
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2015

Diogo Micael
Repas Curto

Sistemas de Deteção por Infravermelhos De Muito
Baixo Consumo
Low-Power, Highly Reliable IR Range Detection
Systems

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2015

Diogo Micael
Repas Curto

Low-Power, Highly Reliable IR Range Detection
Systems

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Eletrónica e de Telecomunicações, realizada sob a orientação cient́ıfica do
Professor Doutor Pedro Fonseca, Professor Auxiliar do Departamento de
Eletrónica, Telecomunicações e Informática da Universidade de Aveiro.

o júri / the jury

presidente / president Professor Doutor Rui Manuel Escadas Ramos Martins
Professor Auxiliar, Universidade de Aveiro

vogais / examiners committee Professor Doutor V́ıtor Manuel Ferreira dos Santos
Professor Associado, Universidade de Aveiro (Arguente Principal)

Professor Doutor Pedro Nicolau Faria da Fonseca
Professor Auxiliar, Universidade de Aveiro (Orientador)

agradecimentos /
acknowledgements

Por toda a ajuda e companheirismo ao longo destes últimos meses, agradeço
à malta da Exatronic.

Quero agradecer o apoio incondicional da minha faḿılia pelo enorme esforço
que fizeram para me suportarem ao longo de todos estes anos.

Aos amigos que sempre caminharam comigo lado a lado, nos bons e maus
momentos, um eterno obrigado.

Por último, mas não menos importante, um grande obrigado à Soraia por
conseguir tornar sempre tudo mais fácil.

Resumo A eficiência energética é cada vez mais uma preocupação de engenheiros
e da população em geral. Em sistemas alimentados a baterias, esta pre-
ocupação torna-se mais evidente quando as pessoas interagem com estes
diariamente. É então frustante quando a uma bateria descarregada impos-
sibilita a utilização destes sistemas.

Um caso particular de sistemas que muitas vezes são alimentados por bate-
rias são as torneiras automáticas. Estes sistemas necessitam de constante
manutenção, quer devido à descarga das baterias, quer devido a falhas
na deteção de presença. O prinćıpio de funcionamento destes sistemas
baseia-se essencialmente numa deteção por infravermelhos com recurso a
um pequeno circuito de ativação de uma electro-válvula.

Nesta dissertação foi proposta uma implementação semelhante com algumas
alterações. Utilizaram-se técnicas de baixo consumo, algoritmos de deteção
por infravermelhos e ainda recolha de energia para aumentar a duração da
bateria. Ao usar um microcontrolador para executar as tarefas requeridas,
foi adicionada ao sistema alguma inteligência. Foi ainda estudada a possibil-
idade de tornar o sistema completamente autónomo em termos de geração
e consumo de energia.

Embora a auto-suficiência não tenha sido alcançada, foram obtidos resul-
tados importantes que poderão contribuir para melhorar o desempenho dos
sistemas deste género.

Abstract Energy consumption is one of the major concerns amongst engineers and
general population. In battery powered systems, when people interact with
them in a daily basis, this concern is even more evident. It is frustrating
when a depleted battery makes impossible its normal use.

A particular case of a battery powered system is the automatic faucet.
These need constant maintenance to replace dead batteries and even due
to failures in presence detection. The working principle of these systems is
essentially based in an infrared detection followed by a activation circuit of
an electro-valve.

In this dissertation a similar, with some changes, implementation was pro-
posed. The use low-power techniques, infrared detection algorithms and
energy harvesting to increase battery duration. By using a microcontroller
to perform the required operations, some intelligence was given to the sys-
tem. It was also verified the possibility to make the system self sustainable
in therms of energy consumption and harvesting.

Although self-sustainability was not achieved, several important results were
obtained which can contribute to improve the performance of similar sys-
tems.

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1

1.1 Motivation . 1

1.2 The Company . 2

1.3 Thesis Structure . 2

2 Low-power systems design techniques 3

2.1 Power Categories . 3

2.2 Performance Factors . 4

2.2.1 Supply Voltage and Clock Speed . 5

2.2.2 Wake-up time . 8

2.2.3 Instruction Set Architecture . 9

2.2.4 Data Retention . 10

2.2.4.1 Code Execution: Flash vs SRAM 10

2.2.4.2 Code Execution: FRAM vs SRAM 11

2.2.5 Proper use of Peripherals . 11

2.2.5.1 Serial Interfaces: UART, SPI and I2C 11

2.2.5.2 Analog to Digital Converter 12

2.2.5.3 DMA and FIFO Buffers . 12

2.2.5.4 Brown-out Reset . 12

2.2.6 Hardware and Software Co-Design . 13

2.3 Case Study and Validation . 14

2.4 Chapter Remarks . 18

3 Energy Harvesting 21

3.1 System Architecture . 21

3.2 Energy Sources . 21

3.3 Chapter Remarks . 25

4 Infrared Detection 27

4.1 Radiation Sources . 27

4.2 Propagation Medium . 28

i

4.3 Infrared Receivers . 28
4.4 Detector Main Characteristics . 29
4.5 Existing Detectors and Limitations . 32

4.5.1 Passive Sensors . 32
4.5.2 Active Sensors . 33

4.5.2.1 Active Sensor: TSAL6100 & TSSP58P38 34
4.5.2.2 Active Sensor: SHARP 2Y0A21 F 9Y 38

4.5.3 Thermopile Sensors . 39
4.6 Evaluation of Hamamatsu T11264-08 Dev Module 41
4.7 Chapter Remarks . 45

5 Project Implementation 47
5.1 System’s Description and Design Considerations 47
5.2 Hardware Interfaces and System Assembly . 48
5.3 Energy Balance . 51

5.3.1 Case Study . 53
5.4 System Programming . 54

5.4.1 Detected Issues . 57
5.5 Experimental Results . 57
5.6 Chapter Remarks . 59

6 Conclusions and Future Work 61

Bibliography 63

A Inefficient Code Version 66

B Most Efficient Code Version 69

C Implemented Code 74

ii

List of Figures

2.1 Generic system current consumption . 4

2.2 Frequency vs Supply voltage. 5

2.3 Clock speed average active current vs work load. 6

2.4 Clock speed average active current vs work load. 7

2.5 Active Mode Current Efficiency. 8

2.6 Average LPM Currents vs Wake-up Frequency at 25 ◦C 9

2.7 Energy consumption for evaluated serial interfaces. 11

2.8 Operation modes and main function runtime and energy comparison. 18

2.9 Peripherals and system clocks runtime comparison. 18

2.10 Optimization results. 19

3.1 Energy harvesting system architecture . 22

3.2 Regenerative brake diagram. src: HowStuffWorks. 22

3.3 Multi-band planar antenna. 23

3.4 Thermal energy harvesting in a heat sink. src: rtcmagazine.com 24

3.5 Micro water turbine. src: element14.com . 24

3.6 Solar powered mini car. src: inhabitat.com 24

3.7 Energy harvester human motion concept. src: Krupenkin, T. & Taylor, J. A.
- kurzweilai.net . 25

4.1 Electromagnetic Spectrum. src: pro-lite.co.uk 28

4.2 Energy bands diagram. 29

4.3 Spectral distribution of electrical noise sources in a semiconductor 30

4.4 Passive infrared sensor working principle. 33

4.5 Passive infrared sensor working principle. src: adafruit.com 33

4.6 Modulated active method of operation. src: adafruit.com 34

4.7 Angle of half intensity . 35

4.8 TSSP58P38 block diagram. 35

4.9 TSAL6100 and TSSP58P38 typical application circuit. 36

4.10 Magnitude graph of TSAL6100 and TSSP58P38 sensors. 36

4.11 Spectral analysis of the PWM signal with 50% duty cycle. 37

4.12 Spectral analysis of the PWM signal with 40% duty cycle. 37

4.13 Block Diagram . 38

4.14 Output voltage vs distance to reflective object. 38

4.15 Detection results for a human hand at 10 ± 2 cm . a. Obtained signal; b.
moving average with 12 samples. 39

iii

4.16 Transmittance characteristics of typical window materials. src: HAMAMATSU
Selection guide - Infrared Detectors, march 2013. 40

4.17 TMP006 Block Diagram. 40
4.18 Hamamatsu T11264-08(X) Development Board. 42
4.19 Hamamatsu development board block diagram. 42
4.20 Software User Interface. 43
4.21 Measured values fitted by a normal distribution. 43
4.22 Sensor response: a. 2 different cells; b. 2 different cells with moving average;

c. matrix average response; d. moving average of c. - Moving averages with
12 samples. 44

4.23 Average response for a cardboard object (d ≈ 7 cm). 44

5.1 Block diagram of the faucet system. 49
5.2 Power Switcher Circuit . 50
5.3 Top view of the PCB. 51
5.4 Timing diagram . 51
5.5 Necessary tON to generate enough energy to overcome tOFF. 53
5.6 Faucet use timing diagram. 53
5.7 Program flowchart. 54
5.8 Debouncer flowchart. 56
5.9 Frequency Dependence of Responsivity . 57
5.10 Experimental results for δ = 0.5. 59
5.11 Experimental results for δ = 0.5 with the LEDs removed. 59

iv

List of Tables

2.1 Comparison between different types of memories. 11

4.1 TSAL6100 main characteristics. 34
4.2 TSSP58P38 main characteristics. 35
4.3 SHARP 2Y0A21 F 9Y Main characteristics. 38
4.4 Normal distribution data. 41
4.5 Development board main components (figure 4.18). 41

5.1 ATmega48 electrical main characteristics. 48
5.2 TSAL6100 & TSSP58P38 electrical main characteristics 48
5.3 EHCOTECH DDT-ML-4.5 VDC electrical main characteristics 49
5.4 Hydro-generator F50-5V 10W main characteristics 49
5.5 Components used. 50
5.6 Current values for each component. 52
5.7 Measured Currents . 58
5.8 Infrared sensor distances . 58

v

vi

Chapter 1

Introduction

Energy consumption is one of the major concerns amongst engineers and general popula-
tion. The world is facing a phenomenal growth of demand for energy, in major part due to
population growth, economic expansion and urban development. These factors increase the
demand for more personal-mobility items, appliances, devices and services.

Engineers play a major role in energy consumption, since they can optimize it at the chip,
board, box, system and network levels. At each of these levels, there are major gains that
can be achieved. Several important results in low-power design are being used to limit energy
consumption in all system components.

On the other hand, energy harvesting has been used to power wireless sensor networks
and other battery powered small electronics. The goal is to extract intermittently available
energy from surrounding sources to power or increase battery life of specific systems.

Recent advances in ultra-low-power microcontrollers have produced devices that offer
unprecedented levels of integration for the amount of power they require to operate. These
are systems with power saving schemes, such as shutting down when idle or waiting for some
events. In fact, so little power is needed to run these devices that many sensors are going
wireless and run from batteries and/or energy harvesting for years.

Unfortunately, batteries must be regularly replaced, which is a costly maintenance process.
A more effective wireless power solution may be to harvest ambient mechanical, thermal, or
electro-magnetic energy in the sensor’s local environment.

1.1 Motivation

One of the most commonly used sensors are infrared detectors. These detection systems
have a wide range of applications, going from alarm systems to automatic faucets or hand
dryers.

From the engineering standpoint, these systems must be easily installed, highly reliable
and often battery powered with high autonomy. Easy installation means a system that a
technician removes from the box and installs it without complicated configurations or adap-
tations. High reliability means that it should not generate false negatives/positives in presence
of ambient changes. Finally, high autonomy is necessary to reduce maintenance costs.

This dissertation intends to study methods to maximize power efficiency in a microcon-
troller-based “smart” faucet, starting from the hardware up to the software layer. It was also
an objective to implement a highly reliable infrared detection system while consuming the

1

least amount of power possible.
In order to increase battery autonomy, an harvesting method is also proposed. This

brought to surface an attempt to make the system self powered. In order to estimate the
system’s overall energy consumption and generation (using the harvester) a mathematical
model was developed. This allowed to estimate not only battery duration, but also improve
the system’s overall efficiency by managing several variables. Last but not the least, a system’s
management proposal is developed, based on said model.

1.2 The Company

Exatronic - Innovation Insight, is a company specialized in research, development and
industrialization of innovative solutions in the areas of information technologies, communica-
tions and electronics.

Since 1995, by integrating a complete offer, such as electronics, firmware, mechanics,
technical support and dedicated logistics, Exatronic’s mission is to present innovative solutions
with integrated electronics for their client’s businesses and/or products.

Having as starting point a simple idea or concept, Exatronic carries out the technical
viability analysis, builds the whole research and development process, and provides the man-
ufacturing and delivery of the solution to the end consumer.

1.3 Thesis Structure

Starting from the main characteristics of low-power infrared detection, chapter 2 gives
insights on major issues when designing low-power systems. A brief introduction to hardware
and software co-design is also presented. This chapter ends with a case study where several
design techniques were applied to a specific application in order to maximize its efficiency.

Following the low power concept, a brief explanation of the architecture for energy har-
vesting and available sources is presented in chapter 3.

Infrared detection is a major topic that fills many books on its own. In chapter 4, the main
concepts of infrared detection are presented. Several sensor types and its limitations are pre-
sented and in particular sensors from SHARP and VISHAY are introduced and tested. This
chapter ends with a case study for a thermopile sensor from HAMAMATSU to materialize
some previously introduced concepts.

Chapter 5 is dedicated to a specific application designed to use three major concepts
presented in the previous chapters: the low-power design, energy harvesting and infrared
detection. This chapter starts by describing the system to be implemented and a theoretical
energy balance is performed. After this, the experimental results in terms of each major topic
are assessed and a final conclusion is drawn.

Finally, chapter 6 presents the major conclusions of this thesis, starting by presenting the
issues addressed by this work and the ones left open.

2

Chapter 2

Low-power systems design
techniques

Embedded systems usually have in its core a microcontroller. The “brain” of the applica-
tion, in order to be considered low power, needs to meet certain requirements. Besides being
specifically designed to consume as little power as possible, it must provide tools to manage
adverse situations with energy constraints, such as voltage drops in battery applications, low
peak current, minimum acceptable battery duration and so on.

When defining a system as being low-power, it is usually defined by the application itself.
Each one has its own parameters for what it needs to be low-power. In most cases, a low-
power application is defined by its efficiency. The system needs to get the most work done in
the least time as possible, with the minimum use of CPU while working as slow as possible
and consume only the strictly necessary power [1].

With these thoughts in mind, is clear that low-power systems require optimization at all
levels, from the microcontroller and hardware architecture up through the application layer.

This chapter will introduce the main power categories and design techniques for micro-
controller based systems and applications to be as efficient as possible.

2.1 Power Categories

There are two major factors involved in the application design: dynamic power consump-
tion when it is running and static power for when it is asleep [2].

Dynamic power, as expressed in (2.1), is affected mainly by the supply voltage and the
charging and discharging of capacitances at the clock frequency. The parameter α is a scaling
factor that varies when considering an entire MCU, f is the clock frequency of the CPU, C
is the internal capacitance and V is the supply voltage.

Pdyn = α× f × C × V 2 (2.1)

This is the power consumed when the CPU is running and processing data. From a systems
designer point of view, the changeable parameters during system design are the supply voltage
and operating frequency. This change is not arbitrary because they are dependent on each
other.

3

In a more global view, dynamic power is not only associated to the CPU itself, but also
to the peripherals, both internal and external. This is important since most microcontrollers
have the ability to completely shutdown internal peripherals in order to save power.

External peripherals can also be shutdown by using, for instance, I/O pins to power those
devices, or even to control a transistor working as a switch.

Static power encompasses the power required to maintain proper system operation while
code is not actively running and is highly dependable on voltage, temperature, leakage and
bias currents for analog circuits. This is considered when the CPU is in standby (idle) and
normally waiting for an event to occur. In battery applications, this is the state in which
the CPU stays longer and therefore consumes the most significant battery power. Most
applications need memory to work properly and therefore data retention power must be
taken into account when discussing static power.

In terms of embedded systems, the most common practice is to discuss current consump-
tion instead of power consumption, due to the fact that, normally, the voltage supply is
fixed to a predetermined range. Therefore, over this text, devices’ characterization will be
expressed in current consumption.

2.2 Performance Factors

When designing a low-power system, the first step is normally to do a power budget.
It is necessary to evaluate the needed or allowable power modes and estimate for how long
the system will be running to accomplish the determined objectives. It is also important to
consider the use of the peripherals: the time they will run in each different power mode and
so on [3].

Figure 2.1: Generic system current consumption

After this, it is necessary to calculate the current consumption of each mode and the
time spent on each mode to get an overall estimation of average current consumption for the

4

application as shown in figure 2.1 and expressed in (2.2), where IAV G is the average current
consumption, Idyn and Ist are the dynamic and static current respectively, tdyn and tst are
the respective times. This allows us to get an overall view in what is needed from the power-
supply and the expected battery life. It also allows to get a good view of what parts of the
system need more focus in order to minimize current consumption.

IAV G =
Idyn × tdyn + Ist × tst

tdyn + tst
(2.2)

With these thoughts in mind, next sections will present microcontroller features capable
of managing the current consumption of specific modules and tasks.

2.2.1 Supply Voltage and Clock Speed

Supply Voltage Range

When considering a reduction in the supply voltage in order to reduce the power consump-
tion, there is a limitation that cannot be overlooked. The minimum supply voltage is limited
by the operating frequency, that is, to reduce the supply voltage is also necessary to change
the frequency. As an example in figure 2.2 is shown the frequency limitations depending on
the supply voltage of a microcontroller from ATMEL [4]. The ATMEL AVR XMEGA is a
family of low power, high performance, and a peripheral rich 8/16-bit microcontrollers based
on the AVR enhanced RISC1 architecture.

Figure 2.2: Frequency vs Supply voltage.

1Reduced Instruction Set Computer

5

Clock Speed

In an application that runs for a specific time and then goes back to sleep, is important
to consider the trade-off between speed and current consumption, that is, evaluate what is
best: execute at really low speeds or run fast and then sleep for a longer period.

In order to explain the statement above, an example is provided in figure 2.3 for active
current consumption. It was obtained by taking a generic application with a certain amount
of work that needs to run every ten seconds for five different clock speeds: 32 MHz, which in
figure 2.3 is represented by IAVG32, 8 MHz by IAVG8, 2 MHz by IAVG2, 1 MHz by AVG1
and 31 kHz represented by IAVG31k.

As can be seen, executing at 31 kHz is always worst than higher speeds. This occurs due
to the very low execution speed the microcontroller is almost always working instead of in a
Deep-Sleep state [5] [6].

Figure 2.3: Clock speed average active current vs work load.

A better overview of this case is shown in figure 2.4. Here, the 31 kHz average current was
removed. As the work load starts to increase, the most efficient frequencies are the highest.
This indicates that executing at low speeds is only better if the work load is small.

These figures were obtained based on (2.2). More explicitly:

idyn(f) = iDD(f) + iWU(f) + iPD(f)
tdyn(f) = tn inst(f) + tWU + tPD(f)
Ist = IDS

tst = tDS

tdyn(f) + tst = 10 s

Where idyn(f), iDD(f), iWU(f) and iPD(f) are the dynamic, active, wake-up and power-
down currents depending on the frequency. tn inst(f) is the amount of time it takes to perform

6

Figure 2.4: Clock speed average active current vs work load.

the instructions and finally, IDS is the static current in the deep-sleep mode.

Another important aspect of frequency reduction to consider is the fact that in order
to maintain the logic level, a certain amount of current must be used. This is necessary to
maintain the charge level of the intrinsic capacitances of the microcontroller (recall (2.1)). For
lower frequencies, this logic level must be held for longer, increasing the current consumption.
When using higher frequencies, the voltage (logic) level decay is negligible making these more
efficient than lower frequencies. An example, from Silicon Labs, is shown in figure 2.5 [7].

When considering running the application at higher speeds, there is another factor that
rises as already shown in this section: most microcontrollers need higher supply voltages in
order to run faster. Therefore, to avoid errors in code execution, another feature must be
used: a low-voltage detector, that enables, for instance, to reduce clock speed in runtime and
therefore extend battery life. There is another feature useful both at higher and lower speeds
called the Brown-out Reset. This allows to protect the application from errors as batteries
die, or when high peaks of dynamic current bring the supply voltage to an unsupported level,
resetting the microcontroller in both cases. These circuits are particularly important if the
system is battery powered. Since running at higher speeds requires more current and, as
shown in figure 2.2, the clock speed may not be supported, is necessary to start slower and
increase the working frequency while monitoring the voltage level, stopping near the MCU
shutdown point. This allows the application to run as fast as possible and as long as the
battery allows.

In some applications, the relevant mode is not when the application is running (active
mode). This happens when the system spends a large portion of his time in a Sleep/Low-
Power mode making this the most relevant mode for current consumption. Meaning that the
most important mode to consider really depends on the duty cycle between the various sleep
and active modes. [8]

7

Figure 2.5: Active Mode Current Efficiency.

2.2.2 Wake-up time

Wake-up time refers to the transition from low-power to active modes. For systems with
short active windows, the wake-up process consumes a similar amount of current as normal
operation. The more functions that are turned off, the less current the chip will consume,
but the longer it will take it to wake up.

Another important factor is the oscillator start-up delay, which depends on the clock
source as well as other frequency dividers and multipliers in the path. Wake-up time will
usually be the limiting factor that determines which low-current mode can be used at a given

8

time in the application. In order to minimize this issue, some additional peripherals can
be used. For instance, an internal voltage regulator that allows to maintain the internal
capacitances charged reduces wake-up time by several µs.

Figure 2.6: Average LPM2 Currents vs Wake-up Frequency at 25 ◦C.

Figure 2.6 [9] comes in the sequence of figures 2.3 and 2.4. What this means is that, when
the application needs to wake-up very frequently, the best is to keep the device in a higher
power mode, allowing power savings in the wake-up process.

2.2.3 Instruction Set Architecture

When evaluating current consumption of a microcontroller, one of the key aspects to take
into account is the instruction set. It has an impact on the amount of actual work done per
unit of energy consumed. The clocking scheme (ratio between the input system clock and the
instruction clock frequencies), cycles per instruction and available instructions, have major
impact on current consumption.

The first thought that comes to mind is CISC3 vs RISC. The CISC architecture goal is to
complete a task in as few lines of assembly as possible. This is achieved by building processing
hardware that is capable of understanding and executing a series of operations.

On the other hand, RISC architecture is focused in having only instructions that can be
executed within one clock cycle. This is achieved by separating the complex instructions with
a sequence of simpler instructions.

For instance the ALU (Arithmetic Logic Unit), is one of the most important components
of a CPU. The level of complexity has a major impact on current consumption. When an ALU
is highly complex with a large number of built-in capabilities, for instance, multiplier/divider
units, floating point, registry calculation and so on, that’s not always good in what concerns
power consumption.

If the application requires very little of these features, a good portion of current is wasted.
But if the application requires all these features, and they are unsupported by the ALU, they

2Low-Power Modes.
3Complex Instruction Set Computers

9

must be decomposed into simpler instructions, which may require more time to process.

This means that the microcontroller must be adjusted for the application in order to
maximize current efficiency.

In order to materialize the above statements, for instance, in some devices, Texas Instru-
ments [10], opted to reduce CPU (ALU) complexity and incorporated an Hardware Multiplier
(32x32 bits), taking 1 CPU Cycle4 to process data, as a peripheral, with no direct support
for division. On the contrary, Microchip Technology [5], added hardware support for both
multiplication (16x16 bits, 1 CPU cycle) and division (32/16 bits, 18 CPU cycles).

With no direct comparison intended beyond the point of giving two examples, these ar-
chitectural choices clearly show that these two different devices are useful in different appli-
cations.

2.2.4 Data Retention

Most microcontrollers provide two main types of sleep modes. The first is a light-sleep
mode, in which the MCU core is stopped, peripherals are disabled, and clock sources are
turned off. However, the MCU stays powered up, preserving the contents of registers and
SRAM, making the wake-up process faster.

The second is a deep-sleep mode, in which the entire MCU is powered down and SRAM
contents are lost. In order to avoid the loss of data, is necessary to save the needed data
to Flash or EEPROM memories. When the CPU wakes-up the data needs to be restored in
order to resume operation. Unfortunately, due to high write/erase time and current spent on
this process, the energy used is substantial.

In order to mitigate some of these problems, another type of memory was introduced
in microcontrollers: the Ferroelectric RAM (FRAM) with similar behavior as SRAM except
for one important characteristic: it is non-volatile, which means an extra feature to reduce
current consumption. FRAM can be used as Flash memory to store the application code and
as backup to save data before power down. Although it consumes more current when active,
the zero consumption while shutdown allows major power savings.[11]

Table 2.1 shows a short comparison between the previously referred memories [12] [13].

2.2.4.1 Code Execution: Flash vs SRAM

Powering and reading the Flash memory of an MCU is one of the most significant con-
tributions to current consumption. Some devices allow code execution from SRAM. This
comes, as expected, with some trade-offs: the first step to run from SRAM is to copy the
flash contents to SRAM, which consumes significant amounts of time and current. Another
disadvantage is the limited size of the SRAM, which is significantly smaller than flash. This
means that, in order to be worthwhile, the functions running from the SRAM must be limited
in size or should be computationally-intensive functions.

Another important drawback is the use of a single memory. Since most microcontrollers
use two separate buses to read from Flash and SRAM, the limitation of using only one could
imply the stalling of the processor in instructions that write back to SRAM.

It can’t be forgotten that, applications that switch from active mode to deep-sleep peri-
odically need to restore SRAM contents after each power-on, increasing the waste of power.

4Using Direct Memory Access
5Write cycle up to 200 MHz

10

Table 2.1: Comparison between different types of memories.

SRAM FRAM FLASH EEPROM

Type Volatile
Non-

Volatile
Non-

Volatile
Non-

Volatile

Write cycle
[time]

<< 125 ns 5 125 ns 10 µs 5 ms

Endurance
[cycles]

unlimited 1013 105 106

Average active
current [/MHz]

< 60 µA 110 µA 260 µA 50 µA

Flexible code
and data

partitioning
no yes no no

2.2.4.2 Code Execution: FRAM vs SRAM

As shown in table 2.1, FRAM can work as unified memory with flexible code and data
partitioning, meaning that runtime variables can be stored in the same “place” as program
data with the drawback explained earlier but with an important advantage: the data saved is
kept when the device is shut down. There’s still the possibility to use SRAM to complement
the FRAM adding the advantage of independent buses.

2.2.5 Proper use of Peripherals

The use of peripheral features in an embedded system is very usual, therefore, maximizing
its efficiency is also a good practice to reduce current consumption.

2.2.5.1 Serial Interfaces: UART, SPI and I2C

The serial interface is one of the most used peripherals in an embedded system. Since
the protocols used may vary, is necessary to evaluate the best in terms of energy efficiency.
Figure 2.7 shows the comparison between three serial interfaces [14].

Figure 2.7: Energy consumption for evaluated serial interfaces.

11

The values in this figure (2.7) are normalized and can be used in direct comparison between
each other. It can be seen that the most energy-efficient interface is SPI. This is mainly due
to the fact that SPI protocol does not have any overhead in data transmission.

2.2.5.2 Analog to Digital Converter

An analog to digital converter consists essentially of a measured voltage across a capac-
itor with reference voltage circuits, signal amplifiers and buffers, etc. When sampling and
converting, all this analog circuits are working and therefore consuming current. When the
main objective is to save power, the best option is to run the ADC module at a higher speed
than necessary for the application, disabling it between samples and reducing the sampling
time to the minimum necessary to maintain measurement accuracy.

In this case some considerations must be taken into account: if the module is being turned
off and on, there is a minimum delay before taking a sample. When the source impedance of
the analog signal is high the current drawn from the source by leakage can affect accuracy. If
the input signal does not change too quickly an extra capacitor must be added to charge the
internal holding capacitor, increasing accuracy. At last, putting the microcontroller in a sleep
mode also improves accuracy, since the digital noise from the CPU and other peripherals is
minimized.

2.2.5.3 DMA and FIFO Buffers

The Direct Memory Access peripheral is mainly used to reduce the CPU overhead, since it
allows to perform data transfer tasks without CPU intervention. Since it can work even with
the CPU in a sleep mode, it is a great tool to reduce power consumption. This is possible
because the DMA module’s power consumption is much smaller than the CPU’s.

Another important feature is the used of FIFO buffers. These buffers store received data
until they are full. Once this happens, an interrupt is fed to the CPU in order to process the
data and empty the FIFO. This allows a great power saving because the CPU does not need
to handle individually every single transfer.

2.2.5.4 Brown-out Reset

As explained in section 2.2.1 an important peripheral feature is the Brown-out Reset
(BOR). While it protects the application from miss-execution due to voltage drop, it also
consumes a significant amount of power.

The best way to deal with this issue, without letting the application unprotected from
voltage drops, is to have a dynamic BOR. This is achieved by: first, allowing the micro-
controller to disable this peripheral in sleep modes, since it’s main objective is protect from
miss-execution, in sleep modes it is no longer needed when the CPU is not running; second,
by using a low-power BOR that ensures that the microcontroller will always have a power-on
reset to place it in a known state.

The first approach is not the best, although the CPU is not working does not mean that
other peripherals can’t be affected by voltage drops. It is always best to have some sort of
protection to avoid errors.

12

2.2.6 Hardware and Software Co-Design

One of the current practices to achieve maximum efficiency is to design simultaneously
the hardware and the software [15]. There are some key aspects to take into account:

• Coordination: co-design techniques are used to coordinate the design steps of interdis-
ciplinary design groups;

• Concurrency: Testing hardware (or software) when software (or hardware) is not yet
complete.

• Correctness: Complex hardware and software require techniques to not only verify the
correctness of each individual subsystem, but also verify their correct interactions after
their integration.

• Complexity: today’s electronics complexity use co-design techniques to produce cor-
rectly working and highly optimized systems.

Several rules apply when designing hardware and software with low-power and maximum
efficiency as main goals [3] [16]:

• Minimize operating duty-cycles;

• Minimize leakage currents;

• Maximize impedance in current paths;

• Minimize impedance in high-speed switching paths;

• Use low-power modes whenever possible;

• Use timers to perform delays;

• Use interrupts instead of flag polling;

• Configure unused port pins as outputs and logic level zero - this is dependent on the
output’s hardware configuration;

• Minimize the use of processing-intensive operations: Modulo, divide, floating point,
(s)printf();

• Avoid multiplication on devices without hardware multiplier;

• Use local instead of global variables - this is dependent on the method that most com-
pilers use to pass variables into functions;

• Use ‘static’ and ‘const’ for local variables;

• Use pass by reference for large variables;

• Minimize function calls from within interrupt service routines;

• Use lower bits to change program flow;

13

• Use DMA whenever possible;

• Use count down in loops instead of count up;

• Use unsigned variables for indexing;

2.3 Case Study and Validation

To materialize the above advices and rules, an example provided by Texas Instruments
Inc.[17] is analyzed. This is a software that every second takes an ADC temperature sample
and the degrees Celsius and Fahrenheit are calculated using floating point operations. The
results are then printed and transmitted through the UART.

EnergyTrace ++
TM

Technology

EnergyTrace
TM

is an energy-based code analysis tool that measures and displays the
application’s energy profile and helps to optimize it for ultra-low-power consumption. The
energy measurement is made by using a software controlled DC-DC converter to generate
the target power supply. The time density of the converter charge pulses equals the energy
consumption of the microcontroller. The measurements are made in real-time, which also
allows for device-internal state analysis.

ULP Advisor

The Ultra-Low Power Advisor is a software compilation tool that checks source code
against the rule list in 2.2.6 that applies to the software part of the application. This allows
to identify areas of code with potentially high energy consumption.

When using both tools, it is possible to make software improvements and gather feedback
from the behavior of the application.

The ULP Advisor, for this first program version and at the time of compilation, shows
the following advices to code optimization:

• Detected sprintf() operation(s). Recommend moving them to RAM during run time or
not using as these are processing/power intensive;

• Detected floating point operation(s). Recommend moving them to RAM during run
time or not using as these are processing/power intensive;

• Detected flag polling using several flags. Recommend using an interrupt combined with
enter LPMx and ISR;

• Detected software delay loop using delay cycles. Recommend using a timer module
instead;

• Detected uninitialized ports in this project. Recommend initializing all unused ports to
eliminate wasted current consumption on unused pins.

• Detected no uses of low power mode state changes in this project.

14

The necessary optimization steps with the respective code improvements are shown below.
Both complete code versions are shown in appendices A and B.

• sptrinf(): Remove. Replace with manual calculation;

Before:

s p r i n t f (resu ltC , ”%.1 f Degrees Ce l c iu s \ r \n” , IntDegC) ;
s p r i n t f (re su l tF , ”%.1 f Degrees Fahrenheit \ r \n” , IntDegF) ;

UART print (r e su l tC) ;
UART print (r e su l tF) ;

After:

UART print (rawToAsc i iStr ing (IntDegC) , ’C ’) ;
UART print (rawToAsc i iStr ing (IntDegF) , ’F ’) ;

char ∗ rawToAsc i iStr ing (i n t 1 6 t input) (. . .)

In this case, the use of sprintf() was replaced with function rawToAsciiString(), which
makes the manual calculation of the conversion from float to string.

• Floating point operations: Truncate with integer calculations;

• Divide operations: Replace with multiply and shift whenever possible;

Before:

f l o a t IntDegF ;
f l o a t IntDegC ;

IntDegC = (temp − CAL ADC 12T30) ∗ (85 .0−30.0) / (CAL ADC 12T85 −
CAL ADC 12T30) + 30 . 0 ;

IntDegF = 9.0∗ IntDegC /5 .0+32 .0 ;

After:

i n t 3 2 t IntDegF ;
i n t 3 2 t IntDegC ;

// Temperature in Ce l s iu s , mu l t i p l i e d by 10 :
IntDegC = ((temp − CAL ADC 12T30) ∗10∗(85−30) ∗10 / ((CAL ADC 12T85 −

CAL ADC 12T30) ∗10) + 30∗10) ;

// Temperature in Fahrenheit , mu l t i p l i e d by 10 :
IntDegF = 9∗ IntDegC/5+320;

The variables and constants used were declared as int32 t instead of float. The cal-
culation was multiplied by 10 to avoid great losses in precision due to no longer using
floats.

• Flag polling: Remove whenever possible. Use of interrupts;

• Software delays: Use timers;

15

• Operation modes: Low power modes whenever possible;

Before:

d e l a y c y c l e s (400) ; // Delay f o r Ref to s e t t l e

whi l e (ADC12IFGR1 & ˜ADC12IFG30) ; // Wait f o r the conver s i on to complete
whi l e (ADC12CTL1 & ADC12BUSY) ; // ADC12 Control Reg i s t e r & Busy b i t
whi l e (! (UCA0IFG & UCTXIFG)) ; // Wait u n t i l TX bu f f e r ready
whi l e (UCA0STATW & UCBUSY) ; // USCI A0 Stat Reg & Busy Flag

After:

// Conf igure Timer
TA0CTL = TASSEL ACLK | MC UP | TACLR; // ACLK, up mode , c l e a r t imer .
TA0CCR0 = 131 ; // ˜0 .4ms
TA0CCTL0 |= CCIE ; // Cap/comp in t e r r up t enable

b i s SR r e g i s t e r (LPM3 bits | GIE) ; // LPM3. Wait f o r Ref to s e t t l e

TA0CCR0 = 0x8000 ; // Change t imer de lay to ˜1 sec .

whi l e (1)
{

b i s SR r e g i s t e r (LPM3 bits | GIE) ; // Enter LPM3, wait f o r ˜1 sec
t imer in a low−power mode

ADC12CTL0 |= ADC12ENC | ADC12SC; // Sampling and conver s i on s t a r t
b i s SR r e g i s t e r (LPM3 bits | GIE) ; // Wait f o r conver s i on to complete

en t e r i ng a low−power mode .

(. . .)
}

#pragma vec to r=TIMER0 A0 VECTOR // Exit s Low−power mode
i n t e r r u p t void TIMER0 A0 ISR(void) (. . .)

#pragma vec to r = ADC12 VECTOR // ADC in t e r r up t s e r v i c e rou t ine
i n t e r r u p t void ADC12 ISR(void) (. . .)

#pragma vec to r=USCI A0 VECTOR // Sends data through UART
i n t e r r u p t void USCI A0 ISR (void) (. . .)

The flag polling cycles, while(...), were replaced by timer and interrupt service routines
configuration. While waiting for the peripherals, the CPU is placed in a low-power
mode.

• Floating port pins: Declare output with logic level low;

Before:

// Conf igure used port p ins
P2SEL1 |= BIT1 | BIT0 ; // Conf igure UART pins
P2SEL0 &= ˜(BIT1 | BIT0) ; // Conf igure UART pins

In this case, the absence of configuration means the port is left floating, which means
its output/input state is undefined. To avoid this, for the MSP430 family of devices,

16

the ports must be configured as inputs or outputs driven low. These configurations
highly depend on the ports’ hardware and can vary depending on the manufacturer of
the microcontroller.

After:

// Conf igure Port Pins as Output Low . Clear a l l port i n t e r r up t f l a g s .
PAOUT = 0 ; PBOUT = 0 ; PJOUT = 0 ;
PADIR = 0xFFFF; PBDIR = 0xFFFF; PJDIR = 0xFF ;
PAIFG = 0 ; PBIFG = 0 ;

// Conf igure used port p ins
P2SEL1 |= BIT1 | BIT0 ; // Conf igure UART pins
P2SEL0 &= ˜(BIT1 | BIT0) ; // Conf igure UART pins

• Loop count: Count down in loops.

Example:

f o r (i = 16 , bcd = 0 ; i ; i−−)
(. . .)
f o r (i = 4 ; i > 0 ; i−−)
(. . .)

As previously explained, using decrementing variables in loops is more efficient due to
the presence of native instructions to make a direct comparison to zero.

• Clocks: Deactivate unnecessary clock sources.

Before:

(. . .) // No con f i gu r a t i on . Al l c l o c k s running

After:

// Conf igure Clock System
CSCTL0 H = 0xA5 ; // CS password
CSCTL2 = SELA LFXTCLK; // ACLK sourced from LFXT
CSCTL3 = DIVA 1 ; // No d i v i s i o n
CSCTL4 |= LFXTDRIVE 3 | SMCLKOFF | VLOOFF; // Highest c r y s t a l d r i v e

s e t t i n g .
CSCTL4 &= ˜LFXTOFF; // Turn on LFXT

By default, after a reset, all clock sources are enabled, which means a great increase in
power consumption. Therefore, like the I/O ports, all clock sources must be configured.

Using EnergyTrace++
TM

is possible to track relative energy consumption and compare
different optimization procedures. Figures 2.8, 2.9 and 2.10 show the improvements from the
inefficient version to the most efficient.

From figure 2.8, the first noticeable improvement is the overall system’s energy consump-
tion reduction (Delta Energy): 89.5%. This is achieved in great part by the transition to
low-power modes when the CPU is idle (Active Mode → LPM3) . Figure 2.8 also shows an
increase in time and energy spent in low-power modes of 83%. These modes deactivate the
main system clocks (ACLK, MCLK) and consequently deactivate all peripherals sourced by
these clocks, saving energy.

17

Figure 2.8: Operation modes and main function runtime and energy comparison.

The complete disregard of optimization and low-power design techniques and advices,
highlighted by the inefficient version of the software, clearly shows the extra energy consumed
to achieve the exact same goals and results.

The need for optimization becomes even more evident when verifying code size after
compilation. The Very Inneficient version takes 14.294 bytes and the Optimized takes only
1.618 bytes.

Figure 2.9: Peripherals and system clocks runtime comparison.

Figure 2.10 shows the final obtained results. The level of improvement from one ver-
sion to another is ultimately noticeable by the duration of a CR2032 battery running both
applications.

One important note is necessary to take into account: The need to know how the com-
piler works. A programmer could try to make all optimizations listed above and still does
not achieve the lowest power consumption possible, since the program compiler makes code
optimizations not always good in terms of power consumption.

2.4 Chapter Remarks

This chapter started with a brief introduction to power categories in order to give visibility
to important factors that cannot be overlooked when designing a low-power system. It was

18

Figure 2.10: Optimization results.

also theoretically demonstrated that running as fast or as slow as possible is not always better
- a balance must be achieved.

Another topic covered by this chapter is the proper use of peripherals to run the appro-
priate configurations or to provide extra tools to save power.

Several low-power hardware and software techniques were presented and its impact was
demonstrated when used properly on a real system. Although several configurations make
the program more difficult to read or even to code due to the low-level programming, that is
sometimes necessary to optimize the system at all levels.

19

20

Chapter 3

Energy Harvesting

The concept of energy harvesting in sensor and microcontroller systems is mostly related
to the process of converting ambient or waste energy into electrical energy in order to power
those devices.

The development of energy harvesting has been driven mainly by the proliferation of
autonomous wireless electronic systems. This demand for energy efficient devices increased the
research and development of self powered systems using energy harvesting with the perpetual
system as main goal.

The power generated by this process is in the range of micro to milliwatts and is highly
dependent on local conditions. When designing energy harvesting systems, several technical
questions and challenges must be overcome, namely: availability of the energy source; time
variation; multiple sources exploit and cost-effectiveness. The implications of each method
should be properly measured before committing to an approach. Why choose energy har-
vesting? For instance, one of the most critical applications is the pacemaker. Linear and
nonlinear piezoelectric devices are introduced to continuously recharge the batteries of the
pacemakers by converting the vibrations from the heartbeats to electrical energy. The power
requirement of a pacemaker is very low. However, without energy harvesting, after few years,
patients require another surgical operation just to replace their pacemaker battery [18] [19].

3.1 System Architecture

Usually, the outputs of an energy harvester are not suitable for direct use to power the
devices. Depending on the nature of the harvester, the characteristics of voltage and current
can vary, namely the phase, amplitude and frequency of the AC waveforms or the magnitude
of the DC level.

In order to power the electronics it is necessary to properly process the harvester’s output.
Furthermore, it is not expected that the harvester would be able to give enough continuous
energy to power the electronic devices, therefore an energy storage unit is necessary. The
storage of energy can be made with a super capacitor or with a rechargeable battery.

3.2 Energy Sources

The choice of energy source and method of implementation is largely defined by the
application. There can be a fundamental link between the energy source and the design of

21

Figure 3.1: Energy harvesting system architecture

the harvester. Several sources can be identified [20]:

Motion, vibration or mechanical energy

Kinetic energy harvesters are typically inertial spring-mass systems [21]. Electrical power
is extracted by employing piezoelectric, electromagnetic and electrostatic transduction sys-
tems. Piezoelectric generators use active materials that generate an electrical charge when
stressed mechanically. Electromagnetic generators operate based on Faraday’s law of induc-
tion, which arises from the relative motion of a conductor moving through a magnetic flux.
Finally, electrostatic generators utilize the relative movements between electrically isolated
charged capacitor plates to generate energy. In figure 3.2, the regenerative brake system
widely used in electric vehicles is shown. It converts kinetic into electrical energy which is
stored in a battery.

Figure 3.2: Regenerative brake diagram. src: HowStuffWorks.

22

Electromagnetic (RF)

Ambient energy density from electromagnetic waves is diverse in frequency and the lowest
among ambient renewable energy sources [22]. They are originated from radio waves from
transmission cell towers. Due to this, there is the need to have both multi-band/broadband
capabilities of the realized wireless electromagnetic harvester and relatively high harvesting
efficiency for possible applications in powering remote sensors. The accumulation of electro-
magnetic energy from various frequencies will increase the energy density of the harvester
and make it a viable alternative to other existing techniques [23]. Figure 3.3 [24] shows a
multi-band planar antenna for energy harvesting.

Figure 3.3: Multi-band planar antenna.

Thermal

Thermal energy harvesters are based on the Seebeck effect: when two junctions, made
of two different conductors, are kept at different temperatures, an open circuit voltage is
generated between them. This is the principle of the thermocouple.

The thermal harvester is based on the thermopile. This is a device formed by a large
number of thermocouples. It will be explained in the next chapter.

Figure 3.4 shows a energy harvester based in a heat sink. When the conversion efficiency
is not the most relevant issue in thermoelectric applications, waste heat recovery is a good
opportunity due to its simplicity and reliability [23].

Micro water flow

The principle of operation is the same as dams use to generate power but at a much
smaller scale. The water pressure present in household pipes is used to generate energy using
hydro-generators.

The energy harvester together with a power management circuit and storage can be used
to supply power to automatic faucets or other small electronics [25] as exemplified in figure
3.5.

23

Figure 3.4: Thermal energy harvesting in a heat sink. src: rtcmagazine.com

Figure 3.5: Micro water turbine. src: element14.com

Solar and light

Natural and artificial light can be collected and converted to usable energy using photo-
voltaic panels. The intended scale in this case is comparable to solar-powered calculators or
watches.

Usually, the power output isn’t very large, but because it is continuous the total energy
collected is normally more than sufficient to power small devices such as the one shown in
figure 3.6.

Figure 3.6: Solar powered mini car. src: inhabitat.com

24

Biological

Power may be recovered passively from body heat, breathing, blood pressure, arm motion,
walking or other activities such as pedaling. Energy harvesting from biological sources follow
mostly the principles presented in subsection 3.2.

Figure 3.7: Energy harvester human motion concept. src: Krupenkin, T. & Taylor, J. A. -
kurzweilai.net

3.3 Chapter Remarks

When choosing and deploying an energy harvester, it is necessary to take the appropriate
measures to increase its efficiency. Additional circuitry is necessary to implement impedance
matching between the harvester and load electronics, energy storage and voltage regulation.

Each energy harvester has its own model for impedance matching. Achieving this, allows
for maximum energy transfer. The overhead of the power processing stages must be kept as
low as possible in order to maximize the efficiency of the harvester. Since in these systems
the power available is in the µW range, leakages and other power dissipations are critical and
must be as low as possible.

25

26

Chapter 4

Infrared Detection

In order to understand the issues associated with infrared detection, is necessary to analyze
three constituents of the process: the radiation source, propagation medium and the receiver.

In contrast with the visible domain, where ambient perception is mainly made through
diffracted, scattered and reflected light, thermal infrared radiation is emitted by the objects
themselves due to its own temperature.

4.1 Radiation Sources

According to the Planck’s law that describes the electromagnetic radiation emitted by a
blackbody in thermal equilibrium at a definite temperature, the spectral radiance, per unit
wavelength, can be defined as: [26] [27]:

Bλ(λ, T) =
2hc2

λ5
1

ehc/λkBT − 1
[

W

sr m3
] (4.1)

where kB is the Boltzmann constant, h the Planck constant, λ is the wavelength, T is the
temperature in Kelvin and c the speed of light in the medium. The thermal radiation emitted
by other objects is derived through a parameter called emissivity, ε < 1.

The emission of thermal radiation is not uniform over the whole electromagnetic spectrum.
Around 70 % of the energy emitted is concentrated between 1/2λpeak and 2λpeak. The λpeak is
the wavelength at which the energy radiated is the highest. This is derived form the blackbody
temperature by Wien’s law [27].

λpeak =
2898

T
(4.2)

where λpeak is in micrometers and T in Kelvin. In the case of the human body, with a
surface temperature of 35 oC = 308 K the peak wavelength of the radiated energy is 9.4
µm, in which 70 % is between 4.7 µm and 18.8 µm. It is also known that the energy of a
electromagnetic wave is given by (4.3).

E =
hc

λ
=

1.241

λ
[eV] (4.3)

where h is the Planck constant, c is the speed of light in the propagation medium and λ
in micrometers. For the example above, E = 0.13 eV .

27

Infrared radiation is placed next to the visible component in the electromagnetic spectrum
with wavelengths from 0.75 µm to 1000 µm with the following characteristics:

• Invisible to human eyes;

• Small energy;

• Long wavelength;

• Emitted from all kinds of objects;

Figure 4.1: Electromagnetic Spectrum. src: pro-lite.co.uk

4.2 Propagation Medium

The most common propagation medium in infrared applications is the air/ atmosphere.
Since it is an open medium, it is highly susceptible to disturbances from all sources of ra-
diation. For instance, visible light, as can be seen in figure 4.1 and by (4.3) has greater
energy than infrared radiation making it a common disturbance source to take into account
in infrared detection, depending on the sensitivity of the receiver at different wavelengths.

4.3 Infrared Receivers

There are two main types of radiation detectors: thermal and photonic [28].

Thermal detectors are sensitive to the energy carried by the object in which the detector
heats up when absorbing incident radiation and the increase in temperature causes a change
in the physical characteristics of the material.

Photonic detectors use electrical properties of semiconductors. They rely on the direct
interaction between photons and electrons. The incident radiation provides energy that allows
charges to change band gaps provided that the incident energy is greater than the forbidden
gap. This is illustrated in figure 4.2.

28

Figure 4.2: Energy bands diagram.

4.4 Detector Main Characteristics

As with all systems transmitting information, a detector causes a spontaneous degradation
of the signal. Noise is a random fluctuation in the electrical output from a detector and must
be minimized to increase the performance sensitivity of an infrared system.

The statistical properties of the radiation are represented by the probability distribution
laws of random processes. The emission and absorption of photons happens in packets, each of
these packets containing a different number of photons, with the time interval which separates
them itself being a variable.

Noise Sources

According to [29], the most common noise sources are shot, pink, generation - recombi-
nation and noise due to temperature changes. These are all a function of the detector type,
area, bandwidth and temperature. This distribution is illustrated in figure 4.3.

An important characteristic of infrared detectors is the sensitivity, that is the ability to
respond to weak signal variations and is set by the statistical nature of the radiation to which
it responds.

Random noise sources appear, as stated above, in voltage, current or power fluctuations.
These random processes are defined by its mean, variance, standard deviation and power
spectral density.

Considering the voltage as the output of the detector, the random noise waveform vn(t)
and the corresponding probability density function of the random process, the following can
be defined [30]:

Mean

v̄n(t) =
1

T

∫ T

0
vn(t)dt [V] (4.4)

29

Figure 4.3: Spectral distribution of electrical noise sources in a semiconductor

Variance

v̄2n =
1

T

∫ T

0
[vn(t)− v̄n]2dt [V 2] (4.5)

Standard Deviation

vrms = ∆vn =

√
1

T

∫ T

0
[vn(t)− v̄n]2dt [V] (4.6)

where T is the time interval. The standard deviation represents the rms noise of the
random variable.

The contribution of different noise sources is calculated through its power (variance):

v2rms,total = v21 + v22 + ...+ v2n (4.7)

Power Spectral Density

The time-average autocorrelation function is defined in (4.8) and is the measure of how
fast the waveform changes in time.

cn(τ) = lim
T→∞

1

T

∫ T/2

−T/2
vn(t)vn(t+ τ)dt (4.8)

In frequency domain the noise distribution can be defined by the power spectral density
and provides a measurement of frequency distribution of the power.

N(f) = F{cn(τ)} =

∫ +∞

−∞
cn(τ)e−j2πfτdτ (4.9)

30

To obtain the average power of the random voltage waveform is necessary to integrate the
power spectral density over the entire range of definition.

cn(0) =

∫ +∞

−∞
N(f)df =

∫ +∞

−∞
v2n(t)dt = v̄2n(t) (4.10)

Most calculations when considering noise are made over the white noise region, where the
spectral density is flat enough in a wide range of frequencies.

Generation-Recombination Noise

Generation-recombination noise is associated with the spontaneous variation in the num-
ber of charge carriers in a semiconductor. This is of either thermal origin or photonic origin.

The variance of the noise current is photo-conductors is given by:

(δI)2 = 4qGI∆f (4.11)

where G is the detector gain and q the electron charge.

Thermal Noise

Another noise source caused by the thermal agitation of charge carriers and occurs is the
absence of electrical bias as a fluctuating rms voltage or current.

vn =
√

4kBTR∆f (4.12)

where kB is the Boltzmann constant, T is the temperature in Kelvin, R is the value in
Ohms and ∆f is the bandwidth in Hz.

The noise power dissipated in a matched load, that is, a value equal to the internal
resistance R is:

Pn = kBT∆f [W] (4.13)

And the spectral noise power density:

Pf (f) = kBT (4.14)

1/F or Pink Noise

This kind of noise only appears at low frequencies (f < 1 kHz) where it is superimposed
on the previous noise sources. This appears in the detectors due to the DC bias currents
flowing in the detector material.

This can be partly excluded by cutting the system DC response using a high pass filter
with the appropriate cutoff frequencies.

31

Shot Noise

Shot noise can come from a current having a photonic origin. This means it can be
related to interference due to ambient light and with power proportional to the optical power
impinging the detector [31].

The dc current is viewed as the sum of many short and small current pulses. This type
of noise is practically white, considering the spectral density of a single narrow pulse.

Noise Equivalent Bandwidth

The noise equivalent bandwidth is defined as the bandwidth of a perfect rectangular filter
that possesses constant power-gain distribution between the lower and upper frequencies and
zero elsewhere.

NE∆f =
1

G2(f0)

∫ +∞

−∞
|G(f)|2df [Hz] (4.15)

where G(f) is the power gain as a function of frequency and G(f0) is the maximum value
of the power gain. This expression is valid when considering white noise.

Noise Equivalent Power

The noise equivalent power represents the detection ability of a detector and is expressed
in the quantity of the incident light in which the signal-to-noise ratio becomes unity. A smaller
NEP corresponds to a more sensitive detector.

4.5 Existing Detectors and Limitations

When considering common applications, three detector types are usually used: passive,
active and thermopile sensors.

4.5.1 Passive Sensors

Actual passive infrared sensors, used for motion detection, rely on two or more separate
halves and a infrared filter lens. These halves are wired up so they cancel each other, since
the objective is to detect change and not average infrared levels. In figure 4.4, the working
principle is illustrated [32]. The signal output from a detector is usually small and therefore
an amplification is necessary.

Passive sensors only rely on a detector and degradation of the signal can have its cause in
physical imperfections of the sensor material and/or limitations tied to the physical principles.

To converge or focus infrared radiation, several lenses made of different materials are used
according to the target wavelength. This is the typical form of filtering against disturbance
sources.

These sensors are very sensitive to rapid temperature and light changes. A rapid change
due to a breeze from an open window or even a small shadow can cause false triggering.
Furthermore, the orientation of the sensor is extremely important. In figure 4.5 is illustrated
a typical implementation for motion detection.

32

Figure 4.4: Passive infrared sensor working principle.

Figure 4.5: Passive infrared sensor working principle. src: adafruit.com

Since these sensors rely on differential readings, if the movement is slow and in the same
orientation (vertical or horizontal) as the sensor halves, there is no differential change and
therefore no output is generated.

4.5.2 Active Sensors

On the other hand, active infrared sensors, emit and modulate a signal, typically at 40
kHz, and rely on a receiver that can only detect infrared pulses of the same frequency, usually
by implementing a bandpass and infrared filters [33].

The operation of the system starts with a 40 kHz impulse generator that is fed to the
infrared led. A weaker signal but with the same frequency is reflected from an possible obstacle

33

Figure 4.6: Modulated active method of operation. src: adafruit.com

to the infrared receiver. This signal passes through a filter that blocks all other sources of
light not belonging in the infrared region. Since all other infrared sources still pass through
the filter as noise an additional bandpass filter is necessary to select only the 40 kHz signal.

Although the emitted signal is modulated, the light coming from interferences can overlap
the reflected signal making it undetectable. The main weakness of infrared remains: the
performance highly depends on the shape, size and color of the reflective object and ambient
interference sources.

4.5.2.1 Active Sensor: TSAL6100 & TSSP58P38

An example of active infrared sensors, is the combination of the TSAL6100 & TSSP58P3
(emitter and receiver respectively).

TSAL6100 [34] is an infrared, 940 nm emitting diode in GaAlAs multi quantum well
(MQW) technology with high radiant power and high speed molded in a blue-gray plastic
package.

Table 4.1: TSAL6100 main characteristics.

Radiant Intensity 170 mW/sr

Angle of half intensity ϕ = ±10

Wavelength 940 nm

The TSSP58P38 [35] is a compact infrared detector module for proximity sensing appli-
cations. It receives 38 kHz modulated signals and has a peak sensitivity at 940 nm. The
length of the detector’s output pulse varies in proportion to the amount of light reflected
from the object being detected. The visible light is suppressed by an IR filter and includes
the photo-detector and preamplifier in one package.

With the circuit shown in figure 4.9, with a 38 kHz square wave and a variable duty cycle
is possible to obtain the graph in figure 4.10.

34

Figure 4.7: Angle of half intensity

Figure 4.8: TSSP58P38 block diagram.

Table 4.2: TSSP58P38 main characteristics.

Supply Current [0.55 ; 0.9] mA

Supply Voltage [2.5 ; 5.5] V

Angle of half receiving distance ϕ = ±45o

Wavelength 940 nm

This behavior is explained by the spectral analysis of the PWM signal with 50% and 40%
duty cycle (figures 4.11 and 4.12). Since the infrared receiver has its peak responsivity at
38 kHz, only the magnitude of the emitted signal at this frequency is relevant. That is, the
bigger the frequency spreading the less efficient the system will be.

35

Figure 4.9: TSAL6100 and TSSP58P38 typical application circuit.

Figure 4.10: Magnitude graph of TSAL6100 and TSSP58P38 sensors.

36

Figure 4.11: Spectral analysis of the PWM signal with 50% duty cycle.

Figure 4.12: Spectral analysis of the PWM signal with 40% duty cycle.

37

4.5.2.2 Active Sensor: SHARP 2Y0A21 F 9Y

The SHARP 2Y0A21 F 9Y [36] is a distance measuring sensor unit, composed of an inte-
grated combination of a position sensitive detector (PSD), an IR LED and signal processing
circuit, with analog output type.

The distance detection is not easily influenced by the variability of the reflectivity of the
object and by environmental temperature changes because of the adoption of the triangulation
method. This device outputs the voltage corresponding to the detection distance.

Table 4.3: SHARP 2Y0A21 F 9Y Main characteristics.

Distance range [10 ; 80] cm

Current Consumption 30 mA

Supply Voltage [4.5 ; 5.5] V

Figure 4.13: Block Diagram

Figure 4.14: Output voltage vs distance to reflective object.

The PSD is a silicon component that operates on the principle of the photoelectric effect, in

38

which light energy is turned into electrical energy. The top of the PSD contains photosensitive
material, and attached to the left and right ends of the device are output current leads.
For a focused beam, such as one produced by a laser, the ratio of the output currents are
proportional to the location at which the beam strikes the PSD; equal currents indicate that
the beam has struck at the middle of the PSD. This dual output system eliminates the power
of the reflected beam from the equation of position. This is necessary as every surface has a
different reflection coefficient. When the beam strikes an object it is reflected back towards the
sensor and into a focusing lens which directs the reflected beam onto the PSD. The incident
angle of the reflected beam is determined by the distance from the sensor to the reflecting
object; the farther away the reflecting object is, the slighter the angle.

Figure 4.15 has the purpose of corroborating part of figure 4.14, where it is shown the DC
voltage present when no object is detected as well as the voltage around a distance of 10 cm.

Figure 4.15: Detection results for a human hand at 10 ± 2 cm . a. Obtained signal; b.
moving average with 12 samples.

4.5.3 Thermopile Sensors

A thermopile is an electronic device that converts thermal energy into electrical energy.
It is composed of several thermocouples usually connected in series. The thermopile does not
respond to absolute temperature, but instead generates an output voltage proportional to a
local temperature difference.

Most common thermopile sensors are contactless meaning that is not necessary to make
physical contact with the object. The thermopile absorbs the infrared energy emitted from
the object being measured and uses the corresponding change in thermopile voltage and the
current local temperature to determine the object temperature.

Some of the main characteristics are: response to broad infrared spectrum, no source of
bias voltage or current needed and are inherently stable response to DC radiation.

Since the thermopile response is not wavelength dependent, the sensor is built with specific
filters for each different application, and its spectral response characteristics are determined
only by the transmittance of the window material that act as filter for undesired wavelengths.
This is illustrated in figure 4.16.

For instance, the [5; 14] µm region is used for human body detection and the [2; 5] µm
region to CO2 detection.

39

Figure 4.16: Transmittance characteristics of typical window materials. src: HAMAMATSU
Selection guide - Infrared Detectors, march 2013.

Figure 4.17 shows the working principle of a thermopile sensor[37]. By specification the
working temperature range is from −40 oC to +125 oC. According to section 4.1 and (4.2)
the working wavelength range is [7.3; 12.4] µm.

The most severe problems arise from temperature swings of the optics. If the sensor cap
or the filter lens change their temperature much faster than the sensor base plate, i.e. the
sensor itself, then this will act as an additional signal source and influence the sensor output
signal. If the heating is large, it can even happen that the amplifier goes into saturation.

Figure 4.17: TMP006 Block Diagram.

Similarly to the passive infrared sensors, thermopiles have a technical drawback that pre-
vents them from being used for continuous measurements in environments with fast ambient
air temperature changes. Since they rely on a thermal detector, as explained in section 4.3,

40

when measuring, the sensor will heat up, limiting its use to small periods at a time.

4.6 Evaluation of Hamamatsu T11264-08 Dev Module

As a side test, a development board from Hamamatsu (T11264-08(X) [38]) containing a
thermopile sensor was tested. It is an 8 x 8 element area array sensor with a preamplifier built-
in. It is non-cooled, meaning that in continuous operation the temperature of the thermopile
sensor will increase. This is expected, as explained in section 4.3, due to the detector heating
up by absorbing incident radiation.

Figures 4.18 and 4.19 present the external appearance of the development board and its
block diagram. Figure 4.20 shows the calibration parameters used by default and the control
interface.

This experiment consisted in leaving the sensor for some time pointing up towards the
ceiling with a distance from it of 3 m in a artificially illuminated room. The objective in this
case was not to verify the correct measurement of a object’s temperature but to analyze the
sensor’s output response type and values distribution.

For this trial, 60160 values were obtained. The values in the histogram (4.21) are direct
samples from the sensor. No averages were calculated prior to this analysis. These values are
fitted by a normal distribution with 40992 values (68.14 %) in the µ ± σ range, and 57409
(95.43 %) in the µ± 2σ range. Normal distribution theory state these values should be 68.95
% and 99.7 % respectively. This discrepancy can be due to the number of samples taken.
If they were increased the experimental values would tend to the theoretical ones (assuming
normal distribution).

Table 4.4: Normal distribution data.

µ (Mean) 24.5572 oC σ2 (Variance) 23.3874

Table 4.5: Development board main components (figure 4.18).

1 Infrared lens.

2 Lens mount.

3 Driver circuit chip.

Another experiment consisted in the detection of a human hand, with an emissivity (η)
of 0.99, at a distance of 20 cm.

Since the sensor consists of an array of 64 cells, figure 4.22a shows the raw data of 2
different cells in two distinct positions within the array (matrix). This response was expected
due to the previous experiment. In order to mitigate this behavior, an operation of moving
average can be performed (4.22b). This allows to remove high value discrepancies between
samples and achieve a much smoother signal.

Although, when considering the average value of the entire raw data matrix (figure 4.22c),
for each sample, is possible to detect the pattern of the movement in front of the sensor.

41

Figure 4.18: Hamamatsu T11264-08(X) Development Board.

Figure 4.19: Hamamatsu development board block diagram.

Performing a moving average on the average signal of the entire matrix, a much smoother
one is obtained. Figure 4.22d. After this, another test was performed by changing the object
to be tested to a cardboard with an emissivity of 0.81, lowering the distance to 7 cm. The
results are shown in figure 4.23.

An evaluation of the Hamamatsu board was made to highlight the major concerns pre-
sented earlier in this chapter. This allowed to verify the noise presence (mostly white), even
when the system is not stimulated. Finally, a method to smooth the output signal in order
to use the thermopile sensor as presence detector was tested.

42

Figure 4.20: Software User Interface.

Figure 4.21: Measured values fitted by a normal distribution.

43

Figure 4.22: Sensor response: a. 2 different cells; b. 2 different cells with moving average; c.
matrix average response; d. moving average of c. - Moving averages with 12 samples.

Figure 4.23: Average response for a cardboard object (d ≈ 7 cm).

44

4.7 Chapter Remarks

This chapter started with a brief theoretical introduction to infrared radiation which
highlighted the main concerns to take into account when trying to detect this radiation.
Some characteristics of existing detectors were presented and two active sensors were tested.
These tests included a spectral analysis to a PWM signal. This allowed to demonstrate the
importance of the frequency contents in a signal used for presence detection.

Thermopile sensors’ main characteristics were also presented. As an example of how these
sensors work, a board from Hamamatsu was tested.

45

46

Chapter 5

Project Implementation

The previous chapters allowed for an understanding of the main issues when designing
and implementing a low-power system with energy harvesting. It was also shown the main
challenges when dealing with infrared detection.

In this chapter, an implementation with all three previous components is designed and
tested. The system consists of a low-power, “smart” faucet with infrared detection and
energy harvesting. The chapter will start by describing the system and the main issues to
be addressed. After this, the project design choices will be presented, primarily focusing the
hardware. At this time, a theoretical energy balance analysis will be performed that allows
to achieve a model for the system’s operation. On the second part, after the assembly of
the system’s hardware, several software optimizations to improve energy and water efficiency
are proposed. Finally, the results in terms of power consumption, energy harvesting and
reliability of the infrared sensor are presented and a conclusion for each topic is drawn.

5.1 System’s Description and Design Considerations

As stated above, the main goal is to design a “smart” faucet with infrared detection and
energy harvesting. Common automatic faucets contain only a valve and an infrared sensor
and are either AC or battery powered.

The new system will be based on the common automatic faucets with some “intelligence”
added to it. It will be based on a microcontroller, a bistable valve, an infrared sensor and,
for energy harvesting, an hydro-generator.

Starting with the microcontroller, it must be specifically designed for low-power applica-
tions, meaning that there must be hardware and software tools that allow power optimization
at all levels.

The valve is chosen to be bistable due to the fact that it only needs a small trigger to
transition from closed/open to open/closed state. This makes the current consumption of the
valve independent of the time it remains open or closed.

Concerning the infrared detection, the sensor should be as reliable as possible while con-
suming very little power.

Finally, the hydro-generator must be adequate to the application at hand. A small water
flow should be enough to trigger the power generation. Furthermore, the use of an energy
harvester will be carefully measured, in an attempt to make the system self-sustainable.

A very important issue to take into account is the necessary technology to assemble the

47

entire system. Several top-of-the-line components with extreme energy efficiency are available,
but are not usable in this prototyping context. All the components need to be hand mounted,
and therefore component packaging is an eliminatory property.

On the software part, low-power modes should be used whenever possible and unnecessary
hardware should be disabled. This should also include shutting down the infrared sensor
allowing major power savings. It is necessary to take into account that, when the entire
system enters in a low-power mode, no detection is performed, making the entire system
useless in the user’s perspective. Is then necessary to wake up within acceptable periods.
This still allows for major power savings.

An important software issue is the need to increase the reliability of the infrared sensor.
It is necessary to implement a light (and fast) algorithm to perform this task.

5.2 Hardware Interfaces and System Assembly

In order to start choosing the main system components, is mandatory to verify the already
available tools. This is particularly relevant when choosing the microcontroller’s technology,
packaging and manufacturer. At this point, with the information provided by chapter 2 the
microcontroller to be chosen would be the MSP430FR family. The necessary tools to develop
in this platform needed to be bought which would increase the project costs. It is then
necessary to choose a microcontroller whose tools are already available - the ATmega48 from
ATMEL. Other integrated circuits’ packaging also needed to be carefully chosen due to the
prototyping process: all components were assembled by hand.

Table 5.1: ATmega48 electrical main characteristics.

Supply Voltage [2.7 ; 5.5] V

VOH 4.2 V @ VDD = 5 V

VOL 0.7 V @ VDD = 5 V

VIH 0.6VDD V @ VDD = 5 V

VIL 0.3VDD V @ VDD = 5 V

For the infrared sensor, by the analysis performed in subsection 4.5.2, the appropriate
choice is the TSAL6100 & TSSP58P38 combination. Low power consumption, high versatility
and reliability are the key aspects of this sensor. Although the SHARP 2Y0A21 F 9Y sensor
is more reliable, it needs to be connected to the ADC due to the non-linearity of its output.
This would increase the current consumption of the microcontroller.

Table 5.2: TSAL6100 & TSSP58P38 electrical main characteristics

TSSP58P38: Supply Voltage [2.5 ; 5.5] V

TSSP58P38: Supply Current 0.9 mA

TSAL6100: Forward Voltage 1.6 V

48

Table 5.3: EHCOTECH DDT-ML-4.5 VDC electrical main characteristics

Supply Voltage [4.5 ; 9] V

Supply Current 500 mA @ 5 V

Pulse Width 50 ms

Table 5.4: Hydro-generator F50-5V 10W main characteristics

Output Voltage 5 V

Output Power 10 W

Start Pressure 0.5 bar

As stated above, the valve to be selected should be bistable in order to save power. Mainly
due to its low price and availability a valve from EHCOTECH was chosen.

The use of micro hydro-generators isn’t a common practice yet. Therefore in order to
buy a generator in such a small scale is necessary to go to ebay. There, an hydro-generator
F50-5V 10W was found.

Figure 5.1: Block diagram of the faucet system.

49

After selecting the main components of the system is necessary to ensure they are com-
patible with each other and make the necessary adjustments. Figure 5.1 shows the main
components and interfaces.

The hydro-generator and an USB port (the use of USB allows for an easy battery charge
with widely available chargers) are connected to a power switcher. This allows to switch
between the two sources of power. The preferred power source is the hydro-generator, meaning
that if both are providing energy, the power switcher disconnects the USB.

Figure 5.2: Power Switcher Circuit

The next interface circuit is between the power switcher and the battery, since the Li-
Ion/Li-Polymer batteries need for a constant-current/constant-voltage algorithm provided by
the battery charger. Furthermore, it should allow for a programmable charge current.

The interface between the battery and the remaining circuitry is made with a boost
converter. This is necessary due to the battery discharge process. With a boost converter the
remaining circuitry becomes rather independent on the battery voltage as long as it contains
a minimum amount of charge.

Finally, since the valve needs some significant power to switch between states, it can’t be
connected directly to the microcontroller. A H-bridge allows for a power switching between
the logic levels of the microcontroller and the necessary power levels.

Table 5.5: Components used.

Microcontroller ATmega48-20AU

Battery LP603048 3.7 V 570 mAh

Infrared sensor TSAL6100 & TSSP58P38

Valve EHCOTECH DDT-ML-4.5 VDC

Hydro-generator Water generator F50-5V 10W

Battery Charger MCP73831T-2ACI/OT

Boost Converter MCP1642B-ADJI/MS

H-Bridge SiP2100

2×LED OSRAM 1206

Figure 5.4 shows the assembled PCB.

50

Figure 5.3: Top view of the PCB.

5.3 Energy Balance

After the design of the entire system, is necessary to perform an energy balance to assess
its self-sustainability. The first step is to draw a temporal diagram to increase the perception
in how the system works.

The microcontroller and the infrared sensors work with a duty-cycle to save power. The
time between sensor activations for presence checks must acceptable for the end user, but also
needs to be big enough to save significant amounts of power.

Figure 5.4: Timing diagram

As explained earlier, the valve is bistable to allow for major power savings by making its
power consumption independent from the time it remains on or off. The constant tValve is the
amount of time the valve needs to switch states (0.05 seconds in this case) and the parameter
δ is defined as the percentage of time the microcontroller and the infrared sensor are active in
a second: δ ∈]0; 1]. tON is the amount of time the water is running and tOFF is the time until

51

next activation. The equations derived from the timing diagram, in order of appearance, are:

QHG = tOFF · iHG min + tON · iHG max (5.1)

QBC = tOFF · iBC min + tON · iBC max (5.2)

QVV = (tOFF − 2tValve) · iVV min + 2tValve · iVV max (5.3)

QHB = (tOFF − 2tValve) · iHB min + 2tValve · iHB max (5.4)

QuC = (tOFF + tON)(1− δ) · iuC min + (tOFF + tON)δ · iuC max (5.5)

QIR = (tOFF + tON)(1− δ) · iIR min + (tOFF + tON)δ · iIR max (5.6)

Giving the ‘plus’ signal to the amount of energy provided to the system, and the ‘minus’
to the energy consumed, the total amount transfered is:

QT = +QHG −QBC −QVV −QHB −QuC −QIR [C] (5.7)

Considering each individual maximum and minimum currents for each component as con-
stants, the energy balance will be a function of tON, tOFF and δ: Q = f(tON, tOFF, δ). For
this particular case, with the values in table 5.6, where the 1.04 factor corresponds to the 96
% efficiency off the boost converter, the energy balance function is:

Q(tON, tOFF, δ) = 0.600tON − 0.020δ(tON + tOFF)− 0.002tOFF − 0.052 [C] (5.8)

Solving for tON, which gives the amount of time the valve needs to be open in order to
generate enough power to match the energy spent in TOFF:

tON =
tOFF + 10δtOFF + 26

300− 10δ
[s] (5.9)

Table 5.6: Current values for each component.

Device imin [A] imax [A]

Hydro-generator 0 600 · 10−3

Battery Charger 2 · 10−6 510 · 10−6

Valve 0 1.04× 500 · 10−3

H-Bridge 1.04× 50 · 10−6 1.04× 200 · 10−6

Microcontroller 1.04× 540 · 10−6 1.04× 1 · 10−3

Infrared sensor 1.04× 900 · 10−6 1.04× 20 · 10−3

LED 6 · 10−3 6 · 10−3

This analysis clearly shows that the major power consumption contributors are the mi-
crocontroller and the infrared sensor due to the periodic activations. Figure 5.5 shows the
necessary tON to achieve energy balance zero as a function of tOFF for δ = 0.5.

The minimum tON for the open/close operation to be self-sustained can be calculated by
making tOFF = 0 and δ = 1 in (5.9), resulting in a tON min = 0.09 seconds.

52

Figure 5.5: Necessary tON to generate enough energy to overcome tOFF.

5.3.1 Case Study

To evaluate the applicability of this model for a real situation, a simulation can be per-
formed in a restaurant’s restroom in which the faucet is installed. The timing characterization
of this particular case is described by two intervals with high use followed by sporadic or no
uses at all. Figure 5.6 shows the described situation.

Figure 5.6: Faucet use timing diagram.

Starting with the always off intervals, [00 ; 12] h, [14 ; 19] h and [22 ; 24] h and using
(5.8) with δ = 0.5, the total energy loss is:

tOFF = (12− 00) · 3600 =⇒ QT = −507.8 C

tOFF = (19− 14) · 3600 =⇒ QT = −211.6 C

tOFF = (24− 22) · 3600 =⇒ QT = −084.7 C

= −804.1 C

If the restaurant has 20 tables, with an average of 2 persons per table and 2 services per time
interval, this gives 80 persons that can use the faucet in a given period. Considering that a
single use lasts for about 10 seconds, in the [12 ; 14] h time interval, the average time between
uses, tOFF, in seconds is:

tOFF =
(14− 12) · 3600− 80 · 10

80
= 80 s (5.10)

Replicating this equation for the [19 ; 22] h period, tOFF equals 125 s. According to (5.9),
the necessary tON to make the system self sustainable for the calculated tOFF is 1.72 and

53

2.63 seconds respectively, meaning the system is accumulating energy when considering the
average use of 10 seconds. The total energy accumulated in each period is given by (5.8):

80 ·Q(10, 80, 0.5) = 80 · 4.89 = +393.2 C

80 ·Q(10, 125, 0.5) = 80 · 4.35 = +350.9 C

= +744.1 C

The final energy balance is then −60.0 C, meaning that in these conditions the system is
not self sustainable. In this model, when the only programmable and changeable parameter
is δ, is necessary to carefully find a balance between optimal sensor/faucet’s performance and
energy consumption. An appropriate change in this parameter may bring the system for a
positive energy balance. In this case, δ = 0.46 is sufficient.

When performing this analysis, there are some key aspects that need to be taken into
account. For instance, after the biggest tOFF period, [22 - 12] h, there must be enough energy
stored in the battery for the system to start. This means that, in the high use periods, the
battery must charge enough to overcome the off periods with sufficient energy for the system
to start again. Another issue that rises is the fact that battery storage capacity is limited.
Even if there is more than enough energy available to charge the battery in high use periods,
it will only charge up to its limit. Therefore, energy for off periods may still not be enough,
meaning that battery capacity must not be overlooked. In short, battery capacity determines
the maximum tOFF.

5.4 System Programming

In order to include the previously proposed optimization model into the microcontroller,
is necessary to start by drawing a flow diagram. This diagram includes the main power states
and major program decisions and sequences.

Figure 5.7: Program flowchart.

The clock symbol illustrates the timed events reliant on δ. The “ENABLE INFRARED”→
“DETECTION?”→ “PREVIOUSLY DETECTED ?” loop is kept active only while the sys-
tem is awake. When a sleep trigger is received, the system enters in the sleep mode.

54

From the flowchart it is possible to introduce a new optimization: the time spent on the
wake-up phase also depends on the interactions that occur and can be significantly less than
δ, as long as a detection is made in the beginning of the phase. It can also be extended
for a short period if a detection is made at the end of the wake-up phase. In this case, the
system must be awake long enough to complete the remaining phases until the sleep phase.
Nevertheless, shutting down the infrared sensor and going to sleep as soon as a detection is
made can save a lot of energy.

From the timing diagram and from the flowchart, in the figures 5.4 and 5.7 respectively,
several signal frequencies can be identified: the generation of the PWM signal, the wake-
up/sleep cycle and the time the valve needs to turn on/off.

As already introduced in section 4.5.2.1, a 38 kHz square signal is necessary to perform
the detection. It was also shown that a 50 % duty cycle was more energy efficient.

Since the ATmega48 microcontroller possesses only a clock source shared by the CPU and
the peripherals, it is necessary to find a way to have a clock generator compatible with all
the time constants. The most problematic frequencies are the 38 kHz and 1/(1−δ) Hz, due to
the magnitude difference. To achieve this compatibility, is necessary do decrease the clock
frequency to 500 kHz. This ensures the minimum achievable frequency of 1 Hz as well as the
38 kHz PWM signal. This is based on the mathematical expressions for PWM on Timer1
and clear timer on compare match (CTC) on Timer2:

fOC1A PWM =
fclk I/O

N(1 + OCR1A)
(5.11)

fOC2A CTC =
fclk I/O

2N(1 + OCR2A)
(5.12)

N (prescale factor) = 1, 8, 64, 256, or 1024

This yields OCR1A = 12 (38.4 kHz) and OCR0A = 243 (≈ 1 Hz), with N = 1 and N =
1024. This clock frequency reduction has a direct impact on the available frequency resolution
for the 38 kHz signal. The direct consequence is a small loss in the infrared receiver, since its
peak sensitivity is at 38 kHz.

This is the most practical way of generating these signals. On Timers 0 and 2 the max-
imum allowable frequency is 31 kHz, and the only timer with the ability to wake-up the
microcontroller is the Timer2. The other option, without using the PWM module is to make
an interrupt service routine to toggle an output bit at the rate of 38 kHz. This method
creates a gigantic overhead on the microcontroller. Furthermore, the microcontroller would
be almost always servicing the interrupt routine, making the remaining code execution very
slow.

The next step is to increase the reliability of the infrared sensor whose output is active low
when a 38 kHz signal is detected. This is made by a debouncing algorithm shown in figure
5.8. This is implemented in the “DETECTION?” block in the program flowchart (figure 5.7).

The clock symbol represents a timer triggered event. In the timer’s interrupt service rou-
tine, the sensor pin will be read and a variable will be incremented or decremented depending
on the presence of an object in front of the sensor. When the variable reaches its maximum or
minimum value, the presence (or absence) of an object is validated. The time until validation
must be small enough due to the “duty cycle” nature of the system (recall the timing diagram

55

Figure 5.8: Debouncer flowchart.

on 5.4). The time spent sleeping added to the time until a positive validation is generated
(or faucet activation) must be made acceptable by the end user.

The verification is made using Timer0. The chosen maximum time to increment a variable
up to 255 for a successful validation was 100 ms. The necessary frequency is in the range of 2.5
kHz. As explained earlier, by disabling the infrared detection and debouncing corresponding
timers, when a positive validation is performed, allows major power savings.

The next time constant to take into account is the valve activation time. It needs 50 ms
to change between states. There are a few considerations to take into account. First, in order
to save power, the valve must be actuated only during the necessary amount of time. After
this, its inputs must be both deactivated. Since it is the last step before entering sleep, is it
worth to reconfigure a timer to use only once and then change it to its default values? The
necessary steps would be: 1. deactivate all timers; 2. open the valve; 3. configure Timer0 to
generate an interrupt; 4. go to sleep; 5. wake-up 50 ms after to deactivate the signal applied
to the valve; 6. reconfigure Timer0 to the previous state; 7. go to sleep the remaining time.
Finally, it would be necessary a global control variable for the interrupt service routine, since
it was already configured with the debouncing algorithm. It is important to keep in mind
that the system clock is configured at a quite low speed (500 kHz). The overhead time of
changing contexts and the wake-up/sleep process, plus the previous steps, would be too long.
Alternatively, the delay ms(50) function can be used to perform this operation, which keeps
the CPU trapped until the end of the necessary time.

This open loop control algorithm works properly if the system behaves seamlessly. To
protect against miss-executions, the program must use the STAT pin from the battery charger,
which indicates if the battery is charging or not. This can be used as a confirmation if the
valve was effectively open or closed. Furthermore, in order to know the state of the battery,
the PGOOD pin from the boost converter must be read. This allows to warn the system
administrator that the battery is running low. By using both status pins a more reliable

56

closed loop control algorithm can be implemented.

According to the mathematical model presented earlier, the only variable that is not user
dependent is δ. This parameter can be changed dynamically according to the faucet use.
That is, the program can adjust δ if tON is not long enough to overcome tOFF. Since it will
make the system’s response slower it is necessary to impose reasonable limits to δ.

The used code is shown in annex C.

5.4.1 Detected Issues

Using an oscilloscope to verify the generated signals (PWM 38.4 kHz, 2.5 kHz and 1/(1−δ)
Hz), was verified that the PWM signal had a frequency of 19.2 kHz. This revealed an error
in (5.11) in the datasheet which omitted a division by two factor. The fastest approach was
to make OCR1A = 6. The immediate implication was the loss of precision in the frequency
generation. From (5.11) with the division by two correction, the achieved frequency was 35.7
kHz, or with OCR1A = 5, 41.7 kHz. The analysis of figure 5.9 [35] shows the energy loss
when using both frequencies.

To achieve the same detection distance is necessary to increase the emitter current by at
least 40%.

Figure 5.9: Frequency Dependence of Responsivity

5.5 Experimental Results

In order to assess the system’s performance in terms of power consumption and energy
harvesting, is necessary to use a precision ammeter. Some different objects were tested to

57

assess the detection distance of the infrared sensor.

Table 5.7 shows the obtained current values for each major system. For the combination
PCB + IR sensor the minimum current consumption is mainly due to the always on LED (6
mA). Also during tON, another debug LED was enabled when a detection was triggered. This
increased the current consumption of the system for another 6 mA. With several consecutive
measurements, was noticeable that the valve’s current consumption was only around 150 mA,
instead of 450 mA as initially estimated.

The hydro-generator needed a more complex analysis. With the battery initially charged,
was possible to measure a 32 mA current generation (with a water pressure of around 3 bar).
As the battery started to discharge, the generated current increased significantly, reaching
283 mA when the battery presented 3.5 V at its terminals. These variations can be explained
by the algorithm implemented by the battery charger (constant-current / constant-voltage).
The 283 mA current was imposed by the charge resistor to increase battery life. A 3k3 Ohm
resistor was placed to limit the charge current to 300 mA. With only a resistive load applied
to the hydro-generator’s terminals, the current generated was 475 mA, with a water pressure
of 3 bar.

Table 5.7: Measured Currents

Parts imin [mA] imax [mA]

PCB + IR sensor -6.2 ±0.05 -36 ±0.05

PCB + IR sensor + Valve -36 ±0.05 -188 ±0.05

Hydro-generator 0 ±0.05 [32 ; 283] ±0.05

Table 5.8: Infrared sensor distances

Object Distance [cm]

Hand 24 + 2 ± 0.5

Black Plastic 7 + 1 ± 0.5

White Foam 27 + 2 ± 0.5

In these experiments, the infrared sensor showed some hysteresis when activating and de-
activating the system. For instance, when placing a hand to activate the sensor, the maximum
distance was 24 cm. To deactivate it, was necessary 26 cm.

The necessary calculations, for the obtained experimental results, can be derived from
(5.1)-(5.6):

QT =− 6.2 · 10−3(tOFF + tON)(1− δ)
− 36 · 10−3(tOFF + tON)δ

− (188− 36) · 10−3tValve

− 6 · 10−3tON + 175 · 10−3tON

58

tON =
211tOFF − 31δtOFF + 76

31δ + 634
[s] (5.13)

Figure 5.10 represents (5.13) for δ = 0.5. Figure 5.11 shows the results in which the
current consumption of the LEDS was removed.

Recalling figure 5.5, a great increase in the necessary tON to overcome tOFF is noticeable.
For instance, for tOFF = 500 s the increase is from tON = 10 to 58.4 seconds. The major differ-
ences from the theoretical model to the experimental results lie in the infrared sensor current
increase as explained earlier and the reduced generated current from the hydro-generator.

Figure 5.10: Experimental results for δ = 0.5.

Figure 5.11: Experimental results for δ = 0.5 with the LEDs removed.

5.6 Chapter Remarks

This chapter started by presenting the major design considerations when implementing
a low-power system with energy harvesting and infrared detection. After this, the available
tools were assessed in order to choose the main hardware components. The necessary steps

59

to design and assemble the test circuit were presented. An energy balance with a case study
allowed to estimate the battery life in a specific application.

Finally, the experimental results showed the major limitations when the hardware com-
ponent choices are limited from the start. The available tools to manufacture the PCB were
the major limitation, which forced the use of less efficient components. Then, the micro-
controller used was very inefficient for this application. A single clock source, few timer
configuration modes and high power consumption were the major constraints of this micro-
controller. Lastly, the battery used should have a higher capacity in order to use the full
current generation capability of the hydro-generator.

In terms of infrared presence detection, the higher current consumption, due to the nec-
essary configurations in the microcontroller, was an unexpected drawback which affected the
expected experimental results.

60

Chapter 6

Conclusions and Future Work

The main objective of this dissertation was to develop a system with low-power consump-
tion and high reliability in terms of infrared detection. The chosen path, was not only make
use of the best practices to develop low-power systems, but also increase battery life using en-
ergy harvesting. For this, the end goal was to develop a “smart” faucet system to implement
the necessary procedures to achieve the high energy efficiency and infrared reliability.

The procedures to build this system, starting from the hardware up to the software layer
followed in this dissertation, had the objective to highlight the key aspects and issues to
take into account when designing a system with these main objectives in mind: low-power
consumption and highly reliable infrared detection.

In chapter 2, was possible to identify the key aspects and solutions to achieve the lowest
power consumption possible. The presented case study allowed to apply several advices,
introduced throughout the chapter, and verify its importance. Although most advices can be
widely used in most microcontrollers, it is important to know the hardware architecture and
software compiler’s principles of operation in order to achieve the lowest power consumption.

The energy harvesting methods presented in chapter 3 can be used to increase the system’s
battery autonomy. Since of these systems provide energy in the range of the µW, the harvest-
ing circuit must be as efficient as possible. Although a simple overview of each method was
presented, it gave the knowledge to implement an harvester for the proposed faucet system.

Infrared detection, by itself is a large topic with a wide range of concepts. With the objec-
tive of high reliability at hand, the main concepts were presented. After this, by performing
an analysis to the most common sensors, was possible to identify the most suitable sensor to
use in this application.

When implementing the three previous major concepts in a single system it is important
to verify each compatibility angle between each major system and component. This became
evident, for instance, when trying to generate very low and very high frequencies with a single
clock source. Furthermore, it is important to test each system separately and stimulate it in
all necessary situations to avoid miss-calculations. The time spent in these assessment tasks
can be compensated when assembling the entire system.

The fake positives/negatives rejection due to the debouncing method was not properly
measured due to amount of work and trials necessary to gather enough data to draw a proper
conclusion. However, combined with the sleep mode, the amount of time to trigger the faucet
was long enough to suppress unwanted activations.

By shutting down every unnecessary peripheral during the sleeping periods, allowed to

61

achieve a standby current of 200 µA. The energy harvesting system performed quite well even
with the imposed limitations. The generated power, although not constant due to the battery
charge manager, allowed to prove the applicability of this concept in more efficient systems.

Although positive results have been achieved, there is always margin for improvements
and, in this section, a few suggestions are left for possible future work. It would be important
to start by testing this system, as is, in a real environment, similar to the theoretical case
study presented in chapter 5. As an ultimate proof of concept, a new design with more
efficient components should be tested to make a real assessment of the capabilities of the
energy harvesting platform with the perpetual system as final objective.

62

Bibliography

[1] W. Wong, “Low Power Microcontroller-based Design Tech-
niques,” 2009. [Online]. Available: http://electronicdesign.com/embedded/
low-power-microcontroller-based-design-techniques

[2] A. Sedra and K. C. Smith, Microelectronic Circuits, 6th ed. Oxford University Press
Inc, 2010.

[3] B. Ivey and Microchip Technology Inc, “AN1416, Low-Power Design Guide,” 2011.

[4] Atmel Corporation, “8/16-bit Atmel XMEGA D4 Microcontroller,” 2014.

[5] Microchip Technology Inc, “PIC24FJ128GA204 FAMILY Datasheet,” 2014.

[6] ——, “Section 39. Power-Saving Features with Deep Sleep,” 2009.

[7] Silicon Labs, “C8051F93x-C8051F92x,” 2013.

[8] A. M. Holberg and A. Saetre, “Innovative Techniques for Extremely Low Power Con-
sumption with 8-bit Microcontrollers,” 2006.

[9] Texas Instruments Inc, “MSP430FR698x, MSP430FR598x Mixed-Signal Microcon-
trollers,” 2014.

[10] ——, “MSP430x09x Family User ’ s Guide,” 2010.

[11] P. Thanigai and Texas Instruments Inc, “FRAMs as alterna-
tives to flash memory in embedded designs.” [Online]. Avail-
able: http://www.embedded.com/design/mcus-processors-and-socs/4390688/2/
FRAMs-as-alternatives-to-flash-memory-in-embedded-designs

[12] FUJITSU SEMICONDUCTOR LIMITED, “FUJITSU Semiconductor FRAM,” 2014.

[13] G. Allen, C. Stanfield, and G. Zheng, “Ferroelectric Random Access Memory,” University
of Michigan, Tech. Rep., 2012.

[14] K. Mikhaylov and J. Tervonen, “Evaluation of Power Efficiency for Digital
Serial Interfaces of Microcontrollers,” 2012 5th International Conference on New
Technologies, Mobility and Security (NTMS), pp. 1–5, May 2012. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6208716

[15] J. Teich, “Hardware/Software Codesign: The Past, the Present, and Predicting the
Future,” Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, pp. 1411–1430,
2012.

63

http://electronicdesign.com/embedded/low-power-microcontroller-based-design-techniques
http://electronicdesign.com/embedded/low-power-microcontroller-based-design-techniques
http://www.embedded.com/design/mcus-processors-and-socs/4390688/2/FRAMs-as-alternatives-to-flash-memory-in-embedded-designs
http://www.embedded.com/design/mcus-processors-and-socs/4390688/2/FRAMs-as-alternatives-to-flash-memory-in-embedded-designs
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6208716

[16] Texas Instruments Inc, “ULP Advisor - Texas Instruments,” 2013. [Online]. Available:
http://processors.wiki.ti.com/index.php/ULP Advisor

[17] B. Finch, “SLAA603 Case Study,” 2013. [Online]. Available: http://www.ti.com/
general/docs/lit/getliterature.tsp?baseLiteratureNumber=slaa603&fileType=zip

[18] M. Amin Karami and D. J. Inman, “Powering pacemakers from heartbeat vibrations
using linear and nonlinear energy harvesters,” Applied Physics Letters, vol. 100, no. 4,
p. 042901, Jan. 2012. [Online]. Available: http://scitation.aip.org/content/aip/journal/
apl/100/4/10.1063/1.3679102

[19] B. Coxworth, “Battery-less device powers a pacemaker using heartbeats,” 2014.
[Online]. Available: http://www.gizmag.com/wristwatch-pacemaker/33624/

[20] A. Harb, “Energy harvesting: State-of-the-art,” Renewable Energy, vol. 36, no. 10, pp.
2641–2654, 2011. [Online]. Available: http://dx.doi.org/10.1016/j.renene.2010.06.014

[21] T. J. Kazmierski and S. Beeby, Energy Harvesting Systems - Principles, Modeling and
Applications, T. J. Kazmierski and S. Beeby, Eds. Springer, 2011.

[22] R. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, and R. Mertens, “Micropower energy
harvesting,” Solid-State Electronics, vol. 53, no. 7, pp. 684–693, Jul. 2009. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0038110109000720

[23] S. Beeby and N. White, Energy Harvesting for Autonomous Systems. Artech House,
2010.

[24] A. Nimo, D. Grgić, and L. M. Reindl, “Ambient electromagnetic wireless energy
harvesting using multiband planar antenna,” in 9th International Multi-Conference on
Systems, Signals and Devices, SSD 2012 - Summary Proceedings, vol. 07, 2012. [Online].
Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6198036

[25] D. Hoffmann, A. Willmann, R. Göpfert, P. Becker, B. Folkmer, and Y. Manoli,
“Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering
Applications,” Journal of Physics: Conference Series, vol. 476, p. 012104, 2013.
[Online]. Available: http://stacks.iop.org/1742-6596/476/i=1/a=012104?key=crossref.
fcc36bf8d6573535f11242b5bbd0df01

[26] C. Adkins, Equilibrium Thermodynamics, 3rd ed. Cambridge University Press, 1983.

[27] J. Caniou, Passive Infrared Detection: Theory and Applications. Springer Science +
Business Media, LLC, 1999.

[28] A. Rogalski, Infrared Detectors, 2nd ed. CRC Press, 2011.

[29] A. Daniels, Field Guide to Infrared Systems, Detectors, and FPAs, 2nd ed., J. E.
Greivenkamp, Ed. SPIE Press, 2010.

[30] S. Engelberg, Random Signals and Noise: A Mathematical Introduction. CRC Press,
2007.

64

http://processors.wiki.ti.com/index.php/ULP_Advisor
http://www.ti.com/general/docs/lit/getliterature.tsp?baseLiteratureNumber=slaa603&fileType=zip
http://www.ti.com/general/docs/lit/getliterature.tsp?baseLiteratureNumber=slaa603&fileType=zip
http://scitation.aip.org/content/aip/journal/apl/100/4/10.1063/1.3679102
http://scitation.aip.org/content/aip/journal/apl/100/4/10.1063/1.3679102
http://www.gizmag.com/wristwatch-pacemaker/33624/
http://dx.doi.org/10.1016/j.renene.2010.06.014
http://www.sciencedirect.com/science/article/pii/S0038110109000720
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6198036
http://stacks.iop.org/1742-6596/476/i=1/a=012104?key=crossref.fcc36bf8d6573535f11242b5bbd0df01
http://stacks.iop.org/1742-6596/476/i=1/a=012104?key=crossref.fcc36bf8d6573535f11242b5bbd0df01

[31] A. Moreira, R. Valadas, and A. de Oliveira Duarte, “Performance of infrared transmission
systems under ambient light interference,” IEE Proc.-Optoelectron, vol. 143, no. 6, 1996.
[Online]. Available: http://www3.dsi.uminho.pt/adriano/publications/IEE-ProcJ96.pdf

[32] T. Agarwal, “What is a PIR Motion Sensor: PIR IC Working, Features and Applica-
tions.” [Online]. Available: http://www.elprocus.com/pir-sensor-basics-applications/

[33] I. Kamal, “Infra-Red Proximity Sensor Part 2 — IKALOGIC,” 2008. [Online]. Available:
http://www.ikalogic.com/infra-red-proximity-sensor-part-2/

[34] Vishay Semiconductors, “TSAL6100,” 2014. [Online]. Available: http://www.vishay.
com/docs/81009/tsal6100.pdf

[35] ——, “TSSP58P38,” 2014. [Online]. Available: http://www.vishay.com/docs/82476/
tssp58p38.pdf

[36] SHARP Corporation, “SHARP GP2Y0A21YK0F,” 2006. [Online]. Available: http:
//www.sharpsma.com/webfm send/1489

[37] Texas Instruments Inc, “TMP006,” 2011. [Online]. Available: http://www.ti.com/lit/
ds/sbos518c/sbos518c.pdf

[38] Hamamatsu, “T11264 08 evaluation module,” 2011.

65

http://www3.dsi.uminho.pt/adriano/publications/IEE-ProcJ96.pdf
http://www.elprocus.com/pir-sensor-basics-applications/
http://www.ikalogic.com/infra-red-proximity-sensor-part-2/
http://www.vishay.com/docs/81009/tsal6100.pdf
http://www.vishay.com/docs/81009/tsal6100.pdf
http://www.vishay.com/docs/82476/tssp58p38.pdf
http://www.vishay.com/docs/82476/tssp58p38.pdf
http://www.sharpsma.com/webfm_send/1489
http://www.sharpsma.com/webfm_send/1489
http://www.ti.com/lit/ds/sbos518c/sbos518c.pdf
http://www.ti.com/lit/ds/sbos518c/sbos518c.pdf

Appendix A

Inefficient Code Version

/∗ −−COPYRIGHT−−,BSD
∗ Copyright (c) 2014 , Texas Instruments Incorporated
∗ Al l r i g h t s r e s e rved .
∗/

// ∗∗
// MSP430FR59xx EnergyTrace Demo− High Energy Consumption Code
//
// Desc r ip t i on : This code i s i n t e n t i o n a l l y wr i t t en i n e f f i c i e n t l y in order
// to use an unnecessary amount o f energy . The ULP Advisor and EnergyTrace
// are used to help i d e n t i f y the problem areas in the code to po int out
// where changes can be made to i n c r e a s e e f f i c i e n c y .
//
// About every second , an ADC temperature sample i s taken and the degree s
// Ce l s i u s and Fahrenheit are found us ing f l o a t i n g po int c a l c u l a t i o n s .
// The r e s u l t s are pr in ted and transmit ted through the UART.
//
// B. Finch
// Texas Instruments Inc .
// June 2013
// Bu i l t with Code Composer Studio V5 . 5 . 0 . 0 0 0 3 9
// ∗∗

#inc lude <s t d i o . h>
#inc lude <msp430 . h>
#inc lude <s t d i n t . h>

#de f i n e CAL ADC 12T30 (∗ ((u i n t 16 t ∗) 0x1A1A)) // Temperature Sensor
Ca l ib ra t ion −30 C 1 .2V r e f

#de f i n e CAL ADC 12T85 (∗ ((u i n t 16 t ∗) 0x1A1C)) // Temperature Sensor
Ca l ib ra t ion −85 C 1 .2V r e f

void UART print (char ∗ s t r i n g) ;

i n t main (void) {
char re su l tC [5 0] ;
char r e su l tF [5 0] ;
f l o a t temp ;
f l o a t IntDegF ;
f l o a t IntDegC ;

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog t imer

66

// Conf igure used port p ins
P2SEL1 |= BIT1 | BIT0 ; // Conf igure UART pins
P2SEL0 &= ˜(BIT1 | BIT0) ; // Conf igure UART pins
PM5CTL0 &= ˜LOCKLPM5; // Disab le GPIO power−on de f au l t

high−impedance mode
// to a c t i v a t e p r ev i ou s l y

con f i gu r ed port s e t t i n g s
// Conf igure ADC12
ADC12CTL0 = ADC12SHT0 2 | ADC12ON; // 16 ADC12CLKs, ADC ON
ADC12CTL1 = ADC12SHP | ADC12SSEL 2 | ADC12CONSEQ 0; // s /w t r i g g e r , MCLK,

s i n g l e ch/conv
ADC12CTL2 = ADC12RES 12BIT ; // 12−b i t conver s i on r e s u l t s
ADC12CTL3 = ADC12TCMAP; // temp senso r s e l e c t e d f o r ADC

input channel A30
ADC12MCTL0 = ADC12VRSEL 1 | ADC12INCH 30 ; // ADC input ch A30 => temp sense

// Conf igure i n t e r n a l r e f e r e n c e
whi l e (REFCTL0 & REFGENBUSY) ; // I f r e f genera tor busy , WAIT
REFCTL0 |= REFVSEL 0 | REFGENOT | REFON; // S e l e c t i n t e r n a l r e f = 1 .2V,

r e f e r e n c e on
d e l a y c y c l e s (400) ; // Delay f o r Ref to s e t t l e

// Conf igure 1 sec Timer
TA0CTL = TASSEL SMCLK | ID 8 | MC UP | TACLR | TAIE ; // SMCLK / 8 , up

mode , c l e a r t imer
TA0EX0 = TAIDEX 7 ; // (SMCLK / 8) / 8 ˜ 15 .625 kHz .

Defau l t SMCLK: 1MHz
TA0CCR0 = 0x3D09 ; // ˜1 sec

// Conf igure UART
UCA0CTLW0 |= UCSSEL SMCLK | UCSWRST; // No par i ty , LSB f i r s t , 8−b i t

data , 1 stop
UCA0BRW = 6 ; // Baud ra t e r e g i s t e r p r e s c a l e .

Conf igure 9600 baud
UCA0MCTLW |= 0x2081 ; // UCBRS = 0x20 , UCBRF = 8 ;

UCOS16 = 1
UCA0CTLW0 &= ˜UCSWRST; // Enable eUSCI A

no ope r a t i on () ; // SET A BREAKPOINT HERE

whi le (1)
{

i f (TA0IV == TA0IV TAIFG) // Po l l the t imer over f l ow
in t e r r up t s t a tu s

{
ADC12CTL0 |= ADC12ENC | ADC12SC; // Sampling and conver s i on s t a r t
whi l e (ADC12IFGR1 & ˜ADC12IFG30) ; // Wait f o r the conver s i on to

complete
whi l e (ADC12CTL1 & ADC12BUSY) ;
temp = ADC12MEM0;

// Temperature in Ce l s i u s :
IntDegC = (temp − CAL ADC 12T30) ∗ (85 .0−30.0) /(CAL ADC 12T85−

CAL ADC 12T30) + 30 . 0 ;

// Temperature in Fahrenheit :

67

IntDegF = 9.0∗ IntDegC /5 .0+32 .0 ;

s p r i n t f (resu ltC , ”%.1 f Degrees Ce l s i u s \ r \n” , IntDegC) ;
s p r i n t f (re su l tF , ”%.1 f Degrees Fahrenheit \ r \n” , IntDegF) ;

UART print (r e su l tC) ; // Send the temperature
in fo rmat ion through the

UART print (r e su l tF) ; // backchannel UART

whi le (UCA0STATW & UCBUSY) ;
no ope r a t i on () ; // For debugger

}
}

}

void UART print (char ∗ s t r i n g) // Send a zero−terminated s t r i n g
through the UART

{
char byte = ∗ s t r i n g++;
whi l e (byte != 0)
{

whi le (! (UCA0IFG & UCTXIFG)) ; // Wait u n t i l TX bu f f e r ready
UCA0TXBUF = byte ; // Send the next byte o f i n f o
byte = ∗ s t r i n g++; // Get the next cha rac t e r to send

}
}

68

Appendix B

Most Efficient Code Version

/∗ −−COPYRIGHT−−,BSD
∗ Copyright (c) 2014 , Texas Instruments Incorporated
∗ Al l r i g h t s r e s e rved .
∗/

// ∗∗
// MSP430FR59xx EnergyTrace Demo− Low Energy Consumption Code
//
// Desc r ip t i on : This code has been opt imized with the he lp o f EnergyTrace
// f o r minimal energy consumption .
//
// About every second , an ADC temperature sample i s taken and the degree s
// Ce l s i u s and Fahrenheit are c a l c u l a t ed . The r e s u l t s are t ransmit ted
// through the UART.
//
// B. Finch
// Texas Instruments Inc .
// June 2013
// Bu i l t with Code Composer Studio V5 . 5 . 0 . 0 0 0 3 9
// ∗∗

#inc lude <msp430 . h>
#inc lude <s t d i o . h>
#inc lude <s t d i n t . h>

#de f i n e CAL ADC 12T30 (∗ ((u i n t 16 t ∗) 0x1A1A)) // Temperature Sensor
Ca l ib ra t ion −30 C 1 .2V r e f

#de f i n e CAL ADC 12T85 (∗ ((u i n t 16 t ∗) 0x1A1C)) // Temperature Sensor
Ca l ib ra t ion −85 C 1 .2V r e f

const char c e l [] = ” Degrees Ce l s i u s \ r \n” ;
const char fah [] = ” Degrees Fahrenheit \ r \n” ;

void UART print (char ∗ s t r i ng , char type) ;

/∗ The func t i on below assumes that the value to be converted i s ten t imes the
de s i r ed value . As a

∗ r e su l t , the accuracy can be to the tenths p lace (d e sp i t e the absence o f
f l o a t i n g po int

∗ va r i a b l e s) . This implementation uses bu i l t−in funct i ons , r a the r than ” d iv id e
” and ”modulo ” .

∗/

69

char ∗ rawToAsc i iStr ing (i n t 1 6 t input) ;

char byte = 0 ;
i n t main (void) {

i n t 1 6 t temp ;
i n t 3 2 t IntDegF ;
i n t 3 2 t IntDegC ;

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog t imer

// Conf igure Port Pins as Output Low . Clear a l l port i n t e r r up t f l a g s .
PAOUT = 0 ; PBOUT = 0 ; PJOUT = 0 ;
PADIR = 0xFFFF; PBDIR = 0xFFFF; PJDIR = 0xFF ;
PAIFG = 0 ; PBIFG = 0 ;

// Conf igure used port p ins
P2SEL1 |= BIT1 | BIT0 ; // Conf igure UART pins
P2SEL0 &= ˜(BIT1 | BIT0) ; // Conf igure UART pins
PJSEL0 |= BIT4 | BIT5 ; // XT1 Setup
PM5CTL0 &= ˜LOCKLPM5; // Disab le GPIO power−on de f au l t

high−impedance mode
// to a c t i v a t e p r ev i ou s l y

con f i gu r ed port s e t t i n g s
// Conf igure Clock System
CSCTL0 H = 0xA5 ; // CS password
CSCTL2 = SELA LFXTCLK; // ACLK sourced from LFXT
CSCTL3 = DIVA 1 ; // No d i v i s i o n
CSCTL4 |= LFXTDRIVE 3 | SMCLKOFF | VLOOFF; // Highest c r y s t a l d r i v e s e t t i n g

. MAY CHANGEEEEE SMCLK turned o f f .
CSCTL4 &= ˜LFXTOFF; // Turn on LFXT

do
{

CSCTL5 &= ˜(LFXTOFFG | HFXTOFFG) ; // Clear XT1 f a u l t f l a g
SFRIFG1 &= ˜OFIFG;

}whi le (SFRIFG1 & OFIFG) ; // Test o s c i l l a t o r f a u l t f l a g

// Conf igure ADC12
ADC12CTL0 = ADC12SHT0 2 | ADC12ON; // 16 ADC12CLKs ; ADC ON
ADC12CTL1 = ADC12SHP | ADC12SSEL 1 | ADC12CONSEQ 0; // s /w t r i g g e r , ACLK,

s i n g l e ch/conv
ADC12CTL2 = ADC12RES 12BIT ; // 12−b i t conver s i on r e s u l t s .
ADC12CTL3 = ADC12TCMAP; // temp senso r s e l e c t e d f o r ADC

input channel A30
ADC12MCTL0 = ADC12VRSEL 1 | ADC12INCH 30 ; // ADC input ch A30 => temp sense
ADC12IER0 |= ADC12IE0 ; // Enable A30 i n t e r r up t

// Conf igure i n t e r n a l r e f e r e n c e
whi l e (REFCTL0 & REFGENBUSY) ; // I f r e f genera tor busy , WAIT
REFCTL0 |= REFVSEL 0 | REFGENOT | REFON; // S e l e c t i n t e r n a l r e f = 1 .2V,

r e f e r e n c e on

// Conf igure Timer
TA0CTL = TASSEL ACLK | MC UP | TACLR; // ACLK, up mode , c l e a r t imer .
TA0CCR0 = 131 ; // ˜0 .4ms

70

TA0CCTL0 |= CCIE ; // Capture/compare i n t e r r up t
enable .

b i s SR r e g i s t e r (LPM3 bits | GIE) ; // Enter LPM3. Delay f o r Ref to
s e t t l e .

TA0CCR0 = 0x8000 ; // Change t imer de lay to ˜1 sec .

// Conf igure UART
UCA0CTLW0 |= UCSSEL ACLK | UCSWRST; // No par i ty , LSB f i r s t , 8−b i t

data , 1 stop
UCA0BRW = 3 ; // Baud ra t e r e g i s t e r p r e s c a l e .

Conf igure 9600 baud
UCA0MCTLW = 0x9200 ; // UCBRS = 0x92 , UCBRF = −− (don ’

t care) ; UCOS16 = 0
UCA0CTLW0 &= ˜UCSWRST; // Enable eUSCI A

no ope r a t i on () ; // SET BREAKPOINT HERE

whi le (1)
{

b i s SR r e g i s t e r (LPM3 bits | GIE) ; // Enter LPM3, wait f o r ˜1 sec
t imer

ADC12CTL0 |= ADC12ENC | ADC12SC; // Sampling and conver s i on s t a r t
b i s SR r e g i s t e r (LPM3 bits | GIE) ; // Wait f o r conver s i on to

complete
temp = ADC12MEM0; // ’ temp ’ = the raw ADC

temperature conver s i on r e s u l t
// b i c SR r e g i s t e r (GIE) ;

// Temperature in Ce l s iu s , mu l t i p l i e d by 10 :
IntDegC = ((temp − CAL ADC 12T30) ∗10∗(85−30) ∗10/((CAL ADC 12T85−

CAL ADC 12T30) ∗10) + 30∗10) ;

// Temperature in Fahrenheit , mu l t i p l i e d by 10 :
IntDegF = 9∗ IntDegC/5+320;

UART print (rawToAsc i iStr ing (IntDegC) , ’C ’) ; // Send temperature
in fo rmat ion through UART

UART print (rawToAsc i iStr ing (IntDegF) , ’F ’) ;
}

}

char ∗ rawToAsc i iStr ing (i n t 1 6 t input) // conver s i on a lgor i thm which used
bu i l t−in f un c t i on s

{ // (ra the r than ” d iv id e ” and ”
modulo ”)
u i n t 16 t i ;
u i n t 16 t bcd ;
s t a t i c char r e s u l t [6] ;

i f (input < 0) input = −input ;

f o r (i = 16 , bcd = 0 ; i ; i−−)
{

bcd = bcd add sho r t (bcd , bcd) ;
i f (input & 0x8000)

bcd = bcd add sho r t (bcd , 1) ;

71

input <<= 1 ;
}

f o r (i = 4 ; i > 0 ; i−−)
{

r e s u l t [i −1] = 0x30 | ((bcd>>((4− i) ∗4))&0xF) ;
}
r e s u l t [4] = r e s u l t [3] ; // Move 10 ths p lace
r e s u l t [3] = ’ . ’ ; // I n s e r t decimal po int

re turn &r e s u l t [0] ;
}

void UART print (char ∗ s t r i ng , char type) // Send a zero−terminated s t r i n g
through the UART

{
byte = ∗ s t r i n g++;
char count = 0 ;

whi l e (byte == 0x30) // Don ’ t p r i n t l e ad ing z e ro s .
{

byte = ∗ s t r i n g++;
count++;

}

whi le (count != 5)
{

UCA0IE |= UCTXIE; // Enable UART TX in t e r r up t
b i s SR r e g i s t e r (LPM3 bits | GIE) ; // Wait u n t i l TX bu f f e r ready

byte = ∗ s t r i n g++;
count++;

}
count = 0 ;
i f (type == ’C ’)
{

whi le (c e l [count] != 0)
{

byte = c e l [count++]; // Send the next byte o f i n f o
UCA0IE |= UCTXIE; // Enable UART TX in t e r r up t

b i s SR r e g i s t e r (LPM3 bits | GIE) ; // Wait u n t i l TX bu f f e r ready
}

}
e l s e i f (type == ’F ’)
{

whi le (fah [count] != 0)
{

byte = fah [count++]; // Send the next byte o f i n f o
UCA0IE |= UCTXIE; // Enable UART TX in t e r r up t

b i s SR r e g i s t e r (LPM3 bits | GIE) ; // Wait u n t i l TX bu f f e r ready
}

}
UCA0IE &= ˜UCTXIE;

}

#pragma vec to r = ADC12 VECTOR
i n t e r r u p t void ADC12 ISR(void)

72

{
switch (e v en i n r ang e (ADC12IV, 7 6))
{

case 12 : // Vector 12 : ADC12MEM0
ADC12IFGR0 &= ˜ADC12IFG0 ; // Clear i n t e r r up t f l a g

b i c SR r e g i s t e r o n e x i t (LPM3 bits) ; // Exit a c t i v e CPU
break ;

d e f au l t : break ;
}

}

// Timer0 A3 In t e r rup t Vector (TAIV) handler
#pragma vec to r=TIMER0 A0 VECTOR

i n t e r r u p t void TIMER0 A0 ISR(void)
{

b i c SR r e g i s t e r o n e x i t (LPM3 bits) ; // Exit a c t i v e CPU
}

#pragma vec to r=USCI A0 VECTOR
i n t e r r u p t void USCI A0 ISR (void)

{
switch (e v en i n r ang e (UCA0IV,USCI UART UCTXCPTIFG))
{

case USCI NONE: break ;
case USCI UART UCRXIFG: break ;
case USCI UART UCTXIFG:

UCA0TXBUF = byte ; // Send the next byte o f i n f o
UCA0IE &= ˜UCTXIE; // Disab le UART TX in t e r r up t

b i c SR r e g i s t e r o n e x i t (LPM3 bits) ; // Exit a c t i v e CPU
break ;

case USCI UART UCSTTIFG: break ;
case USCI UART UCTXCPTIFG: break ;

}
}

73

Appendix C

Implemented Code

#inc lude <a s f . h>
#inc lude <delay . h>

#de f i n e STATLED IOPORT CREATE PIN(PORTD, 4)
#de f i n e IROUT IOPORT CREATE PIN(PORTD, 7)

i n l i n e void SleepTimer (void) ;
i n l i n e void configCPUspeed (void) ;
i n l i n e void con f i gPo r t s (void) ;
i n l i n e void InfraredTimer (void) ;
i n l i n e void DebounceTimer (void) ;
i n l i n e void disableDebounceTimer (void) ;
i n l i n e void d i sab l eS l eepTimer (void) ;
i n l i n e void d i s ab l e In f r a r edT imer (void) ;
i n l i n e void goToSleep (void) ;
i n l i n e void wakeUp(void) ;
i n l i n e void enableValve (void) ;
i n l i n e void d i sab l eVa lve (void) ;
i n l i n e void id l eVa lve (void) ;
i n l i n e void enableLED (void) ;
i n l i n e void disableLED (void) ;

v o l a t i l e unsigned char va l i da t ed h i gh = 0 ;
v o l a t i l e unsigned char p r ev i ou s l y d e t e c t ed = 0 ;
v o l a t i l e unsigned char p r e v i o u s l y a c t i v a t e d = 0 ;
v o l a t i l e unsigned char va l i da t ed l ow = 0 ;
v o l a t i l e unsigned char debounce counter = 0 ;
v o l a t i l e unsigned char wakeup contro l = 1 ;
unsigned char de l t a = 5 ; // [mult ip ly by 10 to avoid f l o a t i n g po int c a l c u l a t i o n s

]

i n t main (void)
{

configCPUspeed () ;
c on f i gPo r t s () ;
SleepTimer () ;
In f raredTimer () ; // ENABLE INFRARED
DebounceTimer () ; // READ INFRARED
s e i () ;
whi l e (1)
{

74

}
}

i n l i n e void configCPUspeed (void)
{

/∗
The CLKPCE b i t must be wr i t t en to l o g i c one to enable change o f the CLKPS

b i t s . The CLKPCE
b i t i s only updated when the other b i t s in CLKPR are s imu l taneous ly wr i t t en

to zero . CLKPCE i s
c l e a r ed by hardware four c y c l e s a f t e r i t i s wr i t t en or when CLKPS b i t s are

wr i t t en .
∗/
CLKPR = (1 << CLKPCE) ; // enable a change to CLKPR
CLKPR = (1 << CLKPS2) ; // 8000000 / 16 = 500 kHz

}
i n l i n e void con f i gPo r t s (void)
{

// wr i t e one to con f i gu r e as output
DDRB = 0xC7 ; // no not touch the MOSI MISO and SCK pins
PORTB = 0x00 ;

DDRC = 0x3F ; // no not touch the RST pin
PORTC = 0x00 ;
DDRD = 0x73 ; // PD3 and PD2 as inputs and PD7
PORTD = 0x00 ;

}
i n l i n e void SleepTimer (void) // T2
{

// 1 Hz minimum frequency
// 1024 p r e s c a l i n g
TCCR2A = (0 << COM2A1) | (0 << COM2A0) | (0 << COM2B1) | (0 << COM2B0) | (1

<< WGM21) | (0 << WGM20) ;
TCCR2B = (0 << WGM22) | (1 << CS22) | (1 << CS21) | (1 << CS20) ;
TCNT2 = 0x00 ;
OCR2A = 121 ; // 2Hz
TIMSK2 |= (1 << OCIE2A) ; // i n t e r r up t enable

}
i n l i n e void InfraredTimer (void) // T1 38 kHz timer
{

/∗
A frequency (with 50% duty cy c l e) waveform output in f a s t PWM mode can be

achieved by s e t t i n g
OC1A to togg l e i t s l o g i c a l l e v e l on each compare match (COM1A1:0 = 1) . This

app l i e s only
i f OCR1A i s used to d e f i n e the TOP value (WGM13: 0 = 15) .
∗/
// IMPORTANT: THERE IS A /2 DIVIDER. BEST ACHIEVABLE FREQUENCY IS 35 .7 kHz
TCCR1A = (0 << COM1A1) | (1 << COM1A0) | (0 << COM1B1) | (0 << COM1B0) | (1

<< WGM11) | (1 << WGM10) ;
// PWM mode . . t o gg l e OC1A on compare match
//TCCR1B = (0 << ICNC1) | (0 << ICES1) | (1 << WGM13) | (1 << WGM12) | (0 <<

CS12) | (0 << CS11) | (1 << CS10) ;
TCCR1B = 0x19 ;
// no p r e s c a l i n g
TCNT1H = 0x0 ;

75

TCNT1L = 0x0 ;
OCR1AL = 6 ;
OCR1AH = 0 ;
TIMSK1 = 0x00 ;
DDRD|= 0x02 ;

}
i n l i n e void DebounceTimer (void) //T0 debouncer t imer
{

// Debouncer Timer
// Conf igured with a 2550 Hz frequency
// CTC mode with OCR0A in t e r r up t
// no pin change
// no p r e s c a l e r
TCCR0A = (0 << COM0A1) | (0 << COM0A0) | (0 << COM0B1) | (0 << COM0B0) | (1

<< WGM01) | (0 << WGM00) ;
TCCR0B = (0 << WGM02) | (0 << CS02) | (0 << CS01) | (1 << CS00) ;
TCNT0 = 0x00 ;
OCR0A = 98 ;
TIMSK0 = (1 << OCIE0A) ; // Output compare match A in t e r r up t enable

}
ISR(TIMER2 COMPA vect) // S l e epe r Routine
{

i f (wakeup contro l == 1)
{

wakeUp () ;
In fraredTimer () ;
DebounceTimer () ;

i f (v a l i d a t ed h i gh == 1) // ENABLE INFRARED −> DETECTION? (YES)
{

i f ((p r e v i o u s l y a c t i v a t e d == 1) & (va l i d a t ed h i gh == 1)) // ENABLE
INFRARED −> DETECTION? (YES) −> PREVIOUSLY ACTIVATED? (YES)

{
// disableDebounceTimer () ; // ENABLE INFRARED −> DETECTION? (YES) −>

PREVIOUSLY ACTIVATED? (YES) −> DISABLE INFRARED
// d i sab l e In f r a r edT imer () ; //

} // ENABLE INFRARED −> DETECTION? (YES) −> PREVIOUSLY ACTIVATED? (
YES)

i f ((p r e v i o u s l y a c t i v a t e d == 0) & (va l i d a t ed h i gh == 1)) // ENABLE
INFRARED −> DETECTION? (YES) −> PREVIOUSLY ACTIVATED? (NO)

{
enableLED () ;
enableValve () ; // ENABLE INFRARED −> DETECTION? (YES) −>

PREVIOUSLY ACTIVATED? (NO) −> ACTIVATE VALVE
disableDebounceTimer () ; // ENABLE INFRARED −> DETECTION? (YES) −>

PREVIOUSLY ACTIVATED? (NO) −> ACTIVATE VALVE −> DISABLE INFRARED
di sab l e In f r a r edT imer () ; //
delay ms (50) ;
i d l eVa lve () ;
p r e v i o u s l y a c t i v a t e d = 1 ;

} // ENABLE INFRARED −> DETECTION? (YES) −> PREVIOUSLY ACTIVATED? (NO
)

p r ev i ou s l y d e t e c t ed = 1 ;
} // ENABLE INFRARED −> DETECTION? (YES)

76

i f (va l i da t ed l ow == 1) // ENABLE INFRARED −> DETECTION? (NO)
{

i f ((p r e v i ou s l y d e t e c t ed == 1) & (p r e v i o u s l y a c t i v a t e d == 1) & (
va l i da t ed l ow == 1)) // ENABLE INFRARED −> DETECTION? (NO) −>
PREVIOUSLY DETECTED? (YES)

{
disableLED () ;
d i sab l eVa lve () ; // ENABLE INFRARED −> DETECTION? (NO) −> PREVIOUSLY

DETECTED? (YES) −> DEACTIVATE VALVE
//disableDebounceTimer () ; // ENABLE INFRARED −> DETECTION? (NO) −>

PREVIOUSLY DETECTED? (YES) −> DEACTIVATE VALVE −> DISABLE
INFRARED

// d i sab l e In f r a r edT imer () ; //
delay ms (50) ;
i d l eVa lve () ;
p r e v i o u s l y a c t i v a t e d = 0 ;

} // ENABLE INFRARED −> DETECTION? (NO) −> PREVIOUSLY DETECTED?

i f ((p r e v i ou s l y d e t e c t ed == 0) & (p r e v i o u s l y a c t i v a t e d == 0) & (
va l i da t ed l ow == 1))

{
disableLED () ;
// j u s t do nothing . i f nothing i s detec ted i t keeps jumping here

doing nothing .
}
p r ev i ou s l y d e t e c t ed = 0 ;
p r e v i o u s l y a c t i v a t e d = 0 ;

} // ENABLE INFRARED −> DETECTION? (NO)

wakeup contro l = 0 ;
}
e l s e
{

wakeup contro l = 1 ;
disableDebounceTimer () ;
d i s ab l e In f r a r edT imer () ;
goToSleep () ;

}
}
ISR(TIMER0 COMPA vect) // Debounce rou t ine
{

// Read Sensor PIN : PD7
// 7654.3210
// 1000.0000
i f (! i o p o r t p i n i s l ow (IROUT))
{

// decrement debouncer
i f (debounce counter > 0)
{

debounce counter−−;
v a l i da t ed l ow = 0 ;
va l i da t ed h i gh = 0 ; // make sure they are both zero or oppos i t e

}
e l s e
{

77

debounce counter = 0 ;
va l i da t ed l ow = 1 ; // make sure they are both zero or oppos i t e
va l i da t ed h i gh = 0 ;

}
}
e l s e // i f (aux == 0x00)
{

// increment debouncer
i f (debounce counter < 255)
{

debounce counter++;
va l i da t ed l ow = 0 ;
va l i da t ed h i gh = 0 ;

}
e l s e
{

debounce counter = 255 ;
va l i da t ed h i gh = 1 ;
va l i da t ed l ow = 0 ;

}
}

}
i n l i n e void d i sab l eS l eepTimer (void)
{

TCCR2B &= (0 << CS22) | (0 << CS21) | (0 << CS20) ;
TCNT2 = 0x00 ;

}
i n l i n e void enableValve (void)
{

// PC1 : CTRLA
// PC0 : CTRLB
PORTC &= 0xFC;
PORTC |= 0x02 ;

}
i n l i n e void d i sab l eVa lve (void)
{

// PC1 : CTRLA
// PC0 : CTRLB
PORTC &= 0xFC;
PORTC |= 0x01 ;

}
i n l i n e void id l eVa lve (void)
{

// PC1 : CTRLA
// PC0 : CTRLB
PORTC &= 0xFC;

}
i n l i n e void goToSleep (void)
{

PRR = (1 << PRTWI) | (1 << PRTIM0) | (1 << PRTIM1) | (1 << PRSPI) | (1 <<
PRUSART0) | (1 << PRADC) ;

SMCR = (0 << SM2) | (1 << SM1) | (1 << SM0) ; // power save
SMCR |= (1 << SE) ; // s l e e p enable

}
i n l i n e void wakeUp(void)
{

78

PRR = (1 << PRTWI) | (0 << PRTIM0) | (0 << PRTIM1) | (1 << PRSPI) | (1 <<
PRUSART0) | (1 << PRADC) ;

SMCR = 0x00 ; // i d l e
}
i n l i n e void disableDebounceTimer (void)
{

TCCR0B &= (0 << CS02) | (0 << CS01) | (0 << CS00) ;
TCNT0 = 0x00 ;

}
i n l i n e void d i s ab l e In f r a r edT imer (void)
{

TCCR1B &= (0 << CS12) | (0 << CS11) | (0 << CS10) ;
TCNT1L = 0x00 ;
TCNT1H = 0x00 ;

}
i n l i n e void enableLED (void)
{

PORTD |= 0x10 ;
}
i n l i n e void disableLED (void)
{

PORTD &= 0xEF ;
}

79

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	The Company
	Thesis Structure

	Low-power systems design techniques
	Power Categories
	Performance Factors
	Supply Voltage and Clock Speed
	Wake-up time
	Instruction Set Architecture
	Data Retention
	Code Execution: Flash vs SRAM
	Code Execution: FRAM vs SRAM

	Proper use of Peripherals
	Serial Interfaces: UART, SPI and I2C
	Analog to Digital Converter
	DMA and FIFO Buffers
	Brown-out Reset

	Hardware and Software Co-Design

	Case Study and Validation
	Chapter Remarks

	Energy Harvesting
	System Architecture
	Energy Sources
	Chapter Remarks

	Infrared Detection
	Radiation Sources
	Propagation Medium
	Infrared Receivers
	Detector Main Characteristics
	Existing Detectors and Limitations
	Passive Sensors
	Active Sensors
	Active Sensor: TSAL6100 & TSSP58P38
	Active Sensor: SHARP 2Y0A21 F 9Y

	Thermopile Sensors

	Evaluation of Hamamatsu T11264-08 Dev Module
	Chapter Remarks

	Project Implementation
	System's Description and Design Considerations
	Hardware Interfaces and System Assembly
	Energy Balance
	Case Study

	System Programming
	Detected Issues

	Experimental Results
	Chapter Remarks

	Conclusions and Future Work
	Bibliography
	Inefficient Code Version
	Most Efficient Code Version
	Implemented Code

