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Resumo
As capacidades de conetividade dos equipamentos móveis têm obrigado a
constante mudança do modo de operação da rede, exigindo cada vez mais
recursos. Visando as futuras redes 5G, existe a necessidade de evoluir as
presentes redes móveis, melhorando as suas arquiteturas e mecanismos.
Estas futuras redes, vistas como a próxima geração arquitetural das teleco-
municações, tenta suportar a "explosão" do número de equipamentos liga-
dos, serviços e tecnologias de acesso, apoiando-se fortemente nas redes
definidas por software (do inglês, Software Defined Networks, SDN). Ape-
sar de estas redes definidas por software, estarem a ser exploradas e im-
plementadas no núcleo de rede, atualmente não contemplam o seu impacto
em equipamentos sem-fios móveis, de forma a avaliar o possível suporte de
controlo. Os desafios associados à extensão dos mechanismos e protocolos,
como o OpenFlow, das redes definidas por software até aos equipamentos
móveis, não só requerem o desenho de uma infra-estrutura capaz de supor-
tar essa extensão, como também da sua avaliação e provenientes benefícios.
Esta dissertação acompanha a tendência destas futuras redes, explorando a
interação entre o equipamento móvel e a rede, em ambientes sem-fios het-
erogéneos, nos quais os mecanismos de SDN são extendidos até equipa-
mentos móveis capazes de não só consumir, como também de produzir infor-
mação. Com isto, foi desenvolvida e implementada sobre uma rede sem-fios
física uma arquitetura conceptual, na qual os mecanismos SDN são extendi-
dos até ao terminal, suportando diferentes equipamentos móveis com múlti-
plos fluxos de dados. Os resultados obtidos, mostram a sua viabilidade em
cenários de mobilidade sem congestionamento, visando benefícios em exten-
der os mecanismos SDN para controlo de fluxos end-to-end em ambientes
sem-fios.
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Abstract
The connectivity capabilities of mobile wireless devices have been forever
changing how networks operate, increasingly demanding resources from the
network. This places a need for novel mobile network architectures and mech-
anisms, targeting tomorrows challenges, as envisaged by 5G networks re-
search efforts. This future network, seen as the next generation telecom-
munications architecture, aims to tackle the explosion of connected devices,
services and access technologies, relying its architecture on Software Defined
Networks (SDN) to compose its underlying mechanisms. Notwithstanding, de-
spite the need for novel control procedures to support and optimize increas-
ingly challenging wireless mobile scenarios, SDN has been being deployed at
the core and backhaul sections of the network and is not actively considering
its impact directly over the wireless mobile terminals themselves. The chal-
lenges associated with the extension of SDN protocols, such as OpenFlow,
all the way to the terminal requires the design and evaluation of frameworks
that not only provide such mechanisms, but actually evaluate them and their
benefits.
This thesis shades a light on an important 5G trend, namely the interaction of
the mobile node with the network, exploring a framework where SDN mecha-
nisms are extended all the way to the mobile node, in heterogeneous wireless
environments featuring different mobile nodes with multiple data flows, which
act both as consumers and producers of information. In this way, flow-based
mobility management becomes available to a network controller entity, via the
OpenFlow protocol. The concept framework was implemented over a physi-
cal wireless testbed, validating its contribution in a mobile source-mobility use
case, with results highlighting the promising benefits of extending SDN ap-
proaches for end-to-end flow control in wireless environments.
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chapter 1
Introduction

In the last years we have been witnessing to a tremendous Internet growth supported by the
simplicity of the network architecture, which allows a link between the different protocol solutions in
the diverse layers of operation. This huge enlargement of the network, exponentially increasing not
only the number of users, but also provided services, pushes the network to its limit and motivates
pioneer architectural approaches, such as Software Defined Networking (SDN). These new architectural
approaches promise to empower network infrastructures to better support upcoming challenges.

Towards this concern, upcoming 5G research has been guiding the development of the telecom-
munications architecture of tomorrow, addressing challenges such as massive traffic volumes, the
proliferation of connected mobile devices and sustainable integration of heterogeneous networks in
mobile environments. Software Defined Networking [1] has been one of the key building blocks of
5G network architectures, adding a greater degree of flexibility. Despite these contributions, SDN
mechanisms were conceived with wired network infrastructures in mind, where new exploratory de-
ployments have recently started to target its usage in cellular and wireless environments. However,
these designs restrain SDN control to network edge nodes, disregarding the benefits towards mobile
equipment control.

With the intend to contribute with new results in this particular area, this work addresses and
extends SDN mechanisms, providing a new architecture where OpenFlow (the de-facto SDN protocol)
is able to be used beyond the network edge and reach the mobile end-node. Unlike other solutions, the
developed framework is detailed and supported by an experimental implementation and is conceived
towards the support of different types of heterogeneous wireless technologies. To validate this concept,
a prototype was implemented over a physical wireless testbed, allowing the study of the concept
contribution and impact, in a mobile offloading source-mobility use case. Results highlight the
promising benefits of extending SDN approaches for end-to-end flow control in wireless environments.
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1.1 motivation and objectives
Although SDN mechanisms were developed keeping in mind the wired network infrastructures,

the OpenFlow protocol was designed to allow networks to be (re)configured on the fly, and adding
greater flexibility for accommodating new scenarios and applications. Extending SDN for end-to-end
flow control in wireless environments allows the provision of an abstraction layer to the network nodes,
and the capability of performing handover through OpenFlow mechanisms.

Keeping this in mind, the main objectives are: i) a whole new framework composed by a modified
OpenFlow controller and several network nodes instantiating an Open vSwitch (OvS); ii) capability of
performing a handover through OpenFlow mechanisms; iii) and a testing environment that evaluates
the performance, overhead and scalability issues. With these contributions it is expected that the
SDN controller entity is able to coordinate a handover when requested for, as quick as possible and
with a minimum packet loss, providing an abstraction layer for the end-nodes involved. In order to
accomplish the main objectives, several milestones were initially defined, enabling a gradual increase of
complexity towards the main goal. The milestones defined were:

1. Identification of the state of the art:
Identifying the state of the art of SDN implementations and its fields of study, allowed a more
comprehensive vision of the overall SDN framework;

2. Study of OpenFlow and associated SDN mechanisms:
An exhaustive study, exploration and testing of the OpenFlow specification and associated SDN
mechanisms, had a major importance in the final experimental framework design;

3. Study of SDN, protocol implementation and software suites:
A rigorous search for how to implement the SDN-enabling protocols and software enabled the
evaluation of different solutions, performing a comparative term between used and available
solutions.

1.2 methodology
A proper beginning to design an experimental mobile OpenFlow-enabled framework, composes a

study of not only the state of the art of the SDN framework, but also an exhaustive study of OpenFlow
specification and SDN-enabled software. After acquiring the necessary knowledge in SDN mechanisms,
this can be further capitalized by testing different SDN-enabled software, such as Mininet, which
enables us to virtualize an OpenFlow network and test most of the SDN mechanisms.

The difficult part is the transitory step between the virtual emulation in Mininet and the deployment
in real wireless environment, such as the AMazING1 testbed, where external factors, such as wireless
interferences and equipment restriction, need to be contemplated. In a bottom-up approach, the
framework was taking shape, starting development from simple layer 2 forwarding rules to layer 3, and
then extending the OpenFlow messages to the end-nodes.

With the framework fully functional, several experiences were made, exploring the handover
mechanisms with high repeatability, where metrics such as handover delay, traffic throughput and

1http://amazing.atnog.av.it.pt/
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packet loss were evaluated. Results highlighted the promising benefits of extending SDN approaches
for end-to-end flow control in wireless environments.

1.3 contributions
This work explores the deployment of SDN mechanisms all the way to the mobile node, in

heterogeneous wireless environments, allowing flow-based control to reach end-user devices, resulting
in a contribution to an experimental implementation in a wireless environment, whose results were
validated and submitted as a paper for IEEE GLOBECOM 2015, Extending SDN to End Nodes
Towards Heterogeneous Wireless Mobility. Additionally, a paper focused in the study of the framework
scalability, Multiple Flow in Extended SDN Wireless Mobility, was elaborated and submitted to the
fourth edition of the European Workshop on Software Defined Networks.

Also, a contribution on Github2 was made, distributing the developed code and creating a web
page, which explains how to reproduce and configure a similar framework.

1.4 master thesis layout
The remainder of the master thesis is organized as follows: Chapter 2 presents a state of the art

of SDN and OpenFlow mechanisms, as well as the related work on SDN in wireless environments,
followed by Chapert 3 where the details of the developed framework are presented. The framework is
evaluated in an end-to-end flow mobility scenario in Chapter 4, presenting the results of its deployment
over a physical wireless testbed. A second scenario is presented in Chapter 5, were the framework was
submitted to a multi-user environment, presenting its results. Finally, the master thesis concludes in
Chapter 6, pointing out as well future work.

2http://atnog.github.io/of_mobilenode/
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chapter 2
State of the art

In the last years, the way how we use the network has changed. An increasingly amount of
communication technologies and a large plethora of utilization scenarios, ranging from simple voice
communications to real-time streaming of multimedia content, has contributed to an unprecedented
boost in communications, number of connected devices and amount of traffic. An increasingly decisive
contributor to this communications boost are mobile connections, particularly when considering mobile
video [2], which explores access to content while on the move, able to take advantage of multiple access
interfaces in mobile nodes (e.g., Wi-Fi, WiMax, UMTS, LTE, etc.) and overlapping networks.

Moreover, taking advantage of the powerful capabilities of modern smartphones and fast wireless
networks, the users are evolving from information consumers to producers, generating different kinds
of traffic (e.g., live video streams) with disparate requirements [2]. This raises unparalleled stringent
requirements for upcoming telecommunication architecture innovations, going above the support of
optimized mobility for devices, but actually into how to optimize the different traffic flows to and
from a device, ensuring that they are used by the best network interface possible at each moment.
Supporting new architectures capable of evolution and support for integrated services, 5G networks
aim to come with a flexible, scalable and robust end-to-end smart integrated network, which is able
to cope with the requirements imposed by both fixed and wireless accesses infrastructures. Besides,
a great support for Software Defined Networking allows not only functional programmability and
elasticity aspects, but also integrated virtualization of connectivity [3]. Despite the strong support
of 5G networks as a motivation for this work, its major focus is in SDN mechanisms over wireless
networks.

2.1 software defined networking
Acknowledging the new challenges of the telecommunications architecture of tomorrow, upcoming

5G networks are starting to be defined, laying its reliance on Software Defined Networking (SDN) [1]
principles as one of the key building blocks. By leveraging a separation from the data and control
planes, SDN adds a greater degree of flexibility to the underlying operations of a network, allowing
the network to better adapt to more dynamic environments, with a central high-level entity (i.e., the
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controller) able to dynamically coordinate and program the network traffic forwarding entities behavior
through a software API. To achieve this, the high-level entity deploys the rules in the forwarding
entities (i.e., switches), allowing them to apply intelligent behavior to traversing packet flows. The
interaction between the controller and forwarding entities (control and data plane, respectively) has
been the subject of interface standardization, with ONF’s OpenFlow [4], representing the de-facto
open-source SDN instantiation. Due to its capabilities for (re)configuring networks on the fly and
its flexibility for accommodating new scenarios and applications, allowing new protocols to be tested
in real production networks, the OpenFlow protocol was originally designed for network researchers.
From then, it has evolved as a core component of network virtualization mechanisms and cloud-based
architectures [5], becoming a key cornerstone for the enablement of upcoming 5G architectures [6].

2.1.1 sdn architecture
Through provided open interfaces, SDN aims the development of software capable of controlling

the network resources connectivity, performing traffic inspection and modification. By decoupling the
control from the data plane, the SDN architecture centralizes the network intelligence and abstracts
the network infrastructure from the applications, providing an increased programmability, automation,
and network control. The enterprises and carriers are then capable of building highly scalable, flexible
networks that readily adapt to changing business needs [7].

Application layer Business 
Applications

Control layer

Infrastructure layer

SDN Control Software

Network 
services

Network Devices

API

Control data plane interface
(e.g., OpenFlow)

Figure 2.1: SDN architecture and
respective layers

The ONF organization [7], sustains that the SDN architecture
addresses the following requirements:

• Support for interoperability based upon open SDN con-
troller plane interfaces;

• Independence from the characteristics of SDN controller
implementation;

• Scalability and support for recursion to encompass all
feasible SDN controller architectures;

• Applicability to a wide range of data plane resources;

• Policy and security boundaries related to information
sharing and trust;

• Support for management interfaces, across which resources
and policy may be established, as well as other more
traditional management functions;

• Co-existence with existing business and operations support
systems, and other administrative or control technology
domains;

At a high level, the SDN architecture specifies the reference points and open interfaces, that can
be managed to control the network resources connectivity. On the other hand, these resources can be
tailored to a particular client or application, and can be interrogated and manipulated by those clients
or applications. Regarding to the modeling of forwarding and processing behavior, a wild variety of
media and connectivity types is supported, that includes any compute, storage or network functions
and services that may cover all OSI Layers, and may be either physical or virtual.
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Further, architectural considerations and specifications include co-existence with non-SDN envi-
ronments and migration issues. As ONF [7] claims, SDN needs to be deployable within the context
of largely pre-existing multi-player environments, comprising many organizations or businesses, with
the consequent need for policy and security boundaries of information sharing and trust. Real-world
constraints include the need to co-exist with existing business and operations support systems, and
other administrative or control technology domains.

The ONF [7], defines three basic principles for the SDN architecture:

1. Decoupling of controller and data planes;
Despite the separation between the control and data planes, the controller must necessarily
be exercised within data plane systems. In fact, the SDN controller can delegate significant
functionality to the network elements, while remaining aware of its state.

2. Logically centralized control;
In comparison to local control, a centralized controller has a broader perspective of the resources
under its control, potentially allowing better decisions. Scalability is improved by decoupling
and centralizing control, enabling for increasingly global but less detailed views of network
resources.

3. Exposure of abstract network resources and state to external applications;
Applications may exist at any level of abstraction or granularity.

In Fig. 2.1, the SDN architecture is shown comprising three layers: data and control plane, and
SDN applications. However, the distinction between application and control, sometimes is a matter of
perspective, since the same northbound interface can be seen differently by the various stakeholders.
Regarding to a SDN controller, everything further south (i.e., southbound) is a data plane, and
everything further north (i.e., northbound) is an application plane. Next, the three SDN architectural
layers will be explained in more detail .

2.1.1.1 data plane
Traditional networking couples all three planes, which are implemented in the firmware of forwarding

entities (i.e., routers and switches), however in order to develop the network into a more programmable
and flexible state, SDN decoupled the data and control planes. With this clear separation between
planes, the data plane (also known as forwarding plane) is in charge of carrying the user traffic,
according to the control plane logic. So, the data plane is the part that comprises the network elements
and exposes their capabilities towards the control layer (i.e., control plane), via the control-data
plane interface. The communication between the two planes can be performed through the OpenFlow
protocol.

The control plane implementation through software brought a more dynamic network access
and administration, enabling a centralized control, in a very granular level, where the traffic can be
monitored and managed without having to manually reconfigure individual switches.

2.1.1.2 control plane
The separation of the control plane from the data plane allowed a wide range of data plane resources

to be managed by a logically centralized and scalable control plane entity (i.e., the controller). With
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the packet forwarding being part of the data plane, the decisions about where traffic is sent belong to
the control plane itself. Moreover, the control plane is also responsible for the system configuration,
management, and keeping the routing table information updated, where routing protocols such as RIP,
OSPF or BGP, can be used to help the controller maintain the topology updated.

Besides of monitoring the data plane, the SDN controller also translates the applications’ re-
quirements and exerts more granular control over the network elements, while providing relevant
information up to SDN applications. Services are offered to applications via the application-controller
plane interface by way of an information model instance that is derived from the underlying resources,
management-installed policy, and local or externally available support functions. An SDN controller
may orchestrate competing application demands for limited network resources [7].

2.1.1.3 sdn applications
Regarding to the SDN applications, these are at the application plane, communicating via

application-controller plane interface, not only their network requirements toward the controller plane,
but also some traditional management functions. In fact, management is required, at least, for initial
network elements setup and to assign resources to the respective controller, in data plane, or to configure
the SDN controller and the policies defining the scope of control given to each SDN application, and to
monitor the performance of the system, when considering the controller plane. Moreover, if we look at
the application plane, the management typically configures the contracts and service level agreements
(SLAs), which are enforced by the controller plane. The security associations that allow distributed
functions to safely intercommunicate, operate in the three planes.

2.1.2 standardization
The Software Defined Networking brought a new approach to the networks. By decoupling the

control from the data forwarding function, the network evolved to an extremely dynamic, manageable,
cost-effective, and adaptable architecture that gives administrators unprecedented programmability,
automation, and control. Organizations such as Open Networking Foundation (ONF)1, defend a SDN
implementation via an open standard, stating an extraordinary agility while reducing service develop-
ment and operational costs, and frees network administrators to integrate best-of-breed technology as
it is developed.

In fact, ONF presents itself as a “user-driven organization dedicated to the promotion and adoption
of Software-Defined Networking (SDN) through open standards development”, emphasizing an open,
collaborative development process that is driven from the end-user perspective. The OpenFlow
Standard,which enables remote programming of the forwarding plane, is the ONF greater mark, being
“the first SDN standard and a vital element of an open software-defined network architecture”.

Notwithstanding, some other organizations and technical communities also analyze SDN require-
ments, evolve the OpenFlow Standard to address the needs of commercial deployments, and research
new standards to expand SDN benefits. Next some of them will be explored.

1https://www.opennetworking.org
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2.1.2.1 ietf & irtf
The Internet Engineering Task Force (IETF)2 is “a large open international community of network

designers, operators, vendors, and researchers concerned with the evolution of the Internet architecture
and the smooth operation of the Internet”. Thus, the IETF is divided in several branches, with the
working groups being organized by topic into different areas (e.g., routing, transport, security, etc.).
Moreover, the IETF’s standards development work is organized into 8 areas, where each area has
one or more area directors, which together comprise the Internet Engineering Steering Group (IESG).
Despite the technical management of IETF activities, the IESG is responsible for the Internet standards
process and for the final approval of specifications as Internet Standards and publication as an RFC.
In this matter, the IETF mission is to produce high quality and relevant technical documents, in order
to improve the Internet in terms of design, use, and management.

While IETF addresses its major focus on shorter term issues of engineering and standardization, the
Internet Research Task Force (IRTF)3 promotes research of the Internet evolution, creating a long-term
Research Group working focused on topics related to Internet protocols, applications, architecture and
technology.

• Software-Defined Networking Research Group (SDNRG)4

Despite that SDN has been conceived keeping in mind the wired infra-structure, the SDNRG
defends that SDN aims to benefit all types of networks, including wireless, cellular, home, enterprise,
data centers, and wide-area networks. In fact, SDNRG investigates SDN identifying the approaches that
can be defined, deployed and used in the near term as well the future research challenges. Additionally,
the SDNRG provides objective definitions, metrics and background research, providing this information
as input to protocol, network, and service design to Standards Development Organizations (SDOs)
and other standards producing organizations such as the IETF, ETSI, ATIS, ITU-T, IEEE5, ONF,
MEF, and DMTF.

2.1.2.2 ieee
The Institute of Electrical and Electronics Engineers (IEEE) defines itself as the world’s largest

technical professional society, dedicated to advancing innovation and technological excellence for the
benefit of humanity. The IEEE is designed to serve professionals of several study fields, such as
electrical, electronic, and computing, or even related areas of science and technology that underlie
modern civilization. With the computers evolving from massive mainframes to portable devices, linked
to global networks connected by copper wire, microwaves, satellites, or fiber optics, the IEEE’s fields
of interest expanded as well. Nowadays, IEEE maintain interest not only in electrical, electronics and
computing engineering, but also in micro and nano-technologies, ultrasonics, bioengineering, robotics,
electronic materials, and many others.

As part of the IEEE the Open Mobile Network Interface for Omni-Range Area Networks
(OmniRAN)6 addresses its efforts on IEEE 802 access technologies. The OmniRAN (i.e., 802.1CF)

2https://www.ietf.org
3https://irtf.org/
4https://irtf.org/sdnrg
5https://www.ieee.org
6http://www.ieee802.org/OmniRANsg/
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specifies an access network, which connects terminals to their access routers, using technologies based
on the family of IEEE 802 Standards. Additionally, it also specifies the functions of the IEEE 802
technologies for heterogeneous networks, which may include multiple network interfaces, network
access technologies and network subscriptions. In some cases such heterogeneous functionality must be
supported in a single user terminal.

Moreover, OmniRAN intends to unify the support of different interfaces, enabling shared network
control and the use of SDN principles, thereby lowering the barriers to new network technologies,
operators and service providers

2.2 sdn-enabled environments
A number of research efforts have focused on novel solutions for emulation/simulation of SDN

network. The available solutions provide a reference and material to analyze and explore the concepts
addressed along this thesis. Besides of presenting some possible technologies capable of implementing
the designed framework, this section presents an overview of them, highlighting their architecture,
features and limitations.

2.2.1 mininet
Mininet7 is defined as a network emulator for SDN systems, with the capacity to generate OpenFlow

networks that can be connected to an external SDN controller, without the need of hardware resources.

”Mininet is a network emulator which creates a network of virtual hosts, switches,
controllers, and links. Mininet hosts run standard Linux network software, and its
switches support OpenFlow for highly flexible custom routing and Software-Defined
Networking.”

Mininet

The fact that Mininet povides tools for automatically generate topologies, its hosts behave like real
hosts and the Open vSwitch8 is used as the default OF switch in Mininet, enabling a fast framework
deployment before the real environment.

Despite its fast framework deployment and flexibility, Mininet lacks on the real world environment,
especial in wireless, where the external factors are really important.

2.2.2 amazing testbed
Wireless Networks, and especially mobile networks, have been a hot-topic on the research community

in the past years. Simulation tools have therefore been used to conduct such studies in a controlled
manner with far less effort. However, with increasingly complex systems, the research community has

7http://mininet.org/overview/
8http://openvswitch.org/
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Figure 2.2: Architecture of the AMazING testbed with detail over the spatial deployment on the rooftop [8]

questioned in recent years the accuracy of such simulations, based on models of the wireless reality.
This led to an increased interest in deploying testbeds were wireless studies could be conducted under
more realistic (but still controllable) conditions. Such testbeds constitute an intermediate step between
simulations/emulations and a full-scale prototype. The objective of such testbeds is to provide the
means for the research community to validate their concepts and theories in an environment that
better matches a real scenario [8].

As a wireless testbed, the AMazING9 (Advanced Mobile wIreless Network playGround) testbed [8] is
an outdoor system, Operating System agnostic, sited in the rooftop of Instituto de Telecomunicações (IT)
in Aveiro, Portugal. Composed by 24 fixed nodes distributed across 1200m2 forming a grid with
approximately 8m between each neighbor, it was deployed to support researches on next generation
networks (NGN), with controllability (for the experimenter) and high reproducibility of the tests.
Besides of providing to the users a full access to the node devices as the possibility to expand its
capabilities by locating the core functions that eventually access the nodes’ wireless interfaces, this
testbed allows, through a management infrastructure, a coarse (by hardware) and/or a fine (by software
modules) control of the testbed.

2.2.3 environments comparison
As a powerful platform capable of developing custom topologies and virtualize hosts that run

almost any program, Mininet comes recommended in several OpenFlow tutorials. Notwithstanding,
Mininet deprives wireless networks support.

The use of the AMazING fulfills all the requirements, producing a framework under more realistic
conditions than Mininet, yet the experimenter still has controllability and high reproducibility of the
tests. Moreover, the AMazING offers the possibility to virtualize any needed network component.

9http://amazing.atnog.av.it.pt/

11



2.3 sdn entities
The SDN architecture comprises three planes (explored in section 2.1.1), with the connection of

the data and control plane being performed via OpenFlow protocol. Towards this concern, the SDN
entities (i.e., the SDN controller and the forwarding device) are those that enable the connection
between planes. Belonging to the control plane the SDN controller performs the management of the
forwarding devices (i.e., SDN switches), which remain at the data plane, while keeping the controller
aware of the network state. In the following subsection these SDN entities will be explored, while
comparing some of the technologies presented in the market.

2.3.1 sdn controller
As mentioned before, the SDN concept separates the control plane from the data plane within the

network, allowing the intelligence and state of the network to be managed centrally while abstracting
the complexity of the underlying physical network. SDN controller, or OpenFlow controller, when
the environment is based on OpenFlow protocol, provides the services that can realize a distributed
control plane, as well as abet the concepts of ephemeral state management and centralization.

In this matter, an orchestration of the framework is expected from the SDN controller, by
coordinating the number of interrelated resources, often distributed across subordinate platforms, and
to assure transactional integrity as part of the process. In fact, a SDN controller has higher scope at a
lower-level than an orchestrator, performing an orchestration across its own control domain. In the
SDN controller, different agents, at the same time, may expose control over the network at different
levels of abstraction or function sets. However, a network element or SDN controller have only one
logical management interface, and therefore only one coordinator.

A quick search on the Internet shows several SDN/OpenFlow controller written in different
programming languages (Table 2.1). Next, two of the most popular SDN/OpenFlow controllers will be
described and compared.

2.3.1.1 opendaylight
Nowadays networks are evolving to a programmable state, chasing a potential improve on the

level of functionality, flexibility and adaptability of the mainstream data centers. To achieve this goal
Software Defined Networking (SDN) and Network Functions Virtualization (NFV) platforms appear,
enabling network control and programmability.

Product of a “combination of open community developers and open source code and project
governance that guarantees an open, community decision making process on business and technical
issues”, OpenDaylight10 is built upon an open source SDN and NFV controller, enabling users to
reduce operational complexity, extend the life of their existing infrastructure hardware and enable new
services and capabilities available in SDN. So OpenDayLight can be seen as a flexible framework that
allows organizations to deploy SDN and NFV as they please.

10http://www.opendaylight.org/
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2.3.1.2 nox / pox
NOX11 as part of Software-defined Networking ecosystem, is a platform for building network

control applications. With the growth of SDN academic projects, and the recognition of OpenFlow as
one of the main SDN technologies, standardized by Open Networking Foundation12 (ONF), NOX was
initially developed at Nicira Networks side-by-side with OpenFlow, being the first OpenFlow controller.

As NOX’s younger sibling appeared POX13, bringing forward, through Python, a new rapid
development and prototyping platform for the network control software, living up research as its
primary target. Nowadays, besides of being one of a growing number of frameworks to write an
OpenFlow controller, it is also an enabling framework to interact with OpenFlow switches.

POX claims the following advantages over NOX: [9]

• POX has a Phytonic OpenFlow interface.

• POX has reusable sample components for path selection, topology discovery, etc.

• POX runs anywhere and can be bundled with install-free PyPy runtime for easy deployment.

• POX specifically targets Linux, Mac OS, and Windows.

• POX supports the same GUI and visualization tools as NOX.

• POX performs well compared to NOX applications written in Python.

Both NOX and POX currently communicate with OpenFlow v1.0 switches and include special
support for Open vSwitch.

2.3.1.3 controllers comparison
This section mitigates some open-source OpenFlow controllers presented out there, considering the

clean code base, documentation existence beyond of the API reference and a supportive community,
and how easy and fast is the deployment cycle (i.e., compile the code changes and start the controller).
The major focus will be made on the OpenDayLight and POX controllers. Besides the open-source
OpenFlow controllers already mentioned, we can find some others such as JAVA based Beacon14 and
its successor Floodlight15, or the Ryu16 and Trema17 based on Python and Ruby respectively. Several
other OpenFlow controllers can be found at Stanford University website18.

As mentioned before POX and NOX (POX’s older sibling), are maintained by the same organization.
However, POX creates an OpenFlow controller more “developer-friendly” and due to the Python being
an interpreted language the develop-and-deploy cycle was truly reduced, compared to NOX. POX also
provides a web API (via JSON-RPC) and a good collection of manuals on its wiki.

On the other hand, OpenDaylight is an industry-supported Linux Foundation project, quite similar
to Floodlight and with similar feature set, being both written in JAVA. Further, OpenDaylight follows
a controller model that, in addition to OpenFlow, alternative south-bound protocols can be introduced.

11http://www.noxrepo.org/nox/about-nox/
12https://www.opennetworking.org/
13http://www.noxrepo.org/pox/about-pox/
14https://openflow.stanford.edu/display/Beacon/Home
15http://www.projectfloodlight.org/floodlight/
16http://osrg.github.io/ryu/
17http://trema.github.io/trema/
18http://yuba.stanford.edu/ casado/of-sw.html
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This facet significantly differs OpenDaylight from the other controllers and lets you use switches
employing non-OpenFlow proprietary control protocols. Table 2.1, shows the main features for the
open-source OpenFlow controllers above mentioned.

Table 2.1: OpenFlow controllers features

Feature NOX POX Beacon Floodlight OpenDaylight

Language(s) the controller is
written in

C++ Python Java Java Java

Language(s) supported by
the controller

C, C++, Python Python Java Java, Python Java

Is actively developed? X maintained X X

Has an active community? X X X X

Easy to install? X X X X

Easy to program? X X X X

Is documented? X X X some

Provides a REST API? X X X X

Have utility functions? X

Has a user interface Python+QT4 Python+QT4, Web Web Java, Web Web
Supports hosts with multi-
ple attachment points? X X

Supports topologies with
loops? X X X

Supports non-OF island con-
nections?

X X

Supports OF island connec-
tions with loops? X

Provides an abstraction
layer above south-bound
protocols?

X

Supports OpenStack Quan-
tum?

X X

Adapted from http://vlkan.com/blog/post/2013/07/31/openflow-controllers/.

In order to avoid potential issues from controller limitation or core bugs, stability issues, or lack of
documentation and community support, the choice of the OpenFlow controller that fulfills our needs
can be quite challenging. On one hand POX has been progress on improving its documentation and
components, however if more maturity is needed to deploy the system OpenDaylight (supported by
Cisco, Juniper, Brocade, IBM) may be a better choice. To this specific framework, POX was the better
choice, since the host equipment has a relative reduction of processing power, with POX’s software
being lighter than OpenDaylight’s. Its fast development was also a point on its favor.

2.3.2 sdn switch
In traditional networking the control plane (high level routing) and data plane (packet forwarding)

are implemented in the same device (conventional switch). However, as mentioned before, with the SDN
development the control plane was decoupled from the data plane, implementing through software a
separate SDN controller capable of controlling the control plane and making high level routing decisions.
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Although the data plane remains implemented in the switch, it performs a regular communication
the SDN controller through OpenFlow controller. Hereupon, an OpenFlow switch can be seen as a
“software program or hardware device that forwards packets in a software-defined networking (SDN)
environment. OpenFlow switches are either based on the OpenFlow protocol or compatible with it”.

2.3.2.1 open vswitch
As mentioned in the previous section, OpenFlow switches can be either physical or virtualized.

The Open vSwitch, as an open source software switch, belongs to the second group. Designed to be
used in virtualized server environments, the OvS is capable of forwarding traffic between different
virtual machines (VM) on the same physical host or between the virtual machines and the physical
network. This capability besides of making the management of the VM network configuration easier,
also allows to monitor state spread across physical hosts in dynamic virtualized environments. Other
virtual switch applications as VMware, vNetwork distributed switch and Cisco Nexus 1000V, also offer
this capability, however OvS makes the process easier by running on each physical host and supporting
remote management.

Thinking about software defined networks and flow-based forwarding, OvS includes beyond of
the standard management protocols (e.g., sFlow, NetFlow, IPFIX, RSPAN and CLI), two open
protocols: OpenFlow and OVSDB, that expose the flow-based forwarding state and the switch port
state, respectively.

Besides of being the most used and with the bigger community, Open vSwitch goes beyond others
and implements a kernel module, enabling it to motorize the intern traffic, turning it crucial for the
mobile node development.

2.3.3 openflow switches

OpenFlow Switch Specification Version 1.3.0

1 Introduction

This document describes the requirements of an OpenFlow Switch. We recommend that you read the latest
version of the OpenFlow whitepaper before reading this specification. The whitepaper is available on the
Open Networking Foundation website (https://www.opennetworking.org/standards/open-flow). This
specification covers the components and the basic functions of the switch, and the OpenFlow protocol to
manage an OpenFlow switch from a remote controller.
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Figure 1: Main components of an OpenFlow switch.

2 Switch Components

An OpenFlow Switch consists of one or more flow tables and a group table, which perform packet lookups
and forwarding, and an OpenFlow channel to an external controller (Figure 1). The switch communicates
with the controller and the controller manages the switch via the OpenFlow protocol.

Using the OpenFlow protocol, the controller can add, update, and delete flow entries in flow tables,
both reactively (in response to packets) and proactively. Each flow table in the switch contains a set of flow
entries; each flow entry consists of match fields, counters, and a set of instructions to apply to matching
packets (see 5.2).

Matching starts at the first flow table and may continue to additional flow tables (see 5.1). Flow
entries match packets in priority order, with the first matching entry in each table being used (see 5.3). If a
matching entry is found, the instructions associated with the specific flow entry are executed. If no match
is found in a flow table, the outcome depends on configuration of the table-miss flow entry: for example,
the packet may be forwarded to the controller over the OpenFlow channel, dropped, or may continue to the
next flow table (see 5.4).

Instructions associated with each flow entry either contain actions or modify pipeline processing (see
5.9). Actions included in instructions describe packet forwarding, packet modification and group table
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Figure 2.3: Main components of an
OpenFlow switch [10]

In the previous sections, the Controller was explored, which
communicates via OpenFlow protocol with OpenFlow switches.
On the other hand, besides the OpenFlow channel to communi-
cate with an external controller, an OpenFlow Switch consists
of one or more flow tables and a group table, which perform
packet lookups and forwarding (Fig. 2.3). Additionally, using the
OpenFlow protocol, the controller can manage these flow tables,
by adding, updating or even deleting a flow entry. This can be
done both reactively (in response to packets) and pro-actively.
Moreover, in a OpenFlow switch, each flow table contains a set
of flow entries, and each flow entry consists of match fields, coun-
ters, and a set of instructions to apply to matching packets [10].
Fig. 2.4 illustrates the pipeline process of a packet flow and its
intrinsic operations are explained in the following sub-sections.
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2.3.3.1 matching
The matching process starts at the first flow table and may continue to additional flow tables,

with the flow entries matching the packets in priority order. When a matching entry is found, the
instructions associated with the specific flow entry are executed, but if no match is found in a flow
table, the outcome may vary. The table-miss flow entry can be configured to forward the packet to the
controller over the OpenFlow channel, drop it, or continue to the next flow table [10].

2.3.3.2 instructions
The instructions associated with each flow entry either contain actions or modify pipeline processing,

where these actions describe packet forwarding, packet modification and group table processing. On
the other hand, the pipeline processing instructions allow packets to be sent to subsequent tables for
further processing and allow information, in the form of metadata, to be communicated between tables.
When the instruction set associated with a matching flow entry does not specify a next table, the table
pipeline processing stops. Then the packet is usually modified and forwarded [10].

2.3.3.3 flow entries
Flow entries may forward to a port, that is usually a physical port, but it may also be a logical

port defined by the switch or a reserved port defined by the specifications. The reserved ports may
specify generic forwarding actions such as sending to the controller, flooding, or forwarding using
non-OpenFlow methods, such as “normal” switch processing, while switch-defined logical ports may
specify link aggregation groups, tunnels or loopback interfaces [10].

2.3.3.4 actions
Actions associated with flow entries may also direct packets to a group, which specifies additional

processing and represents sets of actions for flooding, as well as more complex forwarding semantics
(e.g. multipath, fast reroute, and link aggregation). The group table contains group entries, and each
group entry contains a list of action buckets with specific semantics dependent on group type. Lastly,
the actions in one or more action buckets are applied to packets sent to the group [10].
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(a) Packets are matched against multiple tables in the pipeline
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(b) Per-table packet processing

Figure 2: Packet flow through the processing pipeline

The flow tables of an OpenFlow switch are sequentially numbered, starting at 0. Pipeline processing
always starts at the first flow table: the packet is first matched against flow entries of flow table 0. Other
flow tables may be used depending on the outcome of the match in the first table.

When processed by a flow table, the packet is matched against the flow entries of the flow table to
select a flow entry (see 5.3). If a flow entry is found, the instruction set included in that flow entry
is executed, those instructions may explicitly direct the packet to another flow table (using the Goto
Instruction, see 5.9), where the same process is repeated again. A flow entry can only direct a packet to
a flow table number which is greater than its own flow table number, in other words pipeline processing
can only go forward and not backward. Obviously, the flow entries of the last table of the pipeline can
not include the Goto instruction. If the matching flow entry does not direct packets to another flow table,
pipeline processing stops at this table. When pipeline processing stops, the packet is processed with its
associated action set and usually forwarded (see 5.10).

If a packet does not match a flow entry in a flow table, this is a table miss. The behavior on a ta-
ble miss depends on the table configuration (see 5.4). A table-miss flow entry in the flow table may specify
how to process unmatched packets: Options include dropping them, passing them to another table or
sending them to the controller over the control channel via packet-in messages (see 6.1.2).

5.2 Flow Table

A flow table consists of flow entries.
Each flow table entry (see Table 1) contains:
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Figure 2.4: Packet flow through the processing pipeline [10]

2.3.4 openflow-hybrid
The OpenFlow-compliant switches can either be OpenFlow-only, where only OpenFlow operations

are supported, with all packets being processed by the OpenFlow pipeline, or OpenFlow-hybrid. The
OpenFlow-hybrid switches support both OpenFlow and normal Ethernet switching operations (i.e.,
traditional L2 Ethernet switching, VLAN isolation, L3 routing), and should provide a classification
mechanism outside of OpenFlow that routes traffic to either the OpenFlow or normal pipeline. The
switch may use the VLAN tag or input port of the packet to decide whether to process the packet using
one pipeline or the other, or it may direct all packets to the OpenFlow pipeline. An OpenFlow-hybrid
switch may also allow a packet to go from the OpenFlow pipeline to the normal pipeline through the
“NORMAL” and “FLOOD” reserved ports.

2.4 openflow protocol
Added as a feature to commercial network equipment (e.g., switches, routers and wireless access

points), and implemented by major vendors, OpenFlow provides a standardized hook to allow researchers
to run experiments, without requiring vendors to expose the internal workings of their network devices.
Unlike classical routers and switches, an OpenFlow Switch separates the data path from the control
path (responsible for packet forwarding and routing decisions, respectively), with the data path portion
still residing in the switch, while high-level routing decisions are moved to a separate controller.
The communication between these two network elements (i.e., OpenFlow switch and controller) is
performed via the OpenFlow protocol, which defines different action and messages (e.g., packet-received,
send-packet-out, modify-forwarding-table, get-stats, etc.) [4].
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2.4.1 openflow channel
The connection of an OpenFlow switch to a controller, is performed through an OpenFlow channel

interface (Fig. 2.3), that allows the controller not only to communicate with the siwtch, but also to
configure and manage it via OpenFlow messages. Despite that the datapath and OpenFlow channel
interface are implementation-specific, all OpenFlow channel messages must be formatted according
to the OpenFlow protocol. The OpenFlow channel is usually encrypted using TLS, but may be run
directly over TCP [10].

Regarding to the OpenFlow messages types, the OpenFlow protocol defines the controller-to-switch
messages that are initiated by the controller and used to directly manage or inspect the state of the
switch; the asynchronous messages that are initiated by the switch and used to update the controller
of network events and changes to the switch state; and finally, the symmetric messages are initiated by
either the switch or the controller and sent without solicitation.

2.4.2 openflow messages

xid

version

payload (type)

type length

32 bits

8 bits 8 bits 16 bits

Figure 2.5: OpenFlow packet

Fig. 2.5 illustrates the header structure of an OpenFlow
message. With a fixed structure, and common to all OpenFlow
messages, it serves three roles that are independent of the version
of OpenFlow being used (i.e., version, length and xid). The
version field remains in the first 8 bits and indicates the version of
OpenFlow which this message belongs to. The current OpenFlow
version is 0x05 (v1.4). The length field indicates the end point of the message in the byte stream
starting from the first byte of the header. The third version independent role is transaction identifier
(i.e., xid), that is a unique value used to match requests to responses. Regarding to the type field, it
indicates the message type and how to interpret the payload. These roles are version dependent. Next,
the different types of OpenFlow messages will be described.

2.4.2.1 controller-to-switch
The Controller-to-switch messages are initiated by the controller and may or may not require a

response from the switch. Below, the different types of these messages are explained [10].

• Features: The controller may request the capabilities of a switch by sending a features request.
Then the switch must respond with a features reply specifying its capabilities. This is commonly
performed upon establishment of the OpenFlow channel.

• Configuration: The controller is able to set and query configuration parameters in the switch.
The switch only responds to a query from the controller.

• Modify-State: This type of messages are sent by the controller to manage state on the switches.
Their primary purpose is to add, delete and modify flow/group entries in the OpenFlow tables
and to set switch port properties.

• Read-State: Read-State messages are used by the controller to collect various information from
the switch, such as current configuration, statistics and capabilities.

18



• Packet-out: Used by the controller to send packets out of a specified port on the switch, and to
forward packets received via Packet-in messages, packet-out messages must contain a full packet
or a buffer ID referencing a packet stored in the switch. The message must also contain a list of
actions to be applied in the order they are specified, or the packet will be dropped.

• Barrier: Barrier request/reply messages are used by the controller to ensure message dependencies
have been met or to receive notifications for completed operations.

• Role-Request: Specially useful when the switch connects to multiples controllers, these messages
are used by the controller to set the role of its OpenFlow channel, or query that role.

• Asynchronous-Configuration: The Asynchronous-Configuration messages are used by the con-
troller to set an additional filter on the asynchronous messages that it wants to receive on its
OpenFlow channel, or to query that filter. This is mostly useful when the switch connects to
multiple controllers and commonly performed upon establishment of the OpenFlow channel.

2.4.2.2 asynchronous
Asynchronous messages are sent by the switch to the controller without its solicitation, denoting

a packet arrival, a switch state change, or an error. The four main asynchronous message types are
described below [10].

• Packet-in: Transfer the control of a packet to the controller. For all packets forwarded to the
“CONTROLLER” reserved port using a flow entry or the table-miss flow entry, a packet-in event
is always sent to controllers. Other processing, such as TTL checking, may also send packets to
the controller using packet-in events. When a packet-in is generated by an output action in a
flow entry or group bucket, it can be specified individually in the output action itself, for other
packet-in it can be configured in the switch configuration.
In some cases the Packet-in events can be configured to buffer packets, implying that the switch
has sufficient memory to buffer them. In these cases the packet-in events contain only some
fraction of the packet header and a buffer ID to be used by a controller when it is ready for
the switch to forward the packet. In the other hand, if the Switches do not support internal
buffering or have run out of internal buffering, the full packet has to be sent to the controllers
as part of the event.
Buffered packets will usually be processed via a Packet-out message from a controller, or
automatically expired after some time. If the packet is buffered, the number of bytes of the
original packet to include in the packet-in can be configured. By default, it is 128 bytes. For
packet-in generated by an output action in a flow entry or group bucket, it can be specified
individually in the output action itself, for other packet-in it can be configured in the switch
configuration [10].

• Flow-Removed: Inform the controller about the removal of a flow entry from a flow table.
Flow-Removed messages are only sent for flow entries with the OFPFF_SEND_FLOW_REM
flag set. They are generated as the result of a controller flow delete requests or the switch flow
expiry process when one of the flow timeout is exceeded.

• Port-status: Inform the controller of a change on a port. The switch is expected to send
port-status messages to controllers as port configuration or port state changes. These events
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include change in port configuration events, for example if it was brought down directly by a
user, and port state change events, for example if the link went down.

• Error: The switch is able to notify controllers of problems using error messages.

2.4.2.3 symmetric
Symmetric messages are sent without solicitation, in either direction [10].

• Hello: Hello messages are exchanged between the switch and controller upon connection startup.

• Echo: Echo request/reply messages can be sent from either the switch or the controller, and
must return an echo reply. They are mainly used to verify the liveness of a controller-switch
connection, and may as well be used to measure its latency or bandwidth.

• Experimenter: Experimenter messages provide a standard way for OpenFlow switches to offer
additional functionality within the OpenFlow message type space. This is a staging area for
features meant for future OpenFlow revisions.

2.5 sdn in wireless networks
The flexibility introduced by SDN stemmed considerations on the application of SDN mecha-

nisms into wireless and mobile networks, progressing its original deployment concept beyond wired-
technologies, as identified by Open Network Foundation19 (ONF) Wireless & Mobile Working Group
(WMWG) [11]. In this sense, some contributions are already made and considered scenarios highlighted
the possibilities provided by traffic steering under SDN principles, in use cases such as mobile offloading
at a very granular level (i.e., including the session, user, device and application levels), contributing
to the optimization of Radio Access Network (RAN) resources by operators, and improving the
overall Quality of Experience (QoE) for data-intensive mobile applications. Contributions such as
Mobileflow [12], where the traditional routing controller is complemented with a dedicated mobility
one, and SoftCell [13], where data flows for mobile core networks are distributed according to a set of
policies enforced by SDN, are at the core of different SDN-based mobile network architectures.

Still, the enhancements of such designs stop at the network edge and do not explore any integrated
vision including the wireless accesses themselves. Nevertheless, initiatives regarding the use of OpenFlow
into wireless environments were introduced in [14] with its implementation over OpenWrt, allowing
small office/home wireless routers to act as an OpenFlow-enabled switch. In other solutions, such
as [15] and [16], an OpenFlow Controller uses IEEE 802.21 [17] not only to control and acquire
information of several properties of the wireless link interfaces but also manages and controls the
handover procedures of mobile devices. Moreover, the current OpenFlow specification (v1.4) sees an
IEEE 802.11 interface as an unknown interface connected to the switch, with unknown properties [18],
evidencing a lack of mechanisms for fully supporting wireless interfaces. In [19] and [20], besides of
mitigating some of these issues, they explore the configuration of wireless datapath elements (such as
control power, data rate, SSID, etc.) through SNMP, in order to acquire properties and to capture
events in wireless environments, such as the association of a host with an Access Point (AP). Projects

19https://www.opennetworking.org/
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such as OpenRadio [21], SoftRAN [22] and OpenRF [23], study the SDN and wireless interactions for
wireless-based operations handled centrally at a controller

However, wireless communications are not just limited to the infrastructural component, and
also involve the receiving node entities, (e.g., the user terminal). Independently of all the control
enhancement contributions to the operation of the network that SDN may have, the increasing
heterogeneous environment provided by different access technologies, user services and preferences,
place the user terminal at an important spot for further optimization. In [24] and [25] a conceptual
architecture where SDN programmability is extended to the mobile node is presented, enabling and
simplifying mobility-based scenarios and device-to-device possibilities. However, neither provides
experimental results of these approaches. Conversely, [26] experimentally evaluates a set of proposed
mobile extensions for SDN, but aims for a user-to-cloud connectivity scenario and focuses on the
control of specific technology-dependent wireless aspects (i.e., TDMA slicing for 802.11).

This is where this work contributes. It explores the deployment of SDN mechanisms all the way to
the mobile node, in heterogeneous wireless environments, allowing flow-based control to reach end-user
devices, providing what such a networking paradigm really aims for: controlling data flows. It exploits
a generic SDN deployment, able to operate independently of the underlying wireless technology or
the connectivity scenario, providing feasibility guidelines for taking SDN mechanisms into the mobile
terminal domain.

2.6 chapter considerations
This chapter explored the state of the art of SDN, addressing its focus on SDN over wireless

environments. Besides the SDN architecture, where its layers were explained, the available solutions
of softwares and SDN/OpenFlow entities for a mobility framework in an OpenFlow environment
deployment were studied. The OpenFlow protocol and its type of messages were also considered.

Moreover, it was noticeable different meanings for the SDN/OpenFlow controller, but a simple
way to be described is making a comparison to a sort of operating system for the network, where the
OpenFlow protocol connects the controller software to the network devices, performing communication
between the server software and switches, allowing the controller to configure network devices and
choose the best path for application traffic. By implementing a network control plane through software,
rather than the firmware of hardware devices, network traffic can be managed more dynamically and
at a much more granular level.
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chapter 3
An End-to-End SDN-enabled
Framework for Mobile
Devices

This chapter will explore the designed framework and its requirements, not only presenting the
chosen technologies and the framework architecture, but also exploring and justifying the configuration
of each framework’s network component. Regarding to the framework, its architecture, signaling and
involved network nodes will be detailed. The framework here described is capable of performing a
handover, through SDN mechanisms, when triggered by an end-node. Furthermore, optimization
scenarios are allowed through the addiction of a traffic monitor mechanism, added to wireless access
points, that is capable of triggering the handover if a certain threshold of load is reached.

3.1 introduction
The deployed framework aims to explore the SDN mechanisms, by extending it all the way to the

mobile end-node. This SDN extension enables the network controller entity not only an end-to-end data
flow management, but also the capability of performing a handover through OpenFlow mechanisms.
In this sense, handover can be seen as the process of transferring an ongoing data session from one
channel connected to the core network to another with the minimum packet loss possible.

Towards this concern, the presented framework, explores a wireless dual-interfaced Mobile Node
(MN) attached to the remained network through two different access points. Supporting SDN
mechanisms, the MN has a established connection with the network controller (i.e., OpenFlow
controller), while streaming towards the listener node through one of attached access points. For
experimental proposals, it was considered that the MN has the capability of detecting the poor link
quality and the packet loss, motivating a handover solicitation through the OpenFlow messages (i.e.,
packet_in). Due to the controller be centralized, it remains aware of not only the network state, but
also the mobile nodes attached points, enabling it to handovering the MN, by redirecting the its data
flows through flow modifications (i.e., flow_mod) messages.

23



3.2 framework requirements
In order to develop the above mentioned system framework it was used an AMazING node for

each emulated network component (i.e., access points, router, controller, mobile nodes and listener
node). The hardware of these network nodes needed to support the used application (i.e., OvS, POX
and VLC) and also supporting a remote control. To run POX, it officially requires Python 2.7, and
should run under Linux, Mac OS, and Windows. Additionally, the mobile node and access points
require wireless physical interfaces hardware. Each access point requires at least one wireless interface,
monitored by hostapd1, while the mobile node requires at least two. Despite the mobile node that is
attached to the network via wireless, the remaining nodes require to be interconnected through an
Ethernet physical interface.

3.3 framework architecture
In the past years, networks have been evolving to a software defined concept, where the network

control plane and data plane are separated, being the OpenFlow protocol responsible for the connecting
of the two planes. The framework here presented explores a fundamental evolution aspect when
compared with the well known software defined networks, implementing an OpenFlow control signaling
extension all the way to end nodes. Fig. 3.1 illustrates how the OpenFlow controller entity directly
interacts with the end nodes (i.e., the mobile node and the listener), besides its ability to control
network endpoints that may connect to different access technologies. By receiving these OpenFlow
messages, the end node is able to realize packet and flow-level actions, in a similar way to OpenFlow
switches, such as redirecting packets to other entities, or moving traffic flows between different mobile
interfaces, allowing the network to enforce traffic optimization strategies.

The end nodes can further contribute to the signaling itself, assisting the network decisions and
policy enforcement by generating signaling, in the form of events and handover triggers, due to, e.g.,
changes in the link quality, the discovery of alternative links or purely on user device preferences.
This can be supported by the usage of Packet_in messages sent towards the controller, which then,
after deciding changes to flows affecting the involved node, responds with a Flow_mod message
deploying such changes. However, despite the focus on OpenFlow and the thorough evaluation of its
signaling impact in end devices, this framework is flexible enough to be integrated with other signaling
mechanisms for triggering (or commands), such as IEEE 802.21 [17]. Additionally, in chapter 5, the
impact caused by different numbers of mobile node flows under the influence of a single controller, was
studied.

1hostapd is a user space application that runs as a background process for wireless access points.
More properly it is an IEEE 802.11 AP and IEEE 802.1X/WPA/WPA2/EAP/RADIUS Authenticator
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Figure 3.1: Wireless Offloading Scenario

3.3.1 signaling
In order to properly assess the extensions provided by this framework, an utilization scenario

is first illustrated, where the SDN signaling exchanged between the controller and mobile end-node
is presented. This scenario features a dual-interfaced MN that is connected to two different access
networks simultaneously, and was extended with OpenFlow support as already mentioned. This node,
despite being mobile, acts as a mobile content source, streaming a live video towards a listener node,
connected through another access. The signaling associated to this scenario is shown in Fig. 3.2.

AP1 AP2 CTL LN

(1) RTP stream

(7) RTP stream 

(6) Flow_mod

(2 a) Packet_in 

(3) Flow_mod

(2 b) Packet_in 

(5) Barrier Reply

(4) Barrier Request

MN
ath0 ath1

Case a Case b

Figure 3.2: Signaling flow diagram

The scenario (dubbed case A) begins with
the MN already connected to both APs, with the
controller connection already established, sending
video stream towards the listener node through
AP1. By detecting a degradation in the wireless
link quality (e.g. due to load, high bandwidth con-
sumption from other nodes or a decrease in signal
strength), the MN sends an OpenFlow Packet_in
message (Fig. 3.2 - 2a) to the OpenFlow con-
troller.

This Packet_in message is used as a handover
trigger, and, upon its reception by the Controller,
it generates a handover decision for moving the
video flow from the MN’s interface connected to
AP1, to its interface connected to AP2. This handover decision is carried by the Controller which
sends an OpenFlow Flow_mod message (Fig. 3.2 - 3) for each MN interface involved in the handover.
However, after the first Flow_mod, a Barrier_request is sent, ensuring that the second Flow_mod
(Fig. 3.2 - 4 and 6, respectively) is sent only when the first is already executed, avoiding packet loss or
ping-pong effects during the handover. Therefore, mimicking a make-before-break approach, the first
Flow_mod is sent through the interface connected to AP2 (i.e., ath1 ), preemptively implementing a
rule enabling it to forward (to the outside) the traffic coming from the interface connected to AP1
(i.e., ath0 ). The second Flow_mod message implements the forwarding from ath0 to ath1. In order to
perform this forwarding, the rule for the second interface needs to implement the “MOD_SRC_ADD”
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and “MOD_DST_ADD” actions, to fulfill the wireless handshake. Both actions change the source
and destiny Media Access Control (MAC) Address respectively.

A secondary scenario for evaluation (dubbed case B), where the trigger (i.e., the OpenFlow
Packet_in message) is sent by the listener node, as indicated in blue in Fig. 3.2 - 2b, was also explored.
This situation mimics the listener device detecting that the performance of the video decreased below a
previously established threshold, originating a trigger prompting for network optimization procedures.
This allows the evaluation of the OpenFlow signaling impact in both end-points of the communication
path.

Focusing on the specific OpenFlow aspect of this interaction between the MN and the OpenFlow
Controller, this framework does not explore specification aspects such as how the controller is aware
that the MN is connected to AP2, or even how to execute link establishment procedures therein. This
is also applied to how the handover decision is taken by (or reaches) the controller. In this respect, the
framework can exploit northbound interfaces between the controller and a mobility management entity,
or even southbound interfaces for preparing and establishing handover candidate links, for different
kinds of access technologies (i.e., IEEE802.11 and 3GPP).

3.3.1.1 openflow messages
The handover signaling of the developed framework considers three types of OpenFlow messages.

Next, its importance for the framework will be explained.

• Packet_in (Fig. 3.2-2a/2b):
The packet_in is an asynchronous message sent by the switch to the controller without its
solicitation. In this case the packet_in was generated by an output action in a flow entry with
a specific matching, which was done through destination Internet Protocol (IP) address;

• Flow_mod (Fig. 3.2-3/6):
The “modify flow entry message” (i.e., flow_mod) is a modify-state message, that belonging to
the Controller-to-switch messages group, is sent by the controller to manage switches state. Its
primary purpose is to add, delete and modify flow entries in the OpenFlow switch;
In this framework, the first flow_mod message (i.e., Fig. 3.2-3) adds in the MN OvS bridge a
flow entry, which redirects the matching traffic (i.e., the video stream) to a specific port (i.e.,
the patch port). Th second flow_mod (i.e., Fig. 3.2-3), also adds a flow entry, however before
redirecting the matching traffic (i.e., the traffic coming from the patch port), it modifies the
source and destiny MAC addresses;

• Barrier_request (Fig. 3.2-4) and Barrier_reply (Fig. 3.2-5):
As in the previous case, the Barrier request/reply messages belong to the Controller-to-switch
messages group, being sent, in this framework, by the controller to receive notifications for
completed operations. Thus, these messages are used to ensure that the first flow_mod is
completed before sending the second one.

3.4 framework deployment
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The scenario was deployed a network topology with 6 nodes (i.e., 2
access points, router, network controller, mobile node and a terminal),
exploring a mobile node as the source content, streaming a video
through the network towards the listener node. Keeping that in mind,
the mobile node has a wireless connection with both APs, whereas all
the other nodes have a physical link connection. All nodes can ping
each other.

This work required new configurations of the used software. There-
fore, rather than presenting the software installation, the configuration
used to reproduce the experience will be explained.

With the purpose of extending the OpenFlow control path up
to the mobile node, the OvS with its dependencies was installed in
every network node, except on the controller node, where the POX
was used as the OpenFlow agent in that node. With the mobile node
being the source content, its OvS configuration is somehow different
from the remaining network nodes, enabling it to apply new rules over
the kernels forwarding, allowing the packet redirection to the other wireless interface. To accomplish
that, both OvS bridges attached to each mobile nodes’s wireless interface, were interconnected by a
patch port that acts as a patch cable. The next subsections explain the nodes configuration, while
some examples are shown.

3.4.1 openflow controller
By default, when a OpenFlow Controller connects to a new OpenFlow switch, it erases all forwarding

tables therein. To accomplish the specification this feature was disabled, so that the connection between
the MN and the Controller does not shut-down. This event is caused by the wireless handshaking
protocol, since if the MN does not have any rule that allows to carry out the wireless handshaking
between itself and the Access Point, the Mobile Node and Controller communication cannot be
established. In order to perform those requirements and for a faster development, the chosen controller
was POX2, Fig. 3.4 e).

As explored in chapter 2, the development programing language of POX is Python, that despites
requiring Python 2.7 to run, reduces the POX develop-and-deploy cycle, since Python is an interpreted
language. The POX controller brings some interesting scripts as the l3_learning, that acts as layer 3
switch, by keeping a table that maps IP to MAC addresses and switch ports. In this sense, it was not
necessary, once each network node was capable of handling its own ARP request, by the OvS bridge
layer 3 configuration. In fact, OvS cannot handle the ARP’s request, in this framework these messages
are carried by kernel.

In addition to the original POX’s library, a new Python script was created enabling POX to handle
the handover solicitation from the end-devices. Also, some changes in the core POX’s code were
necessary, in order to avoid the controller erasing the OvS forwarding table, when a new connection is
established. This requisite was mandatory for the connection with the mobile node, since if the MN’s
OvS bridges do not have any rule, the handover handshake cannot be performed.

2https://openflow.stanford.edu/display/ONL/POX+Wiki

27

https://openflow.stanford.edu/display/ONL/POX+Wiki


Router

PHY

PHY

PHY

PHY

Linux 
routing

OVS bridge

Listener
Node

PHY

TCP/IPOVS

bridge

Controller

PHY

POXTCP/IP

Listener 
Node

PHY

a)

c)

b)

d)

e)

g)

f)

Mobile Node

OpenVSwitch

TCP/IP

br0 br1

ath0 ath1

VLC
(app)

VLC
(app)

VLC
(app)

TCP/IP

Access Point 1

W 
PHY

PHY

Linux 
routing

OVS

bridge

Access Point 2

W 
PHY

PHY

Linux 
routing

OVS

bridge

Figure 3.4: Network Modules

The Python script that gives to the controller the capability to handle the handover solicitation
and to deploy the required rules is triggered when the handover solicitation (i.e., Packet_in message,
from the source or listener) is received, as shown in Fig. 3.2. In this matter, when the Controller
receives the Packet_in massage, it generates an interruption, and after analyzing the source of the
packet, starts the procedures to perform the handover. Looking for a make before brake approach, the
first rule is sent to the new transmission bridge (i.e., br1 attached to ath1 ), and immediately after, a
Barrier_request message is sent. This last message ensures that the first rule is implemented before
sending the second one. Similarly to the Packet_in, the Barrier_reply message, sent with the same
ID as the Barrier_request, will cause an interruption that motivates the sending of the second rule,
addressed to OvS bridge br0.

In order to make the Controller accessible to the network nodes, it was also necessary, as in the
previous nodes, to load the IEEE 802.1Q and configure two VLANs, allowing the controller to be
accessible through two different IP addresses. The two VLANs requirement stands for the two wireless
physical network interfaces of the mobile node. Then, each MN’s bridge has a different IP address
associated to its controller.
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3.4.2 mobile node
To perform the extension of OpenFlow up to the MN, Fig. 3.4 a), Open vSwitch3 (v2.3.1) was

installed and configured with two layer 3 bridges, one for each wireless network interface. In order
to interconnect both bridges for flow mobility, a pair of virtual devices (i.e., patch ports) were used,
acting as patch cable. The two bridges requirement stands by the fact that the MN is a content source,
implying the need for a module between the kernel TCP/IP stack and the physical network interface,
since the OvS ability for layer 3 routing relies on the routing functionality that is built into the Linux
kernel.

Hereupon when the physical network interface (PHY) of mobile node receives a packet, it passes it
to the kernel network stack through the OvS “LOCAL” port. On the other hand, when the network
node needs to send a packet, the kernel will send it through the OvS “LOCAL” port to the respective
PHY. With the OvS being the intermediary between the network stack and the PHY, it is possible to
set routing rules over the static rules imposed by the kernel routing table.

Regarding to the bridges configuration, both are initially configured with a low priority “NORMAL”
action, allowing the communication without an external OpenFlow controller connection, and a higher
priority action to allow the trigger for the handover. The “NORMAL” action allows the OvS to
process the packet using traditional Layer 2 or Layer 3 processing. With the purpose of making the
OvS responsible for forwarding packets in case of controller fail, the OvS bridges were configured in
fail-safe-mode “standalone”.

For the mobile node configuration, it was not necessary the use of IEEE 802.1Q, since it is connected
to the remainder network via wireless (the use of IEEE 802.1Q will be explore in the next section).
However, the IEEE 802.11g was needed, with the purpose of attaching the MN to both APs. To
perform the connection between the MN and AP, first it is necessary to setup the AP’s respective
node as access point (through hostapd software, explored in next section). Then through iwconfig it is
possible to attach the MN to AP.

As in the previous cases and for the same reasons, also the WPHY of the mobile node must be
set in promiscuous mode. All the MN’s configuration can be easily seen in the respective appendix
(Listing. 1).

3.4.3 access points, router and listener node
Despite of addressing several network nodes, this section shows and explains the configuration

of the router. The remain nodes, can be easily extrapolated from the router’s configuration script
(i.e., Listing. 2). Notwithstanding, some changes, such as the respective network interfaces and IP
addresses, are needed. Moreover, it is also important to set the connection mode of the controller to
out-of-band. The configuration of the mobile nodes shows how this can be done.

As in the MN, it was necessary to add an OvS layer 3 configuration to the remaining network
nodes, where a single bridge, with an assigned IP address, is created and attached to the physical
network interface (Fig. 3.4)). Whereas in the Access Points (APs) and Router the OvS layer 3 aims to
allow the layer 3 routing through the Linux kernel, in the Listener Node it aims to enable it, as in
the MN case, to trigger the OpenFlow controller (i.e., Fig. 3.2 case B). With this configuration, the
OpenFlow communication between the Listener Node and the Controller becomes possible, enabling a

3http://openvswitch.org/

29

http://openvswitch.org/


handover solicitation (by sending a Packet_in message) from the content receiver to the OpenFlow
controller.

It is important to note that with the purpose of reducing the physical requirements of the network
nodes, the framework has the control and data paths sharing the same network interface. Concretely,
in order to reduce generated OpenFlow traffic (specifically, support control traffic such as controller-
link keep-alives), in our experiment we reduce as well the number of bridges. Instead of having the
conventional single OvS bridge for a single interface on each network node, we create a single bridge
just for one interface of the Access Points (Fig. 3.4 b) and Fig. 3.4 c)) and Router nodes (Fig. 3.4 d)).
However, the whole process remains similar.

Besides of the OvS configuration, it was also needed to set some others conditions, such as creating
VLANs not only because of the lack of physical interfaces in the AMazING nodes, but also to set
up the environment independently of the network control interface of AMazING. In order to allow
the router and the access points to forward the received packets, it was also necessary to enable the
kernel’s packets forwarding.

Regarding to the VLANs, initially its necessary to load the kernel’s module 8021q (i.e., modprobe
8021q). This module enables the use of IEEE 802.1Q, that stands for a networking standard that
supports virtual LANs (VLANs) on an Ethernet network. This same standard defines a system of
tagging for Ethernet frames and the accompanying procedures to be used by bridges and switches in
handling such frames. With the module loaded, its possible to create (or add) a new VLAN through
the vconfig command. After creating the VLAN it remains the need to set a new IP address, and set
the interface up. It is also recommended to set a new MAC, in order to avoid conflicts, although it is
not mandatory. These last setups can be done using the ifconfig command.

To start Open vSwitch software, it is also necessary to load its kernel module (i.e., modprobe
openvswitch) and to start its database server (i.e., ovsdb-server). Then an OvS bridge its created
attached to an Ethernet port. As already mentioned, it must be a layer 3 bridge, implying to set the
Ethernet port in promiscuous mode and give to the bridge the Ethernet desired IP address. Setting
up the promiscuous mode in the physical network interface, causes the controller to pass all traffic it
receives to the central processing unit (CPU) rather than passing only the frames that the controller is
intended to receive, forcing all packets to pass through the OvS bridge.

3.4.3.1 access points
Beyond of the previous requirements, both network nodes that act as APs, use the IEEE 802.11g

standard. With the purpose of configuring the node to act as AP, it was used the hostapd software,
that can be easily installed on Linux OS, more specifically Ubuntu distribution, through the package
tool apt-get.

3.4.4 running a demo
Before starting the demo, the mobile node (MN) not only requires a “NORMAL” action and rule

that forwards the handover solicitation as a packet_in message, but also an already established link
with both APs. For the second case (i.e., case b), the OvS forwarding rule that sends the handover
solicitation through a packet_in message needs to be installed in the listener node (LN), rather than
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in MN. Moreover, the static rules that perform the forwarding between the network nodes, need to be
implemented in the kernel’s routing table. Below, it is shown the experience running process:

1. Video stream starts:
cvlc -dvvv BigBuckBunny1080p.mp4 –sout ’#duplicatedst=rtpmux=ts,dst=192.168.10.1,port=5004’
IP = 192.168.10.1, Real-time Protocol (RTP), port = 5004;
The MN sends the RTP packets towards LN through the interface attached to the AP2 (i.e.,
ath0 );

2. After 15 seconds the signal quality decrease:
tx-power = 1, bitrate = 5 Mbps;

3. After 10 seconds of bad signal quality its sent the handover solicitation:
case a: MN sends packet_in - UDP packet sent to the IP addess 11.11.11.11;
case b: LN sends packet_in - UDP packet sent to the IP addess 11.11.11.11;
In both cases, the OvS has implemented a forwarding rules that sends to the Controller the
packets with destination IP 11.11.11.11, through a packet_in message;

4. Controller receives and analyzes the packet_in message;

5. Controller sends the first flow_mod message, and promptly sends the barrier_request message;

6. MN implements the flow modification and responds the barrier_request with a barrier_reply
message;

7. Controller barrier_reply message, analyzes it and sends second flow_mod message;

8. MN receives the second flow_mod message and starts redirecting flows.

The time values used in both cases are illustrative, with the framework being flexible enough to
integrate mechanisms that allow dynamic configuration of different triggering opportunities.

3.5 chapter considerations
This chapter addressed the designed framework capable of performing a handover, through SDN

mechanisms, when triggered by an end-node. It explored not only the framework requirements, but
also its architecture, exploring its signaling and the used technologies. In the end, a deployment over a
physical testbed was explored, explaining the configuration of each network node and identifying each
step of the demo.
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chapter 4
Extending SDN into
Wireless Mobility
Evaluation

In order to evaluate in this chapter the impact of OpenFlow in end-to-end flow mobility, the
scenarios described in Fig. 4.2 (case A and case B) were implemented, analyzing the impact in terms
of performance and signaling overhead, as well as the number of OpenFlow rules in the switch and/or
controller.

The evaluation scenarios were deployed over the AMazING testbed [8] sited on the rooftop of the
Instituto de Telecomunicações (IT) of Aveiro. The AMazING testbed is composed by 24 remotely
managed wireless nodes. Each node is composed by a VIA Eden 1GHz processor with 1GB RAM
and two wireless interfaces (an 802.11a/b/g/n Atheros 9K and a 802.11a/b/g Atheros 5K), running
Ubuntu 12.04 LTS. Even though the experimental evaluation was done using two 802.11 APs, the
framework design is generic enough to support different heterogeneous technologies.

In both study cases the MN is initially connected to both APs with the controller connection
already established, while streaming, using the VLC application1, the Big Buck Bunny2 video (1080p)
through AP1 towards the listener node. After 15 seconds, the signal quality at AP1 starts decreasing,
and after 10 seconds of bad signal quality the MN notifies the OpenFlow Controller, which, in turn,
initiates the procedures for optimizing the network. The second case (i.e., case B) is similar to the
previous with the difference that it is the listener node that notifies the OpenFlow Controller when
video quality decreases below a previously established threshold. The time values used in both cases
are illustrative, with the framework being flexible enough to integrate mechanisms that allow dynamic
configuration of different triggering opportunities. The experiments for evaluating the impact in terms
of performance and signaling overhead, and the impact of the number of OpenFlow rules in the switch
and/or controller, were run 10 times, showing here average results with 95% of confidence.

1http://www.videolan.org/vlc/
2https://www.youtube.com/watch?v=XSGBVzeBUbk
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4.1 evaluation and results
The experience controllability was taken through remote control using Secure Shell (i.e., SSH).

Initiating text-based shell sessions on remote machines, SSH provides to the user a remote command-line
login and a remote command execution on a machine without being physically present near it. With all
the experiment being controlled remotely, the data results were captured and saved in the proper nodes
using the paket analyzer tcpdump3. The tcpdump software allows to save (or display) the packets
being transmitted or received over a network in the respective machine. After, the packet captures
were analyzed in Wireshark4. Being similar to tcpdump, Wireshark adds a graphical front-end, and
integrated sorting and filtering options.

In order to evaluate the impact of OpenFlow in end-to-end flow mobility, the impact in terms
of performance and signaling overhead was analyzed, as well as the number of OpenFlow rules in
the switch and/or controller, with the experience being run 10 times. For the data treatment and
manipulation, MATLAB5 was used, showing here average results with 95% of confidence.

4.1.1 performance
To evaluate the impact caused by the framework in terms of performance, the throughput of the

RTP flow in the last node (Router, in Fig. 3.4) before the receiver was registered. Obtained values are
shown in Fig. 4.1 a), for the scenario when the trigger is sent by the Mobile Node and in Fig. 3.4 b),
when the Listener Node sends the trigger. The green line represents the throughput of the video, while
the blue and red lines represent the same value on AP1 and AP2, respectively. The dotted black line
represents the RTP flow throughput without using the framework, and the dotted pink line represents
the handover moment.

As can be observed in both scenarios, before the handover of the video stream flow, the link
conditions of the MN could not accommodate the requirements of the video stream, resulting in packet
loss before the handover. This issue was not observed when using our framework, where the handover
allowed the flow to switch to a link with better bandwidth. It can be seen that, for both scenarios, the
developed framework allows for a considerable gain in terms of RTP throughput, when compared with
the regular approach.

In this mobility scenario, when the handover occurs, there are still pending packets to be sent in
the queue of the network interface connected to the old point of attachment. As these packets may
reach the listener node in the wrong order, their impact was also accounted, since this means as well
that both interfaces send packets simultaneously. In the Case A scenario (Fig. 4.1a), the video stream
was sent through both interfaces for 679.78 (± 31.58) ms, with 143 (± 3) packets sent through the
interface connected to AP1. In the Case B scenario (i.e., when the handover trigger was sent by the
listener node), Fig. 4.1b, it was verified that packets were sent through both interfaces during 689.33
(± 41.35) ms, resulting in about 141 (± 2) overlapped packets. This is related with the fact that this
design employs a make-before-break approach.

Table 4.1 presents reported values on flow activation time and handover delay, which are directly
correspondent with the times illustrated in the signaling flow diagram in Fig. 4.2. Concretely, Flow

3http://www.tcpdump.org/
4https://www.wireshark.org/
5http://www.mathworks.com/products/matlab/
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(a) Handover trigger from the source
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(b) Handover trigger from the listener

Figure 4.1: RTP throughput

Activation Time matches the t1_mn time for ath1 and t4_mn for ath0, for the MN, and stands for the
time between sending the handover solicitation (i.e., packet_in, Fig. 4.2-2a/2b) and the arrive and
implementation of the flow modification that enables the handover. The second flow activation time
regards for the time between MN acknowledging the implementation of the first flow modification
(i.e., barrier_reply, Fig. 4.2-5) and implementing the second handover rule (i.e., flow_mod, Fig. 4.2-6)
MN Barrier matches the time t2_mn + t3_mn. In the MN case, Handover Delay indicates the time
from the handover trigger (i.e., Packet_in message) to the flow being moved (t1−5_mn), while in the
Controller case it indicates the time between the reception of the Packet_in message and sending
the second Flow_mod message (t1−4_ctl). The difference registered in the flow activation time for
both Flow_mod messages is caused by the event handler, triggered by the Packet_in or Barrier_reply
messages (Fig. 4.2 - 2a/b and 5, respectively).

AP1 AP2 CTL LN

(1) RTP stream

(7) RTP stream 

(6) Flow_mod

(2 a) Packet_in 

(3) Flow_mod

(2 b) Packet_in 

(5) Barrier Reply

(4) Barrier Request

t1_mn

t2_mn

t3_mn

t4_mn

t5_mn

t1_ctl

t2_ctl

t3_ctl

t4_ctl

MN
ath0 ath1

Case a Case b

Figure 4.2: Signaling flow diagram with respective times

Results show that both cases present close performances, where, for Case B, the Flow Activation
Time in ath1 increased its time in 21.86%, the MN Barrier increased by 2.92%, and the Handover
Delay experienced in the Controller and MN, increased by 18.92% and 18.24% respectively.
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Table 4.1: Handover Data

Flow Activation Time (ms) MN Barrier (ms) Handover Delay (ms)
ath0 (AP1) ath1 (AP2) Controller Mobile Node

Case A 27.24± 8.41 142.56 ± 7.95 28.72 ± 5.96 78.57 ± 14.03 184.69 ± 13.71
Case B 27.10 ± 10.37 173.73 ± 23.46 29.56 ± 10.94 92.90 ± 14.94 219.63 ± 34.76

4.1.2 overhead
In order to evaluate the overall impact of OpenFlow traffic in the framework, the different types of

traffic in the three experiments (i.e., trigger form the source or from the listener, and no enhancement)
were registered in Table 4.2, showing its value at different network points. In Table 4.2 the OF
stands for the OpenFlow traffic impact, while the OF+TCP is the same traffic, however accounting its
synchronization impact. The RTP traffic is regarded to the video stream.

Starting with APs overhead, and despite that both AP1 and AP2 have the same transmission
time (i.e., half of the experience time each), for both handover experiments (i.e., source trigger and
listener trigger), AP2 is responsible for the major traffic transmission. In terms of listener node receive
traffic, both handover cases have similar performance, allowing to consider that the SDN extension
to the listener node has minor OpenFlow impact (0.01% of the total traffic). A comparison between

Table 4.2: Overhead table

Controller Access Points Mobile Node Listener Node

Total AP 1 AP 2

Source
Trigger

Packets

OF
185.20
± 3.96

59.54
± 1.08%

15485.8
± 94.9

47.60
± 0.25%

0.61
± 0.01%

52.40
± 0.25%

0.56
± 0.06%

16070.5
± 76.9

0.30
± 0%

15431.9
± 167.9

-

OF+TCP 98.39
± 0.44%

1.03
± 0.03%

0.88
± 0.04%

0.51
± 0.02% -

RTP - 98.83
± 0.03%

99.06
± 0.04%

99.38
± 0.02%

99.85
± 0.09%

MBytes

OF
0.01
± 0

63.12
± 0.97%

20.03
± 0.12

47.55%
± 0.25%

0.035
± 0%

52.75%
± 0.75%

0.030
± 0%

20.87
± 0.10

0.018
± 0%

20.13
± 0.20

-

OF+TCP 98.87
± 0.31%

0.06
± 0%

0.05
± 0%

0.03
± 0% -

RTP - 99.93
± 0%

99.95
± 0%

99.96
± 0%

99.99
± 0%

Listener
Trigger

Packets

OF
222.8
± 5.6

59.70
± 1.16%

15446.4
± 170.0

49.10
± 0.47%

0.58
± 0.01%

50.90
± 0.47%

0.55
± 0.01%

16073.1
± 80.3

0.29
± 0.01%

15412.3
± 62.8

0.14
± 0%

OF+TCP 98.74
± 0.28%

0.99
± 0.03%

0.91
± 0.02%

0.52
± 0.02%

0.22
± 0.01%

RTP - 98.95
± 0.21%

99.02
± 0.02%

99.35
± 0.03%

99.72
± 0.06%

MBytes

OF
0.02
± 0

63.44
± 1.07%

19.98
± 0.22

49.06
± 0.47%

0.03
± 0%

50.94
± 0.47%

0.03
± 0%

20.87
± 0.10

0.02
± 0%

20.08
± 0.08

0.01
± 0%

OF+TCP 99.11
± 0.20%

0.05
± 0%

0.05
± 0%

0.03
± 0%

0.01
± 0%

RTP - 99.93
± 0%

99.95
± 0%

99.96
± 0%

99.98
± 0%

No
Enhanc.

Packets RTP
15083
± 221

99.88
± 0.01%

13951
± 0

99.87
± 0.01%

MBytes - 19.68
± 0.29

99.99
± 0%

18.21
± 0.28

99.99
± 0%
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the handover cases and no enhancement, shows a considerable throughput gain, about 10%, in both
handover cases, stating the performance improvement when the handover is performed.

A depthless study of OpenFlow overhead and its impact in the develop framework will be explored
in the next section.

4.1.3 openflow overhead
Table 4.3 shows, for both scenarios, the OpenFlow overhead introduced by the handover signaling

presented in Fig. 4.2 and the total OpenFlow signaling exchanged during the experiments, including
not only the handover signaling but also the keep-alive messages exchanged between OpenFlow entities.
For this study, it was not considered the overhead introduced by Layer 2, since the developed framework
is intended to operate independently of the underlying access technology.

Table 4.3: OpenFlow Overhead

Controller Mobile Node Listener Node
Total Handover Total Handover Total Handover

Source
Trigger

Packets 110 ± 2 5 ± 0 48 ± 0 5 ± 0
-

Bytes 6901 ± 126 609 ± 0 3166 ± 48 609 ± 0

Listener
Trigger

Packets 140 ± 2 5 ± 0 47 ± 1 4 ± 0 21 ± 0 1 ± 0
Bytes 8285 ± 129 609 ± 0 3072 ± 42 472 ± 0 1335 ± 24 137 ± 0

In terms of overhead, the handover signaling for both cases corresponds to about 609 bytes,
regarding to the five OpenFlow messages exchanged in Fig. 4.2. The OpenFlow Controller is involved
in all five messages of the handover signaling due to its centralized operation, while the MN (and
listener node) accounted for 100% (and 0%) or 80%(and 20%), in respect to Case A and Case B.

The total OpenFlow overhead increases significantly the keep-alive messages also considered, since,
in the experiments, these messages were exchanged each 5 seconds by the OpenFlow enabled entity.
This value is doubled in the case of the MN due to each bridge sending the keep-alive messages.
Nevertheless, this overhead could be reduced by using a higher period for exchanging keep-alive
messages with OpenFlow-enabled end-points.

4.1.4 openflow rules impact
Another study was the impact of the amount of OpenFlow rules introduced by the framework in

the MN and OpenFlow Controller. Fig. 4.3 shows how the number of rules affect the handover delay.
To simulate additional rules on the OpenFlow Controller side (blue line), an additional cycle where a
different number of rules are verified, ensures that the worst case is always analyzed. In the case of the
MN, additional rules were implemented on the OvS bridge with an higher priority than the rule that
performed the handover trigger and the packets forwarding, allowing also an evaluation of the worst
case, enabling a fair comparison with the previous case. In both cases, with the purpose of performing
the handover rule (first case) or forwarding the packets (second case), the header of the Packet_in
message (handover trigger) is parsed and the source and/or destination IP addresses are checked.
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Figure 4.3: Dummy rules

It is visible from Fig. 4.3 that the increase in number of rules has higher impact on the flow
activation time in the OpenFlow Controller than on the MN. Since the MN is using OvS (even though
it is not specifically written for mobile terminals), it reflects the capability in terms of performance
that such software must have in network forwarding equipment.

4.2 chapter considerations
In this chapter, the impact of OpenFlow over an heterogeneous mobility framework was studied,

where SDN procedures were able to reach and control wireless mobile end-nodes. An implementation
in a physical wireless testbed allowed for its evaluation, with results showcasing the feasibility and
benefits of the proposed mechanisms towards a source mobility offloading scenario, without requiring
additional mobility protocols.
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chapter 5
Multiple Flow in Extended
SDN Wireless Mobility

The previous chapter deploys an experimental SDN architecture capable of performing a handover
when triggered by an end-node, by extending SDN mechanisms all the way to the mobile node. Aiming
to extend it and explore its behavior in a multiple flow scenario, the number of network devices was
increased, and a traffic monitor, in the access point 2 (Fig. 5.1bd), is able to trigger the handover
when a certain threshold is reached. In the deployed framework1, the OpenFlow protocol reaches the
end-nodes (i.e., the mobile nodes), enabling the network controller to provide mobility management
via SDN mechanisms, by handovering flows from one wireless interface to the other, optimizing the
MN’s connectivity to the network. As in the previous study, the evaluation scenario was deployed over
the physical wireless tested AMazING 2, sited in the rooftop of the Instituto de Telecomunicações of
Aveiro. The scenario starts with both mobile nodes (MNs) initially connected to two different APs
each, and with the controller connection already established. A third node, which only purpose is to
generate traffic, is already attached to the AP2. Then, MN1 starts a new connection through AP2
towards the listener node (LN), increasing the AP’s load. When MN2 starts its data stream, through
the same AP, the AP2 overloads its bandwidth capacity and notifies the OpenFlow controller, that in
its turn initiates the procedures for optimizing the network.

Further in this chapter, the architecture and involved signaling process will be explained and
evaluated in an end-to-end multiple flow mobility scenario, presenting and discussing the results of its
deployment over a physical wireless testbed.

5.1 framework architecture
As in the previous scenario (i.e., Chapter 4), the end-to-end multiple flow mobility scenario, was

deployed over the concept framework explored in Chapter 3, considering some required changes. Despite
the number of network nodes involved, the main difference between the frameworks configuration

1Available as open-source: https://github.com/ATNoG/of mobilenode.git
2http://amazing.atnog.av.it.pt/
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(Fig. 3.4 and Fig. 5.1b) is the change of the OvS bridge attached interface, that now is the physical
network interface (PHY) (in the access points, Fig. 5.1b-c/d/e) instead of the wireless physical network
interface (WPHY) (Fig. 3.4-b/c). Notwithstanding, the OvS configuration is maintained, which
implements a layer 3 bridge in all network nodes, enabling a layer 3 routing using the kernel routing
table. The OvS bridge attached interface adjustment was imposed by the necessity of the AP2 sending
the handover solicitation through a Packet_in message to the controller. However, as in the previous
scenario (i.e., Chapter 4), this configuration still allows to set a routing rule over the kernel routing
table decision.

Fig. 5.1 compares the designed framework, where the OpenFlow controller is able to communicate
and coordinate the mobile nodes through OpenFlow messages, with its configuration over the AMazING
tested.
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Figure 5.1: System framework

5.1.1 signaling
The deployed multiple flow mobility scenario considers two dual-interfaced mobile nodes connected

simultaneously to two different access networks each, while sharing one of them (Fig. 5.1a). Seen as
source of content, each mobile node streams data packets towards a listener node through the same
access point. This behavior increases the data load on the AP, which after reaching a certain threshold,
sends a handover solicitation towards the controller. As in the previous scenario (Chapter 4), the
handover solicitation is implemented through a packet_in message. The signaling processes involving
the mobile node handover start with the packet_in arrival at the OpenFlow controller. Fig. 5.2 presents
all the signaling involved in the handover process, explained as follows.
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Figure 5.2: Network Signaling

Initially, UDP streams from both MN1 and
MN2 are sent towards the listener node through
AP2 (Fig. 5.2-1/2), causing an overload in AP2.
Motivated by the overloading, AP2 sends a han-
dover solicitation (i.e., packet_in message) to-
wards the network controller (Fig. 5.2-3), which
after its reception, analyzes the packet_in header
and sends to the MN1 a Flow_mod message and
consecutively a barrier_request (Fig. 5.2-4/5, re-
spectively), to verify the correct implementation
of the first rule. Sent to the new transmission in-
terface (i.e., ath1 ), the first flow_mod implements
not only the forwarding of the received packets
from the br0 (i.e., ath0 ), but also the actions
“MOD_SRC_ADD” and “MOD_DST_ADD”,
which modify the source and destiny MAC ad-
dresses to accomplish the wireless handshake. When MN1 receives the barrier_request, a barrier_reply
(Fig. 5.2-6) with the same xid is sent, indicating the installation of the first rule (implemented through
the flow_mod). The controller, after receiving and verifying the barrier_reply, sends the second rule,
through a flow_mod message (Fig. 5.2-7). This last rule redirects the packets to the new interface (i.e.,
ath1 ). The subsequent packets sent from MN1 to listener node IP, with the correspondent destiny
port and protocol, are sent through AP1 (Fig. 5.2-7). The next time that AP2 overloads and sends a
handover solicitation, the controller will process the handover of MN2, with a similar process.

5.1.1.1 openflow messages
The designed framework considers three types of OpenFlow messages signaling to support the

handover, explained as follows.

• Packet_in (Fig. 5.2-3/9):
In this scenario the packet_in is generated by an output action in a flow entry with IP address
matching, by sending an UDP packet when AP2 reaches the load threshold;

• Flow_mod (Fig. 5.2-4/7/10/13):
As in the previous scenario, the first “modify flow entry message” of each MN handover signaling
(i.e., Fig. 5.2-4/10) adds in both MN1’s and MN2’s OvS bridge, respectively, a flow entry to
redirects the matching traffic (i.e., the video stream) to the patch port. Regarding to the flow
entry motivated by the second flow_mod of each MN handover signaling (i.e., Fig. 5.2-7/13,
respectively), it redirects the matching traffic (i.e., the traffic coming from the patch port) after
modifying the source and destiny MAC addresses;

• Barrier_request (Fig. 5.2-5/11) and Barrier_reply (Fig. 5.2-6/12):
In the developed framework, these messages are used to ensure the installation of the first
flow_mod before sending the second one, in each MN handover signaling.
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5.1.2 handover triggering
Extending SDN up to the end-nodes, allows mobility management though OpenFlow messages

without requiring additional mobility protocols. In this scenario, the handover is solicited by the access
point, which sends a packet_in message to the controller, when its load reaches a pre-established
threshold. In oder to automatize the handover solicitation, a bash script that monitors the received
traffic in the access point (AP) was developed. The main reason for the bash as the language of the
script was for the simplicity of getting the necessary information. While C requires libraries to access
the physical network interface (PHY) information (e.g., libpcap3), in bash a simple command call (i.e.,
ifconfig) and a parsing command (i.e. grep) is sufficient. Getting these commands together allows the
needed information (i.e. the amount of received packets) to be captured. The final command should
be:

read RX_B <<< $ ( i f c o n f i g $IFACE | grep ’RX bytes ’ | awk ’{ p r i n t $2 } ’ | grep −o
[0−9] | t r −d ’\n ’ )

As mentioned before, in order to trigger the packet_in message, the access point is able to
monitor the bitrate in its physical wireless interface. This value is obtained through a configurable
pre-established time period, enabling the bitrate calculation through equation 5.1, where Rxnew stands
for the received bits after t seconds of the Rxold value.

bitrate = Rxnew − Rxold

t
(5.1)

This monitor feature stores the bitrate values and triggers the packet_in message when the average
measure of the last three bitrate values are above of the threshold (i.e., 90% maximum load) for
three consecutive times. This allows to avoid false positive or even ping-pong affects. With these
requirements it is possible to find a maximum time value for the handover solicitation to be sent, after
the threshold is reached. Equation 5.2 shows how this value can be calculated, where t stands for the
period between measures. In order to study the impact of the reading frequency over the framework
performance, this value was ranged from 0.5 to 2 seconds.

thand.sol. ≤ 5 × t (5.2)

5.2 framework deployment
Exploring the capability of using the OpenFlow protocol in different types of network nodes and

studying the possibility of providing a handover through SDN mechanisms, the scenario was deployed
in a tree network topology with 9 nodes (i.e., 3 access points, router, network controller, listener node,
2 mobile node and a wireless node), where the mobile nodes are seen as a source of content, emulating
a voice streaming through the network towards the listener node. Keeping that in mind, the mobile
nodes have a wireless connection with two APs each (i.e., MN1 attach to AP1 and AP2, and MN2
attach to AP2 and AP3, Fig. 5.3). On the other hand, the third wireless node is attached only to AP2,
whereas all the remaining nodes have a physical link connection. All nodes can ping each other.

3http://www.tcpdump.org/
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Figure 5.3: Framework configuration

With the purpose of extending the OpenFlow control path up to the Mobile Nodes (Fig. 3.4a/b),
the OvS v2.3.1 with its dependencies was installed in every network node, except on the controller
node, listener and wireless node. While the listener and wireless node does not have any OpenFlow
agent, the POX was used in the controller node (Fig. 3.4g), enabling it to perform a connection
between any node of the framework with an OpenFlow agent. With the mobile node being the source
content, its OvS configuration is somehow different from the remaining network nodes, enabling it
to apply new rules over the kernels forwarding, allowing the packet redirection to the other wireless
interface. To accomplish that, both OvS bridges attached to each mobile nodes’s wireless interface,
were interconnected by a patch port that acts as a patch cable.

As explained in Chapter 3, an OpenFlow switch is not capable of handling ARP messages, so an
external entity to handle them (eg., the controller) is required. As in the previous scenario, the nodes’
OvS configuration gives the task to the Linux kernel, enabling each network node to handle its own
ARP messages. Moreover, the data and control path share the same link, whereby instead of using the
usual OvS bridge per network interface, we used just one OvS bridge in each network node (Fig. 3.4).
With this configuration, less control traffic is generated, and still allows us to set a new forwarding
rule over the kernel’s routing table. In this way, the OvS bridge in each network node was configured
as layer 3, enabling each network interface to handle its own ARP messages.

Finally, to enable the MNs to establish a wireless connection and perform the wireless handshaking
a prior setup of a “NORMAL” action is also required. This “NORMAL” action allows the OvS to
send the packet to the kernel, to be processed as layer 2 or layer 3. With the purpose of making the
OvS responsible for the packets forwarding in case of controller fail, the OvS bridges were configured
in fail-save-mode “standalone”.
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5.2.1 running a demo
Before starting to run the demo, and since the control and data path are in the same interface, the

mobile nodes (MNs) and access points (APs) require not only a “NORMAL” action and rule which
forwards the handover solicitation as a packet_in message, but also an already established link with
APs and MNs. Contrary to the previous scenario, the handover solicitation (i.e., packet_in messages)
will be sent by the AP2, so it requires an OvS forwarding rule that sends the handover solicitation
through a packet_in messages towards the controller. Moreover, the static rules that perform the
forwarding between the network nodes, need to be implemented in the kernel’s routing table. Below, it
is shown the experience running process:

1. Iperf stream from wireless node starts:
iperf -c 10.10.12.101 -u -b 8m -t 120
IP dst = 10.10.12.101, User Datagram Protocol (UDP), port = 5001;
The wireless node sends the udp packets towards AP2 through at 8 Mbps;

2. After 5 seconds MN1 starts its own iperf stream:
iperf -c 192.168.10.1 -u -b 8m -t 100
IP dst = 192.168.10.1, User Datagram Protocol (UDP), port = 5001;
The MN1 sends the udp packets towards LN through interface attached to AP2 (i.e., ath0) at 8
Mbps;

3. After 15 seconds MN2 starts its own iperf stream:
iperf -c 192.168.10.1 -u -b 8m -t 100
IP dst = 192.168.10.1, User Datagram Protocol (UDP), port = 5001;
The MN2 sends the udp packets towards LN through interface attached to AP2 (i.e., ath0) at 8
Mbps;

4. The load of AP2 reaches the threshold (i.e., 18 Mbps), forcing the AP2 to send the handover
solicitation:
AP2 sends packet_in - UDP packet sent to the IP addess 11.11.11.11;
The OvS of AP2 has implemented a forwarding rules that sends to the Controller the packets
with destination IP 11.11.11.11, through a packet_in message;

5. Controller receives and analyzes the packet_in message;

6. Controller performs the MN1 handover:
It sends the first flow_mod message, and promptly sends the barrier_request message;
MN1 implements the flow modification and responds the barrier_request with a barrier_reply
message;
Controller barrier_reply message, analyzes it and sends a second flow_mod message;
MN1 receives the second flow_mod message and starts redirecting flows.

7. With the handover of MN1 to the AP1, the load of AP2 decreases below to the threshold;

8. After 10 seconds, the wireless node requires more bandwidth, by adding a new iperf stream:
iperf -c 10.10.12.101 -u -b 8m -t 100
IP dst = 10.10.12.101, User Datagram Protocol (UDP), port = 5001;
The wireless node sends the udp packets towards AP2 at 8 Mbps;
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9. This new stream causes a load increase at AP2 and reaches the threshold (i.e., 18 Mbps),
forcing the AP2 to send the a second handover solicitation:
AP2 sends packet_in - UDP packet sent to the IP addess 11.11.11.11;

10. Controller receives and analyzes the packet_in message;

11. Controller performs the MN2 handover to AP3 with a similar process to MN1:

12. The handover of MN2 to the AP3, causes load decrease at AP2, and stays below the threshold
till the end;

The time values used in both cases are illustrative, with the framework being flexible enough to
integrate mechanisms that allow dynamic configuration of different triggering opportunities.

5.3 evaluation and results
As in the previous scenario, the experience control was taken remotely using Secure Shell (i.e., SSH).

The data results were captured and saved in the proper nodes using the packet analyzer tcpdump4

and analyzed in Wireshark5.
In order to evaluate the impact of the framework mobility management capabilities in a wireless

environment containing multiples flows, the scenario illustrated in Fig. 5.1b was deployed over the
AMazING6 testbed. Despite the fact that the evaluation testbed is composed of Wi-Fi nodes, the
framework is flexible enough to be deployed in mobile network environments, with the necessary
network end-points adaptations.

In the evaluated scenario, the mobile nodes, besides being content consumers, are also a source
of content, streaming data (eg., using iperf ). Enabling OpenFlow in the mobile nodes allowed the
communication between the OpenFlow controller and mobile nodes, giving to the controller the
possibility to monitor the network state and impact the end-nodes connectivity to the network.

The scenario starts with AP2 having already a load of baseline 8Mbps UDP traffic (Fig. 5.4a, blue
line), and the MNs connections to APs and controller already established. After the first 5 seconds,
the MN1 starts sending 8Mbps of UDP traffic through AP2 towards LN, increasing the AP2 load. To
originate these UDP streams, the iperf tool was used, configuring the desired bandwidth (-b 8m) and
protocol (-u or --udp). When the MN2 starts streaming (at 20 seconds of experience time), also towards
LN and through AP2, the AP2 starts overloading, sending a handover solicitation to the controller.
Upon its reception, the controller decides to perform the handover of that flow to AP1 (Fig. 5.4a, red
line). At about 35 seconds of experience, the initial UDP stream requires more bandwidth, simulating
dynamic quality requirements present in a real application, overloading the AP2, that sends another
handover solicitation to the controller, this time performing the handover of MN2 to AP3 (Fig. 5.4a
black line).

The experiments to evaluate the performance of the multiple flow mobility were run 5 times, for
different load reading time values, showing here the average results with a 95% of interval confidence.

4http://www.tcpdump.org/
5https://www.wireshark.org/
6http://amazing.atnog.av.it.pt/
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For the data treatment and manipulation, MATLAB7 was used, showing here average results with
95% of confidence.

5.3.1 performance
To evaluate the performance, the average throughput at several network points was considered.

Fig. 5.4 shows these throughputs, where the performance loss before the handover in both MN1 and
MN2 can be noted. A throughput loss is visible in MN1 when MN2 starts streaming, increasing again
after performing the handover (Fig. 5.4b/c). This effect is especially noticeable in MN2 (Fig. 5.4c),
which initially cannot transmit at its maximum throughput, and immediately after the MN1 handover,
its throughput grows up to 8Mbps. When AP2 starts overloading at 35 seconds, the throughput in
MN2 (Fig. 5.4c) decreases, which grows back to its original value after its handover to AP3.

The throughput difference between MN1 and MN2 before each handover (i.e., 7.5Mbps for MN1
and 4Mbps for MN2), is attributed to the wireless interferences and signal strength between each MN
and AP2, with the MN2 having a weaker signal (physically farther from the AP).
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Figure 5.4: UDP throughputs at different network points

5.3.2 handover detection
In the experiment the handover detection performance was also evaluated to different time interval

values. Equation 5.3 enables the calculation of the number of required CPU readings in the AP to
7http://www.mathworks.com/products/matlab/
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detect the overload and trigger the handover solicitation.

Nreads = thand.sol.

t
(5.3)

With the purpose of evaluating the impact of the time interval load readings, several experiments
were made ranging the interval from 500ms to 2s. The choice of these values relies on the fact that
values below 500ms have a significant error when extrapolated to bit per second (i.e., bps), and values
greater than 2s have a considerable increase of overload detection time. Fig. 5.5 shows the throughputs
of AP2 for the different time intervals.
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Figure 5.5: UDP throughputs of AP2 for different time interval values

In TABLE 5.1, the times of the occurrence of each handover are shown. As expected, for the first
handover (i.e., handover 1, MN1 handover), its moment delays with the time interval increment. On
the other hand, this is not always true, and if we observe the second handover moment (i.e., handover
2, MN2 handover), the first handover to happen was for the 700ms interval, since it is also the first to
start the AP overload. Notwithstanding, looking at the handover time detection, in TABLE 5.1 we
note that the quickest was the 500ms interval.

Despite that the shortest interval is the one that gives the faster handover detection, this also
implies more CPU load. For example, if the experience runs over 60s and the reading time period was
set to 500ms, the CPU will read the received bytes at least 120 times (equation 5.3). On the other
hand, if the time period was set to 2s, the CPU will read the same value only 30 times. This behavior,
translates into a delay when concerning the overload detection.

Regarding to the handover delay, it remains constant with the 14.18 (± 1.89) ms for MN1 and
362.18 (± 48.41) ms for MN2. These values directly correspond with the times in the signaling flow
diagram (Fig. 5.2), with the MN1 time being the sum of t2_mn1 and t4_mn1. The t2_mn2 and t4_mn2

correspond to MN2.
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Table 5.1: Handover Timeline

Time interval
Timeline (s) Handover

triggering
thand.sol (s)Handover 1 Handover 2

500 ms 22.68
± 0.26

39.00
± 0.50

2.01
± 0.13

600 ms 22.92
± 0.13

39.35
± 1.11

2.34
± 0.18

700 ms 24.02
± 0.41

37.54
± 0.71

3.08
± 0.29

800 ms 24.97
± 0.60

38.97
± 0.37

4.25
± 0.26

900 ms 25.03
± 0.52

39.64
± 1.85

4.33
± 0.41

1 s 26.22
± 1.56

42.13
± 1.44

5.03
± 1.11

2 s 30.41
± 0.79

48.35
± 5.00

9.60
± 0.43

5.3.3 openflow impact
The handover OpenFlow signaling exchanged between controller and MN, showed an overhead of

609 bytes, regarding to the five OpenFlow messages exchanged. The OpenFlow overhead introduced
by the handover signaling presented in Fig. 5.2 in each MN was 80% of this value (i.e., four OpenFlow
messages), with the remaining 20% (first message, i.e., packet_in) being ensured by AP2. Since the
OpenFlow Controller has a centralized operation, it is involved in all five messages of the handover
signaling. As a framework that aims to operate independently of the underlying access technology, in
this study we do not consider the overhead introduced by Layer 2.

The total OpenFlow overhead is significantly increased by the keep-alive messages (exchanged
between the controller and OvS by default), since these messages were exchanged each 5 seconds by the
OpenFlow enabled entities. In a 60 seconds experiment, 24 (± 1) OpenFlow keep-alive messages are
exchanged. This value is duplicated in the case of the MN due to each bridge sending the keep-alive
messages, causing a total (i.e, keep-alive and handover signaling messages) of 3483 (± 151) bytes
OpenFlow overhead for each MN. Nevertheless, this overhead could be reduced by using a higher
period for exchanging keep-alive messages with OpenFlow-enabled end-points.

5.4 chapter considerations
In this chapter, it was studied the impact of applying SDN principles all the way to the end-nodes,

allowing the OpenFlow to be used as a flow-based mobility management in an heterogeneous mobility
framework. An implementation in a physical wireless testbed allowed for its evaluation, with results
showcasing a handover performance without packet loss, with the overhead of the proposed mechanisms
being minimal. The involved software configurations were made available as open-source.
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chapter 6
Conclusion

Along this thesis, as a main goal and aiming to improve 5G network research, an heterogeneous
mobility framework, where SDN mechanisms were able to reach and control wireless mobile end-nodes,
was developed, exploring OpenFlow and associated SDN mechanisms. The developed framework
addresses future challenges such as massive traffic volumes, the proliferation of connected mobile
devices and sustainable integration of heterogeneous networks in mobile environments. Thus, SDN has
been one of the key building blocks of 5G network architectures, adding a greater degree of flexibility.

In chapter 2 an exhaustive exploration of the SDN architecture and its mechanisms shows some
SDN advantages, such as the complexity reduce in today’s networks, enabling network administrators to
manage network services from a central management tool by virtualizing physical network connectivity
into logical network connectivity. Moreover, SDN adoption provides to a company the ability to model
its physical networking environment into software, reducing the overall CAPEX and OPEX. Also, in
physical environments a modification at a physical networking device, would often take a considerable
amount of time to substitute and (re)configure the equipment, while in a SDN environment the ability
to control the virtual and physical networking is provided by using a central management tool. This
ability not only, improves the packet forwarding, but also facilitates the network equipment update.
Additionally, SDN gives extensibility with management APIs to allow vendors to extend the capabilities
of an SDN solution by developing applications to simplify the control of networking traffic behavior.
This same chapter also explored some SDN-enabled software that could be used to deploy mobility
framework in an OpenFlow environment, where SDN/OpenFlow controller is simplified as an operating
system for the network, with the OpenFlow protocol connecting the controller software to the network
devices, allowing the controller to configure network devices.

Despite the possibilities allowed by the coupling of Software Defined Networking (SDN) mechanisms
in upcoming network control and management frameworks towards the enablement of 5G network
architectures, there is yet little experimental work exploiting the application of these aspects into
end-nodes in mobile wireless environments. Towards this concern, chapter 3 addressed the main
objective, exploring a whole new framework composed by a modified OpenFlow controller and several
network nodes instancing OvS, with the purpose of enabling the mobile nodes handovering.

In chapter 4 and chapter 5 two evaluation scenarios implemented in a physical wireless testbed were
considered. A first scenario which explores an extension of SDN mechanisms in heterogeneous networks,
by enabling the use of the OpenFlow protocol in the mobile end-node, shows its feasibility with minor
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OpenFlow overhead impact. A second scenario where the OpenFlow was used as a flow-based mobility
management in mobile wireless environments, provided results showcasing not only the feasibility and
benefits of the proposed mechanisms towards a source mobility offloading scenario, without requiring
additional mobility protocols, but also the benefits of extending SDN approaches for end-to-end flow
control in wireless environments.

To conclude, this thesis contributed towards upcoming 5G effort by studying the impact of applying
SDN principles all the way to the end-nodes, allowing the OpenFlow to be used as a flow-based mobility
management in mobile wireless environments. Both scenarios and respective evaluation were validated
and submitted as a paper to IEEE GLOBECOM 2015 and to European Workshop on Software
Defined Networks. Additionally, a contribution on Github1 was made, distributing and explaining the
framework entities.

6.1 future work
As it was previously referred, there are several issues that still exist and need to be overcome to

make OpenFlow a reality in Mobile Nodes. Some of them will be mentioned below:

• Handover time improvements: Although the handover latency results are acceptable, it is
possible to improve it by developing a proper OpenFlow switch to be used in Mobile Nodes,
where the nodes instead of being a network forwarding equipment are not only a data consumer,
but also a source of content.;

• OpenFlow Controller: the framework controller can also be improved, by developing a script
capable of discovering the best route from the source to the destiny;

• Improving the cooperation between the MN and the controller;

• Machine-to-Machine scenarios: to evaluate the application of this concept applied to different
kinds of mobile devices.

1http://atnog.github.io/of_mobilenode/
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appendix A
Network Nodes
Configuration

In this appendix some of the configuration OvS scripts will be presented, showing the required
bash commands to start OvS module and configure the OvS bridges of the framework network nodes.

Starting with the mobile node, section A.1 presents a script which can be extrapolated to any
dual-interfaced node, in order to enable the traffic redirection from one interface to another. Then a
section A.2 with a configuration example of the framework router, exemplifies the remaining wired
network nodes, showing the used commands to create a VLAN and how to start the OvS module and
configure the OvS bridge. Regarded to the access points, section A.3 shows the configuration of the
hostapd software. Finally, the required command to run the POX controller with the necessary scripts
is presented in section A.4.

a.1 mobile node
In this section the mobile node configuration script is presented in Listing 1, showing not only how

to start the OvS module and attach ports to the OvS bridge, but also how a patch port can be created
and a connection mode “out-of-band” with the controller can be established. To attach the mobile
node to the remaining network, the command line iwconfig ath1 sdn-ap1 was used, where ath1 and
sdn-ap1 stands for the MN’s wireless interface and AP’s Extended Service Set Identification (ESSID)1

to attached, respectively.

1Commonly known as “network name”
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# OvS MobileNode Configuration
## start OVS
echo "load ovs kernel module"
modprobe openvswitch

lsmod | grep openvswitch

ovsdb−s e r v e r / usr /local/ e tc / openvswitch / conf . db \
−−remote=punix : / usr /local/var /run/ openvswitch /db . sock \
−−remote=db : Open_vSwitch , Open_vSwitch , manager_options \
−−pr ivate−key=db : Open_vSwitch , SSL , private_key \
−−c e r t i f i c a t e=db : Open_vSwitch , SSL , c e r t i f i c a t e \
−−bootstrap−ca−c e r t=db : Open_vSwitch , SSL , ca_cert −−p i d f i l e −−detach −−log− f i l e

ovs−v s c t l −−no−wait i n i t
ovs−vswitchd −−p i d f i l e −−detach

# add bridge to ethernet interfaces
ovs−v s c t l add−br br0
ovs−v s c t l add−br br1

# attach interfaces to bridges
ovs−v s c t l add−port br0 ath0
ovs−v s c t l add−port br1 ath1

# create a patch port for each bridge
ovs−v s c t l add−port br0 patch01 −− set i n t e r f a c e patch01 type=patch

opt ions : peer=patch10
ovs−v s c t l add−port br1 patch10 −− set i n t e r f a c e patch10 type=patch

opt ions : peer=patch01

# connect OVS to a controller - "out -of-band"
ovs−v s c t l set−c o n t r o l l e r br0 tcp : 1 0 . 1 0 . 1 5 . 2 0 1 : 6 6 3 3
ovs−v s c t l set−c o n t r o l l e r br1 tcp : 1 0 . 1 0 . 1 0 . 2 0 1 : 6 6 3 3
ovs−v s c t l set c o n t r o l l e r br0 connect ion−mode=out−of−band
ovs−v s c t l set c o n t r o l l e r br1 connect ion−mode=out−of−band
ovs−v s c t l set br idge br0 other−c on f i g : d i s ab l e−in−band=true
ovs−v s c t l set br idge br1 other−c on f i g : d i s ab l e−in−band=true

# set attached interfaces in promiscous mode
i f c o n f i g ath0 0 up
i f c o n f i g ath1 0 up

# start ovs bridges
i f c o n f i g br0 192 . 1 68 . 1 1 . 1 netmask 255 . 255 . 255 . 0 up
i f c o n f i g br1 192 . 1 68 . 1 2 . 1 netmask 255 . 255 . 255 . 0 up

Listing 1: Mobile node’s OvS configuration example
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a.2 router
The network nodes connected via physical link have a similar configuration between them. In this

matter, Listing 2 shows the router configuration, where the VLAN’s and OvS configuration can be
extrapolated for the remaining physical link attached nodes, with the required IP and VLAN tags
modifications.

#!/bin/bash
### OVS

## configure VLAN ’s
modprobe 8021q
lsmod | grep 8021q

# control .6 for the R1 -> controller in-band (of protocol)
vcon f i g add con t r o l 6
ip addr add 10 . 10 . 10 . 254/24 dev con t r o l . 6
vcon f i g add con t r o l 5
ip addr add 10 . 10 . 15 . 254/24 dev con t r o l . 5

# control .2 for the R1 -> AP1
vcon f i g add con t r o l 2
ip addr add 10 . 10 . 11 . 254/24 dev con t r o l . 2

# control .3 for the R1 -> AP2
vcon f i g add con t r o l 3
ip addr add 10 . 10 . 12 . 254/24 dev con t r o l . 3

# control .4 for the R1 -> AP3
vcon f i g add con t r o l 4
ip addr add 10 . 10 . 13 . 254/24 dev con t r o l . 4

# control .7 for the R1 -> Terminal Receiver
vcon f i g add con t r o l 7
ip addr add 192 .168 .10 . 254/24 dev con t r o l . 7

## start OVS
echo "load ovs kernel module"
modprobe openvswitch

lsmod | grep openvswitch

ovsdb−s e r v e r / usr /local/ e tc / openvswitch / conf . db \
−−remote=punix : / usr /local/var /run/ openvswitch /db . sock \
−−remote=db : Open_vSwitch , Open_vSwitch , manager_options \
−−pr ivate−key=db : Open_vSwitch , SSL , private_key \
−−c e r t i f i c a t e=db : Open_vSwitch , SSL , c e r t i f i c a t e \
−−bootstrap−ca−c e r t=db : Open_vSwitch , SSL , ca_cert −−p i d f i l e −−detach −−log− f i l e

ovs−v s c t l −−no−wait i n i t
ovs−vswitchd −−p i d f i l e −−detach
# mask mac address , to resolve bridge conflite
i f c o n f i g c on t r o l . 2 hw ether 0 0 : 3 3 : 3 3 : 3 3 : 3 3 : 2 2
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i f c o n f i g c on t r o l . 3 hw ether 0 0 : 3 3 : 3 3 : 3 3 : 3 3 : 3 3
i f c o n f i g c on t r o l . 4 hw ether 0 0 : 3 3 : 3 3 : 3 3 : 3 3 : 4 4
i f c o n f i g c on t r o l . 5 hw ether 0 0 : 3 3 : 3 3 : 3 3 : 3 3 : 5 5
i f c o n f i g c on t r o l . 6 hw ether 0 0 : 3 3 : 3 3 : 3 3 : 3 3 : 6 6
i f c o n f i g c on t r o l . 7 hw ether 0 0 : 3 3 : 3 3 : 3 3 : 3 3 : 7 7

i f c o n f i g c on t r o l . 2 up
i f c o n f i g c on t r o l . 3 up
i f c o n f i g c on t r o l . 4 up
i f c o n f i g c on t r o l . 5 up
i f c o n f i g c on t r o l . 6 up
i f c o n f i g c on t r o l . 7 0 up

# add bridge to ethernet interface (control .3)
ovs−v s c t l add−br route r
ovs−v s c t l add−port route r c on t r o l . 7

# connect R1 to a controller
ovs−v s c t l set−c o n t r o l l e r route r tcp : 1 0 . 1 0 . 1 0 . 2 0 1 : 6 6 3 3

# start R1 bridges
i f c o n f i g route r 192 . 168 . 10 . 254 netmask 255 . 255 . 255 . 0 up

# enable forwarding
echo 1 > /proc / sys /net / ipv4 / ip_forward

### route table
# delete default gateway - eric
# ip route del default via 10.110.1.201
ip route add 192 . 168 . 11 . 0/24 v ia 10 . 1 0 . 1 1 . 1 01
ip route add 192 . 168 . 12 . 0/24 v ia 10 . 1 0 . 1 2 . 1 01
ip route add 192 . 168 . 13 . 0/24 v ia 10 . 1 0 . 1 3 . 1 01

Listing 2: Bash script with router’s configuration example
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a.3 access points
In order to start the hostapd as a deamon, the configuration file presented in List-

ing 3 was created and linked to the file /etc/default/hostapd through the line: DAE-
MON_CONF="/etc/hostapd/hostapd.conf"

i n t e r f a c e=ath1
d r i v e r=nl80211
s s i d=sdn−ap1
hw_mode=g
channel=6

Listing 3: Hostapd configuration file

With the purpose of setting up the respective wireless interface in the start up, the lines in Listing 4
were added to the file /etc/network/interfaces.

auto ath1
i f a c e ath1 i n e t s t a t i c
address 192 . 168 . 11 . 101
netmask 255 . 255 . 255 . 0

Listing 4: Setting up the wireless interface

a.4 controller
The controllability of framework was taken by the POX controller. To complement the already

existent libriary, a new script, capable of performing the MN handover was created and made available
as open-source on Github2. Listing 5 illustrates how POX can be started with the respective scripts.

The s c r i p t ext /handover_mn . py handles the Mobile Node handover r eque s t .
Run i t a long with l3_lea rn ing
∗ You can run with the "py" component and use the CLI :

. / pox . py forwarding . l 3_ lea rn ing handover_mn py

The s c r i p t ext /handover_mn_rules . py handles the Mobile Node handover r eque s t
while implementes a c e r t a i n number o f dummy ru l e s . As in the s c r i p t be fore ,
run i t a long with l3_lea rn ing

∗ You can run with the "py" component and use the CLI :
. / pox . py forwarding . l 3_ lea rn ing handover_mn_rules py

Listing 5: Header of the POX’s handover script

2http://atnog.github.io/of_mobilenode/
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appendix B
Traffic Monitor

In this appendix the traffic monitor of the access point will be explored. While in section B.1 a
flow chart illustrates the execution flow, the bash code is presented in section B.2, Listing 6.

b.1 flow chart

Start

Bitrate calc
CRX ++

CRX 
<

MAX
CRX
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>
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Figure B.1: Overload detecting flow chart
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b.2 bash script

#!/bin/bash
AUTOR="Flavio Meneses @ University of Aveiro , 2015"
USAGE="Usage: ‘basename $0‘ -h | help"
# default values
IFACE="eth0"
T="10"

if [ [ "$1" == "-h" ] ] ; then
echo "$USAGE"
echo "AUTOR: $AUTOR"
echo ""
echo "[-h ] help"
echo "[-i | --interface] select interface"
echo "[-t | --timeinterval] choose the time interval through the array

index"
echo " [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4

5]"
exit

elif [ [ "$1" == "--default" ] ] ; then
echo "DEFAULT inputs: -i $IFACE -t $T"

else
if [ [ $# < 2 ]]; then

echo "Invalid argument [$1]"
echo "$USAGE"

exit
fi
while [ [ $# > 1 ]]
do

key="$1"
case $key in

− i |−− i n t e r f a c e )
IFACE="$2"
shift
; ;

−t |−− t ime i n t e r va l )
if [ [ "$2" − l t 15 ] ] && [ [ "$2" −ge 1 ] ] ; then

T="$2"
else

echo "Array index too high! (value between [1 -14])"
exit

fi
shift
; ;

∗)
echo "Invalid argument [$1 $2]"
echo "$USAGE"
exit
; ;

esac
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shift
done

fi

TIME_INTERVAL=(0.1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1 2 3 4 5)

# will be divided by 10
TIME_INTERVAL_BITRATE=(1 2 3 4 5 6 7 8 9 8 20 30 40 50)
HANDOVER_TOLERANCE=0.5
# variables
CRX=0
MAX_CRX=3
CT=0
MAX_CT=3
FLAG=false
# 54 Mbps = 6.75 MBps = 6912 KBps
#MAX_LOAD =6912
MAX_LOAD=$ ((20 ∗ 1024 ∗ 1024) )
PERCENT=90
TRIGGER_LOAD=$ ( (PERCENT ∗ MAX_LOAD / 100) )

echo I n t e r f a c e : "$IFACE"
echo I n t e r v a l Time : "${TIME_INTERVAL[$T -1]}"
echo Trigger Load : "$TRIGGER_LOAD"

while true ; do
# read interface received bytes
read RX_PCKTS_OLD <<< $ ( i f c o n f i g $IFACE | grep ’RX bytes ’ | awk ’{ p r i n t $2 } ’

| grep −o [0−9] | t r −d ’\n ’ )
s l e e p ${TIME_INTERVAL[ $T−1]}
# read interface received bytes afteer an interval time
read RX_PCKTS <<< $ ( i f c o n f i g $IFACE | grep ’RX bytes ’ | awk ’{ p r i n t $2 } ’ |

grep −o [0−9] | t r −d ’\n ’ )

# calc the interface bitrate and save it in the buffer
# the multiplication and division by 10 is due to the fact the bash cannot

calc float numbers
RX_PCKTS_OLD=$ (RX_PCKTS_OLD ∗ 8)
RX_PCKTS=$ (RX_PCKTS ∗ 8)
RX_BITRATE_VALUES[$CRX]=$ ( ( (RX_PCKTS − RX_PCKTS_OLD) ∗ 10 /

TIME_INTERVAL_BITRATE[T−1]) )
#RX_BITRATE_VALUES[$CRX]=$((( RX_PCKTS - RX_PCKTS_OLD) * 10 /

TIME_INTERVAL_BITRATE[T-1] / 1024 / 1024))
#echo buffer: "${RX_BITRATE_VALUES [*]}"

# create a circular buffer
CRX=$ ( (CRX+1) )
if [ [ CRX −eq MAX_CRX ] ] ; then

# buffer full
CRX=0
# active flag to allow the average calc
if [ [ "$FLAG" = false ] ] ; then

#echo "flag"
FLAG=true
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fi
fi

# if buffer is already full calc bitrate average
if [ [ "$FLAG" = true ] ] ; then

# calc array average
BITRATE_AVG=0
for ( ( i = 0 ; i < $MAX_CRX; i++ ) ) ; do

BITRATE_AVG=$ ( (BITRATE_AVG + RX_BITRATE_VALUES[ i ] ) )
done
echo "$BITRATE_AVG"
BITRATE_AVG=$ ( (BITRATE_AVG / MAX_CRX) )

#BITRATE_AVG_M=$(( BITRATE_AVG / 1024 / 1024))

echo b i t r a t e : "$BITRATE_AVG" bps
#echo bitrate: "$BITRATE_AVG_M" Mbps

if [ [ BITRATE_AVG −ge TRIGGER_LOAD ] ] ; then
#flag trigger count ++
CT=$ ( (CT+1) )
echo "bitrate: $BITRATE_AVG Mbps"
echo "Trigger Counter: $CT"
if [ [ CT −eq MAX_CT ] ] ; then

# send trigger to controller
echo "help" > /dev/udp /33 .33 .33 .33/58549
echo "TRIGGER SENT!"
CT=0
if [ [ ${TIME_INTERVAL[ $T−1]} < $HANDOVER_TOLERANCE ] ] ; then

#echo "WAIT FOR HANDOVER"
s l e e p $HANDOVER_TOLERANCE

fi

fi
else

#flag trigger count=0
CT=0

fi
fi

done

Listing 6: Traffic monitor bash script
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appendix C
Demos

In this appendix the demo files will be explored, where in the section C.1 the mobile node demo
is presented, showing the required commands to start the video streaming as well as the power and
bitrate transmission. Section C.2 explores both mobile node and access point demos, illustrating the
data transmission using the iperf application in the MN’s case. The AP demo shows how the traffic
monitor was started.

c.1 scenario 1

#!/bin/bash
# DEMO: handover with openflow

## start capture
sudo tcpdump −ni ath1 −w file_ath1_dump . pcap &
sudo tcpdump −ni ath0 −w file_ath0_dump . pcap &

## implement basic rules in MobileNode ’s ovs -bridges
sudo ovs−o f c t l add−f low br0 p r i o r i t y =0, a c t i on s=normal
sudo ovs−o f c t l add−f low br0 p r i o r i t y =0, a c t i on s=normal
s l e e p 2

## T=0
# start video streaming
cv l c −dvvv BigBuckBunny1080p .mp4 −−sout

’#duplicate{dst=rtp{{mux=ts,dst =192.168.10.1}}} ’
s l e e p 20
## T=20
# reduce the troughput - decrease the TxPower and bit rate
sudo iwcon f i g ath0 txpower 1
sudo iwcon f i g ath0 ra t e 5 .5M
s l e ep 10
## T=30
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# send "handover" solicitation packet to the controller
echo "help" > /dev/udp /11 .11 .11 .11/58549
s l e ep 30

## T=60
# kill the processes
sudo p k i l l tcpdump
p k i l l v l c

Listing 7: Bash script demo for the SDN extension scenario

c.2 scenario 2

#!/bin/bash
# DEMO: handover with openflow

## start capture
sudo tcpdump −ni ath1 −w file_ath1_dump . pcap &
sudo tcpdump −ni ath0 −w file_ath0_dump . pcap &

## implement basic rules in MobileNode ’s ovs -bridges
sudo ovs−o f c t l add−f low br0 p r i o r i t y =0, a c t i on s=normal
sudo ovs−o f c t l add−f low br0 p r i o r i t y =0, a c t i on s=normal
s l e e p 2

## T=0
# start data streaming
i p e r f −c 192 . 1 68 . 1 0 . 1 −u −b 8m −t 60

## T=60
# kill the processes
sudo p k i l l tcpdump

Listing 8: Mobile node bash script demo for the multiple flow scenario

66



#!/bin/bash
# DEMO: handover with openflow

## start traffic monitor with a 1 second of reading interval as a deamon
. / parseRXpckts . sh − i ath1 −t 10 &
s l e ep 2

## start capture
sudo tcpdump −ni ath1 −w file_ath1_dump . pcap &
sudo tcpdump −ni c on t r o l . 3 −w file_c3_dump . pcap &

## implement basic rules in MobileNode ’s ovs -bridges
sudo ovs−o f c t l add−f low ap2 p r i o r i t y =0, a c t i on s=normal
s l e e p 60

## T=60
# kill the processes
sudo p k i l l tcpdump
sudo p k i l l parseRXpckts

Listing 9: AP2 bash script demo for the multiple flow scenario
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