
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Chapter 1

Introduction

Monitoring and evaluating the performance of a network is essential to detect and solve
network failures, in order to ensure high quality service levels that are required by some
network-based services, like video conferencing and streaming multimedia. In order to
achieve this monitoring standard it is essential to know the topology of the network, but
due to the rapid, unregulated and decentralized development of communication networks,
this topology is often unknown. Thus, efficient techniques are required for discovering the

topology of a network.

Nowadays, several techniques can be used to infer a network topology, one can use
Internet Control Message Protocol (ICMP) commands such as traceroute and the Simple
Network Management Protocol (SNMP). However, these techniques require the coopera-
tion of all internal network devices, which is frequently impossible, due to political and

security issues.

Another way to infer the routing network topology is to use tomographic techniques.
These techniques only use end-to-end network measurements, such as packet loss mea-
surements or packet delay variance. Considering that packet loss is very low, nowadays,
most of the used measurements, are packet delay measurements. The end-to-end network
measurements can be obtained using multicast or unicast probing, although those obtained

using multicast probing are more efficient and simple to obtain.



CHAPTER 1. INTRODUCTION

Our goal is to identify the topology of an unknown network, using only packet de-
lay measurements between the end-devices of a network, which are obtained without the
cooperation of the internal nodes.

This is an application of a more general problem, the Minimum Weighted Tree Re-
construction (MWTR) problem, that consists of finding a minimum length weighted tree
connecting a set of terminal nodes in such a way that the length of the path between
each pair of terminal nodes is greater than or equal to a given distance between the con-
sidered pair of terminal nodes. Beside the identification of the topology of an unknown
network, the MWTR problem has applications in several other areas, namely, the inference
of phylogenetic trees, that is a well studied problem.

The MWTR problem is a specific version of the distance realization problem (which
is a graph realization problem), namely a tree realization problem for a distance matrix.
Several authors studied the tree realization problem for a distance matrix and this class of
combinatorial problems was proved to be NP-complete.

The inference of phylogenetic trees and the identification of an unknown network us-
ing only end-to-end measurements are two similar problems. Therefore tools from the

phylogenetic area can be used to solve the problem of identifying a network topology.

1.1 Contribution

To the best of our knowledge, integer linear programming theory and methods were
not yet applied to the specific problem of inferring a network topology.

In this work, we use integer linear programming theory and methods to infer a network
topology. Some of these methods were also applied in the phylogenetic area. We contribute
with two compact mixed integer linear programming (MILP) formulations of the MWTR
problem.

As the number of end-devices grows, the time needed by the two compact MILP formu-
lations to solve the problem also grows rapidly and therefore we elaborate two heuristics

based on the methods Feasibility Pump and Local Branching.
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The packet delay measurements have some errors associated and are therefore un-
certain. To handle this uncertainty, we used two robust approaches, one to control the
maximum number of deviation and the other to reduce the risk of high cost. From these
two approaches we derived three formulations, the Robust-Deviation-Dual formulation, the
Robust-Deviation formulation and the Robust-CVaR formulation.

Finally, to implement the several formulations we developed in a real scenario, we
elaborate a system that displays the topology of an unknown network, using only packet
delay measurements between the end-devices of the network. The system consists of two
independent applications that work cooperatively. The first application synchronizes the
devices, determines the delays and compiles these delays in a distance matrix. The second
application determines the topology of the network using the distance matrix compiled

and displays the topology in a graphical way.

1.2 Document structure

Besides the introduction, this report has eight more chapters. In Chapter [2| we present
some preliminary definitions and results to better understand the problem, we analyze the
graph and tree realization problem in more detail and define formally the MWTR problem.

Chapter |3| introduces the concepts related to the inference of a network topology. We
present some of the existing techniques to discover a network topology. In this chapter, we
also present the instances we generated using the network-level simulator NS-3.

To run our tests, we use, beside the data from the network simulation, data from the
phylogenetics area. So, in Chapter [4] we describe some concepts related to the inference
of the phylogenetic tree and present the instances of the phylogenetic area we used.

The two exact formulations, the Path-weight formulation and the Path-edges formu-
lation, are presented in Chapter [} In this chapter, we also present the computational
results obtained by running the two formulations when using the data instances from net-
working application and phylogenetic application presented in Chapter |3| and Chapter

respectively.
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Then, in Chapter [6] we present the methods Feasibility Pump and Local Branching.
We also present the heuristics we developed applying the ideas of these methods to the
Path-edges formulation. This chapter also contains the computational results obtained by
running the two heuristics when using the data instances from networking application and
phylogenetic application.

Subsequently, in Chapter [7| two robust approaches to solve the problem are studied,
one to control the maximum number of deviations and the other to reduce the risk of
high cost. In this chapter, we also present the three formulation, the Robust-Deviation-
Dual formulation, the Robust-Deviation formulation and the Robust-CVaR formulation, we
derived from these two approaches. We also present the computational results obtained by
running the three formulations when using the data instances from networking application
and phylogenetic application.

In Chapter [§] we present the software we developed and, finally, Chapter [9] presents

our conclusions.



Chapter 2

The Minimum Weighted Tree
Reconstruction (MWTR) problem

The Minimum Weighted Tree Reconstruction (MWTR) problem, defined in [65], is the
problem of reconstructing a weighted tree by knowing only pairwise distances between a
set of terminal nodes. This problem has applications in several areas such as psychol-
ogy [40], 4T, 43, T18] to represent cognitive processes or proximity and similarity relations;
information security for the detection and recognition of documents duplications [45] 69];
telecommunications, namely in network tomography to discover the logical underlying
network [32, 36, 47, 104] and the routing topology of a network [I8] 32 47, [76]; and in
computational biology, to reconstruct phylogenetic trees [24, [60] 85]. All the applications
have in common the notion of a graph realization of a distance matrix and more specific

the notion of a tree realization of a distance matrix.

In this chapter, we start by presenting some preliminary definitions and results to better
understand the problem. Subsequently, we analyze the graph and tree realization problem

in more detail and define formally the MWTR, problem.

5
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2.1 Preliminaries

Let G = (V, E,w) be a connected weighted graph, where V' is the set of nodes, E is the
set of edges and w : F — IRy a function that assigns a non-negative weight to each edge

of GG.

2.1.1 Distance matrix

The input data we use to infer the tree are distances between terminal nodes. Therefore,
we start by defining the following concepts: distance, distance between two nodes in a graph

and distance matrix.

Definition 2.1. [128] [139] Let X be a set. A distance is a function d defined on X x X

that satisfies the following four conditions:
o Vr,ye X, d(z,y) >0 (non-negativity);
o Vr,ye X, d(z,y) =0< x =y (identity of indiscernibles);
o Vr,ye X, d(z,y) =d(y,xz) (symmetry);
o Vr,y,z€ X, d(z,y) <d(z,z)+d(z,y) (triangle inequality).

The function d is also called a metric and the couple (X, d) a metric space. If the set X is

finite then (X, d) is a finite metric space.

To simplify the notation, we denote the distance d(x,y) as dyy.

Definition 2.2. [128| [139] Let G = (V, E) be a connected graph, where V is the set of
nodes and FE is the set of edges. The distance between two nodes, 1,7 € V, in G, is the
length of the shortest path in G between ¢ and j and is denoted as dg If the graph G is
not weighted the length of the path corresponds to the number of edges in the path and
if graph G is weighted the length of the path corresponds to the sum of the edge weight’s
along the path.
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Example 2.1. Figure presents two connected graphs: in (a) graph G, a not weighted
graph, in (b) graph H, a weighted graph.

In graph G the shortest path between nodes A and C' is the path {{AB},{BC}} and
dSc = 2.

In graph H the shortest path between nodes A and C'is the path {{AD},{DE}, {EC}}
and di,=1+2+1=4.

(a) Graph G.

Figure 2.1: Distances between two nodes in a connected graph.

Definition 2.3. Let G(V, E) be a connected graph, where V is the set of nodes and £ is
the set of edges. The diameter of GG is the greatest distance, in terms of number of edges,

between any pair of nodes.

Example 2.2. The graph represented in Figure has diameter 4. One of the paths with

the greatest distance is represented in red.

Figure 2.2: Diameter of a graph.
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Definition 2.4. [I129] An n x n matrix D with entries d;; is called a distance matriz if it

satisfies the following conditions:

e d;; >0, Vi,j € {1,2,...,n};
Odiizo, Vze{l,Q,,n},
[ ] dij = dji7 VZ,j € {1,2,,71,},

o dij <dy+dy;, Vi, jke{l,2,...,n}

Example 2.3. Figure presents two matrices, matrix M; and matrix M. We can verify
that matrix M; is a distance matrix. Matrix B is a non-distance matrix, once, for example,

doy > dgr + dgy and so the triangle inequality is not verified.

A B C D E F G H
A0 1 2 4 Ej0 1 2 3
B|1 0 3 3 F|{1 0 4 5
cli2 3 0 3 G|2 4 0 6
D4 3 3 0 H{3 5 6 0

(a) Matrix M. (b) Matrix Ms.

Figure 2.3: A distance matrix and a non-distance matrix.

A finite metric space, (X,d) can be described by a distance matrix [129], where the

rows and columns of the distance matrix are indexed by the elements of X.

Example 2.4. The distance matrix M; of Example describes the finite metric space,
(X,d), where X = {A, B,C, D} and the metric d is given by the entries of the distance
matrix M;. Since the matrix M, is a distance matrix its entries verify the four conditions:

non-negativity, identity of indiscernibles, symmetry and triangle inequality.
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Definition 2.5. The order of an n x n matrix is n.

Definition 2.6. A distance matrix is additive if it satisfies the following four-point condi-
tion:

dij + dkg < max{dik + djg, dig + djk}, Vi,j, k‘, {c V;g (21)

The four-point condition generalizes the triangle inequality by taking k& = £.
The four-point condition is equivalent of saying that on any quartet ¢, j, k, ¢ we have

that of the three sums d;; + di¢, dir, + dje and d;¢ + dji, the largest two are equal.

Example 2.5. The distance matrix M; represented in Figure is not additive, since
dap+decp=14+3=4,dac +dpp =2+ 3 =5 and dap + dgc =4+ 3 =7 and therefore
dap + dpc > max{dap + dcp,dac + dpp}-

The distance matrix represented in Figure is additive: dap + dop = 8 + 11 = 19,
dac +dpp =7+ 14 =21 and dap + dpc = 12+ 9 = 21.

A B C D
A0 8 7 12
B8 0 9 14
c|7 9 0 11
D12 14 11 O

Figure 2.4: An additive distance matrix.

Definition 2.7. [129] Let D be an n x n matrix. An m x m principal submatriz (m < n)
of matrix D is a matrix obtained from D by removing n — m rows and the corresponding

n — m columns.

Example 2.6. In Figure 2.5 we have the 4 x 4 matrix M; from Example [2.3]in (a) and
one of its 3 x 3 principal submatrix in (b). To obtain this principal submatrix the line and

column C were removed.
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A B C D
A B D

A0 1 2 4
A0 1 4

B|1 0 3 3
B|{1 0 3

cl2 3 0 3
4 3 0

D|i4 3 3 0

(a) Matrix M;. (b) A principal submatrix of matrix M;.

Figure 2.5: A matrix and on of its 3 x 3 principal submatrix.

2.1.2 Some properties of trees

Let T = (V, E,w) be a weighted tree (a connected acyclic graph), where V is the set
of nodes, E is the set of edges and w : £ — IR§ a function that assigns a non-negative
weight to each edge of T

A tree can either be rooted or unrooted. A rooted tree is a tree with a hierarchical
structure, with one special node, called the root, at the top and the other nodes branching
down from it [141].

The set of nodes, V', can be divided in two subsets, V = V; U V,, the set of terminal
nodes, V;, nodes of degree one and the set of internal or additional nodes, V,, nodes of
degree at least two. If the tree is rooted, the root is an element of V. Also the set of edges,
E, can be divided in two subsets, the set of terminal edges, E;, and the set of internal or
additional edges, E,. The terminal edges connect terminal nodes to additional nodes and

the additional edges connect two additional nodes.

Example 2.7. In Figure 2.6, we present a weighted tree, T(V,E,w), with
V={1,2,3,4,A,B,C,D,E,F,G}, V, ={A,B,C,D,E,F,G} and V,, = {1,2,3,4}. Node
1 is the root of the tree and w;; represents the weight of the edge {i,j}Vi,j € V.

A natural orientation can be assigned to a rooted tree, which goes from the root to the

leafs. Considering such an orientation, we can define some concepts, such as parent node,

10
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Figure 2.6: A weighted tree.

child node and sibling node.

Definition 2.8. Let "= (V, E) be a rooted tree and v € V' a node of the tree.
The parent of the node v is a node adjacent to it in the path to the root.
A child of the node v is a node of which v is the parent.

Two nodes are siblings if they have the same parent.

Example 2.8. Considering the tree of Figure [2.6] from Example [2.7] Node 3 is the parent
of nodes 4, B and F', node A is a child of node 2 and nodes C and D are siblings.

Definition 2.9. A tree 77 = (V', E') is a subtree of the tree T = (V, E) if V! C V and
E' CE.

A subtree, of a tree T = (V| E), rooted at an internal node v € V,, of T is denoted by
T,.

Definition 2.10. Let T'= (V| E) be a rooted tree and v,u € V two internal nodes of the

tree. Two subtrees T, and T, are sibling subtrees if the nodes v and u are siblings.

Example 2.9. In Figure[2.7| we present a tree T in (a) and a subtree, T}, of tree T in (b).

The subtrees T, and T, are sibling subtrees.

11
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(a) Tree T. (b) Subtree, T, of T

Figure 2.7: A tree T and a subtree, T,, of T.

Definition 2.11. [67] A caterpillar is a tree such that, when all the terminal nodes are

removed, becomes a path.

Example 2.10. In Figure we have a caterpillar and the correspondent path obtained

by removing the terminal nodes.

Z\“i“i O—CO—"~C0O—C0——0
v 4

(a) Caterpillar (b) Correspondent Path

Figure 2.8: A Caterpillar.

Definition 2.12. A binary tree is a tree in which every node has at most degree three.

So the internal or additional nodes of a binary tree have degree two or three, the

terminal nodes have degree one and, if the binary tree is rooted, the root has degree two.

Example 2.11. In Figure 2.9 we present two binary trees, a rooted and an unrooted

binary tree.

In a tree, nodes with degree two can be eliminated by replacing the two edges incident
by an only edge. If the tree is weighted the weight of the new edge is the sum of the two

eliminated edges [12§]. From now on, we only consider trees in which internal nodes have

12
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(a) Rooted binary tree. (b) Unrooted binary tree.

Figure 2.9: Binary trees.

degree at least three except the root (if the tree is rooted) which is the only node with

degree two. So the internal nodes, except the root, of any binary tree have degree three.

Example 2.12. In Figure [2.10] (a) represents a tree in which node i has degree two and

(b) represents the same tree after eliminating node 1.

(a) Tree with node i of degree two. (b) Tree without node i.

Figure 2.10: Elimination of internal nodes of degree two.

Any tree can be converted into a binary tree, and vice-versa.

A binary tree can be transformed into a non-binary tree by eliminating nodes and edges
in a similar way as we describe the elimination of internal nodes with degree two.

Byun and Yoo [2I] present an algorithm to convert a tree into a binary tree by including

dummy nodes and edges. If the tree is weighted the dummy edges have weight 0.

Example 2.13. In Figure the tree in (a) has a node ¢ with degree four and in (b) a

13
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dummy node and a dummy edge (dashed) were include to transform the tree in a binary

tree.

(a) Tree with node i of degree four. (b) Binary tree.

Figure 2.11: Transformation of a tree in a binary tree.

One of the advantages of binary trees is that, by knowing only the number of terminal
nodes, we also know the number of internal nodes and the number of the edges of the tree.

In an unrooted binary tree with |V;| = n, the set V,, has (n—2) elements, V" has (2n—2)
elements, £, has (n — 3) elements and E has (2n — 3) elements.

In a rooted binary tree with |V;| = n, the set V,, has (n — 1) elements, V" has (2n — 1)

elements, E, has (n — 2) elements and E has (2n — 2) elements.

Any rooted tree can be converted into an unrooted tree, and vice-versa.

To eliminate the root of a rooted tree we proceed in the same way we did to eliminate
internal nodes of degree two.

To transform an unrooted tree in a rooted tree, the root node can be added at the
middle point of the longest path of the tree. If this point is in the edge {i,j}, remove
edge {7,7}, add the dummy root node r and edges {i,r} and {j,r}, one of the new edges
inherits the weight of edge {i, 7} and the other new edge has weight 0. If this point is the

node i, consider the edge {7, j} connecting two nodes and proceed as before.

Example 2.14. In Figure [2.12] we transform an unrooted tree (a) in a rooted tree (b).

14
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&

) Unrooted binary tree.

I'

l
Pl

(b) Rooted binary tree.
Figure 2.12: Transformation of an unrooted binary tree into a rooted binary tree
Definition 2.13. Let T'

/\,

Y
is a binary tree with minimal diameter

(V, E) be a tree with |V| =n. T is a balanced binary tree if it
Example 2.15. In Figure-

to five.

represents a balanced binary tree in which the diameter
is equal to four and (b) represents an unbalanced binary tree in which the diameter is equal

TS

) Balanced binary tree.

) Unbalanced binary tree.
Figure 2.13: Balanced and unbalanced binary trees

Definition 2.14. Let T

of all weights of T', Z We

ecE

(V, E,w) be a weighted tree. The tree length of T is the sum

Example 2.16. The tree in Figure has tree length: 1+24+5+1+2+3 =14
15
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Figure 2.14: Weighted tree with tree length 14.

2.2 Graph realization problem

Hakimi and Yau [78] were the first to refer, in 1965, the graph realization problem of
a distance matrix and presented an algorithm for the special case where the realization of
the matrix is a tree.

Since then, over the years, several authors studied the characteristics of the distance
matrix and its graph and tree realization [77, 87, ©5] 126, 127, 129, 139, 140]. In this

section, we present a few results about the graph and tree realization.

Definition 2.15. [32, 8I] Given an n x n distance matrix D, representing the distances
between a set of n objects, the graph realization problem is the problem of determining
an edge-weighted connected graph G = (V, E,w) with node set V, |V| > n, containing a
subset V; C V, with |V;| = n terminal nodes (each node representing an object), and the
value d;; in matrix D satisfying dl-Gj = d;j, where dg denotes the length of the shortest path
in G between terminal node ¢ and terminal node j, Vi, 5 € V;. If such a graph exists, then
the distance matrix D has a realization. This means a metric given by the distance matrix

D must be embedded into a graph.

Definition 2.16. If the graph which realizes D is a tree, we say that D has a tree-realization

and the problem is known as the tree realization problem.

Every distance matrix D has a realization G = (V, E, w). To construct a realization, it

is sufficient to connect each pair of nodes 7, j € V; by an edge of weight d;; and then delete

16
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edges {i,j} € E verifying d;; = d;, + di; for some k € V, [142]. This realization has no

auxiliary nodes, in other words, V; = V.

Example 2.17. In Figure |2.15 we present the distance matrix M; from Example and

its graph realization.

A B C D
A0 1 2 4
B|1 0 3 3
cl2 3 0 3
D4 3 3 0
(a) Distance matrix. (b) Graph realization.

Figure 2.15: A distance matrix and its graph realization.

Associated with this existence problem is the optimization problem that determines a

graph such that the sum of all edge weights of G is minimized.

Definition 2.17. [32],[139] The realization G = (V, E, w) having the minimum total length,

Z w,, among all the realizations of the distance matrix D, is optimal.
eclk

Dress [50] and Imrich et al. [86] proved that every distance matrix has an optimal real-

ization. However, this realization may not be unique, as we can observe in Example [2.18|

Example 2.18. [80] In Figure we present in (a) a distance matrix D and in (b) and

(c) two optimal realizations of D of weight 20.

It is worth noting that, although a distance matrix has a graph realization, not all
distance matrices describe trees, this is, are tree-realizable. Buneman [20] proved that

a distance matrix of order four is tree realizable if and only if it satisfies the four-point

condition ([2.1)).

17
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0 E 0O Qw >
NN N O
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(a) Distance matrix D.

(b) Optimal realization of D. (c) Optimal realization of D.

Figure 2.16: The distance matrix D and two optimal realizations.

Example 2.19. For a tree with 4 terminal nodes, 4,7, k, ¢ (e.g. Figure [2.17)), it can be
checked that the four-point condition ({2.1]) holds

dij + d < max{di + dji, diy + djr} <

Wi + Wi + Wra + wap <

max{w;; + Wiz + Wa + Wj1 + Wiz + Wy, Wi + Wi + Wey + wj1 + Wia + Wag }

with w;; being the weights associate to each edge in the tree solution.

Simoes-Pereira [125] proved that an n x n distance matrix has a tree-realization if and
only if all its principal submatrices of order four are tree-realizable.

Thus an n x n distance matrix has a tree-realization if and only if it is additive.

18
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Figure 2.17: A possible topology for a tree with 4 terminal nodes.

Example 2.20. The distance matrix of Example [2.3] has no tree-realizations, once it is

not additive as we refered in Example [2.5]
Hakimi and Yau [78] proved the following theorem:

Theorem 2.1. If a distance matrix has a tree-realization, then this realization is optimal

and unique.

Several authors studied the tree realization problem for a distance matrix and this
class of combinatorial problems was proved to be NP-complete [32], [42] [58]. Fiorini and
Joret [61] and Catanzaro et al. [26] discuss the NP-hardness of two related optimization
problems, the minimum evolution problem (MEP) and the balanced minimum evolution
problem (BMEP). These two problems are very well known distance realization problems
from the computational biology area and will be defined in Chapter

The tree realization problem has application in several areas, as we stated before. In
these areas the distance matrix is obtained using real data, that most of the time contains
errors and therefore these distance matrix may not be additive. Consequently, most of the
distance matrices used in the application areas have no tree-realization. On the other hand,
computing optimal realizations is hard, even for a small number of terminal nodes [32].
Chung et al. [32] formulate several versions of the distance matrix realization problem,
mention relevant results, discuss their algorithmic implications, present approximation
results and several heuristics. Because the realization problem is hard even to approximate,

Chung et al. [32] and Farach et al. [58] introduce a weak realization of a distance matrix.

Definition 2.18. An edge-weighted connected graph G = (V, E,w) is a weak realization

of a n x n distance matrix D = (d;;), with rows and columns indexed by V;, with |V;| = n,
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if the node set of G contains node set V;, V; C V., and the distance dl-Gj in the graph G

between nodes ¢ and j is greater than or equal to d;;, diGj > d;j.

An optimal weak realization of a distance matrix D, i.e., the one that has the minimum
total length, must be a tree [32]. Suppose the graph G' = (Vg, Eq, w®), that is not a tree,
is a weak realization of the distance matrix D. Once G is not a tree, it has cycles. By
eliminating an edge in every cycle, we obtain a tree T' = (Vp, Ep, w”) such that Vy = Vg
and V; C Vp. Regarding the distance, in a cycle if the eliminated edge belongs to the
shortest path between nodes i and j then dj; > df, if not then df; = df; and therefore

diTj > dg > d;;. Consequently, T is a weak realization of the distance matrix D and we

have Z w! < Z w¢,

ecEr e€eEq
Example 2.21. In Example we presented two optimal realizations of matrix D with
total length 20. This optimal realizations are also weak realizations of D. If we eliminate,
in the optimal realization presented in Figure (a), two edges we obtain the tree T repre-
sent in Figurewith total length 16. We verify that dz-Tj >d;;,Vi,j € {A,B,C,D,E, F}.
Consequently, T is also a weak realization of D and has total length lower than the total

length of the weak realizations presented in Figure [2.16

Figure 2.18: A weak realization of the matrix D presented in Example [2.18]

Since the weak realization is a tree, for a set of n terminal nodes, there can be at most
n — 2 additional nodes without counting the root in case the tree is rooted. This can be

proven by induction. The affirmation is trivially true for n = 0. We assume that the

20



CHAPTER 2. THE MINIMUM WEIGHTED TREE RECONSTRUCTION (MWTR) PROBLEM

affirmation is true for n > 1. Suppose we have a tree with n terminal nodes and n — 2
additional nodes, we can add a terminal node by connecting it to an existing additional
node and the tree obtained has n + 1 terminal nodes and n — 2 additional nodes, or we
can connect the terminal node to a new additional node that will connect to an existing
additional node, obtaining a tree with n 4+ 1 terminal nodes and n — 1 additional nodes.

Consequently, a tree with n + 1 nodes has at most n — 1 additional nodes.

Even when restricting the topologies to binary trees in which every internal node,

except the root, has degree three, there are, for n terminal nodes, in case of rooted

(2n—3)!
5 -2(n-2)!

(2n —H)!l = % different possible topologies [30, T02]. The Example [2.22 exemplifies

trees (2n — 3)! = different possible topologies and in the case of unrooted trees

the case for n = 4.

Example 2.22. Figure displays in (A) the 15 possibilities for the topologies of rooted
trees with 4 terminal nodes and in (B) the 3 possibilities for the topologies of unrooted

trees with 4 terminal nodes.

There are finitely many topologies for a weak realization of D, and for each topology
the problem of determining a weak realization can be formulated as a linear programming
problem. To the best of our knowledge Cantanzaro et al. [26] 27] are the only authors to

present (mixed integer) linear programming models for solving the problem.

2.3 Definition of the MWTR problem

A specific version of a tree realization problem is the Minimum Weighted Tree Recon-

struction (MWTR) problem, which is defined as follows:

Definition 2.19. Given a set V; of n terminal nodes and an n x n distance matrix D,
whose entries represent the distances between the n terminal nodes, find a weighted tree

T = (V, E,w) spanning V' = V, UV,, where V, is a subset of n — 2 additional nodes, that
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Figure 2.19: Possible topologies of trees with 4 terminal nodes[102].

solves the problem:

min E We

ecFE

st we>dy, Vi jEViii# ]
6€P¢j
we > 0 Yee F

where Pj; is the unique path between any two terminal nodes ¢ and j € V;

The constructed trees can be either rooted or unrooted. We consider unrooted trees and

all the contents in this work can be adapted to a rooted tree. Therefore, and for modeling
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purposes, we force the tree structure to be an unrooted binary tree, all the additional
nodes to have degree exactly three and the terminal nodes to be the leaves. Restricting
ourselves to such topologies will help us deal with this combinatorial problem which is a
weak realization problem. Enforcing this tree structure is not a restriction to the problem
as any tree can be converted into a rooted binary tree, and vice-versa, as we showed in

Section .11

To simplify tree length computations, Pauplin [I07] developed a method to directly
calculate the sum of all weights of an urooted tree (the tree length) without having to

explicitly determine its edge-weights. According to this method the tree length is given by

> dy 2 (2.2)

1,j€VL
where z;; indicates the number of edges in the path F;; between terminal nodes ¢ and j.

When d;; = Z We, We have

6€Pij

Z dij 2771 = Z Z We 2754

1,j€V; 1,JEV: e€P;;

As the weight w, appears as many times as the number of paths P;; to which the edge e
belongs to, it holds

> =Y,

1,JEV: eckE

and for a weak realization we have
.
g dij 279 < E We
i,j€Vs eCE

and

min Z d;; 2779 < minZwe

1,7€EV; eck

Example [2.23| illustrates the fact that Z di; 277 = Z w,, when n = 4.

1,J€V; eckE
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Figure 2.20: Tree with four external nodes.

Example 2.23. Figure represents a tree with four terminal nodes, A, B,C and D

and two additional nodes 1 and 2.

The distance matrix is symmetric, thus
[} dij = dji and Zij = Zji

The values z;; indicate the number of edges in the path between node ¢ and node j.

We have
® 2o =2zcp =2
® ZAc = ZAp = ZBCc = ZBD = 3
The value w;; represents the weight of the edge between node ¢ and node j, thus

o dyp = wia +wWip

dac = wia + Wiz + woc

o dyp = wia + w2 + wap

o dpc = wip + Wiz + Woc

e dpp = wip + w2 +wap

ds6 = Was + Wag
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And so we obtain:
Z dij 2779 = 2[27%(dap + dep) + 27 (dac + dap + dpe + dgp)]
iujevext7i7£j
= 27 (wia + wip + wac + wap)+
+ 272(211}1,4 + 2wy g + 4dwia + 2wee + 2w2D)

= Wi + WA + W1 + Woc + Wap

~ Y,

We can replace the objective function of the MWTR problem, Z we, by the objective
ecl
function Z d;; 2777, obtaining an alternative way to infer the weight tree.
1,JEVL
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Chapter 3

Network topology

In this chapter we present an application of the MWTR in telecommunications: the
inference of an underlying network. We describe some existing methods to infer a network

topology and describe how we obtained the instances we used to run ours tests.

A network is a number of interconnected devices E] The communication and computer
networks have evolved very rapidly in a largely unregulated and open environment from a
small controlled network serving only a few users to the immense collection of heterogeneous

interconnected terminals, routers and other platforms.

Example 3.1. In Figure 3.1 we present an example of a computer network. The Internet

is represented as a cloud because its topology is unknown.

Monitoring and assessing the network is essential to achieve high quality service levels.
The task of network monitoring gives rise to performance problems identification involving
link failures, delays, connectivity, and traffic flow. To do the monitoring, network per-
formance parameters, such as traffic rates, link delays and packet loss rate, are needed.
However, the decentralized nature of the communication and computer networks makes
assessment of network performance very difficult, once the internal devices do not freely
transmit them. One way to overcome this difficulty is to use end-to-end network measure-

ments, such as packet loss measurements or packet delay between a sender and a receiver,

lin Oxford English Dictionary
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Server

IP Phone

> Desktop PC

Printer
Desktop PC

Figure 3.1: A computer network [5].

which have little or no impact on the network load. Packet loss measurements are obtained
by counting the packets transmitted and received between nodes. These measurements do
not need the clocks of the several end-hosts to be synchronized. Delays measurements are
obtained by measuring the difference between the time of the packet sent and the packet
reception. The delays on the links have two origins: propagation delays and router process-
ing delays. The time delay between the sent and the reception is the sum of the link delays
in the path [35]. These measurements generally require clock synchronization, that is, the
clocks of the several end-hosts must be synchronized before making the measurements.
The problem of deducing the internal network characteristics from end-to-end measure-
ments is called network tomography and is a field in the statistic area [34]. Vardi [I38] was
one of the first to study the problem of network performance parameters estimation based
on traffic measurements and coined the term “network tomography” due to the similarity

between network inference and medical tomography. Coast et al. [35] introduced formally
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the field of network tomography and Castro et al. [22] survey this field.

The methods used in network tomography to estimate network performance parameters
using end-to-end measurements assume that the underlying topology of the network is
known, but most of the time it is unknown. So the first step in network tomography is to

infer the underlying network topology.

3.1 Methods to infer a network topology

Nowadays several techniques can be used to infer a network topology. One can use
the networking tool traceroute [46, 49, [75], 124] that sends several Internet Control Mes-
sage Protocol (ICMP) P| packets, with gradually increasing time-to-live (TTL). The TTL
is decremented each time the packet reaches a router and when the TTL is zero the router
drops the packet and sends an ICMP time-ezceeded message to the source of the packet.
When a packet reaches the destination, the destination is supposed to reply with an ICMP
destination unreachable message with the code port unreachable. In order for the destina-
tion to sent this type of message, the UDP (User Datagram Protocol) packet must specify
a high, unused, port number. The messages sent by the routers have the IP address of
the sender and so a list of the routers traversed until reaching the destination can be
constructed. To avoid waiting too long for a response, the sender also has a timer which

indicates when the sender should send another packet.

Example 3.2. Figure illustrates how the networking tool traceroute works. The Mon-
itor sends ICMP packets with gradually increasing TTL starting with one until it receives
a message from Destination. The TTL of the first packet sent is equal to one. The first
router in the path from the Monitor to the destination to receive the packet is router
R1. As router R1 receives the packet it decrements the TTL of the packet and drops the
packet once the TTL is equal to zero. The router R1 then sends a ICMP time-exceeded mes-
sage (ICMP_TE) to the Monitor. The Monitor then sends a second packet with TTL equal

2The protocol ICMP is used by intermediate devices and host to communicate error informations and

updates to other devices.
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to two. The TTL of this packet is decremented by router R1 which forwards the packet
to router R2. Router R2 decrements the TTL, drops the packet and sends a ICMP time-
exceeded message to the Monitor. The Monitor proceeds this way until a packet reaches

Destination which replays with a ICMP destination unreachable (ICMP_DU) message.

Monitor Ry R R R, R:Destination

aouanboag Suiqoig
L.

E— - s
TTLx ICMP_TE ICMP_DU

Figure 3.2: A traceroute example [46].

Unfortunately, due to political and security issues, not all routers respond to traceroute

requests and so this tool may not discover all the network.

Another tool used to discover the network topology is the Simple Network Manage-
ment Protocol (SNMP) [133]. SNMP is a protocol for a management station to exchange
information with a number of agents. An agent is a device that has SNMP agent software
installed. This software collects information about the device and responds to queries
sent from the management station. The management station is a device from which the
network administrator can manage the agents in the network, sending query requests to
gather information and modifying predefined values.

Several authors developed techniques to discover the network topology based on
SNMP [19] 105} [124]. Routers have routing tables with a list of their neighbors. A topology
can be discovered by using recursively the information of the routing tables. The manage-

ment station sends a query request to obtain the information of the routing table, to an
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agent. With this information the neighbors of the agent can be identified and the man-
agement station can then send query requests to all the neighbors to obtain their routing
table informations.

Siamwalla et al. [124] showed that SNMP performs better than other techniques. Un-
fortunately, SNMP is not implemented in all devices. Furthermore, SNMP can be turned
off in the devices in which it is implemented and nowadays due to security issues, most of
the network administrator turns it off.

The two methods we just summarized are the most commonly used, but besides these
there are others. Haddadi et al. [76], Donnet et al. [48] and Motamedi et al. [I00] wrote
survey papers where they presented several mechanisms for discovering the internet topol-
ogy. All the mechanisms they presented require the cooperation of all the internal network
devices.

To overcome the fact that many internal network devices do not cooperate, the topology
can be inferred using end-to-end traffic measurements. With this limited information the
physical topology can not be inferred. The physical topology is the physical structure of the
network, that is how the devices are physically interconnected. To avoid failures most of the
networks have redundant infrastructures installed. End-to-end traffic measurements only
permit to infer the network topology which is traversed by the data sent from one device to
another. This network topology is a tree, once it is assumed that the routes traversed by
the packets are fixed during the measurements. Furthermore, only the physical devices on
the network where traffic branching occurs can be inferred, that is only the logical topology
can be inferred. The logical topology is obtained from the physical topology, representing
only the physical devices on the network where traffic branching occurs and joining all the
connections between these devices by a single logical link, which comprises one or more

physical links [52].

Example 3.3. Figure displays in (a) a physical routing topology and in (b) the asso-
ciated logical topology.

A network can be represented by a graph where nodes represent the physical devices
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(a) The physical routing topology. (b) The logical topology.

Figure 3.3: A physical routing topology and the associated logical topology.

and the edges the links connecting two devices. So the problem consists in inferring the
logical topology, which is a tree, using only measurements at pairs of receivers. This is
an application of the MWTR problem presented in Chapter 2 In this application, the
terminal nodes represent the receivers, internal nodes represent physical devices where
traffic branching occurs, edges represent relationships between pair of nodes and edges
weights represent the quantification of some evolving connection property, like the delay
or packet losses, for which end-to-end network measurements can be obtained.

The end-to-end network measurements can be obtained using multicast [51] [(52) 103
104, [113] or unicast probing [34, 57, [121], although those obtained using multicast probing
are more efficient and simple to obtain. In an unicast transmission a source sends a packet
to a single receiver. In multicast, a packet is sent to multiple receivers using a single
transmission. To use multicast transmission the source and the receivers must be in the
same multicast group. As a packet sent from the source with the multicast group address
reaches a branching point, it is replicated and a replica is sent to every branch. So every

receiver gets a copy of the packet.

Example 3.4. Figure displays in (a) a scheme of a unicast transmission and in (b)

a scheme of a multicast transmission. In scheme (a) the source T'1 sends a packet to
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the receiver T2. In scheme (b) the source T'1 sends a multicast packet. The receivers
T2, T3, T4, T5 and T6 belong to the same multicast group as the sender, so every router,
along the way from T'1 to the receivers, replicates the packet and sends a copy to every

branch.

(a) Unicast transmission. (b) Multicast transmission.

Figure 3.4: An unicast and a multicast transmission.

In a multicast transmission, the packets reaching a pair of receivers face the same condi-
tions from the source to the closest common branch point between the pair of receivers [51].

Unfortunately, multicast is not implemented in every device and therefore sometimes
the end-to-end measurements must be obtained using unicast transmissions. Coates and
Nowak [37] proposed a technique to make unicast loss measurements using back-to-back
packet pairs. Shih and Hero [121] applied the same technique to make unicast delay mea-
surements. A back-to-back packet pair is composed of two packets destined to two different
receivers and sent one after the other by the sender. It has been verified experimentally
in real networks [54] T09] that when a back-to-back packet pair is sent across a common
link, the packets of the back-to-back packet pair will have practically the same delays
through shared links and if the first packet is successfully transmitted the probability of
the second to be successfully transmitted is very high. So, like in multicast transmission,

the back-to-back packet pair face practically the same conditions from the source to the
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closest common branch point between the pair of receivers.

Example 3.5. Figure displays an example of a back-to-back packet pair transmission.
The terminal node T1 sends a back-to-back packet pair, A and B. The packet A has
destination node TH and packet B has destination node T6. The packet pair share the

same path until they arrive at router R1.

Figure 3.5: Back-to-back packet pair transmission.

Delay measurements generally require clock synchronization. This synchronization can
be done using several protocols, such as Network Time Protocol (NTP) [99] or Precision
Time Protocol (PTP) [83]. The Precision Time Protocol is described in Section[8.4 Most of
these protocols are quite complicated to implement and the accuracy of the synchronization
can be small. Therefore, to overcome the clock synchronization limitation Coast et al. [34]
developed a delay-based measurement using unicast probes and entitled it the sandwich
probes. A sandwich probe is composed of two small packets separated by a larger packet.
The two small packets are destined to the same receiver and the larger one to another
receiver. The measurements are made at the receiver of the two small packets and consists
of the difference between the arrival time of the first and the second small packet. As the
second small packet queues behind the large one, the time that separates the first and the

second small packet increases in the links shared with the larger packet.

Example 3.6. Figure[3.6|displays an example of a sandwich packet transmission. Terminal
node T1 sends a sandwich packet, A,B and C. The packet B has destination node T5 and
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packets A and C have destination node T6. The packets share the same path until they

arrive at router R1.

Figure 3.6: Transmission of a sandwich probe.

The inherent randomness of packet delays and packet losses leads to the fact that
tomographic methods use statistical methodologies to infer a network topology. The first
to use end-to-end packet loss measurements to infer the logical topology of a network were
Ratnasamy and McCanne [IT3]. They observed that when packets are sent using multicast
from a sender to many receivers, the receivers sharing a longer path in the routing tree
have higher shared loss rates. To reconstruct a logical network topology they first define a
selection criteria which indicates how closely terminal nodes are in the routing tree. They
then recursively, until only one node is left, aggregate nodes with the highest similarity
together and represent them as a single node. The shared losses of the receivers can have
two origins. They may be due to losses along the shared path in the routing tree which
are called the true shared losses. However, two copies of the same packet can be lost
independently along the path that is not shared, these losses are random and are called
the false shared losses. Ratnasamy and McCanne used the probability of seeing true shared
losses between a pair of receivers as the selection criteria. They estimate the topology using

the loss rate of the receivers.
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Duffield et al. [51] established the correctness of the method presented by Ratnasamy
and McCanne and Duffield et al. [52] presented more general methods that use packet loss
measurements or/and delay measurements.

All the tomographic methods start by estimating end-to-end metrics based on the end-
to-end measurements and using statistical models. After that, an inference algorithm that
uses the pairwise metrics is applied to obtain the topology.

Consider that a sender s sends packets to a set of receivers R and that ~;; is the
theoretical metric associate with each pair of receivers 7,7 € R. The metric must verify
the monotonicity property, that is, if the path P;; shares more links with the path P ;
than with the path P,; then v;; > v, where P ;, P; ;, Ps represent the path from the
source node s to the receiver node 7, j and k, respectively. The metrics, v;;, Vi,7 € R, are
estimated from the end-to-end-measurements, ;;,Vi, 7 € R. These estimated metrics are
statistics obtained from repeated measurements [23].

In what concerns the inference algorithms the two main algorithms used are the group-
ing procedure [51) 52, 53| 113, 122] and the maximum likelihood procedure [23] 34, 37, [51].
There are others inference algorithms like the Bayesian procedure [51] but these algorithms
are not as efficient as the other two and therefore not often used.

The grouping procedure obtains the logical topology tree applying the following four
steps [22]:

1. choose a pair of nodes with the highest similarity, using the estimated metrics;
2. group the pair of nodes to form a new node;
3. determine the similarities between the new node and the former existing nodes;

4. repeat the procedure until only one node is left.

The basic idea of the maximum likelihood procedure is to evaluate the statistical likeli-
hood of every possible topology given the measurements, x;;, Vi, j € R, and select the one

which maximizes the likelihood. Let T" be the underlying topology, x= {x;; : i,j € R,i # j}
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and v = {v;; : 4,j € R,i # j}. The likelihood is defined to be a quantity proportional to
the probability of making the observations (x) given the model, this probability is given
by p(z|vy,T). The maximum likelihood tree is given by

T*(x) = T
(z) = argapax supp(aly, T)

where F'is the set of all possible trees connecting the sender to the receivers and G is the

set of all metrics satisfying the monotonicity property [22] 23].

More recently, Ni and Tatikonda [I03] used ideas and tools from phylogenetic inference
to infer routing topologies. They adapted the neighbor-joining heuristic, a widely used
algorithm to reconstruct phylogenetic trees from distance matrices. This algorithm was
proposed by Saitou and Nei [116] and posteriorly modified by Studier and Kepler [134].
This method builds an unrooted tree in which the tree length is minimal, using as input a
distance matrix with the distances between n terminal nodes. It starts with a tree topology
in form of a star, with an internal node and all the n terminal nodes connected to it. Then,
iteratively, it searches the nearest neighbor, that is, the pair of nodes that induces a tree
with the smaller tree length. This pair is then clustered into a new internal node and
the distance between the new node and the other nodes are calculated, obtaining a new
distance matrix to be used in the next iteration. The iteration process stops when the
number of internal nodes of the tree is (n — 2) [110].

Ni and Tatikonda [103] used multicast end-to-end loss measurements and defined ad-

ditive metrics as follows.

Definition 3.1. Let T' = (V, E) be a tree, where V is the set of nodes, F is the set of
edges and let P;; represent the path from node ¢ to node j, i,j € V.

d:V xV — R" is an additive metric if
e 0 <d(e) <oo, VeekFE;

e d(i,j) = d(3,7);
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Y dle) i#j
° d(Z,j) = e€P;; VZ,j eV.

0 1=7
To obtain the distances, they sent n probes from a source node to the other terminal

nodes and for each terminal node ¢ they consider the loss outcome, Xi(t), of the t-th probe.

If node i received the t-th probe then Xi(t) = 1, otherwise Xi(t) =0.

The estimated distances between terminal nodes were obtained as follows.

X, X
d(i,j) = log WJQ, Vi,j €V,

]

where V; C V is the set of terminal nodes,

_ 1<
Y= -3 X0,
n
t=1

1S v
= 2 X"
t=1

1 n
X X; = - ZXi(t)XJ@-
t=1

>

As stated before the end-to-end traffic measurements used in network tomography are
packet loss measurements and packet delay measurements. Considering that nowadays
the packet loss is very low, currently most of the measurements made are packet delay

measurements.

3.2 The instances

To obtain the instances to run our tests we generated three networks using the network-
level simulator NS-3 [3]. We performed three simulations named Simulation7, Simulation15
and Simulation20 with, respectively, 7, 15 and 20 terminal nodes. Figures [3.9] and
display the routing trees used to run the simulation.

For each routing tree we used multicast probing to obtain the delays between the

terminal nodes and compiled these delays in a matrix. We named the matrices S7 (an

38



CHAPTER 3. NETWORK TOPOLOGY

Figure 3.8: Routing tree used to run simulation Simulationl15.

7 x 7 matrix), S15 (an 15 x 15 matrix) and S20 (an 20 x 20 matrix), which correspond to

simulation Simulation7, Simulation15 and Simulation20, respectively.

From matrix S20 we extracted the principal submatrix that has the first 15 rows.
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Figure 3.9: Routing tree used to run simulation Simulation20.

For each matrix we vary the number of terminal nodes between 5 and n, where n = 15
for matrices S20 and S15 and n = 7 for matrix S7. This way we obtain 25 principal
submatrices.

Once we only use the distance matrix to infer the routing tree, we can only infer the
logical topology. Therefore, we present in Figures[3.10, [3.11] and [3.12] the logical topologies
corresponding to the routing topologies displayed in Figures and [3.9

Figure 3.10: Logical topology obtained from the routing tree display in Figure
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Figure 3.12: Logical topology obtained from the routing tree display in Figure

We also generate matrices with random numbers. For each of the 25 matrices, D = (d;;),
we generate ten random values belonging to [d;;, d;; + a X d;;], where a € {0.1;0.15;0.2; 1}.
Then we used the mean of the ten numbers to construct a new matrix. For a = 0.1 we
obtain the matrices A10S7, A10S15 and A10S20, for a = 0.15 we obtain the matrices
A15S7, A15S15 and A15S20, for @ = 0.2 we obtain the matrices A20S7, A20S15 and
A20S20 and for a = 1 we obtain the matrices A100S7, A100S15 and A100S20. Thus, we

obtain more 100 matrices.

We also run other simulations where we defined the delays on the intermediate routers
to be random. For these simulation we used the routing tree displayed in Figure and

the routing trees obtain from the trees displayed in Figures 3.8 and [3.9) by considering only
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twelve of the terminal nodes. Figures[3.13]and display the obtained routing trees and
Figures and display the associate logical topology.

Figure 3.13: Routing tree obtain from the one used in simulation Simulation15 by consid-

ering only twelve terminal nodes.

For each routing tree we run ten simulations and used the mean of the delays obtained
to construct the matrices. We named these matrices SS7 (an 7 x 7 matrix), SS15 (an
12 x 12 matrix) and SS20 (an 12 x 12 matrix) corresponding to the simulations ran using
the routing tree displayed in Figures [3.7] and [3.14] respectively. For each matrix we
vary the number of terminal nodes between 5 and n, where n = 12 for matrices SS20 and
SS15 and n = 7 for matrix SS7. This way we obtain 19 principal submatrices. So we have
a total of 144 instances.

Once the distances used in the several matrices were obtained using random delays on
the intermediate routers, these distances are subject to errors. Consequently, not all the
matrices verify the triangle inequality and/or the four point condition.

Table [3.1] shows whether or not the matrices verify the triangle inequality. It also
indicates how many times the triangle inequality is not verified in the matrix. Columns

labeled Matrix, indicate the name of the matrix instance, columns labeled n indicate the
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Figure 3.14: Routing tree obtain from the one used in simulation Simulation20 by consid-

ering only twelve terminal nodes.

Figure 3.15: Logical topology obtained from the routing tree display in Figure |3.13]

order of the matrix, columns labeled Verifies indicate whether or not the matrix verifies
the triangle inequality and columns labeled m indicate for how many distances the triangle

inequality is not verified.
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Figure 3.16: Logical topology obtained from the routing tree display in Figure
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As we can observe almost all the matrices verify the triangle inequality.
Regarding the four-point condition only matrices S20 with n = 5 and n = 6, S15
with n =5 and n = 6 and S7 with n = 5 are additive.
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Chapter 4

Phylogenetic Tree

Another application of the MWTR problem is the reconstruction of phylogenetic trees
and therefore ideas and tools from the phylogenetic inference can be used to solve the
MWTR problem. In this chapter, we present some concepts of the phylogenetics and
some methods on how to obtain the distance matrix. We also present the instances of the

phylogenetic area we used to run ours tests.

Phylogenetics is the branch of the biology that studies the evolution history of a species
or any hierarchically recognized group E] Phylogenetic analysis can be done by comparing
palaeontological characteristics (through the study of fossils), morphological characteristics
(by studying the outer shape that living beings may take) and/or physiological character-
istics (by studying the functions of various organs of living beings) of several species.
Nowadays, with advances in molecular biology, phylogenetic trees are constructed by DNA
analysis of several organisms, comparing families of nucleic acids or protein sequences [102].

A phylogenetic tree represents the evolutionary relationships of a set of species (also
called taxon), where terminal nodes represent the observed species, additional nodes rep-
resent common ancestors, edges represent the evolutionary relationships between pairs
of nodes and edge weights represent the quantification of this evolutionary relation-

ship [60, 0T, T02). Tt is worth noting that phylogenetic trees allow understanding of

lin Oxford English Dictionary
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the evolutionary history of species and can assist in the development of vaccines [68] and

the study of biodiversity [89].

Example 4.1. In Figure we present an example of a phylogenetic tree.

( bLaafgr taxon |
observed species
76 Hom ! :
14

|82 Pan
70
94 Gorill; M

Internal vertex

{hypothetical
ancestor) 199 Pang
_ 457 Maca

Edge

(evolutionary relationship)

Figure 4.1: A phylogenetic tree [24].

In computational biology, inferring a phylogenetic tree is one of the steps of the phylo-
genetic reconstruction. As part of such inference is the determination of the tree topology
and the determination of the branch lengths, which requires further analysis methods.

According to Prado et. al. [I12] the methods to infer phylogenetic trees can be divided

in two groups:

e Model-based methods. These methods select, using some principle, the best or a
good phylogenetic tree from a set of candidate trees and generally this is done using

probabilistic models arising from the maximum likelihood approach.

e Non-model-based methods. These methods use an algorithm to obtain the best or a

good phylogenetic tree.
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All these methods make specific assumptions about evolution and are based on a set of
criteria, that can be express through an objective function.

Non-model-based methods includes parsimony methods and distance methods. Dis-
tance methods exploit the existence of a measure of dissimilarity (also called distance)
among pairs of species, represented using a distance matrix, and aim at determining the
tree topology together with branch lengths.

One of the most used criteria to infer the phylogenetic tree is the minimum evolution
principle, which was introduced for the first time by Kidd and Sgaramella-Zonta [90]. In
the minimum evolution principle, the best tree is the one that minimizes the sum of all
branch lengths [102].

The problem of finding the phylogenetic tree that satisfies the minimum evolution

principle is called the Minimum Evolution Problem (MEP) and is defined as follows [26]:

Definition 4.1. Given a set I of n taxa and pairwise distances d;;, Vi, j € I' (i # j) find
a phylogenetic tree T'= (V, E,w) € T that solves the problem:

min £(7T') = Z We

TeT -
sty we>dy Vi jET:i#]
EEPZ‘]‘

we > 0 Veec F

where 7 is the set of all possible phylogenetic trees and P;; is the unique path in T'
connecting the taxa i,j € I' (i # j).

A variant of the minimum evolution principle, first introduced by Pauplin [107], is the
balanced minimum evolution principle. Within this principle, sibling subtrees have equal
weight, as opposed to the standard version where all terminal nodes have the same weight
and thus the weight of a subtree is equal to the number of its terminal nodes [44]. The
problem which uses this principle is the Balanced Minimum Evolution Problem (BMEP)
and can be defined as followed [28].
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Definition 4.2. Given a set I' of n taxa and pairwise distances d;;, Vi,j € I' (i # j) find
a phylogenetic tree T'= (V, E,w) € T that minimizes the length function:
Y. dy 2
i,j€T i
where 7T is the set of all possible phylogenetic trees and z;; indicates the number of edges

in the unique path P;; in T connecting the taxa i,j € I' (i # j).

4.1 Methods to obtain the distances

The quality of the phylogenetic tree obtained by solving the MEP or the BMEP depends
on the quality of the evolutionary distances used to infer the tree and therefore also on the
way these distances were obtained. In this section, we present some of the methods used
to obtain the evolutionary distances.

A DNA structure is composed of four nucleotides, adenine (A), thymine (T), cytosine

(C), and guanine (G) [102]. A DNA sequence is a sequence of the letters A, T, C and G.
Example 4.2. An example of a DNA sequence is the following sequence:
ATGCGTCGTT

During evolution the genes mutate and therefore the DNA sequence changes. There
are four basic types of change: substitution of a nucleotide for another nucleotide, deletion

of nucleotides, insertion of nucleotides and inversion of nucleotides [102].

Example 4.3. Figure displays the four basic types of changes that can occur in a DNA

sequence.

There are two classes of substitutions, the transitions and the transversions. There is a
transition when a purine nucleotide (adenine or guanine) is substituted by another purine

nucleotide or when a pyrimidine nucleotide (cytosine or thymine) is substituted by another
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ATGCGTCGTT ATGCGTCGTT
ATGCiTCGTT ATGCT/CGTT
(a) Substitution of a nucleotide. (b) Deletion of a nucleotide.
ATGCGTCGTT ATGCGTCGTT
ATGCiETCGTT ATGCQiQCGT
(c) Insertion of a nucleotide. (d) Inversion of nucleotides.

Figure 4.2: The four basic types of changes occurring in a DNA sequence.

pyrimidine nucleotide. We have a transversion when a purine nucleotide is substituted by
a pyrimidine nucleotide or vice versa [25].

When two species descend from a common ancestor, the DNA sequence of the two
species diverges by nucleotide substitution [102].

The distances between two species (sequences), should estimate the number of changes
since the two species diverge from a common ancestor.

The simplest way to determine the distances is to use the Hamming distances, which

count the number of sites where the nucleotides differ in two aligned sequences.

Definition 4.3. [70] The Hamming distance, H(z,y), between two sequences z =

(x1,22,...,x,) and y = (y1, Y2, - - -, Yn) is equal to [{i : x; # y; }|.
Example 4.4. The Hamming distance of the two aligned sequences presented below is 5.

(X)  ATGCGTCGTT
(Y)  ATCCGCGATC

Another simple way to calculate the distance between two DNA sequences is through
the p distance which measures the proportion of divergence [102]. This proportion (p) is

obtained by dividing the number of sites where nucleotides differ in two aligned sequences
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(nq) by the number of nucleotides examined (n), that is,

ng

p=—
n

Example 4.5. The p distance of the two sequences presented in Example [4.4] is

— 2 —05.
P= 10

Sometimes it is useful to determine a matrix of the relative frequencies of nucleotide
pairs. Since there are four nucleotides the matrix of the frequencies of nucleotide pairs,
when comparing a sequence X with a sequence Y, has sixteen entries and can be repre-

sented as:

Z:B()’ -

where n;; is the number of times the nucleotide ¢ of sequence X is aligned with nucleotide

j of sequence Y and n is the number of nucleotides examined [82].

Example 4.6. The matrix with the frequencies of nucleotides pair of Example [4.4]is given

by:

1

L0 00

0 + L0

FXY: 10 10 (41)

1 1 1

10 10 10

0 5 0 3

The Hamming distance and the p distance may underestimate the number of changes,
once they do not take into account all the substitution, like backwards, parallel and multi-
ple substitutions, that occurred since two DNA sequences diverged from a common ances-
tor [102]. Example shows how the Hamming distance and the p distance only reflect

some of the changes occurred since two DNA sequences diverged.
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Example 4.7. Figure 4.3 presents two DNA sequences fragments, sequence X and
sequence Y, that diverged from a common ancestor, with DNA sequence fragment
ACGAACGTAAGC. Figure also presents the changes occurred during the evolution.
The Hamming distance between these two sequences is 3 and the p distance is 0.25 and we

can see that these distances do not reflect all the changes occurred since they diverged.

Changes in sequence X Changes in sequence Y
A A
C C— A Single substitution
G G
A—-C—T A Multiple substitutions
A A
8 — G 8 — A Coincidental substitutions
X — A X — A Parallel substitutions
A—C—T A—T Convergent substitutions
G G
C—T—C (@] Back substitutions
1 l
Resulting sequence X Resulting sequence Y
A A
C-------=--=-"---"---- A
G G
T--------=---"------ A
A A
G--------"-"-"------- A
G G
A A
A A
T T
G G
C C

Figure 4.3: Some types of changes that can occur in two DNA sequences fragments that

diverged from a common ancestor [101].

To improve the quality of the distances it is necessary to model the nucleotide substi-
tution process and this can be done by time-homogeneous stationary Markov model.

This model makes the following assumptions [93]:

e The substitution of a nucleotide by another is random and independent (Markov

property);
e The substitution rates do not change over time (homogeneity);

e The relative frequencies of the nucleotides, m;,7 € {A,C, G, T}, do not change over

time and from one sequence to another (stationarity).
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In this model, each site of the DNA sequence is a random variable that can have four
possible states: A,C,G or T. Let P;(t),Vi,j € N ={A,C,G,T}, denote the probability
of substituting nucleotide ¢ by nucleotide j, after a certain period of time ¢. All the

probabilities can be compiled in a transition probability matrix, P(t):

Paclt Par(t) |
Peo(t Por(t)
Poe(t Per(t)
Pr( Pro(t) |

)
)
)
o(t) r(t

The probabilities satisfy the following conditions:
o P;(t)>0 Vi,j € N,Vt >0
o) Py(t)=1 VieNVt>0

JEN

It is also assumed that the substitution problem is reversible, that is
WZPZ(t) :7TJPﬂ<t), V’l,j S N,Vt>0

This method uses a rate matrix, (), which gives the relative rate of change of each
nucleotide along the sequence and such that Q; = — Z Qij; Vi € N. The rows and
columns of @ follow the order A,C,G,T. So, the elerrjlgr\ii,zj 72212, for example, indicate the
instantaneous rate of change from nucleotide A to nucleotide C' [03].

Using this rate matrix, the number of substitutions during time ¢ is given by d = ut,
where p = — Z m;(Qs is the mean instantaneous substitution rate that indicate the total
number of sull)es]t\gtution per unite of time.

We also have that the probability that a substitution occur after time ¢ is given by:

p=1- ZmPﬁ(t)
ieN
where 7; is the relative frequency of nucleotide i and P;;(t) is the probability that nucleotide

7 is not substituted by another nucleotide after the period of time t.
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Once t = /%, we obtain

p=1-) mP; <—ZL) (4.2)

ieN ieNﬂ'in‘z‘

By estimating p using the p distance of the two observed sequences and solving this equation
in order of d, we can construct a method of moments estimatorf]of the evolutionary distance

between two sequences.

Depending on the definition of the relative frequencies of the nucleotides 7;,i € N
and the rate matrix (), we obtain different ways to obtain the distance, dxy, between a
sequence X and a sequence Y.

The simplest model is the Jukes and Cantor’s model [8§]. In this model it is assumed
that 74 = ¢ = ¢ = 7 = i and that the nucleotide substitutions occur with the same

frequency. The rate matrix of this model is given by:

_ 3 I K I
4 4 4 4
K _ 3 M M
Q _ 4 4 4 4
I I _3p I
4 4 4 4

I I I _ 3

| 4 4 4 4 |

The distance, dxy, between sequence X and sequence Y is given by

3 4
d = ——1 1— -
XY 411( 3]9)

where p is the p distance between sequence X and sequence Y.

This model can only be used if the p distance between two sequences is lower then 0.75.

To overcome the limitation of Jukes and Cantor’s model, Felsenstein [59] and Tajima
and Nei [I35] propose a model where the relative frequencies of the nucleotides may not be
equal and are defined according to the group of species studied. However, these frequencies

must verify m4 + m¢ + ¢ + 7 = 1. The nucleotide substitutions occur with the same

2In statistics the method of moments estimator is a method of estimating the population parameters.
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frequency. The rate matrix of this model is given by [102]:

[ 1 —a(re +mg + 77) ano ang anr

0 QT4 1 —a(ma+ 76+ 77) arg anr

B Ty are 1 —a(mg+ me + 7r) anr
QT Y aro arg 1 —a(ma+7mc + 7a)

where « is the rate of the substitutions.

The distance, dxy, between sequence X and sequence Y is given by

dxy = —bIn (1 _ %)

where p is the p distance between sequence X and sequence Y and

b=1— (7} + n& + n& + m7) [101].

The two models presented so far assume that all substitutions occur with the same
frequency. In practice, however, transitions (substitutions A <> G and C « T) occur
more often than transversions (the remaining substitutions). The model presented by
Kimura [91] assume that transitions and transversions happen with different frequencies.
This model also assume that the relative frequencies of the nucleotides are equal (74 =
WC:WG:WT:%).

The rate matrix for this model is given by:

[ 1-(a+29) 3 o 8
0 — 16} 1 —(a+2P) g a
a g 1 —(a+25) 6]

8 « B 1-(at20)

where « represents the rate of the transitions and J represents the rate of the transversions.

The distance, dxy, between sequence X and sequence Y is given by

1 1
de:—§ln(1—2a—b)—zln(1—26)

where a is the proportion of transitions, a =

nAG+ngA+ncT+nrC

n

transversions, b = raCtneAtnaling AtneGineCOineTinrG () [T()7]
Y U *

n

26

and b is the proportion of
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Tavaré [136] presented a more general model, the generalised time reversible (GTR)
model. In this model the relative frequencies of the nucleotides may not be equal and the

nucleotide substitutions may occur with different frequencies.

The rate matrix of this model is given by:

—u(ame + brg + cnr) apTe burg cuTT
0- AT A —ulamg +emg + frr) euTG fumr
bum A euTc —u(bma + ere + gnr) JUTT

T A fure guTG —p(ema + frc + gre)

where a, b, c,e, f and g are relative rate parameters that describe the relative rate of each
nucleotide substitution. For example, the parameter a indicates the relative rate of the
nucleotide A to be substituted by the nucleotide C.

The rate matrix of the GTR model has more free parameters than the other models,
therefore solving equation is more complex and consequently the formula to obtain
the distance dxy is quite complicated. Catanzaro et. al. [29] presented a procedure to
estimate the unknown parameters of the rate matrix and determine the distances between
two sequences. The instances from the phylogenetic area we used to run our tests were

obtained using this procedure.

4.2 The instances

The data instances coming from the phylogenetics application, we used to run our
tests, are available from http://pubsonline.informs.org/doi/\-suppl\-/10.1287/
ijoc.1110.0455 [28]. From this set we use three phylogenetic distance matrices, ma-
trix Primate, an 12 x 12 matrix, matrix M391, an 17 x 17 matrix and matrix M887, an
18 x 18 matrix. From matrices M391 and M887 we extracted the principal submatrix that
has the first 15 rows. For each matrix we vary the number of terminal nodes (taxa) between
5 and n, where n = 15 for matrices M391 and M887 and n = 12 for matrix Primate. This
way we obtain 30 principal submatrices.

We also generate matrices with random numbers. For each of the 30 matrices, D = (d;;),
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we generate ten random values belonging to [d;;, d;; + a x d;;], where a € {0.1;0.15;0.2; 1}.
Then we used the mean of the ten numbers to construct a new matrix. For a = 0.1 we
obtain the matrices A1I0M391, A10M887 and A10Pri, for a = 0.15 we obtain the matrices
A15M391, A15M887 and A15Pri, for a = 0.2 we obtain the matrices A20M391, A20M8&87
and A20Pri and for a = 1 we obtain the matrices A100M391, A100M887 and A100Pri.
Thus, we obtain more 120 matrices beside the other 30, making a total of 150 instances.

The distances used in matrices M391, M887 and Primate are derived from experimental
procedures and therefore these distances are subject to measurement errors. Consequently,
not all the matrices verify the triangle inequality and/or the four point condition.

Table shows whether or not the matrices verify the triangle inequality. It also
indicates how many times the triangle inequality is not verified in the matrix. Columns
labeled Matrix, indicate the name of the matrix instance, columns labeled n indicate the
order of the matrix, columns labeled Verifies indicate whether or not the matrix verifies
the triangle inequality and columns labeled m indicate for how many distances the triangle

inequality is not verified.
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As we can observe none of the matrix obtain from matrix M887 and matrix Primate
verify the triangle inequality and almost all the matrix obtain from matrix M391 verify
the triangle inequality.

None of the 150 matrices of the phylogenetic area verify the four-point condition [2.1}
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Chapter 5

Exact Formulation

In this chapter, we introduce two compact mixed integer linear programming (MILP)
formulations of the MWTR problem, the Path-weight formulation and the Path-edges for-
mulation. We also include valid equalities and inequalities which improve the performance
of the second formulation and present the computational results obtained by running the
two formulations when using data instances from networking application and phylogenetic

application presented in [3.2] and respectively.

Both formulations we present use flows to help with the definition of the tree topology,
however each with a different underlying reconstructing idea. The Path-weight formulation,

produces a tree as a solution and the Path-edges formulation, constructs a balanced tree.

The Path-weight formulation is an extended formulation that produces a tree as a
solution to the MWTR problem, using additional flow variables to ensure connectivity.
This formulation is inspired from Model 4 in Catanzaro et al. [27]. As reported in [27],
the linear relaxation of this model has an objective value of zero. We strengthen the

formulation by adding valid inequalities that cut off the zero-objective solutions.

The Path-edges formulation produces a balanced tree solution of the MWTR problem
and flows are defined between every pair of terminal nodes. In Catanzaro et al. [2§] a
balanced tree is also considered. However, we use multicommodity flows to deal with

connectivity and path lengths. Instead of minimizing the total sum of all edge weights,
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the objective function deals with the minimization of the total tree length.

As stated before in chapter , we consider a tree T' = (V| E) spanning the set of nodes
V =V, UV, V, is the set of additional or internal nodes and V; is the set of terminal or
external nodes. The pairwise distances between terminal nodes in V; are given in distance
matrix D. The tree topologies we consider are such that the additional nodes of the tree
all have degree three.

Both formulations use the following variables. Binary variables z;;, i € V,, j € V,
i < j indicate whether edge {i,j} belongs to the tree solution, while continuous variables

w;; > 0 represent the weight associated to edge {7, j}.

5.1 Path-weight formulation

We want to obtain a tree 7' and associated weights w., e € T, that provide a weak
realization of distance matrix D. Consider the path Pj; that connects terminal nodes ¢ and

7, 1,7 € V;. By definition of a weak realization,

Z We 2> dj (5.1)

EGPZ']'

must hold.  To ensure this, consider additional continuous variables wu;;, for all

1,5 € V, i # j, which indicate the length of the path between nodes i and j, that is

U5 = E We.
GGPij
In order to impose connectivity several approaches can be used. Usual approaches

consists either in the inclusion of the subtour elimination inequalities
Y ay <|S|-1,SC V]S> 1 (5.2)
ijes
or in the inclusion of the cut-set inequalities
Y z;>1,8CcV0eS (5.3)
1€S,jES¢C
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The linear relaxation of both models provide the same bound, however the number of
inequalities increases exponentially with the size of the model. It is well known that in order
to ensure connectivity /prevent circuits, instead of using one of the families of inequalities
or with an exponential number of inequalities, one can use compact extended
formulations [96]. The most common are derived using either the well-known Miller-Tucker-
Zemlin inequalities [73], O8] or using stronger multicommodity flow formulations [74] 06]. In
the formulation presented below we use multicommodity flows. Fixing additional node 1
as the root of the flow, we introduce binary flow variables yfj foral ke V,ieV,, jeV
with ¢ < j, indicating whether edge {i,j} is used from i to j in the path from flow root

node 1 to terminal node k.

Let dyge = max{d;; : i,j € V;}. The formulation that minimizes the total edges

weights and reconstructs an unrooted tree for the MWTR problem is as follows.

Path-weight formulation

min E E Wy
i€V, JEV
j>i
subject to

Z inj =2n—3 (5.4)

1€Vy JEV
J>

S wy+ Y x=3, VieV, (5.5)

JjeV J€Va
Jj>i i>j

1€Vq
J>i

i = 1, Vie {l,..([n/2 =1}  (5.7)
> =1 vk €V, (5.8)

JEVaU{k}
J#1

d k=1, Vk €V, (5.9)

1€Vy
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b= > yh Yk € V,,Vj € Vo \ {1} (5.10)
ieVa i€VaU{k}
i<j i>j
yh < i, Vk € V,,Vi € V,,Vj € V\ {1},] > (5.11)
ui; > dij, Vi, j € Vi < j (5.12)
Uij > Wi, VieV,,VjeV,i<j (5.13)
AmazTij > Wij, VieV,VjeVi<j (5.14)
Wij > Wi — Apaa (1 — 245), VieV,,VjeV,i<j (5.15)
Wij > Wik — Wik — A (1 — 245), VieV,, Vi, keVii<jj<k (5.16)
i > Wik — Wi, — dimas (1 — 245), VieV,Vi,keV,i<jj<k (5.17)
Wi > Ui — — dpmaz (1 — x45), Vie Vo, Vi, keVi<kk<j (5.18)
P> U — g — e (1 —25), Vi€V, Vi keVi<hkk<j (5.19)
;> g — — dpax (1 — z45), Vi,ke V,,VjeV,i<jk<i (5.20)
P> Uk — Ui — Anae (1 — 235),  Visk€V,VjeVi<jk<i (5.21)
zi; € {0, 1}, VieV,,VjeV,i<j (5.22)
yl € {0,1}, VE eV, VieV,VjeV,i<j (5.23)
w;; >0, VieV,,VjeVi<j (5.24)
u;; >0, Vi,jeVi<j (5.25)

Constraints — define a spanning tree with all additional nodes with degree
three and all terminal nodes with degree one. The cardinality constraints ensure
that there are 2n — 3 edges in the solution. Constraints ensure that all additional
nodes have degree three. Constraints ensure that all terminal nodes have degree one.
As already mentioned, to reduce the symmetry, we fix a path between the first additional
nodes with constraints . Constraints — are flow conservation constraints and
constraints are linking constraints between flow variables yfj and topology variables
x;;. Constraints - link edge weight variables w;; and path length variables
u;;. Constraints ensure a weak realization of the distance matrix. Constraints
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establish a lower bound for variables u,;, associated to the length of the path between an
additional node i and an external node j, to be the value of the corresponding (edge) weight
w;;j. Constraints fix w;; to 0 when edge {7, j} does not belong to the tree. Together
with , constraints impose that w;; is equal to wu;; if edge {7, j} belongs to the
tree. Constraints — impose the triangle inequality for any order of the nodes
1, 7 and k. The index specifications included in the constraints — improve the
performance of our formulation as they impose an order on the variables index. Constraints
to are integrality and non-negativity constraints.

Our formulation strengthens the Flow Model proposed in [27] by including lower bounds

on the w;; variables.

5.2 Path-edges formulation

The Path-edges formulation uses Pauplin’s method to calculate the tree length, thus it
minimizes the sum ( presented in Section 2.3}
> dy 2,
1,j€V;
Using binary variables pfj, for all i,j € V;, 1 < j and ¢ € {2,3,....,(n — 1)}, speci-
fying the number of edges of a path F;; between terminal nodes ¢ and j, the expression
Z d;; 2777 can be linearized. The binary decision variables pfj indicate whether the

ijEV:
path P;; connecting terminal node i to terminal node j has (exactly) ¢ edges. Therefore

n—1
Z dij 2777 = Z d;j ZZ_prj. This relation and linearization process was already
ijeVi ijeVi =2
used in [28] and variables pf; have the same interpretation as variables xf; in [28].

Besides these path variables pfj, the binary topology variables x;; and the weight

variables w;;, we consider flow variables. =~ The binary flow variables i’j-é, for all
i,j € Va ULk t},kt € Vi, i # j and k < /, indicate whether the flow traverses the
edge {i,7} belonging to the path connecting terminal node k to terminal node ¢ in the

direction from node ¢ to node j.
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The formulation that specifies the number of edges of a path between terminal nodes

and reconstructs an unrooted tree for the MWTR problem is as follows.

Path-edges formulation

n—1
min Z Z d;j Z 2t -pfj
=2

1€Vy 1€V
J>i

subject to

i€Vy JEV
>

inj‘{' Z.Tji :3,

JjeVv j€Va
j>i j<i

Tii+1 = 1,

ZIUIQ

JjeV:

D oz =2

JEV

inj <2,

JEVR

Y o=,

i€V

Yo=Y =0

Je{tuVa\{i} je{kuva\{i}
2 S =1
1€Vy
Z f]kff - fik]:'z > 07
he{l}uVa\{i}
ke ke
g T i S T

Vi eV

VieV,

Vi€V, i=1,..([n/2] —1)

YieV,
Vk (e Vi k </t
VieV,kteVik</t

Yk (€ Vi k < (

VieV,U{k},je Vi ke Vik<t

Vi, j EVVEkLE Vi< k<l
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n—1
> ol =1, Vi, j € Vi,i<j (5.38)
(=2

n—1
24> N =D "iph,  VELEV k<L (5.39)
=2

1€V, 7€Va
J#i

z;; € {0,1}, VieV,VjeVi<j (5.40)
p;; € {0,1}, Ve e {2,3,..,n—1},Vi,j € Vi, i < (5.41)
e 0,1}, Vi,j € VaU{k L} Vh L eV i#j k<l  (542)

Constraint is the tree cardinality constraint and establishes that the number
of edges in the tree is 2n — 3. Constraints establish that all the terminal nodes
have degree one and constraints force the additional nodes degree to be three. As
above, we fix a path of additional nodes with constraints . Since the tree is unrooted,

we know that there are two additional nodes which are adjacent to two terminal nodes.

Therefore, to reduce symmetry, constraints ((5.30) and (5.31]) enforce those two additional
nodes to be node 1 and node (n — 2). Constraints impose that an additional node is
connected to, at most, two terminal nodes. Constraints f are flow conservation
constraints. Constraints establish that if the flow sent from terminal node £ to

terminal node ¢ passes through edge {i,j}, in the direction from node ¢ to node j, then
the flow passes through, at least, one edge between node j and a node different than node
1. Constraints are linking constraints between variables and impose that there can
be no flow in edge {4, j} if it does not belong to the tree. Constraints impose that
variables pfj assume value one for exactly one ¢ in {2,3,...,(n — 1)} corresponding to the
number of edges in the path between terminal nodes ¢ and j. Constraints relate
variables f}‘ with variables p{;. Using variables f}‘ we know exactly the number of edges
in the path between terminal nodes k and ¢. Using variables p}, we also know exactly the
number of edges in the path between terminal nodes k£ and ¢ and that number must be
exactly the same. Constraints , and are the integrality constraints.
This second formulation uses the same idea as [28] to obtain the total tree edges length

by the formulation designated by the authors as the Path-Length-4-Point (PL4). The PL4
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formulation is considered by the authors of [28] as the current state-of-the-art algorithm
for the BMEP. Therefore, in Section [5.4] we present the PL4 formulation and in Section
we compare the Path-weight formulation and the Path-edges formulation with the PL4
formulation.

After having reconstructed a unrooted tree with this formulation, the weights have to
be assigned to the tree edges. This is accomplished by solving the following simple linear

program.

min g E Wi

i€V, JEV
J>i
subject to
ZZW SN > dw Yk LEV Lk <(
1€V, JEV
1<J
wij > 0 Vi, j € V,i<j

Using the flow variables, the path between each pair of terminal nodes is exactly known.
This information is used to associate weights to the edges such that the total sum of
the edges weights is minimized and the tree length between every pair of terminal nodes

dominates (is greater than) the corresponding distance from the distance matrix D.

5.3 Valid equalities and inequalities

The Path-edges formulation can be improved by considering some valid equalities and
inequalities.
In a tree, there is exactly one path between every pair of terminal nodes and the path

variables pfj state there are ¢, for some unique ¢ > 2, edges in the path between terminal
n—1
nodes ¢ and j. Therefore Zﬁpfj is the number of edges in the path between terminal

=2
nodes ¢ and j. By summing the number of edges of all paths and taking into account that
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some edges belong to more than one path we must have

n—1
23 > N ot upl =2m -3, (5.43)

i€V; J€Vi (=2
Jj>

as the number of edges in the tree is 2n — 3. This is already stated in the formulation
through constraint (5.26]), however this equality reinforces this condition using the path

variables.

Huffman codes are optimal path-length sequences whose corresponding rooted binary
tree determines a code. When producing optimal Huffman codes the key idea are these
rooted binary trees represented as sequences of ascending path-lengths. A sequence of n
path-lengths represents a binary tree with n leaves where each leaf represents a symbol in
the code. Parker and Ram [106] characterize these path-length sequences by establishing
that these binary trees obey the property established by the Kraft equality |I|, a special case
of the Kraft inequality. These path-lengths can be compared to the distances from the tree
realization problem. Therefore the nontrivial property of the path-length sequences in a
rooted binary tree characterized with the Kraft equality can be borrowed by the MWTR
problem and the following equality can be established:

n—1

1
DN ot = T VeV (5.44)
=2 jeVi

The inclusion of the two equalities (5.43|) and ([5.44]) improved the performance of the

Path-edges formulation.

Beside these two equalities the following valid inequalities presented in [28] can also be

For all n > 1, let {¢1,...,£,) be the sequence of path-lengths in a rooted binary tree. The Kraft
equality states that Y 274 =1
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included.

dopt<2d p Vie Vi,V e{2,3,...,n—2} (5.45)
JEVR JEVR
1<jJ 1<J
DI IAEE (5.46)
i€V JEV

Jj>i

¢ n
DO ol <ot —avie Vi, W e {2,3, ., 151> 271 41 (5.47)
JEVL q:2

1<J

Inequalities ([5.45]) state that if a tree has a path of length n — 1 then it also has a path
of length n —2,n—3,...,2. Inequality (5.46]) indicates that a tree has at most four paths
of length n — 1. Inequalities (5.47)) are a consequence of the Kraft equality.

5.4 Path-Length-4-Point formulation

In this section, we present the Path-Length-4-Point formulation, defined in [28)], which
we used to compare the performance of two formulation, Path-weight formulation and

Path-edges formulation.

The Path-Length-4-Point formulation uses the binary decision variables pfj, for all
ijeV,i#jand ¢ € L, L = {1,2,3,...,(n — 1)}, specifying the number of edges of a

path P;; between nodes ¢ and j and the binary decision variables:

1 it 2y 4 2jg > 2ig + 25
Yijar = Vi,jq.t € Vii#Fj#qF#t,

0 otherwise

where z;; indicates the number of edges in the path P;; between nodes ¢ and j.

The Path-Length-4-Point formulation is as follows.
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Path-Length-4-Point formulation

EZEZ%EZ2ZEJ

1€Vy JEVt

subject to

el

V2 4
pji_pij>

I IRE >

JEVE £=2
i

ZEQ ZZZpU—Qn—

i€Vy IEVE
G#i

> (0l + pi)

el lel

> (v + i)

el lel

Zngj:%_?’

eV jev
J>i

sz‘j =1,

1€Vq

JjEV

Jj>i

pij + Pig, + Pry < 2,

S ZE (pfq +p§t)

+ <2n - 2>yith7

<> (vl +15,)

Vi, jeV,i#j (5.48)
Vi,jeVi<jVke L (5.49)
Vi eV, (5.50)

(5.51)

Vi,j,q,teViiFjFqF#L

(5.52)
+ (2n = 2)(1 — yijqe), Vi, j,qt€Vii#j#q#t
(5.53)
VijeViitj  (5.54)
(5.55)
VieV, (5.56)
VieV, (5.57)

Vi, j,k € Va,i #j#k
(5.58)
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pfj—i_]- pr]c_l—'—pi]? VZ,j S ‘/tal%.ﬂv}{:e‘/a?vge‘[’\{l?n_l}

(

Py PG L2 P Ay, Vi keVi#j#kVee L\{1,2,n -1} (5.60
p; € {0,1}, VleLVijeV (
(

Yijqt € {07 1}a \V/Z.,j, q,t eV

Constraints ([5.48]) impose that variables z;; assume exactly on value in L. Con-
straints ([5.49)) impose symmetry equalities. Constraints ((5.50]) impose the Kraft equalities.
Constraints (5.51]) impose that the number of edges in the tree is 2n — 3.Constraints (5.52))

and ([5.53]) impose the four-point inequalities. Constraints ((5.54)—(5.60|) describe the struc-
ture of the tree. Constraints (5.61)) and (5.62)) are integrality constraints.

5.5 Computational results

Computational results will assess the quality of the Linear Programming (LP) solutions
obtained with each formulation and the best lower and upper bounds achieved. The
computational tests were performed on an Intel(R) Core(TM) i7-3770 CPU 3.40 GHz
processor and 16Gb of RAM.

The two formulations were implemented using the Mosel language and solved with
FICO Xpress 7.8 [I] (Xpress-IVE 1.24.06 64 bit, Xpress-Optimizer 27.01.02 and Xpress-
Mosel 3.8.0). Path-edges formulation used together with the valid equalities and
and inequalities (5.45)), (5.46)), (5.47) presented in Section is designated Path-

edges™ formulation. We compare the performance of the two formulations, Path-weight
formulation and Path-edges formulation, and the Path-edges™ formulation with the for-
mulation PL4 from [28]. Our implementation of PL4 considers all the valid inequalities
presented in [28].

We used the instances presented in Chapter [3] and Chapter [4

The computational results are summarized in Tables[5.1]-[5.11]in which the first column,

labeled Matrix, indicates the name of the matrix instance used and the second column,
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labeled |V;|, indicates the size of the instance. The third, forth and fifth columns concern the
results of the Path-weight formulation, from the sixth to the eleventh columns the results of
the Path-edges formulation are presented, from the twelfth to the seventeenth columns are
the results of the Path-edges™ formulation and the eighteenth, nineteenth, twentieth and
twenty-first columns concern PL4 formulation. The columns labeled T show the execution
time, in seconds, used to solve the instance and having a maximum runtime of 7200 seconds
and for the Path-edges formulation and Path-edges™ formulation, the columns labeled T,
shows the execution time of the linear program solved to assign the weights. The columns

labeled W and DZ present the optimum value obtained or the best value obtained having

n—1
a runtime limit of 7200 seconds, where DZ stands for Z Z die Z 27" pt, and W stands

keV; eV =2
>k
for Z Z w;j. The columns labeled GAP present the LP solution gap which is obtained
i€V, d€V
UB—-LP
as follows: GAP = — 0B x 100, where UB represents the best upper bound value

obtained (or the optimum value) within the runtime of 7200 seconds and L P represents the

value of the corresponding linear programming relaxation. The columns labeled GAPyg

UB—- LB
— B x 100, where

U B represents the best upper bound value obtained (or the optimum value) and LB the

present the lower bound gap and is obtained as follows: GAP g =

best lower bound value, both values obtained within the runtime of 7200 seconds.
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The optimum solution within the time limit imposed is obtained in the following cases:

by the Path-weight formulation for all instances with n < 10 terminal nodes;

by the Path-edges formulation for all instances with n < 10 terminal nodes and for

instances obtained from matrices Primate and S15 with n = 10;

by the Path-edges™ formulation for all instances with n < 12 terminal nodes;

by the PL4 formulation for all instances with n < 8 terminal nodes.

To better check the improvements achieved we display in Table the number of
instances, among the total of 294 instances, for which the optimum solution was obtained,

within the time limit imposed, when the model indicated is used.

Path-weight Path-edges Path-edges™ PL4
153 164 207 99
52% 56% 70% 34%

Table 5.12: Number of instances solved within the time limit imposed.

The Path-edgest formulation solves the instances substantially faster than the other
formulations. In Figure [5.1] we compare the computational times in the form of a profile

graph that displays the number of solved instances in a given time by each formulation.

Comparing, in Tables - the columns labeled with W of the Path-weight for-
mulation and of the Path-edges formulation we notice that for some instances the values
obtained are different. This is due to the fa(;lt:lchat the obtained trees are different. The
tree we obtain when minimizing Z Z e Z 27" . pi, is such that, when assigning its

keVy teVy 1=2
0>k

edges weights the equality Z we = d;; does not hold. In that case we obtain a tree that
eEPij
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Figure 5.1: Performance profile.

n—1
minimizes Z Z die Z 27" pi, but does not minimizes Z Z w;; (see column labeled

]CGV} LeVy 1=2 i€V, JEV
0>k >i
n—1
. . . —i i
DZ), as in this case it holds E E die g 27 e < E g Wj.
keV; tevy i=2 i€V, JEV
>k Jj>i

When the optimum solution can not be found within the runtime limit imposed, the
Path-weight formulation obtains, on average, fourteen feasible solutions, the Path-edges
formulation obtains, on average, ten feasible solutions, the Path-edges™ formulation ob-
tains, on average, six feasible solutions and the PL4 formulation is unable to obtain feasible
solutions within the runtime limit imposed for n > 8 and for n = 8 obtains, on average,
one feasible solution. The difference between the number of feasible solutions of the Path-
weight formulation and of the Path-edges formulation is due to the fact that the only
integer (binary) variables of the Path-weight formulation are those which identify the tree,

whereas the Path-edges formulation only has integer (binary) variables.

For instances with the same number of terminal nodes, Tables and
display the average time, the average GAP and the average GAP g, respectively, and

their corresponding standard deviation values. Table [5.13| presents the values for instances
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with n < 9, since for n > 9 only the Path-edges™ obtains the optimum solution within
the runtime limit imposed. Table displays the GAP g values for the formulations
Path-weight, Path-edges and Path-edge® and for instances with n > 10, once for n < 10
the GAP p is equal to zero (the optimum solution is achieved). This table does not present
the GAPp values of PL4, since the formulation PL4 does not obtain feasible solutions for

n > 10.

Table 5.13: Average and standard deviation (SD) values for the computational time of the
Path-weight, Path-edges, Path-edges™ and PL4 formulations.

n Path-weight Path-edges Path-edges™ PL4

. average 0.26 0.09 0.01 0.35
SD 0.12 0.01 0.01 0.44

6 average 0.41 0.43 0.18 60.02
SD 0.11 0.09 0.22 68.49

. average 1.88 2.91 0.92 550.51
SD 0.28 0.79 0.72 770.13

. average 45.11 20.62 8.49 -
SD 17.62 8 5.28 -

9 average 581.13 246.4 11.06 -
SD 281.78 157.57 2.07 -

To evaluate the impact of the valid equalities (5.43) and ([5.44)), we implemented the
Path-edges formulation together with only valid equalities, which we designated Path-
edges*? formulation. The computational results of the Path-edges™? formulation are sum-

marized in Tables [5.16] - [5.19]
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Table 5.14: Average and standard deviation (SD) values for the GAP of the Path-edges,
Path-edgest and PL4 formulations.

n Path-edges Path-edges™ PL4
5 average 31.8 0 0
SD 2.57 0 0.02
6 average 56.81 0.39 0.05
SD 3.68 0.55 0.1
- average 70.27 1.34 0.64
SD 2.52 1.12 1.15
average 81.32 1.8 18.43
8
SD 1.34 1.13 5.51
9 average 88.21 1.36 -
SD 2.3 0.99 -
0 average 92.93 2.3 -
SD 0.98 0.68 -
1 average 96.13 2.27 -
SD 0.42 0.59 -
1o average 97.78 2.4 —
SD 0.25 0.89 -
average 98.77 4.01 -
13
SD 0.18 1.98 -
u average 99.34 6.33 -
SD 0.1 3.55 -
5 average 99.67 8.8 -
SD 0.04 4.11 -

88



CHAPTER 5. EXACT FORMULATION

Table 5.15: Average and standard deviation (SD) values for the GAP 5 of the Path-weight,
Path-edges and Path-edges™ formulations.

n Path-weight Path-edges Path-edges™
0 average 42.21 14.03 0
SD 18.73 12.82 0
" average 74.41 48.09 0
SD 6.64 5.15 0
1o average 97.4 73.8 1.76
SD 1.4 4.74 0.47
average - 92.73 2.51
13
SD - 2.48 0.87
" average - 98.93 5.84
SD - 0.16 3.22
5 average - 99.54 8.53
SD - 0.16 4.02
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As for the Path-edges™, the optimum solution within the time limit imposed is obtained
by the Path-edges*? formulation for all instances with n < 12 terminal nodes except for
the matrix A100M887 for which the formulation only obtains the optimum solution for
instances with n < 11 terminal nodes. In Table [5.20| we present the average time and
the corresponding standard deviation value for the Path-edges, Path-edges™ and Path-
edges™ formulations. We present the average values of the Path-edges and Path-edges™ to

facilitate the comparison.

Table 5.20: Average and standard deviation (SD) values for the computational time of the
Path-edges, Path-edges™?2, Path-edges™ and PL4 formulations.

n Path-edges Path-edges™?2 Path-edges™

5 average 0.09 0.01 0.01
SD 0.01 0.01 0.01

6 average 0.43 0.27 0.18
SD 0.09 0.24 0.22

- average 2.91 1.18 0.92
SD 0.79 0.63 0.72

. average 20.62 6.79 8.49
SD 8 3.58 5.28

9 average 246.4 20.82 11.06
SD 157.57 5.84 2.07

0 average - 257.61 184
SD - 95.62 93.44

" average - 2119.42 1549.73
SD - 1452.84 920.16

As we can see, the Path-edges™ formulation is substantially faster, on average, than

the Path-edges formulation but not as fast, on average, as the Path-edges™ formulation.

Tables and display the average GAP and the average GAP g of formulations
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Path-edges, Path-edges™ and Path-edges* and the corresponding standard deviation val-
ues. We only present the GAP g for instances with n > 10, since for instances with n < 10

the GAP 5 of formulations Path-edges™ and Path-edges™ are zero.

Table 5.21: Average and standard deviation (SD) values for the GAP of the Path-edges,
Path-edges™ and Path-edges™.

n Path-edges Path-edgest?2 Path-edges™
5 average 31.8 0 0
SD 2.57 0.01 0
6 average 56.81 0.43 0.39
SD 3.68 0.59 0.55
- average 70.27 1.8 1.34
SD 2.52 1.43 1.12
average 81.32 1.98 1.8
8
SD 1.34 1.16 1.13
9 average 88.21 2.35 1.36
SD 2.3 1.03 0.99
0 average 92.93 24 2.3
SD 0.98 0.71 0.68
" average 96.13 2.37 2.27
SD 0.42 0.64 0.59
1o average 97.78 2.35 2.4
SD 0.25 0.56 0.89
average 98.77 4.27 4.01
13
SD 0.18 2.44 1.98
u average 99.34 6.81 6.33
SD 0.1 3.91 3.55
5 average 99.67 8.3 8.8
SD 0.04 3.16 4.11
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Table 5.22: Average and standard deviation (SD) values for the GAP 5 of the Path-edges,

Path-edges™ and Path-edges® formulations.

n Path-edges Path-edgest? Path-edges™
n average 48.09 0.06 0
SD 5.15 0.3 0
average 73.8 1.87 1.76
12
SD 4.74 0.53 0.47
3 average 92.73 2.66 2.51
SD 2.48 1.03 0.87
" average 98.93 6.3 5.84
SD 0.16 3.56 3.22
5 average 99.54 7.96 8.53
SD 0.16 3.11 4.02

As we can see the average GAP and the average GAP; 5 of formulation Path-edges™?
are considerably lower than the correspondent values of the Path-edges formulation and
are, on average, slightly higher than the values of Path-edges™ formulation, except for

instances with n = 15 and the average GAP also for instances with n = 12. We may

conclude that by including the equalities (5.43]) and (5.44) the Path-edges formulation
considerably improves and that the inclusion of the inequalities ((5.45]), ((5.46) and (5.47))

only slightly improves the formulation.

The matrices of the networking application were obtained using simulations and there-
fore the routing tree is known. We compared the trees obtained by the different formula-
tions with the original trees used to run the simulations and presented in Chapter [3} To
illustrate which kind of trees are obtained by using the different formulation, we present
the resulting trees of matrix S7 with n = 7 and SS15 with n = 6.

Figure displays the original logical routing tree used to run the simulation to obtain

the values of matrix S7 with n = 7, which was already presented in Figure [3.10} Figure[5.2
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also displays the logical routing tree obtained by running the five formulations, which in

this case was the same for the five formulations.

(b) The obtained logical routing tree by running the formulations.

Figure 5.2: The original and the obtained routing tree using matrix S7 with n = 7.

The original routing tree has an internal node (a router) with degree four. The five
formulations infer a binary tree and so as we refereed in Chapter [2] a dummy node and
edge must be included to convert the tree to a binary one. By observing the logical routing
tree obtained we can see that one of the edge weight has a value near to zero (0.00005). If
we eliminate this edge and one of the incident nodes, we obtain the original logical routing

tree.

Figure displays the original logical routing tree used to run the simulation to obtain

the values of matrix SS15 with n = 6, which is obtained by only considering the terminal

97



CHAPTER 5. EXACT FORMULATION

nodes T1 - T6 of Figure [3.11] Figure [5.3| also displays the logical routing tree obtained
by running the five formulations. In this case the Path-edges, Path-edgest, Path-edges*?
and PL4 formulations obtained the same tree but the Path-weight formulation obtained a

slightly different tree.

0.001 . 0.0008 - 0.0504

0.0555 0.0155

b) The obtained logical routing tree by running the Path-edges, Path-edgest, Path-edgest?
2 g g g g g

and PL4 formulations.

0.015 0.0009 ~ 0.0009 . 0.0503
0.0259
@ 0.0555 0.0253

(c) The obtained logical routing tree by running the Path-weight formulation.

Figure 5.3: The original and the obtained routing tree using matrix SS15 with n = 6.

The difference between the two logical routing trees obtained is an exchange of terminal
nodes T2 and T4. The weights of the edges are also slightly different. These differences are

due to the fact that the original routing tree has an internal node (a router) with degree
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five. So, in this case, two dummy nodes and two dummy edges must be included to convert
the tree to a binary one. Both logical routing trees have two edges whose weights have
values near to zero (0.001 and 0.0008 in the tree displayed in (b) and 0.0009 in the tree
displayed in (c)). If we eliminate this edges and two incident nodes, we obtain the original

logical routing tree.

Finally, we did not found any connection between the fact that a matrix verifies the

triangle inequality (Tables|3.1{and and the results obtained by the several formulations.
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Chapter 6

Feasibility Pump and Local

Branching

The computational time the formulations presented in the previous chapter take to find
the optimal solution increases significantly as the number of terminal nodes increases. To
overcome this limitation we implement two heuristics, the first one, based on the Feasi-
bility Pump’s ideas [62], finds a feasible solution and the second one, based on the Local

Branching’s ideas [63], improves this feasible solution.

The Feasibility Pump is a very efficient heuristic for finding feasible solutions of mixed
integer problems. This heuristic generates a sequence of roundings to obtain an integer
feasible solution. The Local Branching is an exact method to search rapidly for better
solutions in the neighborhood of a feasible solution and, as an exact method, is still able to
find the optimum solution. This exact method turns in an heuristic if we set a criteria, like

a time limit to stop the method before it has exhaustively search all the neighborhoods.

In this chapter, we present the Feasibility Pump heuristic and the heuristic we developed
applying Feasibility Pump’s ideas to the Path-edges™ formulation. Then we present the
Local Branching and the heuristic we developed applying the ideas of the Local Branching
to the Path-edges™ formulation. We also present the computational results obtained by

running the two heuristics using the data instances presented in Section [3.2]and Section [4.2]

101



CHAPTER 6. FEASIBILITY PUMP AND LOCAL BRANCHING

6.1 Feasibility Pump

Finding a feasible solution of a Mixed Integer Programming (MIP) problem can be
very hard and involve a large computational effort. Fischetti et al. [62] presented a very
successful heuristic, that they called the Feasibility Pump (FP) to find a feasible solution
of generic MIP problems. Despite the fact that Fischetti et al. [62] present the Feasibil-
ity Pump heuristic for generic MIP problems, they focused essentially on Mixed Binary
Programming (MBP) problems. Several authors [8] [14, [64] improved the Feasibility Pump
heuristic, mostly for generic MIP problems.

Consider the variable index set N = {1,...,n} and Z C N.

A generic MIP problem is given by:

min c'x
subject to  Ax <b (6.1)

x; €L Viel

where A € R™*", b € IR™ and ¢ € IR". The integer variables are only variables x; with
1 € Z, the index set of the integer variables.

We assume, without loss of generality, that the variables of are bounded, that is
[<z<u, I, ueR".

To facilitate the reading and using a little abuse of notation, we say that a point x is
integer if x; is integer for all ¢ € 7 regardless of the value of the other components that are
not obliged to be integer.

A generic MBP problem is given by:
min 'z
subject to Az <b (6.2)
x; € {0,1} Viel
where A € R™*", b€ IR™ and ¢ € IR".
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As for the MIP problem, in the case of a MBP problem we say that a point x is binary
if z; is binary for all ¢« € 7 regardless of the value of the other components that are not
obliged to be binary.

Let P = {z € R" : Az < b} be the polyhedron associate with the Linear Program-
ing (LP) relaxation of (6.1

In this section we use the following definitions for rounding and L;-distance.

Definition 6.1. [I5, 62] Let N = {1,...,n}, Z C N, z,y € IR". The rounding, T, of the

vector x with respect to Z, denoted [x]%, is obtained in the following way:

where [-] represents scalar rounding to the nearest integer. Notice that only the values of

the variables x; with ¢ € Z are rounded, the other variables are continuous variables.

Definition 6.2. [15,62] Let N = {1,...,n} and Z C N. The L;-distance of two vectors
x,y € IR™ with respect to Z is given by:
A(z,y) =3 fos — il
1€

Notice that the continuous variables z;, y; with i ¢ Z do not contribute to the distance
function AZ(z,y).

The basic idea of the FP heuristic is to sequentially construct two sets of points until
a feasible solution of the problem is found. In the first set, the points x7 , are obtained by
solving an LP relaxation (x p € P) and therefore these points satisfy the linear constraints
but may not satisfy the integrality constraints. In the second set, the points x are obtained
by rounding the points z7, and therefore these points satisfy the integrality constraints
but may not satisfy the linear constraints.

The FP heuristic starts by solving the LP relaxation of the MIP problem. If the LP
solution, z% », is not integer it is rounded, obtaining a new vector ¥ = [z} p|*. If 7 is not

feasible, a new point in the LP polyhedron must be obtained. This new point should be the
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closest to = and therefore is obtained by solving a new LP which minimizes the distance

AL(x,7) [S]:

min  AX(z,7) = Z(zi_li)+ Z P — T;) Z d;

i€l 1€T 1€T
z;=1l; T, =u; 1;<T;<u;

subject to Ax <b
d; > x; — T; Viel (6.3)
di > x; — x; Viel
[ <x<u

xr; € 7 Viel

The additional variables d;, ¢ € Z are introduced to model the nonlinear function
If the variables x; for all ¢ € 7 are binary, the additional variables d; are not needed,

once 0 < x; <1 for all i € Z and the new LP to be solved is:

min A le—i-Zl—xl

i€L 'LEI
z;=0

subject to Az <D (6.4)
c{0,1} Viel

Figure displays an illustration of the Feasibility Pump procedure. The procedure
starts with the point ° which is the solution of the LP relaxation of the MIP problem (6.1]).
Since this point Z° is not integer it is rounded and the point ' = [2°] is obtained. The next
point is obtained by solving the LP relaxation of using 7*. This new point Z' is, once
again, not integer and therefore, it must be rounded and a new point 7% = [Z'] is obtained.
The integer point 72 is feasible but the procedure only stops when a LP relaxation solution
is integer. So the next step is to solve the LP relaxation of ( . ) using 72. The solution

is 72 which is integer and therefore the procedure ends and #2 is a feasible solution of the

MIP problem (6.1)).
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Figure 6.1: Illustration of the Feasibility Pump procedure [15].

The FP heuristic presents two problems: stalling issue and cycle issue. The stalling
issue occurs when in iteration n the rounding of a new LP solution, 2" is equal to the
integer solution obtained in the previous iteration, that is, 2" = 2"~!. One way to solve
this issue, is to change the value of some, randomly chosen, components of z, obtaining,
a new r. The number of components which change the value is fixed and is one of the
inputs of the FP heuristic. The cycle issue occur when the same sequence of points (LP
solutions and rounding points) are obtained over and over again. A cycle is detected by
comparing the current T obtained with the z found in all previous iterations. If the current
7 is equal to a x found in a previous iteration then the FP heuristic will obtain in the next
iteration the same LP solution 7}, as in the prior iteration. This issue can be solved
by applying a so-called restart, a perturbation mechanism, every time a cycle is detected.
One perturbation mechanism can be to modify some, randomly chosen, components of the
current z, obtaining, this way, a new z. The stalling issue is a cycle issue of length one

and so these two issues can be detected and solved with the same mechanism.

The MWTR problem is a MBP problem, so we will focus on MBP problems in the

remainder of this section.
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The Feasibility Pump heuristic is described in Algorithm [1] (in page [L07]).

The algorithm has as input the parameters T'L, T" and maxIT. TL is the time limit
imposed and T is the number of variables to be flipped, that is the number of variables that
change their current value, from zero to one or from one to zero. maxIT is the maximum

number of iterations allowed.

The first step is to initialize the counter nIT', which indicates the number of the itera-
tions, and the two points, z} » and z. The first 27 , is the solution of the LP relaxation of
the MBP problem. Then it is checked if this LP solution z} p is binary. If x7 p is binary
the procedure terminates. If it is not the case, then the LP solution is rounded, obtaining
the first 7 := [z} p]*.

After initializing the variables, the so-called pumping cycles are performed (the while
cycle from line 7 to line 19) until a feasible integer solution is found or the time-limit 7'L
is exceed or the maximum number of iterations is exceed. If the procedure stops because
the time-limit is exceed or the maximum number of iteration is exceed, a failure must be

reported, once no binary feasible solution was obtained.

In each pumping cycle the counter nIT' is incremented and a new point z} , € P, with
minimum distance from the current binary point z, is obtained. If this new z7 p is not
binary, the procedure verifies if the current binary point 7 is equal to [z} p]%. If it is not
equal, 7 is replaced by [x} p]%. In case the rounding of the new z7 5 is equal to the current
binary point z, a random number T7T &€ {%T s %T} of binary entries of the current x
are flipped and so stalling problems can be avoided. These entries are chosen to minimize
the increase of the total distance AZ (x5 p,7). The procedures then verifies if a cycle is
detected, by checking if the new x is equal to a = point found in a previous iterations or
if AT (2% p,T) did not decrease by at least 10% in the last three iterations. If a cycle is
detected then for all i € Z an uniformly random value p; € [—0.3,0.7] is generated and the

variable 7; is flipped if |2} p — ;| + max{p;, 0} > 0.5.

106



CHAPTER 6. FEASIBILITY PUMP AND LOCAL BRANCHING

Algorithm 1 The Feasibility Pump heuristic ([14], [62])

Input: TL > 0, the time limit, 7" > 0, the number of variables to be flipped and
maxIT > 0, the maximum number of iterations
1: initialize nIT := 0 and 7} p := argmin{c’z : Az < b}

2: if (27 p is binary) then

3: return 7 p
4: else

5: T = [x*LP]I
6: end if

7. while (time < T'L and nIT < mazIT) do
8: nIT :=nlT+1

9: 7% p = argmin{ AT (z,7) : Ar < b}
10: if (23 p is binary) then
11: return x7j p

12: else if (3i € Z: [x]p| # 7;) then

13: T = [2}p)"

14: else

15: flip the TT = rand (57T, 3T) entries T; (i € Z) with highest |2}, — 7
16: end if

17: if a cycle is detected then
18: flip Z; in case |2} p — 7| + max{p;, 0} > 0.5,

where p; = rand(—0.3,0.7), Vi €
19: end if

20: end while
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6.1.1 Application to MWTR problem with use of the Path-

edges’ formulation

We applied the FP heuristic to the MWTR problem and used the Path-edges™ for-
mulation presented in Chapter [5| to obtain feasible solutions. In order to obtain a high
quality feasible solution in a reasonable small time we tried several combinations, namely
by applying the FP heuristic to the Path-edges formulation, that is the Path-edges* formu-
lation without the valid equalities and inequalites presented in Section [5.3| or by using only
some of the equalities and inequalities from Section [5.3] Comparing the results obtained
by the several combinations, we concluded that some of these combinations obtained a
feasible solution in less time than the one that uses the Path-edges™ formulation, but the
quality of the feasible solution obtained was quite poor. Since the performance of the
Local Branching heuristic depends highly on the first feasible solution used, we chose to
use the Path-edges™ formulation. The time gained in some of these combinations did not
compensate for the poor quality of the solution obtained, once the time gained in the
FP heuristic would be spend when running the Local Branching heuristic to improve the

feasible solution obtained.

In the Path-edgest formulation we have three types of binary variables. We have
the variables x;;, i € V,, 7 € V, i < j that indicate whether edge {7,j} belongs to
the tree solution, variables pfj that indicate whether the path F;; connecting terminal
node i to terminal node j has exactly ¢ edges and the binary flow variables i’}g,Vi, Jj €
VoU{k,l}, k0 € Vi, i # jand k < ¢, that indicate whether the flow traverses the edge
{i,j} belonging to the path connecting terminal node k to terminal node ¢ in the direction
from node ¢ to node j. Let y be a vector formed of all the binary variables of the Path-
edges™ formulation, that is y = (z, f,p). So in this case the FP heuristic will generate two
type of points, yip = (@5p, fip,pip) (LP solutions) and § = (%, f,p) (roundings of the
LP solutions).

In Algorithm [2| we present the algorithm we developed based on the Feasibility Pump’s

ideas to obtain a feasible solution of the MWTR problem. Our algorithm is very similar
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to the Algorithm [1| taking the fact that we initialize the first yj » differently, detect cycles
differently and apply different perturbation mechanism.

The FP heuristic as presented in Algorithm [I] initializes yj p, with the LP relaxation
solution of the MBP problem. To improve the quality of the feasible solution obtained
by the FP heuristic we initialize the yj, with an improved solution of the LP relax-
ation solution. First we obtain the LP relaxation solution of the Path-edges™ formulation,

LP _ (.Z'LP, fLP,pLP)

Y and fix the values of the component ;E’ZPZ,],, 1€V, eV, i<jof

y;p to be zero if 27 < 0.1. The remaining components of the initial 37 are obtained
through a new LP relaxation solution of the Path-edges™ formulation.

To detect cycles we use the process used by Santos [117] who applied the FP heuristic
to the Weight Constrained Minimum Spanning Tree Problem. Santos [I17] detected cycles
by comparing the value A(yj p,y) of the actual iteration with the values obtained in the
previous three iteration. If the value A(yj p,v) is equal in three consecutive iterations then
a perturbation mechanism is applied.

The particular case of cycles of length one are detected by verifying if the y of the
actual iteration is equal to the solution of the previous iteration.

We applied two different perturbation mechanism according to the type of cycle de-
tected. In case of a cycle of length one, we applied a perturbation only to the binary
components = of y, keeping the value of the remaining components. The perturbation we

applied is the following:

7. = 0 if ajp, <0.lor(z7p, >0.5and 2}y, <0.9)
1 otherwise
In case of the other type of cycles, we flip the value of the components fand p of i keeping
the value of the components = of ¥ unchanged.
Finally, we set the time limit 7'L at 600 seconds and the maximum number of iterations

at 1000 iterations.
The computational results will be presented in Section [6.3]
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Algorithm 2 Algorithm to obtain a feasible solution of the MWTR. problem.

Input: The time limit T'L and the maximum number of iterations mazIT.

1:
2:
3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

29:

initialize nIT := 0
Obtain the LP relaxation solution, y“* = (mLP , fLE pt? ), using Path-edges™ formulation
if (¢ <0.1,i€V,, j€V,i<j)then
x7 Py = 0
end if
Obtain a new LP relaxation solution, yj p, of the Path-edges™ formulation
if (yj p is binary) then
return y7 p

else

Y= [sz]

end if

while (time < T'L and nIT < maxIT) do
nIT :=nlIT +1
yi p = argmin{A(y,y) : constraints of the Path-edges ' formulation}
if (y; p is binary) then

return yj p

else

if ([y;p] # ) then

Y= [yrpl

else if 27, < 0.1or (:c*LPM >0.5and 27 p < 0.9) then

25 =0
else

zi =1
end if

if a cycle is detected then
flip the values of the components f and p of ¥
end if
end if

end while
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6.2 Local Branching

The feasible solution obtained using the FP heuristic can be improved by using a local
search heuristic. A local search heuristic iteratively defines a neighborhood of a feasible
solution and searches for a better feasible solution in that neighborhood. Then this new
feasible solution is used in the next iteration.

Fischetti and Lodi [63] introduced a procedure, called Local Branching (LB), which is
in the spirit of local search heuristics. The neighborhood of a feasible solution is obtained
by adding constraints to the original problem. Fischetti and Lodi [63] designated these
constrains as local branching cuts.

Consider the following generic MIP with 0 — 1 variables:

min ' x

subject to Az <b

z; € {0,1} Vie B#( (6.5)
x; > 0, integer Viel

where A € R™", b € R™ and ¢ € IR". N = {1,...,n} is the variable index set and is
partitioned into (B,Z,C), where B, Z and C are the index set of the binary, general integer
and continuous variables, respectively. B is a nonempty set while Z and C may be empty

sets.

Let X be the set of feasible solutions of the generic MIP problem (/6.5)) and consider a

feasible reference solution = € X of that problem.
Definition 6.3. The binary support, S of T is given by S = {i € B: 7; = 1}.

S is the set of indices of the components of Z with value one. Consequently, B\ S is

the set of indices of the components with value zero.

Definition 6.4. Let k be a positive integer parameter. The local branching constraint is

111



CHAPTER 6. FEASIBILITY PUMP AND LOCAL BRANCHING

given by

AB(z,m) =) (L—z)+ > <k (6.6)

i€eS i€B\S
The left-hand side of the constraint counts the number of binary variables which
flipped their value, with respect to =, from one to zero or from zero to one.
When the cardinality of the binary support S of any feasible solution is constant the
local branching constraint is given by:

AB(z,7) = Z(l —x;) <

i€S

(6.7)

[N

The left-hand side of the constraint (6.7) counts the number of binary variables which
flipped their value, with respect to Z, from one to zero. Since the cardinality of S is
constant, whenever a variable z;, j € S flips value from one to zero another variable must

flip value from zero to one.

Definition 6.5. Given a positive integer parameter k, the k-OPT neighborhood N (T, k)

of a feasible reference solution * € X is given by

N@ k) ={zeX:) (1—z)+ Y z; <k}

ieS ieB\S

So the k-OPT neighborhood is the set of feasible solutions of the generic MIP prob-
lem that satisfy the local branching constraint .

A local branching constraint divides the solution space X into two disjoint parts, the
k-OPT neighborhood N (Z, k) and the set X \ N(7,k) = {z € X : AB(z,7) > k} [15].
Consequently, the local branching constraint divides a MIP problem in two subproblems,
(SP1) : max{c’x : 2 € N(Z,k)} and (SP2) : max{clz:2 € X \N(Z,k)}.

The LB procedure uses local branching constraints with the intention of rapidly finding
good feasible solutions of a MIP problem [94]. This procedure starts with a feasible solution,
7!, that can be obtained, for example, through the FP heuristic. Using the feasible solution
7!, the local branching constraint, AP (z,7!) < k, is defined. To solve the two subproblems,

(SP1) : max{cTz : x € N(z',k)} and (SP2) : max{c’z : v € X \ N(Z', k)}, originated

112



CHAPTER 6. FEASIBILITY PUMP AND LOCAL BRANCHING

from the local branching constraint, the LB procedure uses a MIP solver like, for example,
FICO Xpress [1]. The first subproblem to be solved is the subproblem (SP1) and if the
optimal solution, Z2, of this subproblem is better than the feasible solution ! then this new
solution is used to define a new local branching constraint AP(x,7?) < k which is added
to the subproblem (SP2). This way two new subproblems are defined, (SP3) : max{c’z :
r € (X\N(@ k) NN(@%k)} and (SP4) : max{cTz : z € (X \ N (T, k) \ N (7% k)}.
This procedure continues as long as better feasible solutions are found and is illustrated in
Figure|6.2l The nodes of the tree are numbered in the order the subproblems are generated
and processed. The subproblem of the right branch of the tree is only solved if no improved
solution is found in the subproblem of the left branch. Note that following this scheme the

LB procedure is an exact method.

improved solution T

no improved solution

Figure 6.2: The basic Local Branching scheme [63] [94].

To rapidly find better feasible solutions, the parameter & must be carefully chosen.
Small values of k imply small neighborhoods N (Z, k) and therefore an easy subproblem
that can be solve in short time. But a small neighborhood may not contain a better feasible

solution than the current one. In the other hand, large k increases the neighborhood size

113



CHAPTER 6. FEASIBILITY PUMP AND LOCAL BRANCHING

and therefore the time to solve the subproblem associate to the neighborhood. Fischetti
and Lodi [63] concluded through computational experience that values of k in the range

[10, 20] are the most effective.

Algorithm [3] presents the basic Local Branching procedure.

Algorithm 3 Basic Local Branching procedure.

Input: The parameter k and a feasible solution Z.
1: function Basic LB(k, 7)
2: initialize x* = 7, the reference solution
END = false, boolean variable to indicate when to stop the repeat cycle
Y = {z € X : AB(x,7) < k}, the k-OPT neighborhood and
Z={re€ X :ABx,7) >k}

3: repeat

4: Z:=argmin{c'z:x €Y}

5: if (cI'z < cT'z*) then

6: =T

7: Y={zxecZ:ABx,7)<k}and Z = {2z € Z: AB(x,T) > k}
8: else

9: END = true
10: 7 = argmin{c’z :x € Z}
11: if (c’'z < cT'z*) then
12: Tt =7
13: end if
14: end if

15: until END
16: return z*

17: end function

As referred before, the basic LB procedure is an exact method but it can be used as

a heuristic if a criteria is set to stop the method before it has exhaustively search all the
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neighborhoods.

Fischetti and Lodi [63] presented two mechanisms to improve the performance of the
LB procedure when used as a heuristic: imposing a time limit on the left-branch nodes of
the tree presented in Figure and diversification mechanisms.

Depending on the parameter k, in some case, finding the exact solution of the left-
branch node of the tree presented in Figure can be very time consuming. So if using
the LB procedure as a heuristic, a time limit can be imposed to solve the subproblems.
This time limit imposition also allows to use larger values of k, since, in this case, the
neighborhood is not completely explored. If the optimum solution of the subproblem can
not be found within the time limit imposed, two situations can occur: an improved feasible
solution is found or no improved feasible solution is found.

If no improved feasible solution is found, Fischetti and Lodi [63] suggest to reduce the
size of the neighborhood, in order to accelerate its exploration. This reduction is achieved
through the introduction of the local branching constraint A®(z,Z) < [£]. This situation

is illustrated in Figure 6.3}

MIP solver MIP solver

time limit reached improved solution T"
no improved solution

Figure 6.3: Local Branching scheme when the time limit is reached and no improved

solution has been found [63].

If an improved feasible solution is found then a new left-branch node associated with

the new improved feasible solution is created, as we can see in Figure [6.4
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MIP solver MIP solver

time limit reached improved solution z"
improved solution "

+1

Figure 6.4: Local Branching scheme when the time limit is reached and an improved

solution has been found [63].

Notice that in this case the neighborhood associated with node n+1 was not completely
explored and therefore it can not be excluded, since the optimum solution may still be in

it.

The diversification mechanisms are applied when no improved feasible solution can be
found by completely exploring the neighborhood defined in a left-branch node of the search
tree. In the tree presented in Figure this would be the case in node 6.

Fischetti and Lodi [63] proposed two different kinds of diversification mechanisms, a
soft diversification and a strong diversification. The strong diversification should only be
applied if even after applying the soft diversification no improved feasible solution could
be found.

The soft diversification consists in increasing the size of the neighborhood by, for ex-
ample an amount of [%]. This increase is achieved through the introduction of a new
left-branch node associated to the local branching constraint AP(z,7) < k + [£]. If still
no improved feasible solution can be found, a strong diversification is applied, which con-
sists in taking another solution (typically worse) in the vicinity of the current reference
solution and restart the LB procedure with this solution. This other solution is obtained

by introducing the constraint A®(z,Z) < k + 2[£] and abort the exploration as soon as
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the first solution is found.

6.2.1 Application to MWTR problem with use of the Path-

edges’ formulation

To improve the feasible solution obtained by using the FP heuristic, we applied the
LB procedure to the MWTR problem and used the Path-edges™ formulation presented in
Chapter[5] Since we used the Path-edges™ formulation in the FP heuristic we also used this
formulation when applying the LB procedure. Once again, we tried several combinations
in order to obtain an improved high quality feasible solution in a reasonable time. By
analyzing the results of the several combinations, we noticed that if we would not include,
in the LB heuristic, the inequalities and , presented in Sectionwe obtained
the same feasible solution but in less time. So we used the Path-edges™ formulation without
these two inequalities.

Regarding the parameter k, after several experiences, we concluded that the choice of
the value of k depends on the value of n. When the value of n is small, the value of k
can also be small and even so the LB heuristic finds an improved feasible solution in the
neighborhood. But for values of n larger this is not the case and therefore the value of k
must be larger to find an improved feasible solution in the neighborhood. Since we used
the local branching constraints the values we used for k were kK = 3 when n < 12 and
k =5 when n > 12.

We imposed a time limit for solving each subproblem, the node time limit, varying
according to the value of n. We first set a time limit of 1000 seconds but noticed that for
n > 14 no feasible solution of the subproblem was found within this time limit, even when
reducing the size of the neighborhood. So we used a time limit of 1000 seconds if n < 14
and 1400 if n > 14. We also imposed a total time limit for the heuristic to run. To be able
to compare the quality of the feasible solution obtained using the LB heuristic with the
solution obtained using the exact formulation, we set a total time limit of 7000 seconds.

When the time limit is reached and a feasible solution is found but not an improved
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one, we did not reduce the neighborhood as suggested by Fischetti and Lodi [63] because
in the experiences we performed, even the reduction of the neighborhood did not improve
the reference solution. So, to avoid wasting time, instead of reducing the neighborhood we

used a soft diversification.

We reduced the neighborhood whenever no feasible solutions were found in the time
limit imposed unless the neighborhood was already reduced in the previous iteration. When
no feasible solution is found after reducing the neighborhood size, the heuristic stops and
returns the actual best feasible solution. The reduction of the neighborhood size is done by

reducing one unit the parameter of the right hand side of the local branching constraint.

We only used soft diversification, since we realized, in the experiences we performed,
that the strong diversification is time consuming and most of the time there is no improve-
ment in the feasible solution returned by the LB heuristic relatively to the one obtained
when no strong diversification is used. Soft diversification is used every time no improved
feasible solution is found, unless a soft diversification was performed in the previous iter-
ation. When no improved feasible solution is found after applying a soft diversification,
the heuristic stops and returns the actual best feasible solution. The soft diversification
is performed by increasing the parameter of the right hand side of the local branching

constraint of two units.

As for the FP heuristic we consider y to be a vector formed of all the binary variables of
the Path-edges™ formulation, that is y = (z, f,p). Let Z be the set of all feasible solutions
of the MWTR problem regarding to the Path-edges™ formulation and DZ(y) be the value

n—1
of the objective function Z Z dye Z 27" piaty = (z,f,p) € Z.
=2

keVy Levi

In Algorithm [4] we presen?f:he heuristic we developed based on the Local Branching
procedures’ ideas to improve the feasible solution of the MWTR problem obtained using
the FP heuristic. This heuristic receives as input the parameter k, the node time limit
nT'L, the total time limit t7T'L, and the initial feasible solution 7 and returns on output

the best feasible solution found (z*). The heuristic consists of a repeat-until cycle which

is performed until the total time limit is exceeded or the boolean variable FN D has value
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true. This variable becomes true, after performing a soft diversification if no improved
feasible solution is found or after reducing the neighborhood, if no feasible solution can be
found. Since we increase the value of k two units when performing a soft diversification
and reduce the value of k one unit when reducing the neighborhood, after performing a
soft, diversification if no feasible solution is found, the value of k is reduced one unit and
after that if no feasible solution is found the variable EN D becomes true.

At each iteration a new local branching constraint is added and the MWTR problem
with the local branching constraints is solved, using the function MIPSOLVE(nT'L). This
function receives on input the node time limit (n7T'L) and returns on output the opti-
mum value or the best value found (7) within the time limit imposed, along with the
final optimization status (state). To solve the MWTR problem with the local branching
constraints, the function MIPSOLVE(nT' L) uses the Path-edges™ formulation without the
inequalities and , presented in Section .

When running the MIPSOLVE function, three final optimization status may arise:
“optimum found”, “feasible solution found” and “no feasible solution found”. The status
“optimum found” and “feasible solution found” have the same consequences to the following
iteration. The only difference is that when the solution is improved and the neighborhood
was completely searched (optimum solution is found) the local branching constraint can
be reversed. If the MIPSOLVE function, because of the node time limit imposition, only
returns an improved feasible solution the local branching constraint can not be reversed.
This is because the optimum solution could still be in that neighborhood. In this case the
local branching constraint AP(y, %) < s is replaced by A®(y,%) > 1, to cut off the reference
solution ¥.

Whenever an improved solution is found the value of y* is updated with the value of
the new improved feasible solution and the value of s, the current parameter of the right
hand side of the local branching constraint, becomes equal to k if it is not already equal.

In Algorithm [ the case state=‘“no feasible solution found” is developed from line 23

to line 28.

119



CHAPTER 6. FEASIBILITY PUMP AND LOCAL BRANCHING

Algorithm 4 Heuristic to improve the feasible solution of the MWTR problem.

1: function LB HEURISTIC(K, nTL, tTL, )

2:

10:
11:
12:
13:
14:
15:
16:
17
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

3
4
5
6:
7
8
9

initialize y* = 7, the reference solution

END = false, boolean variable to indicate when to stop the repeat cycle

s = k, the current parameter of the right side of the local branching constraint

repeat

Add the local branching constraint AB(y,7) < s
(g, state)=MIPSOLVE(nTL)
if (state=“optimum found” or state=“feasible solution found”) then
if (DZ(y) < DZ(y*)) then
v =9
if (state=“optimum found”) then
reverse the last local branching constraint into AB(y,7) > s +1
else
replace the last local branching constraint AB(y,7) < s by AB(y,7) > 1
end if
if (s # k) then
s=k
end if
else if (s = k) then

delete the last local branching constraint AB(y,7) < s

s=5+2
else

END = true
end if

else if (s =k+2 or s = k) then
delete the last local branching constraint AB(y,7) < s
s=s5—1

else
END = true

end if

until (END or time > TL)

return y*

31: end function
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6.3 Computational results

In this section, we present the computational results we obtained running the FP heuris-
tic presented in Algorithm [2| and the LB heuristic presented in Algorithm 4l The compu-
tational tests were performed on an Intel(R) Core(TM) i7-3770 CPU 3.40 GHz processor
and 16Gb of RAM.

The two heuristics were implemented using the Mosel language and solved with FICO
Xpress 7.8 [1] (Xpress-IVE 1.24.06 64 bit, Xpress-Optimizer 27.01.02 and Xpress-Mosel
3.8.0). We compare the performance of the two heuristics using the Path-edges™ formula-

tion.
We used the instances presented in Chapter [3] and Chapter [4]

The computational results are summarized in Tables[6.1]- in which the first column,
labeled M, indicates the name of the matrix instance used and the second column, labeled
|Vi|, indicates the size of the instance. The third, forth and fifth columns concern the
results of the FP heuristic, from the sixth to the ninth columns the results of the LB
heuristic are presented and in the tenth and eleventh column we present again the results

of the Path-edges™ formulation to facilitate the comparison of the values obtained.

The columns labeled T show the execution time, in seconds, used to solve the instance
and having a maximum runtime of 600 seconds for the FP heuristic and 7000 seconds for
the LB heuristic. The columns labeled W present the optimum value obtained or the
best value obtained within the runtime limit, where W stands for Z Z w;;. For matrices

i€Va JEV
A15M887 and A20M887 for n = 12 the Path-edges™ formulation did no]t> Zobtain any feasible
solution within the runtime of 7200 seconds and therefore for these two instances we used
the best value obtained by the Path-edges™ formulation. The column labeled T'T" show
the total execution time, that is, the sum of the execution time of the FP heuristic with the
execution time of the LB heuristic. The columns labeled GAP present the gap between the
Wy — LB

value obtained by the heuristic and the best lower bound value: GAP = e x 100,
H

where Wy represents the best value obtained by the heuristic within the runtime imposed
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and LB the best lower bound value.
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Table 6.3: Computational results of the heuristics for data from the phylogenetics appli-

cation (continuation).

FP heuristic LB heuristic F‘ath—edgesJr
M [ V| T A% GAP T TT A%% GAP T A%%
5 0 0.0748 0 0.02 0.02 0.0748 0 0 0.0748
6 0.03 0.0963 8.4 0.73 0.76 0.0882 0 0.08 0.0882
7 0.14 0.1086 10.9 5.43 5.57 0.0968 0 1.65 0.0968
- 8 0.41 0.123 15.1 10.22 10.63 0.1044 0 9.64 0.1044
2 9 1.09 0.1721 16.9 53.45 54.54 0.143 0 13.6 0.143
§ 10 5.84 0.185 11.3 432.61 438.45 0.164 0 279.43 0.164
=
< 11 7.07 0.2254 9 891.78 898.85 0.2058 0.3 3594 0.2052
12 12.29 0.2456 19.7 7000 7012.29 0.2106 1.8 7200 0.2097
13 42.28 0.2792 23.4 7000 7042.28 0.2304 1.9 7200 0.2358
14 151.32 0.2743 20.9 7000 7151.32 0.255 9.2 7200 0.2369
15 526.22 0.3075 26.2 2999.68 3525.9 0.3075 19.6 7200 0.2616
5 0.02 0.1338 0 0.02 0.04 0.1338 0 0 0.1338
6 0.03 0.1765 8.3 0.87 0.9 0.1618 0 0.05 0.1618
- 7 0.2 0.2384 17.6 6.93 7.13 0.1966 0 2.18 0.1966
§ 8 0.33 0.2907 31.5 11.9 12.23 0.2048 2.8 1.93 0.1991
= 9 1.51 0.3454 41.1 94.24 95.75 0.2053 0.9 9.77 0.2035
< 10 2.82 0.3642 46 347.08 349.9 0.2034 3.3 94.63 0.1966
11 4.23 0.3741 29 1435.08 1439.31 0.2655 0 1008.31 0.2655
12 18.24 0.4084 28.5 4991.84 5010.08 0.3166 2.2 7200 0.3166
5 0.02 0.1601 0 0 0.02 0.1601 0 0 0.1601
6 0.03 0.1932 9.1 0.76 0.79 0.1756 0 0.08 0.1756
7 0.08 0.2287 9.7 6.4 6.48 0.2065 0 2.45 0.2065
b~ 8 0.59 0.319 14.9 11.56 12.15 0.2714 0 2.75 0.2714
§ 9 1.15 0.3262 13.1 35.52 36.67 0.2833 0 8.08 0.2833
§ 10 2.53 0.3611 15.2 138.28 140.81 0.3064 0 144.63 0.3064
2 11 5.66 0.407 21.9 760.88 766.54 0.3177 0 3532.92 0.3177
12 18.02 0.4312 33.3 6893.39 6911.41 0.3265 2.6 7200 0.3265
13 71.48 0.4541 31.5 7000 7071.48 0.35785 4.2 7200 0.3604
14 224.58 0.465 31.6 7000 7224.58 0.4028 13.3 7200 0.3759
15 484.61 0.5172 32.8 4500.5 4985.11 0.4451 14.6 7200 0.446
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The FP heuristic obtains the same solution as the one obtained by the Path-edges™ for
all instances with n = 5 terminal nodes and for instances obtained from matrices M391,
A20Pri, S15 and A10S7 with n = 6.

The LB heuristic obtains the same solution as the one obtained by the Path-edges™ in
183 of the 294 instances (approximately, 62%) and obtains a better solution in 14 of the
294 instances (approximately, 5%).

For instances with the same number of terminal nodes, Tables and display
the average time and the average GAP, respectively, and their corresponding standard
deviation values for the FP heuristic and the LB heuristic. Tables also displays the
average times and corresponding standard deviation values of the Path-edges™ formulation
to facilitate the comparison.

The average time of the FP heuristic varies from 0 to 202.12 seconds and the average
GAP varies from 0 to 36.29%. The average time of the LB heuristic varies from 0.02 to
6720.11 seconds and the average GAP varies from 0 to 20.84%. It is worth nothing that
for n < 12 the average GAP of the LB heuristic is less than 1%. The FP heuristic finds a
feasible solution very quickly and the LB heuristic finds good solutions.

Figure displays the average GAP of the FP and of the LB heuristic. As we can see
the LB heuristic significantly improves the feasible solution obtained by the FP heuristic.
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Table 6.7: Average and standard deviation (SD) values for the computational time of the

FP heuristic, LB heuristic and Path-edges™ formulations.

n FP heuristic LB heuristic Path-edges™
average 0.01 0.02 0.01
5
SD 0.01 0.02 0.01
average 0.1 0.91 0.18
6
SD 0.34 0.45 0.22
average 0.11 3.92 0.92
7
SD 0.04 1.82 0.72
average 0.45 19.89 8.49
8
SD 0.14 8.43 5.28
average 1.22 67.79 11.06
9
SD 0.59 28.09 2.07
average 4.85 329.55 184
10
SD 4.1 128.06 93.44
average 8.38 1045.8 1549.73
11
SD 5.2 320.01 920.16
average 21.36 5915.44 -
12
SD 15.15 1032.85 -
average 43.65 6261.95 -
13
SD 39.6 1002.03 -
A average 145.18 6720.11 -
1
SD 123.38 732.14 -
average 202.12 5044.09 -
15
SD 149.83 1573.13 -
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Table 6.8: Average and standard deviation (SD) values for the GAP of the FP heuristic
and the LB heuristic.

n FP heuristic LB heuristic
. average 0 0
SD 0 0
6 average 10.57 0.01
SD 9.74 0.03
. average 13.99 0.07
SD 9.21 0.24
average 18.23 0.71
8
SD 8.32 1.21
0 average 23.44 0.31
SD 11.87 0.86
average 25 0.68
10
SD 11.35 1.19
" average 25.67 0.35
SD 9.13 0.9
12 average 31.29 1.8
SD 10.08 0.03
average 30.79 3.2
13
SD 11.09 1.9
" average 36.29 12.65
SD 12.55 6.98
5 average 36.13 20.84
1
SD 12.27 10
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Figure 6.5: Average Gap of the FP and of the LB heuristic
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Chapter 7

Robust Approach

As we saw in Chapter [3| and Chapter {| the input data (the distance matrix), from
the two application areas studied, used in the MWTR problem, are obtained through
methods which involve imprecisions and therefore these distances are uncertain. To handle
this uncertainty we used two robust approaches, one to control the maximum number of
deviations and the other to reduce the risk of high cost.

In this chapter, we present the two robust approaches and the three formulations EL
Robust-Deviation-Dual formulation, Robust-Deviation formulation and Robust-CVaR for-
mulation, that we derived from these two approaches for the MWTR problem using the
Path-edges® formulation. We also present the computational results obtained by run-

ning the three robust formulations using the data instances presented in Section and
Section .21

A classical approach in mathematical programming is to develop a model that assumes
that the input data is precisely known and equal to some nominal values. However the
data used in real-world optimization problems are mostly uncertain, due, for example, to
measurement or estimation errors. Under data uncertainty as the data may take different
values than the nominal values, several constraints may be violated and the optimal solution

found using nominal data may no longer be optimal or even feasible. When assuming data

IThe three formulations were developed in collaboration with CNRS researcher Michael Poss.
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uncertainty, the usual deterministic solution may become completely meaningless from
a practical viewpoint. Therefore, it is important to derive solution approaches that are
immune to data uncertainty, that is, that are robust [10], [17].

Two main approaches used in optimization to deal with data uncertainty are stochas-
tic and robust optimization. In stochastic optimization the uncertain data are random
variables whose probability distributions is known or can be estimated. On the other
hand, in robust optimization the uncertain data lay in a predefined uncertain set and their
probability distributions is unknown [72].

Recently efforts have been done to connect robust optimization and stochastic opti-
mization. In distributionally robust optimization, it is assumed that the distribution of
the uncertainty data is partially-characterized in the sense that certain distributional prop-

erties, such as some data moments (mean, variance, ...), are known [71].

Soyster [130] was the first to propose a linear optimization model to construct a solution
that is feasible for all data belonging to a convex set. Other significant works to the
development of robust optimization and which use Soyster’s general approach are Ben-
Tal and Nemirovski [11, 12, 3], Bertsimas and Sim [I7], El-Ghaoui and Lebret [55] and
El-Ghaoui et al. [56].

Consider a deterministic nominal linear optimization problem of the form
min{cTz : Az < b} (7.1)
€T

where z € R", A€ R™", b€ IR™ and ¢ € IR".
In many applications some or all of the entries in (¢, A,b) are uncertain. In robust
optimization the data (¢, A, b) varies in a given uncertainty set, U, that is, (¢, A,b) € U [10].
The collection of all linear optimization problems such that (¢, A,b) € U,

{min{cT:U Az < b}} (7.2)
z (e,Ab)eU

is called an uncertain linear optimization problem.
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A solution to an uncertain linear optimization problem is said to be robust if it has
both feasibility robustness and optimality robustness. This two concepts are define in the

following.

Definition 7.1. ([10]) A vector x € R" is a robust feasible solution of an uncertain linear
optimization problem (7.2]), if it satisfies all the realizations of the constraints from the
uncertainty set, that is, Az < b, V(c, A,b) € U.

Since an uncertain linear optimization problem is a collection of instances of linear
optimization problems, we must define how to determine the value of the objective function
at a robust feasible solution. The techniques of robust optimization are based on the worst
case analysis and therefore the objective function value at a robust feasible solution is

determined as follows.

Definition 7.2. ([10]) Let = be a robust feasible solution of an uncertain linear optimiza-
tion problem (7.2). The robust value Z(x) of the objective function of the uncertain linear
optimization problem at z is the largest value of the objective function z(x) = ¢Tzx over all
realizations of the data from the uncertainty set, that is
Z(x) = sup clx.
(c,Ab)eU
Definition 7.3. ([10]) The robust counterpart of an uncertain linear optimization problem
is the optimization problem:
min{ sup c'z: Az <b, V(c,Ab) € Z/{} (7.3)
B (c,Ab)eUd

A robust optimal solution of an uncertain linear optimization problem is an optimal
solution of the robust counterpart, that is, the robust feasible solution that minimizes the
robust value Z(z). In other words, the robust optimal solution is the “best uncertainty-
immunized” solution of the uncertain linear optimization problem [10].

We can distinguish two types of uncertainty: uncertainty on the feasibility of the so-
lutions, that is, uncertainty on the matrix A and the vector b, and uncertainty on the

objective coefficients, that is, uncertainty on the vector ¢ [66].
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Since we are interested in developing a robust formulation of the Path-edges™ formula-
tion and in this formulation the uncertain data (the distances) only appear in the objective
coefficients, in what follows, we focus only on the uncertainty on the objective value, that
is, on the cost vector c.

In order to account for the uncertainty of the cost coefficients we consider two alter-
native approaches: (i) control the maximum number of deviations from the nominal cost
values [I7] and (ii) control the conditional expectation of the total cost [I08] in which the
objective is to reduce the risk of high cost. In the first case, we will use the approach of
Bertsimas and Sim [16] [17]. In the second case, we will use the approach of Rochafellar

and Uryasev [114].

The first approach assumes that cost coefficients belong to a predefined uncertainty set
and that only a fixed number of coefficients can change value. While the second approach
uses the several values of the cost coefficients obtained in practice.

In both cases, the problem turns to be searching for a feasible solution that minimizes

the worst solution cost.

7.1 Control the maximum number of deviations

Bertsimas and Sim [I6] present a technique for polyhedral uncertainty that leads to
linear robust counterparts while controlling the level of conservatism of the solution.

Consider the following deterministic nominal linear optimization problem:

n
min z = clr = ; Ci T (7.4)

with & C R" the set of feasible solutions and ¢ = (¢;) € R™ a cost vector.
The set of feasible solutions is not subject to uncertainty and the cost coefficients
are uncertain, with unknown probabilistic distribution. However, it is assumed that the

uncertain cost coefficients ¢;, i € N = {1,...,n} take values in [¢;, ¢; + &;], where §; > 0,

1 € N represents the deviation from the nominal cost value c¢;.
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n
The aim is to find a solution x € X that minimizes the maximum cost z = Z C; T;
i=1
such that at most I' of the coeflicients ¢; are allowed to change [16].

Taking the set S = {i € N : §; > 0} of the indices of the cost coefficients that may

change from their nominal value and the uncertainty set
U = {66 R":¢ € [Ci,Ci—Féi], 0; > O}
the problem is to

min maxc' z
reX

subject to ¢€ A= {¢e U : at most I' of the ¢ (i € S) can change}

More precisely
2EX (ZC v (7SS Il<T) Z ! x]) (7.5)
i=1 j€J
which is the robust counterpart of problem ([7.4)).

If I' = 0 then the cost deviations are ignored and if I' = |S| then all possible cost
deviations are considered.
Without loss of generality assume that the indices are ordered such that

01 > 09 > ... > 0,. For notational convenience define 9,1 = 0.

The robust counterpart ((7.5)) can be rewritten as:

n
min E ¢; x; + max E 0; T; uj
reX —

1=

JEN

st. 0<u; <1, VjeN

ZUJSP

JEN
By dualizing the inner maximization problem and joining the two minimization problems,
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we obtain [16]:

min Z ¢ v +10+ Z Vi (7.6)
i=1 JEN
s.t. V]‘—f—QZ(Sj l‘j, jGN
vy, 0 Z 0,

reX

For the case when the decisions variables x;, i € N are binary (X C {0,1}"), Bertsimas
and Sim [16] proved that the robust counterpart (7.5)) can be solved by solving at most

n + 1 nominal problems:

Theorem 7.1. Problem ([7.5)) can be solved by solving the n + 1 nominal problems:
min  G*
0=1,...;n+1

where for £=1,....n+1:

n ¢
i= j=

The proof of this theorem can be found in [16].

In what follows we extend Bertsimas and Sim’s [16] Theorem to the problems with

the special structure given by:

I J
z = min E C; E Qg Tij
=1 j=1

s.t. T e X.

(7.8)

where ¢ € R, a € R’ are cost vectors and X C {0,1}/*/ is a set of binary vectors such

that any x € X satisfies
J
oay=1, i=1..1, (7.9)
j=1

We consider that, Vi € I, j € J, the cost of variable z;; is equal to ¢; a; where a; is fixed,

¢; is an uncertain parameter that takes value in [¢;, ¢; + 6;] and 6; > 0.
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This structure of cost function combined with constraint arises in many applica-
tions where one must choose one among a set of different options (facility location, network
design, ...).

We are interested in the class of problems that minimizes the maximum cost z such
that at most I' of the coefficients of the objective function are allowed to change. The

following optimization problem is obtained:

I J I
z = min ZciZajxij + max Z(&Zajxij

i=1 j=1 {8151, 13181 T} =1 jeJ (7-10)
s.t. reX.

We show next that Problem ([7.10]) can be solved by solving at most I x J + 1 nominal
problems. Let k = (i,7), for each k = 1,..., K = I x J, be a new indice and A, = 9, q;

suchthatAlEAQZ...ZAKZAKH:O.

Theorem 7.2. Problem ((7.10) can be solved by solving at most K + 1 nominal problems:

2= min 2,
(=1, K+1

where for £=1,..., K +1:

I J ¢
=T A, + min ZCiZaj Tij +Z(Ak — Ay) xy,
=1 =1 k=1

st. rxeX.

(7.11)

Proof. This proof is based on the proof of Theorem 7.1 presented in [16].
Expressing the inner maximization problem of (7.10]) as a linear program, we obtain:

I J I J
z :rxréi)rg (Z G Zaj Ty + maxZéZ- uiZaj xij>
=1  j=1 i=1 j=1
st. 0<wu; <1, Viel (7.12)
> uw<r (7.13)

where integrality requirements on variables u are omitted because the constraints of the

inner maximization problem are defined by totally unimodular matrix.
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By dualizing the inner maximization problem and joining the two minimization prob-

lems, we obtain

1 J 1
Z =min E C; E aj Tij + re + E V;
i=1 =1 i=1

st. ze kX

For all 2 € I, we have,

and since v; > 0, Vi € I, we have

J
V; = Imax {0, (2 <Z Q. .ﬁl]z’j> — 0}
j=1

J
as z;; € {0,1} and inj =1 it holds

J=1

J
v; = Zmax {0, 0; aj — 0} x;;
j=1

the problem becomes

1 J 1 J
z:miani ZCL]‘ Tij -+ re -+ ZZHI&X{O, 52 CLJ'—H} Tij
=1 j=1

i=1 j=1
st. re kX
>0

using A, = d; a; the problem becomes
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I J K
z:miani Zaj r; + I'0 + Zmax{(), A — 0} xy,
=1 j=1 k=1

st. xeX
6>0
By decomposing RT into the intervals [0, Ax], [Ax, Ag_1], ..., [A2, Ay] and [Ay, +o0 ],

we obtain

K A —0)x, ifO0c[Ay, A | l=K+1,...,2
ZmaX{O, Ap — 0} zp = ;( : ) 2 [Ae, Aea]
=1 0 if § € [Ay,400]

Therefore,

where for / =2,..., K + 1:

I J -1
zzzmiani Zaj z; + I'0 + Z(Ak—Q) T
=1 j=1 k=1

st. e X

g c [Ag, Ag,ﬂ
and
I J
zlzminZCi Zaj Lij + re
i=1 j=1

st. ze X

0 e [A1,+OO[

Since we are optimizing a linear function of 6 over the interval [A,, A,_1], the optimal

is obtained for 8 = Ay or § = A1, and thus for £ =2,... K + 1:
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Y

1
2 — min {F Ay + aréln (ZC”L Za] Ty + Z Ap — Ay x

7j=1

I Az_l + Ixfélz{)l (Z C; Zaj Lij + E(Ak — AZ 1 > }
= min {FAZ —i—aréi/g(Zanjxw + ZAk_AZ )
I
I Az_l + Ixrélz{)l (Z C; Zaj Lij + Z(Ak — AZ 1 > }
i=1 j=1 k=1

Thus,

Z = min {FAI —|—Irém§ Ci g a; Tij, ...,
X

7j=1

Ay + min (Z ci Zaj T + Z(Ak — Ay) xk) ;
) ;:1 7=1 B k=1
Iggréi}(l (Z:cz Zaj Tij + ZAk xk)}
=1 j=1 k=1

7.1.1 Application to MWTR problem with use of the Path-

edges’ formulation
We used Theorem [7.2] presented above to obtain a robust formulation for the MWTR
problem using the Path-edges® formulation, presented in Chapter [5

In order to simplify the reading we will refer to the Path-edgest formulation, presented

in Chapter 5] as follow:

min z—ZZdZ]ZZ pzj

i€V J€Vt

st. yeY
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where Y represents the constrains - and y represents the set of variables
(xzj,p”, Z]) The binary variables x;;, ¢ € V,, j € V, i < j indicate whether edge {1, j}
belongs to the tree solution, binary variables pij indicate whether the path P;; connecting
terminal node ¢ to terminal node j has exactly ¢ edges and the binary flow variables
i M Vi, € VoU{k, 0}, k0 € Vi, i # j and k < { indicate whether the flow traverses the

edge {i,j} belonging to the path connecting terminal node k to terminal node ¢ in the

direction from node ¢ to node j.

Assuming that each cz-j, i,j € Vi,i < j takes values in the interval [d;;, d;; + b;;] with
b;j > 0, we are interested in minimizing the maximum cost z such that at most I' of the
coefficients of the objective function are allowed to change. Defining M = {i,j € V; :i < j}
and S = {(¢,7) € M : b;; > 0}, the problem reads:

P Z 2t ey 2 b Z 2o,

i€V I€VE - (1.5)€S
j>i i<j
st. yeY

Using the approach we used before, we can express the inner maximization problem as

a linear program:

19 ST SERBUASIIS o) SIAPTS S

1eVy _EVt 1€Vy .gvt
st 0<uy<1,ijeVi,i<j (7.14)

> uy<rT (7.15)

1€V JEVR
j>i

Dualizing the inner maximization problem and joining the two minimizations problems,

we obtain the formulation that we designated as Robust-Dual formulation.
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Robust-Deviation-Dual formulation

n—1
Z =min szij ZQ‘fpfj + I'6 + ZZW
=2

i€V, 5€V; i€V; i€V
>t >t

st. yeyY
n—1
vij+0 > by (Zz‘fpf;), Vi, j € Vii < j
=2
0>0

which is the classical dualization for robust linear programs and can be applied whenever

the uncertainty is described by a polytope (here (7.14]) and (7.15))).

We also applied Theorem [7.2] To simplify the implementation we considered that all
the deviations b;;,4,j € V;,i < j are fixed and equal to b € RT. Doing so we obtained the

formulation that we named Robust-Theorem formulation.

Robust-Deviation formulation

Z = min 2°
s=2..n

and where for s =2...n:

S

n—1
z® =min FbQ_S—i—ZZdij 22_2-])5]- + Zb(2‘k—2_s) Zprj
icVy .7'j€>‘§t (=2 k=1 eV J'J_€>Vit

st. yeyY

The computational results will be presented in Section [7.3]

7.2 Reducing the risk of high cost

Rockafellar and Uryasev [114] [115] introduced a distributionally robust problem which
uses the risk measure, Conditional Value-at-Risk (CVaR).
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The Conditional Value-at-Risk, also known as Mean Expected Loss, Mean Shortfall,
and Tail VaR, is a modification of the Value-at-Risk (VaR), another risk measure commonly
used [3§].

The Value-at-Risk is the maximum loss which can occur with o x 100% confidence over
a certain period of time [3I]. The Conditional Value-at-Risk is the expected loss given that
the loss exceeds VaR at a given confidence level [3§].

In optimization modeling CVaR has superior properties than VaR, namely the fact
that CVaR can be expressed as a minimization formula, that can be incorporated into

optimization problems, preserving problem features like convexity [115].

Definition 7.4. [92, [I11] Let X be a random loss variable, Fx be the cumulative distri-

bution function of X, that is, Fx () = P(X <), 0 € R and Fy'(y) = reniﬂr% {Fx(0) > y}.
S

Given a probability level o, 0 < a < 1, the a-VaR of X is given by:

VaR,(X) = min {P (X <) > a} = Fy'(a).

fcR

Definition 7.5. [02] Let X be a continuous random loss variable. Given a probability

level a, 0 < a < 1, the a-CVaR of X is given by:
CVaR,(X) =E[X : X > VaR,(X)].

Pflug [I11] defined the CVaR of a random variable X with confidence level a €]0,1]

via an optimization problem as follows:
1
CVaR,(X) := inf 0+ —E[X — 0" 7.16
oo () = juf {0+ T2 BLX - 017 (7.16)
where E(-) denotes the expectation of a random variable and [a|t = max{a, 0}.

Consider the optimization problem (7.4) presented above:

with & C R%, and ¢ = (¢;) € R™ a cost vector.
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As before the set of feasible solutions is not subject to uncertainty and the cost coeffi-
cients are uncertain and such that ¢ € U, where U C R™*! is the uncertainty set.

The distributionally robust problem introduced by Rockafellar and Uryasev [114] [115]
is given by:

min sup CVaR,
TEX pep

i éixl-] (7.17)

where
P = (P e M (R™): Ple € U] = 1, Ep[c"] < p, Elmax{ — &, — u}] < o},

the vector ¢ € U is a random vector that represents the uncertain problem parameters,
such that T = [01 Co 0 Cp 1}, (AT = [01 co o cy|, Mi(R™1) denotes the
cone of nonnegative Borel measures supported on R", Ep[c’] denotes the expectation
of the random vector ¢, (u;) € R™ is the mean of the values obtained experimentally,
E[max{u — c°,® — u}] denotes the first center moment of the random vector °, and
i, 0 € R are fixed parameters.

The uncertainty set is defined as
U={ceR": Ac < b} =, 7" x {1}

where ¢,¢ € R" are fixed parameters, A € R®**2x(+1) ' ¢ R**1 are such that

o -1 --- 0 0 —C
0 0 -1 0 —c,
1 O --- 0 0 1
A= and b=
0 1 -0 0 Co
0 0 1 0 Cn
0 0 0 -1 -1
0 0 0 1 1
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The first n rows represent the inequalities ¢; > ¢, & —¢; < —¢;, @ € {1,---,n}. The

79
following n rows represent the inequalities ¢; < @, i € {1,---,n}. The last two rows

represent the equality ¢,11 =1 < —c,11 < —1 and ¢,41 < 1. Thus

U={ccR":¢<¢ <5, i€{l,---,n}and ¢,y = 1}

Using Pflug’s [I11] definition of CVaR, we obtain:

CVaR,,

ZCZ@] = inf {9+ —— Ep
6cR

=1

o)) o

n + n
where (Z Cix; — 9) = max {Z cix; — 0, 0}, 0 € R and « € [0,1] is the confidence
i=1

i=1
level.

The objective criterion in problem ((7.17)) is set to the worst-case conditional value-at-

risk at level «.

Adapting Theorem 3 from [79] to problem (7.17)), we obtain
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Theorem 7.3. Problem (7.17) is equivalent to the following MILP.

min 9+6+Niﬁi+ai3i
i=1 i=1
st. — Zn:gﬂil
i=1

n n
2 _ 9 2 2
— E ¢+ E CiTpti — VYant+1 T Vonyo S €
i1 i1

=1

1
1l -«

-7 + 'lewri + Ay — A+ AL = Z

—%'24”72%"‘/\?0_/\?1"‘/\?2:0

— Vomer F Vinsa + > iy =Y pihfy =0

i=1 =1

n n
- 722n+1 + 7§n+2 + Z :U’Z/\z22 - Z M1A121 =0

i=1 i=1
Azlo = Bi
A?o = Pi
Azll + Ai12 = B;
A?1 + AZZQ = B;
reX

eeR

geR

Bi, Bi € Ry
%; € Ry

1 A2 A1l Al A2 A2
Njo, Mg, Ny Moy Ajy, Ajy € Ry

Proof. We will follow the proof presented in [79]

Replacing, in problem (7.17), CVaR,

E Gy

=1

1
min sup inf {9 + —— Ep
z€X pep 0ER 11—«
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+ Z@'%{LH — Yong1 + Vango S €+ 1

n

D

=1

Ly

—
Vie {1,---n}
Vie {1,--n}
Vie {1, n}
Vie{l,-- n}
Vie {1,---n}
Vie {1,---n}
Vie {1, ,n}

Vie{l,--,2n+2}
Vie{l,-- n}

by its definition we obtain

w9}

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)
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Since the expectation is linear in IP and convex in 6, we can use Sion’s min-max theo-

rem [I31] to reformulate problem (7.17) as

min su 9+—]E cix; — 0
S g (Z )]
st. xeX,

feR

We can express the objective function of this problem as the optimal value of the

moment problem

n +
1
max 0 +/M . (; CiTi — 9) dP(c)

st. P & M+(Rn+1)

/ud]P(c) ~1

/cidlp(c) <up, Vie{l,---,n}

u

/(max{m — ¢, ¢ — i) dP(e) <o, Vie{l,---,n}
u

Strong duality is guaranteed by Proposition 3.4 in [I119], which is applicable since the

ambiguity set P contains a Slater point. By associating dual variables e, §; and B;,

2Let M be a compact convex subset of a linear topological space and Y a convex subset of a linear
topological space. Let f be a real-valued function on M x N such that (i) f(z,-) is upper semicontinuous

and quasi-concave on N for each x € M; (ii) f(-,y) is a lower semicontinuous and quasi-convex on M for

each y € N. Then

inf sup f(z,y sup 1nf flz,y
z€M ye N ( ) yeN z€M ( )
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1 =1,...,n, to the constraints, the dual problem is given by:

n n
min 9+6+M25i+023i

1=1 i=1

st. e+ Z ciBi + Z max{p; — ¢, ¢ — pi})Bi > (Z T — 9) Neeld (7.35)

ecR (7.36)

Bi, B; € Ry, Vie {1, <. ,n} (737)

Replacing (31, c;v; — 0) " with its definition, constraint (7.35) is equivalent to

max {max{ — Zcle 9 chﬁl Z max{; — ¢, ¢; — i })Bi;
=1
0— Zczﬁz Z max{f; — ¢;, ¢; — Mz‘})Bi}} <e
=1

and equivalent to

1
max {Dcfle%{x { 1—a Z Cit; — —9 Zczﬁz ; max{j; — ¢, ¢ — Mz‘})Bz} <e€

=1
0— iDi i — Ciy G — Jip) By p <
r?e%{x{ Zcﬁ ; max{f; — ¢, ¢; — ;i }) } e}

Expressing the maximization embedded in the first constraint as the optimal value of

an LP we obtain

1 n 1 n n
max —1_a;cixi——1_a9+;n}ﬁi+;n33

st. Ac<b
n < —c; Vie{l,---,n}
;< —(ui = ci) Vie{l,---,n}
;< —(ci— ) Vie{l,--- ,n}
¢ €R Vie{l,---,n}
nin; €R Vie{l,---,n}
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Expressing the maximization embedded in the second constraint as the optimal value

of an LP we obtain

max 0+ imlﬁz + iszz‘
i=1 i=1

st. Ac<b
nt < —c Vie{l,---,n}
n; < —(ui =) vie{l,---,n}
i < —(ci — ) Vie{l, .- n}
¢ €R Vie{l,---,n}
ni,n; €R Vie{l,--- ,n}

Replacing A and b with the respective definition we obtain the following two problems.

First problem:

max 1ia20i:ﬁi—ﬁ9+;ﬁgﬁi+2n53i

=1 i=1

st. —¢<—g Vie{l,---,n}
¢ <G Vie{l,---,n}
—Cpp1 < —1
Cnt1 <1
n < —c; Vie{l,---,n}
n < —(pi — ) Vie{l,---,n}
;< —(ci — ) Vie{l, - ,n}
¢ €R Vie{l,---,n}
nin; €R Vie{l,---,n}
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Second problem:

max 0+ inzlﬁz +i77,~23i
i=1 i=1

st. —c¢ < —¢

¢ < ¢

=
=0
IN
|
—
IS
|
S
~

771‘2 < _(Ci - Mi)
c €R

n.m €R

Vie{l,---,n}
Vie{l,---,n}
Vie{l,---,n}
Vie{l,--- ,n}
Vie{l,---,n}
Vie{l,---,n}
Vie{l,--- ,n}

The dual of the first problem is given by

n n

. _ 1
min - — ZQZ%I + Z Ci%lwri - 721n+1 + 721n+2 T 1

i=1 =1

st =+ v+ Ny — Al + Ay

- W%n—i-l + 72171—&-2 + Z :uZAzll -

i=1
Ny =6,

Agl + A}2 =B

0eR

Bi, Bi € Ry

7€ Ry

Ajos Ajys Ajp, € Ry

0
o
1 .
=T Vie{l,---n}
ZMiAzl2:O
i=1
Vie{l,---n}
Vie{l,---n}
Vie{l,--- ,n}

Vie{l,-- ,2n+2}

Vie {1, ,n}
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The dual of the second problem is given by

n n

: 2 _ 2 2 2
mm - E G+ E CiVYti = Van+1 T Vant2
i=1 i=1

st =Y+ v+ A — A AL =0 Vie{l,---n}

n n
— Vw1 F Voo + > i =Y pihd, =0

i=1 =1

Ay = B Vie{l,---n}
A} + A2, = B; Vie {1, --n}
0decR

i, Bi € Ry Vie{l, -+ ,n}
i, € Ry Vie{l,---,2n+2}
Ajoy Aiy, AL, € Ry Vie{l,---,n}

7.2.1 Application to MWTR problem with use of the Path-
edges’ formulation
We used Theorem presented above to obtain another robust formulation for the
MWTR problem using the Path-edges™ formulation, presented in Chapter [5

In order to simplify the reading, as before, we will refer to the Path-edges™ formulation,

presented in Chapter [5] as follow:
n—1
i =YY,
i€V €V =2
>t
st. yeyY
where Y is the set of solutions satisfying ([5.26)) — (5.47)) and y represents the set of variables

(24, %, f1). The binary variables x;;, i € V,, j € V, i < j indicate whether edge {i,j}

belongs to the tree solution, binary variables pfj indicate whether the path F;; connecting
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terminal node ¢ to terminal node j has exactly ¢ edges and the binary flow variables
Z-’;{W,j e VoU{k,l} k0 € Vi, i # j and k < { indicate whether the flow traverses the
edge {i,j} belonging to the path connecting terminal node k to terminal node ¢ in the
direction from node ¢ to node j.
In this case we assume that each Jij, i,j € Vi, i < j takes values in the interval [c_lij,aij].
Consider p, 0, o € R fixed parameters and for all 7, j € V4,7 < j, ;; € R are the mean of the
values of Jij obtained experimentally. Applying Theorem , we obtain the formulation

that we designated as Robust-CVaR formulation.
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Robust-CVaR formulation

Z =min 9+6+u225ij+0223iﬂ'

i€V; €V i€V i€Vh
J> >t
1
ZZ ZJ71J+ZZCZZJ)‘ 1+p2<€+1 a
1€V J€VR i€Vy JEV:
J>u j>i
"2 Ayt D Ay Nyt s
1€V JEV: 1€Vy JGVz
i>i
1 n—1
1 1 1 1 _ 1N
= %y T Ay + A 9u+Tw—ffg§:2pu
(=2
— AL+ AL - ®%+T3:0
ATIO MWL 3 ML
1€V: JEVt 1€V ]_€>‘;t
YIS WA ) IR
1€V JEVt 1eVy J€>Vt
>t
1
Ay = Bij
2
A = By
O + T, = B
2 2
O;; +T1;; = Bij;
yey
e, e R
Bij, Bij € Ry
1 2 1 2 1 2 1 2 1 2
71‘3‘7 /Yijv /\zjv )‘137 Az]: Az]a 9137 91]7 sz Tz’j < R+
pi € Ry

155

Vi, j €V,

Vi, g € Vi,

Vi, j € Vi,
Vi, j € Vi,
Vi,j € Vi,
Vi,j € Vi,

Vi,j € Vi,
Vi, j € Vi,

Vie {1,

1< 3

1<

1<
1<
1< 3

1<

1<
1<

4}
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7.3 Computational results

In this section we present the computational results we obtained by implementing the
three robust formulations, the Robust-Deviation-Dual formulation, the Robust-Deviation
formulation and the Robust-CVaR formulation. The computational tests were performed
on an Intel(R) Core(TM) i7-3770 CPU 3.40 GHz processor and 16Gb of RAM.

The three formulations were implemented using the Mosel language and solved with
FICO Xpress 7.8 [I] (Xpress-IVE 1.24.06 64 bit, Xpress-Optimizer 27.01.02 and Xpress-
Mosel 3.8.0).

We used the instances presented in Chapter [3and Chapter[d As we described, for each
matrix, D = (d;;) we generated ten random values belonging to [d;;, d;; + a x d;;|, where
a €{0,1;0,15;0,2;1}. We also run ten simulations using the network-level simulator NS-
3 [3], for three routing trees, where we defined the delays on the intermediate routers to
be random. So for each matrix we have ten different values, dfj, ke {1,...,10}, for each
distance d;;.

In the implementation of the Robust-CVaR formulation for each matrix, we used for

d;jy1,5 € Vit < j, the minimum of the ten values of dfj, ke {1,...,10}, for aij the
10 k
%. Regarding the parameter «, after several

experiences, we concluded that the choice of the value of o has little influence on the

maximum of the ten values and p,;; =

optimal solution obtained. We choose to use a = 0.02. We defined parameters

> nieve di > iseve max{py — dij, dij — pij}
M — g and o= J>i
total total

n(n—1) '

where total = 5

In the implementation of Robust-Deviation-Dual formulation, for each matrix, we used
bij = c_lij — i, for all 4, 7 € V4, ¢ < j. Regarding the parameter I' we run the implementation

-1 —1
for all T' € {1,...,%}. For all I' € {1,...,%} the optimum solution

obtained was the same, the only change was the runtime, that increased as I' increased.

In the implementation of Robust-Deviation formulation, for each matrix, we used
b = max d;; — min c_iz-j. As for the implementation of Robust-Deviation-Dual
1,j€V2,i<] 1,j€Vii<j
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and the conclusions

formulation, we run the implementation for all I" € {1, e
were the same.

Since the chose of I' does not change the optimum solution obtained, we chose only to
present the computation results for I' = 10.

The computational results are summarized in Tables[7.1]- [7.5]in which the first column,
labeled Matrix, indicates the name of the matrix instance used and the second column,
labeled |V;|, indicates the size of the instance. The third, forth and fifth columns concern the
results of the Robust-Deviation-Dual formulation, from the sixth to the eighth columns the
results of the Robust-Deviation formulation are presented, from the ninth to the eleventh
columns are the results of the Robust-CVaR formulation and the twelfth and thirteenth
columns concern Path-edges™ formulation. We present again the results of the Path-edges™
formulation to facilitate the comparison of the values obtained. The columns labeled T
show the execution time, in seconds, used to solve the instance and having a maximum
runtime of 7200 seconds. The columns labeled W' present the optimum value obtained
or the best value obtained having a runtime limit of 7200 seconds, where W stands for
Z Z w;j. The columns labeled GAP present the gap between the value obtained by the

1€V, JEV
Jj>1
. Wgr— LB
robust formulation and the best lower bound value: GAP = . x 100, where Wg
R

represents the best value obtained by the robust formulation within the runtime imposed

and LB the best lower bound value.
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Table 7.1: Computational results for data generated with a = 0.1.

Robust-Deviation-Dual Robust-Deviation Robust-CVaR Path-edges+
Matrix | V| T W GAP T W GAP T W GAP T W
5 0.01 0.0515 0 0.02 0.0515 0 0.01 0.0515 0 0 0.0515
6 0.05 0.0622 0 0.16 0.0622 0 0.08 0.0622 0 0.06 0.0622
7 2.95 0.0668 0 12.79 0.0668 0 0.53 0.0668 0 2.42 0.0668
A10M391 8 7.97 0.0734 0 234.63 0.0734 0 6.13 0.0734 0 14.87 0.0734
9 18.34 0.0998 0 308.25 0.0998 0 28.92 0.0998 0 9.89 0.0998
10 2578.25 0.1124 0 > 7200 0.1138 1.2 705.67 0.1137 1.1 197.67 0.1124
11 > 7200 0.1412 0.1 > 7200 0.141 0 2496.82 0.1412 0.1 1197.99 0.141
5 0 0.0893 0 0.02 0.0893 0 0.02 0.0893 0 0 0.0893
6 0.05 0.1115 0 0.08 0.1115 0 0.11 0.1129 1.3 0.05 0.1115
7 0.78 0.1343 0 10.27 0.1343 0 0.3 0.1343 0 0.42 0.1343
A10Pri 8 3.26 0.1351 0 66.77 0.1351 0 0.48 0.1351 0 1.89 0.1351
9 27.68 0.1364 0 162.15 0.1364 0 14.1 0.1364 0 12.93 0.1364
10 192.18 0.1361 0 > 7200 0.1449 6.1 234.95 0.1361 0 138.33 0.1361
11 3044.03 0.1794 0 > 7200 0.1794 0 2661.78 0.1794 0 574.74 0.1794
5 0.01 0.109 0 0.02 0.109 0 0.02 0.109 0 0.01 0.109
6 0.42 0.1215 0 1.62 0.1215 0 0.08 0.126 3.5 0.66 0.1215
7 1.05 0.1432 0 10.75 0.1432 0 1.95 0.1432 0 1.51 0.1432
A10M887 8 7 0.1858 0 45.93 0.1858 0 9.14 0.1858 0 9.45 0.1858
9 29.95 0.1972 0 221.5 0.1972 0 25.93 0.1972 0 9.23 0.1972
10 202.77 0.2156 0 > 7200 0.2156 0 172.69 0.2156 0 276.4 0.2156
11 > 7200 0.2263 0.9 > 7200 0.2243 0 3110.58 0.2243 0 2253.32 0.2243
5 0 0.4266 0 0.02 0.4266 0 0 0.4266 0 0.02 0.4266
A10S7 6 0.05 0.4579 0 0.11 0.4579 0 0.08 0.4579 0 0.03 0.4579
7 0.42 0.5345 0.3 2.93 0.5328 0 0.28 0.5345 0.3 0.13 0.5328
5 0.01 0.1997 0.1 0.02 0.1995 0 0.02 0.1995 0 0 0.1995
6 0.78 0.2906 0 1.25 0.2906 0 0.06 0.2906 0 0.52 0.2906
7 1.9 0.318 0.2 3.1 0.3173 0 0.28 0.3177 0.1 0.69 0.3173
A10S15 8 8.49 0.4 0.3 53.85 0.3987 0 3.9 0.3997 0.3 5.74 0.3987
9 45.02 0.415 0 110.21 0.415 0 50.54 0.415 0 9.86 0.415
10 336.18 0.4529 0 > 7200 0.4962 8.7 358.16 0.4535 0.2 170.62 0.4528
11 > 7200 0.6612 0 > 7200 0.6612 0 6595.52 0.6612 0 895.27 0.6612
5 0.01 0.3152 0 0.02 0.3152 0 0.01 0.3166 0.4 0 0.3152
6 0.75 0.3585 0 0.72 0.3583 0 0.05 0.3585 0 0.06 0.3583
7 3.18 0.397 0.5 6.88 0.3951 0 0.45 0.3957 0.2 0.86 0.3951
A10S20 8 19.42 0.4827 0.4 42.68 0.4807 0 14.25 0.4819 0.3 11.54 0.4807
9 64.97 0.5464 0.2 272.72 0.5454 0 151.16 0.5464 0.2 12.9 0.5454
10 229.02 0.6058 0.2 > 7200 0.6366 5 807.58 0.6057 0.2 206.08 0.6048
11 1553.93 0.6439 0.2 > 7200 0.643 0 > 7200 0.6822 5.8 3055.13 0.6429
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Table 7.2: Computational results for data generated with a = 0.15.

Robust-Deviation-Dual

Robust-Deviation

Robust-CVaR

Path-edges+

Matrix | V| T \Y% GAP T A%% GAP T \Y% GAP T AY%
5 0.02 0.0529 0 0.02 0.0529 0 0.01 0.0529 0 0.01 0.0529
6 0.22 0.0637 0 0.13 0.0637 0 0.08 0.0638 0.1 0.08 0.0637
7 3.28 0.0685 0 10.58 0.0685 0 0.75 0.0685 0 1.37 0.0685
A15M391 8 6.15 0.0752 0 373.25 0.0752 0 9.55 0.0752 0 16.43 0.0752
9 23.26 0.1021 0 362.14 0.1021 0 30.92 0.1021 0 13.37 0.1021
10 4347.56 0.1153 0 > 7200 0.1166 1.2 1106.57 0.1166 1.2 211.55 0.1153
11 > 7200 0.1544 7.2 > 7200 0.1447 1 3209.11 0.1449 1.1 2032.65 0.1433
5 0.01 0.0917 0 0.02 0.0917 0 0 0.0917 0 0.02 0.0917
6 0.05 0.1143 0 0.11 0.1143 0 0.09 0.1158 1.3 0.02 0.1143
7 0.89 0.1379 0 6.6 0.1379 0 0.3 0.1379 0 0.67 0.1379
A15Pri 8 3 0.1386 0 41.65 0.1386 0 0.52 0.1386 0 2.21 0.1386
9 65.96 0.1397 0 166.45 0.1397 0 18.19 0.1397 0 12.68 0.1397
10 219.62 0.1393 0 > 7200 0.1393 0 280.16 0.1393 0 185.83 0.1393
11 6431.95 0.1841 0 > 7200 0.1841 0 2607.31 0.1841 0 322.87 0.1841
5 0.01 0.1118 0 0.02 0.1118 0 0 0.1118 0 0.01 0.1118
6 0.58 0.1245 0 1.84 0.1245 0 0.33 0.129 3.5 0.47 0.1245
7 1.34 0.1517 3.3 9.97 0.1466 0 1.76 0.1466 0 1.86 0.1466
A15M887 8 8.64 0.1905 0 233.13 0.1905 0 8.3 0.1905 0 11.61 0.1905
9 18.47 0.202 0 304.79 0.202 0 11.4 0.202 0 9.7 0.202
10 270.11 0.2205 0 > 7200 0.2205 0 71.79 0.2205 0 128.84 0.2205
11 > 7200 0.2468 6.9 > 7200 0.2297 0 5629.05 0.2297 0 1881.22 0.2297
5 0 0.4377 0 0.02 0.4377 0 0 0.4377 0 0 0.4377
A15S7 6 0.05 0.4694 0 0.08 0.4694 0 0.06 0.4694 0 0.05 0.4694
7 0.53 0.549 0.5 2.78 0.5465 0 0.28 0.549 0.5 0.09 0.5465
5 0.02 0.2046 0 0.01 0.2046 0 0 0.2046 0 0.01 0.2046
6 0.84 0.2981 0 0.12 0.2981 0 0.06 0.2981 0 0.23 0.2981
7 1.72 0.3263 0.3 4.07 0.3254 0.1 0.22 0.3259 0.2 0.72 0.3252
A15515 8 14.91 0.4112 0.5 88.22 0.4092 0 9.49 0.4107 0.4 3.79 0.4092
9 65.58 0.4262 0.1 102.29 0.426 0 23.07 0.4262 0.1 10.37 0.426
10 209.32 0.4651 0.1 > 7200 0.4868 4.6 220.79 0.4651 0.1 119.43 0.4646
11 > 7200 0.6788 0 > 7200 0.6788 0 1405.31 0.6932 2.1 902.2 0.6788
5 0 0.3274 1.2 0.02 0.3233 0 0 0.3253 0.6 0.01 0.3233
6 0.94 0.3678 0.1 0.11 0.3678 0 0.11 0.3678 0.1 0.16 0.3678
7 3.09 0.4079 0.7 5.26 0.405 0 0.36 0.4059 0.2 0.75 0.405
A15S20 8 23.48 0.4958 0.6 448.03 0.4928 0 6.21 0.4947 0.4 7.96 0.4928
9 96.97 0.5609 0.3 448.33 0.5593 0 33.31 0.5609 0.3 11.75 0.5593
10 722.05 0.622 0.3 > 7200 0.6529 5 610.84 0.6218 0.2 179.48 0.6204
11 1944.82 0.6613 0.2 > 7200 0.66 0 2432.34 0.661 0.2 1804.07 0.6598
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Table 7.3: Computational results for data generated with a = 0.2.

Robust-Deviation-Dual Robust-Deviation Robust-CVaR Path-edges+
Matrix | V| T W GAP T W GAP T W GAP T W
5 0.01 0.0543 0 0.02 0.0543 0 0.02 0.0543 0 0 0.0543
6 0.16 0.0652 0 0.33 0.0652 0 0.08 0.0653 0.1 0.06 0.0652
7 2.51 0.0702 0 13.01 0.0702 0 1.51 0.0702 0 1.4 0.0702
A20M391 8 4.45 0.077 0 250.16 0.077 0 4.13 0.0775 0.7 11.59 0.077
9 76.85 0.1044 0 359.28 0.1044 0 59.65 0.1044 0 10.39 0.1044
10 4008.07 0.1181 0 > 7200 0.1195 1.2 1432.04 0.1196 1.2 274.01 0.1181
11 > 7200 0.1483 1.1 > 7200 0.1467 0 > 7200 0.1573 6.8 1793.47 0.1467
5 0 0.0942 0 0.01 0.0942 0 0.02 0.0942 0 0.01 0.0942
6 0.05 0.1171 0 0.17 0.1171 0 0.05 0.1186 1.3 0.05 0.1171
7 0.89 0.1414 0 8.03 0.1414 0 0.25 0.1414 0 0.89 0.1414
A20Pri 8 4.52 0.1422 0 72.88 0.1422 0 0.47 0.1422 0 0.92 0.1422
9 27.77 0.1431 0 180.16 0.1431 0 14.76 0.1431 0 9.08 0.1431
10 295.14 0.1427 0 > 7200 0.1521 6.2 187.78 0.1427 0 119.22 0.1427
11 > 7200 0.1889 0 > 7200 0.1889 0 2315.31 0.1889 0 569.43 0.1889
5 0 0.1147 0 0.01 0.1147 0 0.01 0.1147 0 0.02 0.1147
6 0.44 0.1274 0 1.31 0.1274 0 0.17 0.1319 3.5 0.75 0.1274
7 1.15 0.1553 3.4 10.64 0.1536 2.3 1.4 0.15 0 1.64 0.15
A20M887 8 8.97 0.1953 0 198.87 0.1953 0 4.15 0.1953 0 11.89 0.1953
9 20.39 0.2067 0 234.22 0.2067 0 13.07 0.2067 0 9.02 0.2067
10 1190.77 0.2253 0 > 7200 0.2253 0 589.53 0.2253 0 120.14 0.2253
11 > 7200 0.2412 2.5 > 7200 0.2352 0 3201.56 0.2352 0 2079.15 0.2352
5 0 0.4488 0 0.01 0.4488 0 0.02 0.4488 0 0.02 0.4488
A20S7 6 0.03 0.481 0 0.08 0.481 0 0.06 0.481 0 0.05 0.481
7 0.30 0.5635 0.6 2.45 0.5602 0 0.16 0.5635 0.6 0.14 0.5602
5 0.02 0.2098 0 0.02 0.2098 0 0.01 0.2098 0 0.01 0.2098
6 0.78 0.3055 0 1.28 0.3055 0 0.05 0.3055 0 0.53 0.3055
7 2.43 0.3347 0.4 3.15 0.3334 0 0.25 0.3341 0.2 0.87 0.3334
A20S15 8 10.15 0.4223 0.6 33.06 0.4197 0 3.93 0.4217 0.5 7.71 0.4197
9 31.95 0.4372 0.1 109.20 0.4372 0.1 33.34 0.4372 0.1 8.52 0.4369
10 370.69 0.4773 0.1 > 7200 0.5229 8.9 86.53 0.4772 0.1 158.62 0.4766
11 > 7200 0.6965 0 > 7200 0.6964 0 2343.12 0.7121 2.2 909.73 0.6964
5 0.02 0.3341 0.8 0.02 0.3315 0 0.02 0.3341 0.8 0 0.3315
6 0.61 0.3775 0.1 0.61 0.3772 0 0.08 0.3775 0.1 0.08 0.3772
7 3.5 0.4188 0.9 4.8 0.415 0 0.41 0.4162 0.3 0.87 0.415
A20S20 8 9.27 0.5089 0.8 148.4 0.5049 0 9.3 0.5207 3 13 0.5049
9 79.67 0.5754 0.4 414.09 0.5733 0 21.64 0.5857 2.1 11.45 0.5733
10 330.1 0.6381 0.3 > 7200 0.6693 5 418.5 0.6494 2.1 178.03 0.6359
11 2112.57 0.6787 0.3 > 7200 0.6768 0 2029.97 0.6784 0.2 944.07 0.6768
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Table 7.4: Computational results for data generated with a = 1.

Robust-Deviation-Dual Robust-Deviation Robust-CVaR Path-edges+
Matrix | V| T W GAP T W GAP T W GAP T W
5 0.01 0.0769 2.8 0.01 0.0748 0 0 0.0769 2.8 0 0.0748
6 0.76 0.0882 0 0.14 0.0882 0 0.06 0.0923 4.4 0.08 0.0882
7 4.43 0.0978 1 13.31 0.0968 0 0.27 0.0974 0.7 1.65 0.0968
A100M391 8 10.89 0.1095 4.6 315 0.1063 1.8 0.56 0.1100 5 9.64 0.1044
9 229.37 0.143 0 465.71 0.143 0 26.74 0.1436 0.4 13.6 0.143
10 > 7200 0.1671 1.8 > 7200 0.1647 0.4 1129.24 0.1671 1.8 279.43 0.164
11 > 7200 0.2131 3.7 > 7200 0.2052 0 5949.4 0.2107 2.6 3594 0.2052
5 0 0.1338 0 0.01 0.1338 0 0.02 0.1338 0 0 0.1338
6 0.03 0.1618 0 0.13 0.1618 0 0.08 0.1646 1.7 0.05 0.1618
7 1.98 0.1986 1 13.91 0.1966 0 0.22 0.1986 1 2.18 0.1966
A100Pri 8 8.21 0.1991 0 172.19 0.1991 0 0.48 0.1991 0 1.93 0.1991
9 41.68 0.2035 0 314.45 0.2035 0 18.81 0.2035 0 9.77 0.2035
10 279.61 0.1966 0 > 7200 0.1966 0 612.55 0.1966 0 94.63 0.1966
11 > 7200 0.3033 12.5 > 7200 0.2694 1.5 2251.51 0.2655 0 1008.31 0.2655
5 0 0.1601 0 0.02 0.1601 0 0.02 0.1688 5.2 0 0.1601
6 0.98 0.1756 0 0.44 0.1756 0 0.05 0.1843 4.8 0.08 0.1756
7 1.78 0.2136 3.3 9.36 0.209 1.2 0.28 0.2225 7.2 2.45 0.2065
A100M887 8 11.37 0.2751 1.3 762.9 0.2786 2.6 2.45 0.2753 1.4 2.75 0.2714
9 63.04 0.2833 0 344.26 0.2869 1.2 8.3 0.3014 6 8.08 0.2833
10 6899.47 0.3064 0 > 7200 0.3259 6 116.81 0.3196 4.1 144.63 0.3064
11 > 7200 0.3731 14.8 > 7200 0.3177 0 5503.58 0.3288 3.4 3532.92 0.3177
5 0 0.6269 0 0.01 0.6269 0 0.01 0.6479 3.2 0 0.6269
A100S7 6 0.05 0.6662 0 0.09 0.6662 0 0.05 0.7048 5.5 0.03 0.6662
7 2.12 0.7961 2.1 5.02 0.7791 0 0.23 0.8088 3.7 0.16 0.7791
5 0.01 0.3009 3.1 0.01 0.2916 0 0 0.2916 0 0.01 0.2916
6 0.81 0.4255 0 1.12 0.4255 0 0.06 0.4255 0 0.42 0.4255
7 2.25 0.4683 1.6 4.71 0.4609 0 0.23 0.4654 1 0.61 0.4609
A100815 8 8.92 0.6004 2.2 25.9 0.5873 0 3.7 0.5974 1.7 8.56 0.5873
9 71.38 0.6133 0.3 120.73 0.6656 8.1 18 0.6133 0.3 9.63 0.6116
10 866.4 0.6751 1 > 7200 0.7292 8.3 60.65 0.7032 4.9 142.88 0.6685
11 > 7200 1.1498 14.9 > 7200 0.9782 0 > 7200 1.0302 5 700.94 0.9782
5 0.02 0.4647 0.8 0.02 0.4611 0 0.01 0.4744 2.8 0.02 0.4611
6 0.83 0.5295 0.3 0.83 0.5281 0 0.05 0.5295 0.3 0.28 0.5281
7 3.56 0.5934 3.2 7.35 0.5742 0 0.23 0.5804 1.1 0.94 0.5742
A100S20 8 4.57 0.719 2.8 71.53 0.699 0 3.45 0.7119 1.8 8.53 0.699
9 149.81 0.8075 1.3 373.35 0.7972 0 23.59 0.8632 7.6 12.36 0.7972
10 3626.4 0.8958 1.2 > 7200 0.9307 4.9 351.91 0.9557 7.4 137.65 0.8853
11 > 7200 0.9574 1 > 7200 0.9644 1.7 1757.95 0.9477 0 1042.36 0.9477
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Table 7.5: Computational results for data from the networking application generated with

random delays

Robust-Deviation-Dual Robust-Deviation Robust-CVaR Pa‘nh—edgesJr
Matrix | V| T A%% GAP T A% GAP T AY% GAP T A%
5 0 0.3961 0 0.02 0.3961 0 0 0.3961 0 0 0.3961
SS7 6 0.05 0.4237 0 0.06 0.4237 0 0.08 0.4237 0 0.05 0.4237
7 1.45 0.5048 1.3 3.2 0.4984 0 0.22 0.4984 0 0.09 0.4984
5 0.02 0.2086 0.3 0.01 0.2081 0 0.01 0.2086 0.3 0.02 0.2081
6 0.48 0.2955 0.4 0.62 0.2945 0 0.06 0.2951 0.2 0.14 0.2945
7 1.08 0.3212 0.2 2.36 0.3205 0 0.34 0.3211 0.2 0.37 0.3205
SS15 8 9.33 0.4004 0.2 37.57 0.3997 0 5.8 0.4004 0.2 4.51 0.3997
9 23.45 0.4164 0.2 102.93 0.4164 0.2 42.46 0.4161 0.2 8.5 0.4154
10 353.31 0.4524 0.2 > 7200 0.4929 8.4 151.84 0.4524 0.2 103.65 0.4517
11 4506.08 0.6518 0 > 7200 0.6518 0 2523.85 0.6528 0.2 762.98 0.6518
5 0.01 0.3026 0 0.01 0.3026 0 0 0.3026 0 0.01 0.3026
6 0.55 0.3432 0.1 0.5 0.3434 0.2 0.23 0.3434 0.2 0.19 0.3427
7 1.95 0.3796 0.2 4.87 0.3789 0 0.36 0.3796 0.2 0.55 0.3789
SS20 8 12.56 0.4614 0.1 109.78 0.461 0 8.1 0.4614 0.1 7.67 0.461
9 41.68 0.5224 0.1 155.95 0.5222 0 52.9 0.5224 0.1 12.21 0.522
10 775.43 0.5788 0.1 > 7200 0.6518 11.3 636.45 0.5788 0.1 280.8 0.5784
11 1933.76 0.614 0.1 > 7200 0.6136 0 2648.88 0.6136 0 1108.13 0.6136

The optimum solution within the time limit imposed is obtained in the following cases:

e by the Robust-Deviation-Dual formulation for all instances with n < 11 terminal
nodes and for instances with n = 11 for matrices A10Pri, A10520, A15Pri, A15520,
A20520, SS15 and SS20;

e by the Robust-Deviation formulation for all instances with n < 10 terminal nodes;

e by the Robust-CVaR formulation for all instances except for instances with n = 11

for matrices A10520, A20M391 and A100S15.

By analyzing the results, we can see that for a = 0.1 and a = 0.15 the robust opti-
mum solution is mostly the same as the optimum solution obtained using the Path-edges™
formulation. But as a increases the number of instances with the same robust optimum
solution as the optimum solution obtained using the Path-edgest decreases. This is due

to the fact that the uncertainty set increases with the increase of a.
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Figure displays, for instances with the same number of terminal nodes, the aver-

age time of the Robust-Deviation-Dual, Robust-Deviation, Robust-CVaR and Path-edges™

formulation. As we can see Robust-CVaR formulation is the fastest of the three robust

formulation used.
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Figure 7.1: Average time of the robust formulations and the Path-edges™ formulation.
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Chapter 8

Software

In this chapter, we present a system developed, with the help of Joao Almeida, within
the ambit of the degree in computer engineering [9]. This system displays the topology
of an unknown network, using only packet delay measurements between the end-devices
of the network that are obtained without the cooperation of the internal nodes. We start
by presenting some of the software available for discovering a network topology. Then
we present the requirements of the system we developed. Afterward we analyze, in more
detail, the Precision Time Protocol, needed to synchronize the devices and present the
implementation of our system. Finally, we present the results of the tests we made to

evaluate our system.

8.1 Existing software

Nowadays there are several applications that discover and display the topology of a
network. In this section, we present some of these applications, as well as some tools
used to discover the Internet topology, since these tools could be adapted to determine
the topology of any restricted network. All these tools use ICMP commands, such as ping
and traceroute, and SNMP querys. As previously mentioned, these techniques require the

cooperation of all internal network devices.
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To the best of our knowledge, there are no tools available which discover the router-level
topology without cooperation of the internal network devices.
In the first subsection we describe some commercial software and in the second subsec-

tion some tools used to discover the Internet topology.

8.1.1 Commercial Software

Here we present and describe some commercial software which discovers and displays

the map of any network.

SolarWinds Network Topology Mapper
SolarWinds Network Topology Mapper [6] is a network mapping software that discovers

and presents a map of the network.
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Figure 8.1: Interface of SolarWinds Network Topology Mapper.

This software uses ICMP, SNMP, CDP (Cisco Discovery Protocol), WIM (Windows

Management Instrumentation), among other techniques to scan IP address ranges and find
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nodes. It discovers and scans all the network segments connected to the users routers. The
user can also enter the IP address range(s) and SNMP community strings of the network
he wants to discover. The devices of the network that can be discovered are: routers,
switches, servers, wireless access points (APs), VoIP phones, desktops, and printers.

After SolarWinds Network Topology Mapper discovers the network, it automatically
displays a Layer 2 network map with node icons, coloured lines representing network con-
nectivity speed and labels indicating the switch port information. The user can also select
to view the Layer 3 network in order to display IP topology information. In the presented
map the user can modify node details (node name, node role, and management IP address)
and manually connect nodes.

Beyond discovering and displaying the network, this software allows the user to export
network diagrams to Microsoft Office® Visio®), Orion Network Atlas, PDF, and PNG

formats.

8.1.2 NetworkView

NetworkView [4] is a compact network discovery tool for Windows which can be run
from a USB key.

This tool discovers TCP /TP nodes and routes using SNMP, Ports, NetBIOS and WMI.
The search can be made using a single address, range of addresses or a full subnet.

The user can add nodes and routes manually and edit them. He can, also, save a
complete map as a EMF (Enhanced MetaFile), which is a vectorial file type that can be

modified with an external graphic application.
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Figure 8.2: Interface of NetworkView.

8.1.3 Ipswitch WhatsConnected

Ipswitch WhatsConnected [2] is a software that automates network discovery and de-
pendency mapping.

This software uses ICMP, SNMP, WIM, among other techniques to build a picture
of the Layer 2 and the Layer 3 network. The maps generated show the physical, logical
and virtual connectivity, including IP and VLAN-specific information. The devices de-
tected are: routers, switches, servers, wireless access points, printers, Hubs, IP Phones and
VMware virtual machines.

The user can customize and manipulate the maps and can export them to Microsoft(®)

Visio™ or PDF format.
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Figure 8.3: Interface of Ipswitch WhatsConnected.

8.2 Internet topology discovery

In the following, we present three projects that intend to discover the Internet topology.

8.2.1 Archipelago

For nearly a decade the project CAIDA (Center for Applied Internet Data Analysis)
deploys and maintains a globally distributed measurement platform. They project started
with a topology probing tool, the Skitter [84], which was replaced, in 2007, by a new active
measurement infrastructure named Archipelago [33].

Physically, Archipelago is composed of measurement nodes (machines) located in var-
ious networks worldwide that are connected to a central server (at CAIDA) over Inter-
net, forming a logical star topology. Using multiple teams of geographically distributed
Archipelago monitors, the probing work among teams is dynamically and strategically di-

vided to conduct a coordinated, large-scale traceroute-based topology measurements. The
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monitors share a common set of destination addresses.
Archipelago uses parallel ICMP traceroutes from one source to many destinations,
saving the replies from each router on the path and the round-trip times (RTTs).

CAIDA also has visualizing tools that presents a geographical map of traceroute paths.

8.2.2 DIMES

The project DIMES (Distributed Internet Measurements and Simulations) [120] is a
scientific research project, which aims to discover the router-level topology of the Internet,
with the help of a volunteer community. The volunteer community is formed by anyone
who downloads and installs the so called DIMES agents on a computer connected to the
Internet. This DIMES agents perform Internet measurements, such as traceroute and ping,
at a low rate, consuming about 1KB/s, sending the results of its own measurements to a
central collection station at regular intervals. The user who runs the DIMES agent has

access to maps presenting the look of the Internet as it can be seen from his home.

8.2.3 Rocketfuel

Rocketfuel [132] is an ISP (Internet Service Provider) topology mapping engine devel-
oped in the University of Washington. The topology is discovered by using routing infor-
mation and select the measurements that are most valuable. Rocketfuel uses traceroute,
BGP (Border Gateway Protocol) routing tables to focus the measurements and DNS (Do-

main Name System).

8.3 The system’s requirements

The system we developed measures the delays of packets sent between various devices,
and determine the topology of the network that connects these devices. It consists of two
independent applications that work cooperatively. The first application, which we call

Synchronisation Network Application (SNA), synchronizes the devices using the Precision
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Time Protocol (PTP), determines the delays and compiles these delays in a distance ma-
trix. The second application, called Network Topology Application (NTA), determines
the topology of the network using the distance matrix compiled by SNA and displays the
topology in a graphical way. The two applications can be used independently. The SNA
can determine the packets delays, saving the distances matrix in a file. The NTA can
determine and display the topology of the network using the distance matrix previously
saved in a file.

To measure the delays we must synchronize the clocks of the devices or use other
techniques that do not need clock synchronization, like packet sandwich probe [23]. We
decided to synchronize the clocks of the devices, since we consider this a more practical
approach. As stated in Chapter [3|the synchronization can be done using several protocols,
such as Network Time Protocol (NTP) [99] or Precision Time Protocol (PTP) [83]. Since
PTP is considered to be more accurate [97], we choose to implement it and not the NTP.
The PTP defines synchronization messages used between a Master and a Slave, where the
Master is the provider of the time and the Slave synchronizes to the Master. We describe
the Precision Time Protocol in more detail, as well as our implementation of it, in the next
sections.

To determine the topology of the network knowing only the packets delays, we imple-
mented the exact formulation Path-edges® presented in Chapter [5] Since the exact formu-
lation take time to present a solution, we implemented the Feasibility Pump heuristic pre-
sented in Chapter [6] which determines an approximation of the topology very quickly. All
the delays have an associated error, therefore we also implemented the Robust-Deviation-
Dual formulation presented in Section [7.I} We did not implement the Robust-CVaR for-
mulation presented in Section once it was developed more recently after we create the
system and we did not have the time nor the access to the university’s network lab to run
the tests.

The SNA has two types of users, the one we call the master and the one we call the
slave. The master has access to all the features of the application and this device must have

a graphical desktop environment. The slave does not have direct access to the application
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since it runs in background. Concerning the NTA, all users have access to the application,
but in order to access the SNA through NTA, they must be a master. Unlike the devices
running as master, the devices running as slaves do not need to have a graphical desktop
environment, but in this case they cannot use the NTA.

All devices must have an internet access via wired Ethernet and have the wireless
connection turned off, so that the right IP address is sent in the packets. Beside this, all
devices must have Linux and Java § installed and the devices running NTA must also have
Gurobi (a solver for mathematical programming) installed. Initially, we wanted to develop
a system that should run on both Windows and Linux, but due to the Windows security

restrictions we were unable to run the feature to synchronize the devices in Windows.

8.3.1 Requirements list

In the following we present the list of requirements of both applications, the SNA and
the NTA.

Synchronisation Network Application

REQ. 1: Users shall have the ability to choose between running the application as

master or slave.

REQ. 2: The application in master mode shall have a security system that is based

on a password stored in an encrypted file.
REQ. 3: The application shall synchronize all the devices in the network.

REQ. 4: The application shall measure the packets delays and summarize these

delays in a distance matrix.
REQ. 5: The application shall save the distance matrix in a file.

REQ. 6: The application shall read a distance matrix from a previously saved file.
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REQ. 7: Users shall have the ability to identify the IP multicast address, which will

be used to synchronize and measure the packets delays.
REQ. 8: Users shall have the ability to edit a distance matrix and change it.

REQ. 9: Users shall have the ability to manually create a distance matrix, intro-

ducing the devices names and the packets delays.

REQ. 10: The application shall have direct access to the Network Topology Appli-

cation.

Network Topology Application

REQ. 11: The application shall determine and display the topology of a network

using a distance matrix.

REQ. 12: Users shall have the ability to choose between the available formulations,

which can be used to determine the topology.
REQ. 13: The application shall save the topology in a file.
REQ. 14: The application shall read the topology from a file and display it.

REQ. 10: The application shall have direct access to the Synchronisation Network
Application.
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8.3.2 Use-case diagrams

In this subsection, we present the use-case diagrams of the two applications and briefly

describe each use-case.

Synchronisation Network Application

Synchronize devices

Measure delays

IP Multicast address

O

Export a distance matrix

Read a distance matrix

Edit a distance matrix

Create a distance matrix

Connect to NTA

Figure 8.4: Use-case diagram of the Synchronisation Network Application.

174



CHAPTER 8. SOFTWARE

e Synchronize devices: Allows the master device to start the Network Time Protocol

so that the slave devices can synchronize their clock time to the master’s clock time.

Precondition: At least one slave device must respond to the master’s request to

synchronize.

Postcondition: All the slave devices have their clock time synchronized with the

master clock time.

e Measure delays: Allows all devices in the multicast session to send packets and to
measure the packets delays. Before measuring the delays, all devices are synchronized.
When all the slave devices have their delay, they send them to the master device,

which saves them in a distance matrix and displays it on the screen.
Precondition: At least three slave devices must participate in the multicast session.

Postcondition: The master device displays the distance matrix.

e IP Multicast address: Allows the user to introduce the IP multicast address that

is used to send the packets to synchronize the devices and measure the delays.

Precondition: The IP address introduced must be a valid multicast address.

e Export a distance matrix: Allows to save the distance matrix, displayed on the
screen, in a file. The location where the file is saved is indicated by the user, as well

as the name of the file.

Precondition: A distance matrix is displayed on the screen; the name of the file is

valid; the location to save the file is valid.

Postcondition: The file is saved in the location indicated by the user.

¢ Read a distance matrix: Allows the user to indicate the location of a file, which
contains a distance matrix that was previously saved. The distance matrix is then

displayed on the screen.
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Precondition: The location of the file is valid; the file is a file containing a distance

matrix.

Postcondition: The distance matrix is displayed on the screen.

e Edit a distance matrix: Allows the user to change the distance matrix displayed
on the screen. The user can change the displayed distances, rename devices and

delete all entries corresponding to a device.

Precondition: A distance matrix is displayed on the screen; the changes introduced

by the user are valid.

Postcondition: The distance matrix is displayed on the screen.

e Create a distance matrix: Allows the user to create a distance matrix by intro-

ducing the devices names and the corresponding distances.

Precondition: The data introduced by the user is valid.

Postcondition: The data introduced by the user is displayed on the screen.

e Connect to NTA: Allows the user to open the Network Topology Application.

Postcondition: Opens the Network Topology Application.
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Network Topology Application

Master

Choose a formulation

Determine the topology

Export a topology

Import a topology

Connect to SNA

Figure 8.5: Use-case diagram of the Network Topology Application.

e Choose a formulation: Allows the user to select the formulation the system uses

to determine the topology.

Postcondition: The system registers the formulation that was selected.

e Determine the topology: Allows to determine the topology of a network using a

file that contains the distance matrix. The location of the file is given by the user. If

the user does not previously select a formulation, the system uses the exact formu-

lation to determine the topology of the network. The network topology obtained is

displayed on the screen.
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Precondition: The location of the file is valid; the file is a file with a distance matrix.

Postcondition: A network topology is displayed on the screen.

e Export a topology: Allows to save the network topology, displayed on the screen,
in a file. The location where the file is saved is indicated by the user, as well as the

name of the file.

Precondition: A network topology is displayed on the screen; the name of the file is

valid; the location to save the file is valid.

Postcondition: The file is saved in the location indicated by the user.

e Import a topology: Allows the user to indicate the location of a file that contains
a previously saved topology, previously saved. The topology is then displayed on the

screen.
Precondition: The location of the file is valid; the file is a file containing a topology.

Postcondition: The network topology is displayed on the screen.

e Connect to SNA: Allows the user to open the Synchronisation Network Applica-

tion.
Precondition: The user must be a master.

Postcondition: Opens the Synchronisation Network Application.

8.4 The Precision Time Protocol (PTP)

In this section we present the Precision Time Protocol [83] 123], 137] in more detail to
better understand the implementation of our system.

The Precision Time Protocol is one of the common protocols used to synchronize clocks
in packet networks. This protocol defines messages between a master, which provides the
time, and a slave, which uses the messages to correct its clock and synchronize to the

master’s time.
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The PTP operates in two phases. The first phase is used to correct the time difference
between the master and the slave. In this phase, the master sends a synchronization
message (SYNC message), with its time information to the slave. Then the master registers
the time at which the SYNC message was sent and sends this time in a Follow-up message.
The slave registers the reception time of the SYNC messages, calculates the difference
between the reception time and the time sent by the master and updates its clock time.

In the second phase, the slave determines the network delay. To do that, the slave
sends a Delay Request message and registers the time instant when the message leaves.
The master registers the time instant when the Delay Request message arrives and sends
this time in a Delay Response message to the slave. The slave, knowing the difference
between these time values (designated Slave to Master difference), calculates the one way

delay and updates its clock time. It is assumed that the delay between master and slave is

Master to Slave difference + Slave to Master difference
D) )

symmetric and so the one way delay is equal to
where the Master to Slave difference is considered to be zero, since the slave has updated
his time in the first phase in order to be equal to the master’s time.

In Figure we display an example of the messages that are exchanged by the master
and the slave. As we can see, after the slave receives the SYNC message and the Follow-
up message, it updates his time. After receiving the Delay Response message, the slave

calculates the one way delay and updates its time again.
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Figure 8.6: Example of PTP messages exchange [7].
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8.5 Implementation

In this section we describe our implementation. We start by describing our implemen-
tation of the Precision Time Protocol (PTP), then we describe how we measure the delay.
We present the way we present the topology on the screen and, finally, we describe the

interface of both applications.

8.5.1 Implementation of the Precision Time Protocol

As we referred in the previous section, the PTP relays on messages containing sending
times between the master and the slave. So, the more precise the sending and receiving
times are, the more precise is the synchronization. Therefore, most of the PTP imple-
mentations use specialized hardware, but there are also implementations that do not use
specialized hardware and are referred to as software-only implementations [39]. Our imple-
mentation of the PTP is a software-only implementation. Throughout the implementation,
to be as much precise as possible, all times are read and saved in nanoseconds.

We use multicast packets and unicast packets in our implementation of the PTP. In the
first phase of PTP we use multicast packets and in the second phase we use unicast packets.
In the first phase the master sends a synchronization message, designated Sync, and a
follow-up message, designated SendTimeSync. The master sends this pair of messages four
times more, in order to ensure that all slaves receive this pair of messages. After sending
a pair of messages, the master waits 0,5 seconds before sending the next one.

The Sync packet has the following composition:

a flag indicating the type of the packet, in this case indicating that it is a synchro-

nization message;

the session id, a integer number between zero (inclusive) and 9999 (exclusive);

the packet id ;

the IP address size;
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e the IP address.

Figure [8.7] displays the composition of a Sync packet.

Flag Session id Packet id Size of the IP address IP address

4 bytes 4 bytes 4 bytes 4 bytes n bytes

Figure 8.7: Composition of the Sync packet.

The SendTimeSync packet has the following composition:

e a flag, indicating that it is a follow-up message;

e the session id, which is the same as the session id of the Sync packet;
e the packet id, which is the same as the packet id of the Sync packet;
e the time, at which the Sync packet was sent.

Figure displays the composition of a SendTimeSync packet.

Flag Session id Packet id Time

4 bytes 4 bytes 4 bytes 8 bytes

Figure 8.8: Composition of the SendTimeSync packet.

When the slave receives the Sync packet, it registers the current time and the IP address

of the master. After receiving a SendTimeSync packet, the slave verifies if the session id
and the packet id of this SendTimeSync packet correspond to the session id and packed
id of the Sync packet received before. If the identification numbers do not correspond, the
slave discards the packet and waits to receive another Sync packet. If the identification
numbers correspond, the slave discards all the Sync packets and SendTimeSync packets it
receives next. Furthermore, the slave saves the current time in variable machineTime and

the time in the SendTimeSync packet is saved in variable serverTime. Since we cannot
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change the System timer, variable serverTime will be used as the new current time and
variable machineTime is used to update the serverTime. We use the following expression
to update the serverTime: serverTime = serverTime + (current time — machineTime),
where the current time is the real current time of the system.

To start the second phase of our implementation of the PTP, the slave waits for the
master to send a StartReadSlaves message, which it does using a multicast packet, after
sending the five pairs of packets (Sync, Send Time Sync). The StartReadSlaves packet is
used to advise the slaves that they can start sending packets to register in a session, and

has the following composition:
e a flag, indicating the type of message;
e the session id, which is the same as defined before in the Sync packet.

Figure displays the composition of a StartReadSlaves packet.

Flag Session id

4 bytes 4 bytes

Figure 8.9: Composition of the StartReadSlaves packet.

Figure illustrates the message exchange that takes place in the second phase of
our implementation of the PTP. In this phase all the communication between the master
and the slaves is done in unicast.

The AdvertiseMaster packet contains the IP address of the slave. The master creates
a thread for each AdvertiseMaster packet received and saves all the IP addresses in a list.

After receiving the acknowledgement packet from the master, the slave sends a De-
layMeasures packet and registers the time the packet leaves. The master answers with an
acknowledgement packet that contains the time instance when the DelayMeasures packet
arrived and his current System time. The slave registers the exact time the acknowledge-

ment packet arrives. Then using the time the DelayMeasures packet arrives and the time
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Master Slave

Figure 8.10: Message exchange that takes place in the second phase of our implementation

of the PTP.

registered when the DelayMeasures packet leaves, serverTime is updated. It first calculates
the delay, as follows:

Time DelayMeasures arrives — Time DelayMeasures leaves

Delay =
elay 5

and then updates the serverTime:
serverTime = serverTime+(Slave’s System current time - machineTime) + Delay.
The server, also, calculates de following difference:

Difference = The master’s System current time sent in the acknowledgement packet

—(Time the acknowledgement packet arrives — Delay).

The slave continues to send DelayMeasures packets and updates its time as long as the
difference is greater then 1000 nanoseconds.
After the synchronization process is complete, the process of measuring the packet

delays and construction of the distance matrix starts. We describe it in the next section.
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8.5.2 Construction of the distance matrix

The process of determining the packet delays is done by sending unicast packets and
is managed by the master. All slaves wait for the authorization message (SendPermission
packet), sent by the master, that authorizes them to send multicast packets to the other
devices, in order to determine the distance between them and identify the device that
is sending the packet. The first entity to send multicast packets is the master; when it
finishes, it sends a SendPermission packet to all slaves one by one.

The device sending the multicast packets starts by sending ten NewMulticastTree pack-
ets, with a 3-seconds interval between two consecutive packets, which only contains a flag
indicating the type of the packet and are discarded by the other devices. This allows to es-
tablish the new multicast distribution tree. Subsequently, the device sends 100 SendDelays
packets, with a 0,05-seconds interval between consecutive packets.

The SendDelays packet has the following composition:

a flag indicating the type of the packet;

the IP address size;

the IP address;

the current time of the device.

Figure displays the composition of a SendDelays packet.

Flag Size of the IP address IP address Time

4 bytes 4 bytes n bytes 8 bytes

Figure 8.11: Composition of the SendDelays packet.

After a device receives a SendDelays packet, it registers the IP address of the sender
and the time the packet arrives and then calculates the delay:

Delay = Time the SendDelays arrives — Time present in theSendDelays packet.
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The device has then a list of delays and determines the distance to the sender by
calculating the average of these delays.

After this process, the master sends a multicast packet (AdvertiseSlavesToSendDevices)
to allow each slave to send the collected distances. The master compiles all the distances

in a matrix and displays this matrix on the screen.

8.5.3 Determination and representation of the topology

With the distance matrix, the system determines the topology using one of the formula-
tion we implemented. The system may use the exact formulation Path-edges™ formulation
presented in Chapter [3] the Feasibility Pump heuristic presented in Chapter [6] and the
robust approach presented in Section of Chapter [7]

To represent the topology on the screen, some calculations are made, in order to uni-
formly distribute the devices on the screen. To do this, devices will be positioned in a
ellipse.

We start by determining the coordinates of the center of the panel and the position of
each device relatively to this center. To determine the position of each device relatively
to the center, we must determine the angle between two devices and the distance of all
devices to the center, which is different for each device since devices are positioned in an
ellipse. The angle between two devices is 27’7, where n is the number of devices.

Let (a,b) be the coordinates of the center. The first device will be positioned in the
horizontal line passing through the center, that is, the ordinate of the position of the device
is also b. To position the other devices we will use the angle, # between the device to be

positioned and the first device. This angle is calculated using the following expression:

2m(k — 1
0= M, where n is the number of devices and k is the order of the device.
n

So, for the first device we have: 6§ = 0.

Using the angle 6, we can determine the distance, d, between the center and the position
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of a device using the following expression:
a’b?
T 02+ (a2 — b2)sin?(0)

The coordinates of the device in the panel are determined using the following expression:

d

(a+d-cos(0),b+d - sin(h)) .

The position of the routers is determined in a similar way, but we reduce the distance

to the center by subtracting a constant.

8.6 The Interface

In this section we briefly describe the graphical interface of both applications.

8.6.1 Synchronisation Network Application (SNA)

Login/Registration
When the user enters the application, the login/registration windows displayed in Fig-

ure [8.12] is presented.

| Slave |

| Master |

Password

Figure 8.12: Login/registration window of the SNA.

The button Slave allows the user to enter in slave mode. After entering in slave mode,

the application shows a window, displayed in Figure |8.13 where the user is asked to enter
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the TP multicast address used to send multicast packets. The system will verify if the
introduced IP multicast address is valid. The multicast address is saved in a file. If the
user clicks the OK button without indicating the IP multicast address, the system will
read the address from the file, if this file exists. If the file does not exist and the user clicks
the OK button without indicating the IP multicast address, the system shows an error

message.

[Iél ’ =@ = 1
L 1

Input I&J

Introduce the multicast ip address! If you don’t introduce ip address, this will be read from configuration file!
[232.232.232.232 |

[ Jj

Figure 8.13: The window for entering the [P multicast address, in slave mode.

Button Master allows the user to enter in master mode. To enter as master, the user
must insert the password. The password is saved in an encrypted file. When no file exists
the user is asked to confirm the password.

After entering the application as master, the user is presented with the main window

displayed in Figure [8.14]
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(2] (=[5 )
i [ =3
G L IP Multicast Address I |
Export data | | Read data |
| Measure delays |
| Show topology |

New device name

| Add device |

| Delete device |

| Reset password |

Figure 8.14: Main window of the SNA.

To determine the distance matrix of a network, the user must enter the IP multicast
address that is used to send the packets. The system will verify if the introduced IP
multicast address is valid.

Button Ezxport data allows the user to save the distance matrix presented on the screen
in a file.

Button Read data allows the user to read a file that contains a distance matrix and
displays it on screen.

Button Measure delays allows the user to determine the distance matrix of a network,
by synchronizing the devices and obtaining the delays. After the distance matrix is deter-

mined, it is displayed on the screen as shown in Figure [8.15
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i T
'.;ﬁx, .
'S IP Multicast Address 232232 232 232 |
(4|
Export data | | Read data |
| Measure delays |
10.0.3.10 10.0.4.10 10.0.2.10 10.0.1.1
| Show topology |
10.0.3.10 |00 0.6872381  |0.6860016 | 1.0481688
New device name
| || 100410 [ose7z381 |00 112600025 |1.6001428
| Add device | | 100210 |osssoots |1.42500025 [0.0 1.0399008
| Delete device |
10.01.10 |1.0461686 |1.6091428 (103980085 [0.0
| Reset password | q| M | [»

Figure 8.15: Main window of the SNA with a distance matrix displayed on screen.

Button Show topology gives the user direct access to the Network Topology Application
(NTA). If a matrix is displayed in SNA, when the NTA opens, the topology corresponding
to the matrix, is automatically displayed on screen. If no matrix is displayed in SNA, when
clicking in the Show topology button, the NTA simply opens.

Button Add device allows the user to add a device to the matrix; to do so, the user

must indicate the device name.

Button Delete device allows the user to delete a device from the matrix, to do so, the
user must indicate the device name.

The button Reset password deletes the content of the encrypted file containing the
password. If the user wants to change his password, he deletes the content of the encrypted
file and the next time he enters the application, he chooses the new password.

To change the value of the distances shown in the matrix, the user simply clicks on the

value and changes it.
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8.6.2 Network Topology Application (NTA)

The NTA can be opened by any user, therefore the application only has a main window

as displayed in Figure [8.16]

rlél - “

| Import topology from file: | |
|

Read delays from file | |Exact Formulation | - |

| Export topology to file Measure delays |

Figure 8.16: Main window of the NTA.

Button Import topology from file displays on the screen a topology saved in a file.

Button Export topology to file allows to save the topology, displayed on the screen, in
a file.

Button Read delays from file allows to read the distance matrix from a file and displays
the corresponding topology on the screen.

The dropdown button allows the user to choose the formulation that the system will
use to determine the topology. The user can choose between three strategies: Exact formu-
lation, Robust formulation and Feasibility Pump. By default, the topology is determined
using the Exact Formulation. If a topology is displayed on the screen, and the user chooses

another formulation, the system determines the new topology using the chosen formulation
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and displays it on the screen.
Button Measure delays gives the user direct access to the login window of the SNA.

In Figure [8.17, we can see the main window of the NTA with a topology displayed on

the screen.
g B
(&) NTA Ol )
| Import topology from file | | Read delays from file | |Exact Formuiation |=|
| Export topology to file | | Measure delays |
A
16.0.4.20
A

10.0.4.1

10.0.1.10

L
10.0.3.10
A

10.0.2.10

Figure 8.17: Main window of the NTA with a topology displayed on screen.

8.7 Tests and Results

Initially, we wanted to test our system using the GNS3 simulator. So, we created a
network using GNS3 and tried to use virtual machines to simulate the hosts, but due
to the memory and processing limitations of our computers, we could not connect more
than three virtual machines simultaneously. Therefore, we tested our system using the
university network lab. We set up a network with four, five and six computers. The
university network lab only has six functional computers, so we were limited on the size

of the network. We tested our system several times using networks with four, five and six
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computers.
In the following, we present the physical topology of the networks we created and the
logical topology the system displayed on the screen, after determining the distance matrix

through the delay measurements and running each of the three formulations.

8.7.1 Network with four computers

The network we created with four computers is illustrated in Figure [8.18

10.0.4.10 10.0.3.10 10.0.2.10

=

10.0.1.10

Figure 8.18: Physical network with four computers.

After we run the application, using the three formulations, we obtained the logical

topologies that are shown in Figure [8.19] Figure [8.20] and Figure [8.21]
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e R
(&) NTA [ESYEEN 5
| import topology from file. | | Read delays from file | [Exact Formulation [+]
| Export topology to file | | Measure delays |
a
0.4.10
100340 10.0.1.10
R1 R2
A
10.0.2.10
—

Figure 8.19: Logical network with four computers obtained using the Exact Formulation.

VE,J NTA L=

| importiopologyfromfile | |  Readdelaysfromfie | ||

| Export topology to file | | Measure delays |
*.
.0.4.10

10.0.3.10 10.0.1.10
R2
*.
10.0.2.10

Figure 8.20: Logical network with four computers
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rlé;l NTA —_ = ﬂ-‘
| mport topology from file | | Read delays from file | [Feasibility Pump [~]
| Export topology to file | | Measure delays |
A
0.4.10
£
10.0.3.10 10.0.1.10
R R2
10.0.2.10
e

Figure 8.21: Logical network with four computers obtained using the Feasibility Pump

Heuristic.

As we can see, the three formulations obtained the same logical topology, despite the
fact in the logical topology obtained using the Feasibility Pump Heuristic both routers are
swapped. However, as we referred in the previous chapter, the internal nodes, which corre-
spond to the router, can be arbitrarily interchanged without modifying the tree topology.

We can also notice that the logical topology is in accordance with the distribution of the
computers in the physical network, since the computer 10.0.4.10 is closer to the computer

10.0.3.10 than to computer 10.0.1.10.
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8.7.2 Network with five computers
The network we created with five computers is illustrated in Figure [8.22

10.0.4.10 10.0.3.10 10.0.2.10

10.0.1.10

10.0.4.20

Figure 8.22: Physical network with five computers.

After we run the application, using the three formulations, we obtained the logical

topologies that are shown in Figure [8.23 Figure [8.24] and Figure [8.25]

i 3
|£| NTA ==l

| Import topology from file Read delays from file | |Exact Formuiation [~]

| Export topology to file

Measure delays |

10.0.1.10

10.0.3.10
ES

10.0.2.10
!

Figure 8.23: Logical network with five computers obtained using the Exact Formulation.
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T
[&] NTA

h'n.port topology from file

Read delays from file | [Robt

Export topology to file

Measu re delays |

10.0.3.10

™~

10.0.2.10

10.0.1.10

S ————————————————————————————————————————————————

Figure 8.24: Logical network with five computers obtained using the Robust approach.

T
(2] NTA

h'n.port topology from file

Read delays from file |

Export topology to file

Measu re delays |

10.0.3.10

A

10.0.2.10

10.0.1.10

S ————————————————————————————————————————————————

Figure 8.25: Logical network with five computers obtained using the Feasibility Pump

Heuristic.
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As we can see, also in this case the three formulations obtained the same logical topology

and the logical topology is in accordance with the distribution of the computers in the

physical network.

8.7.3 Network with six computers
The network we created with six computers is illustrated in Figure [8.26

10.0.4.10 10.0.3.10 10.0.2.10
10.0.1.10

10.0.4.20 10.0.1.20

Figure 8.26: Physical network with six computers.

After we run the application, using the three formulations, we obtained the logical

topologies that are shown in Figure [8.27, Figure [8.28 and Figure [8.29
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| %] NTA

| import topology from file

Read delays from file

| Export topology to file

Measure delays

10.0.3.10

*.

10.0.2.10

10.0.1.20

10.0.1.10

e ———

Figure 8.27: Logical network with six computers obtained using the Exact Formulation.

| %] NTA

| import topology from file

Read delays from file

| Export topology to file

Measure delays

10.0.3.10

*.

10.0.2.10

A

10.0.1.20

10.0.1.10

e ———

Figure 8.28: Logical network with six computers obtained using the Robust approach.
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| %] NTA (=

Read delays from file | [Feasibility Pump [~]

| Import topology from file

| Export topology to file Measure delays |

10.0.3.10 10.0.1.10

A A

10.0.2.10 10.0.1.20

Figure 8.29: Logical network with six computers obtained using the Feasibility Pump

Heuristic.

As we can see the three formulations obtained the same logical topology and the logical

topology is in accordance with the distribution of the computers in the physical network.

8.7.4 (Observations

The results of the tests we made show that the system is functional. We only regret
the fact that we could not perform tests using a larger number of computers. It would
have been interesting to see the system behavior in these cases, namely the processing time
spent by the system.

Because the number of computers on the network is reduced, it took longer to determine
the distances matrix than run the formulations. With a larger number of computers in the
network, this would not be the case, namely using the exact formulation and the robust
approach.

The reduced number of computers on the network is also the reason why the Feasibility
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Pump heuristic obtained the same topology as the other two formulations. As the num-
ber of computers in the network grow, the topology obtained with the Feasibility Pump
heuristic and the topology obtained with the other two formulations would be different,

because in this case the heuristic only finds a feasible solution and not the optimal one.
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Chapter 9

Conclusion

In this thesis we defined formally the Minimum Weighted Tree Reconstruction (MWTR)
problem. We introduced the concepts related to the inference of a network topology and
presented the instances of the problem we generated using NS-3, a network-level simulator.
We also described some concepts related to the inference of the phylogenetic tree and

present the instances of the phylogenetic area we used.

Subsequently, we presented two compact mixed integer linear programming formula-
tions of the MWTR problem, the Path-weight formulation and the Path-edges formulation.
By including valid equalities and inequalities to improve the performance of the second for-
mulation we obtained the Path-edges™ formulation and by including only valid equalities
we obtained the Path-edges*? formulation. We also present the computational results ob-
tained by running the several formulations when using data instances from networking
application and phylogenetic application. The best results were obtained by the Path-

edges™ formulation.

We also presented the methods Feasibility Pump and Local Branching and the two
heuristics, the Feasibility Pump heuristic and the Local Branching heuristic, we developed
applying the ideas of these methods. The computational results obtained by running the
two heuristics when using the data instances from networking application and phylogenetic

application were presented. The Feasibility Pump heuristic finds a feasible solution very
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quickly but the quality of the solution is not the best. The Local Branching heuristic
significantly improves the feasible solution obtained by the Feasibility Pump heuristic.

Then, we studied two robust approaches to solve the MWTR problem, one to control the
maximum number of deviations and the other to reduce the risk of high cost. We presented
the three formulations, the Robust-Deviation-Dual formulation, the Robust-Deviation for-
mulation and the Robust-CVaR formulation, we derived from these two approaches and
the computational results obtained by running the three formulations when using the data
instances from the networking application and the phylogenetic application.

Finally, we presented the system we developed which displays the discovered topology
of an unknown network, using only packet delay measurements between the end-devices of
the network. The system consists of two independent applications that work cooperatively.
The first application synchronizes the devices, determines the delays and compiles these
delays in a distance matrix. The second application determines the topology of the network

using the distance matrix compiled and displays the topology in a graphical way.
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