
MNRAS 000, 1–14 (2017) Preprint 31 August 2017 Compiled using MNRAS LATEX style file v3.0

Convolutional Neural Networks for Transient Candidate
Vetting in Large-Scale Surveys

Fabian Gieseke,1,2? Steven Bloemen,3,4 Cas van den Bogaard,1 Tom Heskes,1

Jonas Kindler,5 Richard A. Scalzo,6,7,8 Valério A.R.M. Ribeiro,3,9,10,11 Jan van Roestel,3

Paul J. Groot,3 Fang Yuan,6,7 Anais Möller,6,7 Brad E. Tucker,6,7
1Institute for Computing and Information Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
2Department of Computer Science, University of Copenhagen, Sigurdsgade 41, 2200 Copenhagen, Denmark
3Department of Astrophysics/IMAPP, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
4NOVA Optical InfraRed Instrumentation Group, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
5Institute of Cognitive Science, University of Osnabrück, Wachsbleiche 27, 49090 Osnabrück, Germany
6Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia
7ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), Australia
8Centre for Translational Data Science, University of Sydney, Darlington, NSW 2008, Australia
9CIDMA, Departamento de F́ısica, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
10Instituto de Telecomunicações, Campus de Santiago, 3810-193 Aveiro, Portugal
11Department of Physics and Astronomy, Botswana International University of Science and Technology, Private Bay 16, Palapye, Botswana

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
Current synoptic sky surveys monitor large areas of the sky to find variable and
transient astronomical sources. As the number of detections per night at a single
telescope easily exceeds several thousand, current detection pipelines make intensive
use of machine learning algorithms to classify the detected objects and to filter out the
most interesting candidates. A number of upcoming surveys will produce up to three
orders of magnitude more data, which renders high-precision classification systems
essential to reduce the manual and, hence, expensive vetting by human experts. We
present an approach based on convolutional neural networks to discriminate between
true astrophysical sources and artefacts in reference-subtracted optical images. We
show that relatively simple networks are already competitive with state-of-the-art
systems and that their quality can further be improved via slightly deeper networks
and additional preprocessing steps – eventually yielding models outperforming state-
of-the-art systems. In particular, our best model correctly classifies about 97.3% of all
“real”and 99.7% of all “bogus” instances on a test set containing 1,942“bogus”and 227
“real” instances in total. Furthermore, the networks considered in this work can also
successfully classify these objects at hand without relying on difference images, which
might pave the way for future detection pipelines not containing image subtraction
steps at all.

Key words: surveys – techniques: image processing – methods: data analysis –
supernovae: general

1 INTRODUCTION

A number of large optical survey telescopes such as Skymap-
per (Keller et al. 2007), the Palomar Transient Fac-
tory (PTF, Rau et al. 2009), and Pan-STARSS1 (Kaiser
et al. 2010) are searching for transient events. New genera-

? E-mail: fabian.gieseke@di.ku.dk

tion surveys will be able to scan large amounts of the sky
faster and deeper allowing searches for extremely rare or
hitherto undiscovered events, such as possible electromag-
netic counterparts of gravitational wave sources (see, e.g.,
Nissanke et al. 2013; Smartt et al. 2016). Those surveys will
increase our statistical samples of more common events, such
as supernovae, for experiments in cosmology and fundamen-

© 2017 The Authors

ar
X

iv
:1

70
8.

08
94

7v
1

 [
as

tr
o-

ph
.I

M
]

 2
9

A
ug

 2
01

7

2 Gieseke et al.

tal physics (Riess et al. 1998; Schmidt et al. 1998; Perlmutter
et al. 1999).

The detection of rare transient events among the vast
majority of relatively constant sources is an important yet
challenging task. Most surveys use difference imaging to find
variable stars and transients. This is usually achieved by per-
forming a pixel-by-pixel subtraction of a pre-existing tem-
plate image from the image of interest. Astrophysical sources
that are variable or were absent in the template image re-
main, while constant sources – which represent the vast ma-
jority of the detected sources – are removed at the pixel level.
During the difference imaging process, the template image
is aligned and resampled to take into account distortions in
the target image, and a convolution is done to match the
point-spread function in all regions of the image (see, e.g.,
Alard & Lupton 1998; Alard 2000).

While this process, in principle, allows one to very ef-
ficiently find rare transient events, in practice many of the
resulting images contain a large number of “bogus” objects.
These “bogus” objects trigger source finding algorithms, but
rather than being of astrophysical nature, they are, in re-
ality, artefacts. Such artefacts can result from a variety of
processes such as issues with image processing (e.g., bad
alignment at the subtraction step, between the template and
target images), detector imperfections, atmospheric disper-
sion and cosmic rays passing through the detector.

The number of potential detections can be very large,
with thousands of events per night produced by current syn-
optic surveys, and millions of detections per night expected
from future surveys such as the Large Synoptic Sky Sur-
vey (LSST, Ivezic et al. 2008). The classification of the de-
tections as either “real” or “bogus” sources is a necessary
but daunting task, which will become an even more seri-
ous problem in the future. Manual verification by humans
is expensive and, most likely, impossible to conduct for the
amounts of data expected. For this reason, automatic de-
tection algorithms that yield both a high purity and a high
completeness will play an essential role for future transient
surveys.

Machine learning aims at constructing models that can
perform classification tasks in an automatic manner (Hastie
et al. 2009; Murphy 2012). One particular subfield of ma-
chine learning techniques, called deep learning (LeCun et al.
2015), has gained considerable attention during the past few
years. Deep learning algorithms have successfully been ap-
plied to a variety of real-world tasks. Two recent trends have
sparked the interest in such algorithms: (1) the dramatic in-
crease of data volumes in almost any field, which, in turn,
has produced a massive amount of labelled data that can be
used to train and evaluate the models; and (2) the enormous
increase in compute power, particularly due to massively-
parallel devices such as graphics processing units (GPUs),
which led to a significant reduction of the practical runtime
needed to generate deep architectures (Coates et al. 2013).

This paper aims at improving the automatic identifica-
tion of transient sources in astronomical images. A stan-
dard approach, usually implemented in current detection
pipelines, is based on extracting features from photomet-
ric images, such as the fluxes of the detected sources. Given
such a representation of the objects at hand, one resorts
to well-established machine learning algorithms. The most
widely used approaches are currently based on some kind of

dimension reduction (e.g., by conducting a principal com-
ponent analysis in the preprocessing phase or by extracting
physically-motivated features such as magnitudes or param-
eters that reflect the shape of the point spread function) and
a subsequent application of classification methods such as
random forests, support vector machines, nearest neighbour
techniques, or (standard) artificial neural networks (e.g.,
Bloom et al. 2012; Brink et al. 2013; Goldstein et al. 2015;
Morii et al. 2016; Wright et al. 2015; Buisson et al. 2015).
Some recent works also resort to deep neural networks (here,
the term “deep” refers to the number of hidden layers in a
network, see Section 2 for details). For example, a recent ap-
proach resorts to a neural network with three hidden layers
that is applied given physically-motivated features (Morii
et al. 2016). Another approach is based on recurrent neural
networks with up to two hidden layers, given time series data
that stems from flux values extracted from different obser-
vations (Charnock & Moss 2016). Note that these schemes
also resort to an explicit feature extraction step that is con-
ducted in the preprocessing phase.

This paper focuses on improving current detection
pipelines and classification systems by means of convolu-
tional neural networks (LeCun et al. 1989, 2015). In contrast
to “standard” deep architectures, convolutional neural net-
works do not rely on a feature extraction step conducted in
the preprocessing phase. Instead, these models “learn” good
features based on the raw input image data. While convolu-
tional neural networks have already been considered in the
context of astronomy (Dieleman et al. 2015b; Kim & Brun-
ner 2016), we present the first application of such models
for the task of transient vetting. In this paper we make use
of a dataset compiled in the framework of the Skymapper
supernova searches (Scalzo et al. 2017).

2 BACKGROUND

In this section, we provide some machine learning back-
ground related to the techniques used in this work.

2.1 Random Forests Revisited

Random forests depict ensembles of individual classification
trees (Breiman 2001; Hastie et al. 2009; Murphy 2012). In
general, ensemble methods are among the most successful
models in machine learning. This is especially true for ran-
dom forests, which often yield high accuracies while being, at
the same time, conceptually very simple and resilient against
small changes of the involved parameter assignments. Since
their introduction more than a decade ago, random forests
have been extended and modified in various manners. A
standard random forest consists of many individual trees
(e.g., classification or regression trees), where each tree is
built in a slightly “different” way (see below) and the ensem-
ble combines the benefits of all of them, see Figure 1.

The trees of a random forest are usually constructed in-
dependently from each other. Each tree is built from top to
bottom, where the root corresponds to all training instances
and the leaves to subsets of the training data. During the
construction, each internal node is recursively split into two
children such that the resulting subsets exhibit a higher “pu-
rity”. The overall process stops as soon as the leaves are

MNRAS 000, 1–14 (2017)

Convolutional Neural Networks for Transient Vetting 3

(a) Tree 1 (b) Tree 2 (c) Tree 3

Figure 1. A random forest built for 50 training points. Each

tree of the ensemble is built from top to bottom and at each
node, slightly different “splits” are used – resulting in different

tree structures. The construction takes place until the leaves are

pure, meaning that only patterns belonging to the same class are
given in a single leaf (resulting in less than 50 leaves in this case).

For splitting up the nodes, one resorts to different criteria such

as the mean squared error for regression scenarios or the Gini
index for classification tasks. A random forecasts combines the

predictions made by the individual trees.

“pure” (i. e., they only contain patterns with the same label)
or as soon as some other stopping criterion is fulfilled. The
original way of building a random forest is based on subsets
of the training patterns, one subset for each tree to be built,
called bootstrap samples (Breiman 2001). These subsets are
drawn uniformly at random (with replacement) to obtain
slightly different training sets and, hence, trees.

The quality of a node split is measured in terms of
the gain in purity, which, in turn, is measured via differ-
ent metrics depending on the desired outcome. Typical met-
rics include, for example, the mean squared error for the
regression case or the Gini index for classification prob-
lems (Breiman 2001). For example, a pure split would be one
yielding children containing only instances belonging to the
same class, therefore, no further splits are required (Breiman
2001; Hastie et al. 2009; Murphy 2012).

Given a new, unseen instance, one can obtain a predic-
tion for each single tree by traversing the tree from top to
bottom based on the splitting information stored in the in-
ternal nodes until a leaf node is reached. The labels stored
in this leaf are then combined to obtain the prediction for a
single tree (e.g., by considering the mean for regression sce-
narios). The overall prediction of the random forest is based
on a combination of the individual predictions. For regres-
sion scenarios, one usually simply averages the predictions.
For classification settings, one can resort to a majority vote.
In summary, the individual trees of a random forest can be
seen as “different” experts, whose opinions are combined to
obtain a single overall prediction for a new instance.

2.2 Deep Convolutional Neural Networks

Below we briefly introduce convolutional neural networks.
For a more detailed description, we refer the reader to the
excellent overview by LeCun et al. (2015) and the articles
with applications to astronomical research (e.g., Dieleman
et al. 2015b; Kim & Brunner 2016).

x1

x2

x3

x4

y1

y2

Hidden
Layer

Hidden
Layer

Input
Layer

Output
Layer

Figure 2. A standard fully-connected artificial neural network
with two hidden layers. The nodes of the network are called neu-

rons and the output of each neuron corresponds to the weighted

sum of its input neurons, transformed by an activation function.
The output layer contains one neuron for each class and, given an

input instance, outputs the corresponding class probabilities (in

the case of classification scenarios).

2.2.1 Artificial Neural Networks

Convolutional neural networks are special types of the stan-
dard artificial neural networks (ANNs) (Hastie et al. 2009;
Murphy 2012), which, in turn, consist of collections of in-
terconnected nodes. In a nutshell, a multilayered artificial
neural network is based on several layers, where the output
of a given layer serves as input for the next layer. The first
layer is called the input layer and the last layer the output
layer. In between, there requires at least on hidden layer.
For standard artificial neural networks, these layers are fully
connected, meaning that all nodes of a given layer are con-
nected to all nodes of the next layer (Figure 2).1

The input layer is specified via the available input data.
For example, given a feature vector x ∈ Rd extracted from
an image (e.g., a set of magnitudes), each of the feature
values x1, . . . , xd corresponds to one of the input nodes of the
input layer. Similarly, the output layer is determined by the
learning task at hand. For a binary classification problem
(e.g., “bogus” vs. “real”), the output layer consists of two
nodes that, for a given input instance, eventually output
the class probabilities for each of the classes (note that in
this special case, a single output node is sufficient since the
classes are mutually exclusive).

The output of the first hidden layer is obtained via the
weights W1 associated with the connections between the in-
put layer and the first hidden layer. More specifically, the
output of layer j is given by the transformation rule

xj = f (W jxj−1 + bj), (1)

where W j is the weight matrix associated with the connec-
tions between layer j − 1 and j, bj a vector containing so-

called bias values associated with layer j, and f : RK → RK

1 For convolutional neural networks, this is usually not the case

except for the last layers (see below).

MNRAS 000, 1–14 (2017)

4 Gieseke et al.

a so-called activation function with K being the total num-
ber of neurons in layer j. Note that the transition from layer
j−1 to j basically corresponds to applying a standard linear
model followed by an element-wise application of the acti-
vation function f (Hastie et al. 2009; Murphy 2012). The
dimensions of all involved vectors and matrices depend on
the number of nodes and connections between the nodes. For
example, for the transition from the input to the first hid-
den layer in Figure 2, we have x0 ∈ R4, x1 ∈ R6, W1 ∈ R6×4,
and b1 ∈ R6. Popular choices for the activation function
f : RK → RK are

• the linear activation function [f (x)]i = xi ,
• the rectified activation function [f (x)]i = max(0, xi),
• or the softmax activation function [f (x)]i = exi∑K

j=1 e
x j

for i = 1, . . . ,K. Hence, the layers of a neural network iter-
atively transform the feature representation x ∈ Rd of an
input instance. Finally, the vector at the last hidden layer
is transformed to only a single output neuron for standard
regression scenarios or to multiple output neurons for clas-
sification or multivariate regression scenarios. Note that the
different layers can resort to different activation functions,
except for the last one, the output layer, which is some-
what restricted by the learning task at hand. For regres-
sion tasks, one usually makes use of a linear activation func-
tion, whereas the softmax activation function is a common
choice for classification scenarios. Hence, given a new in-
stance x ∈ Rd for which one would like to obtain a prediction
(e.g., if it is of type “bogus” or “real”), one consecutively ap-
plies the transformation rule (Equation 1), which eventually
yields the output vector y. For regression scenarios, y ∈ R1

corresponds to the prediction made by the network for the
input x, whereas the vector y ∈ RC contains the class proba-
bilities given classification scenarios with C possible classes.

Training such a neural network basically corresponds
to finding weights such that the network performs well on
new, unseen data (e.g., fewer misclassifications). Various op-
timization techniques can be applied (e.g., variants of gradi-
ent descent) so that the output of the network becomes more
consistent with the class labels given for the training data.
The so-called learning rate γ > 0 is a parameter used by
many of the underlying optimisation techniques that affects
the size of the weight updates (e.g., similar to the step-size of
standard gradient descent). The learning rate is a parameter
that needs to be specified beforehand (as the network struc-
ture itself) and is usually tuned via grid search (i. e., various
assignments are tested and one resorts to the training data
to evaluate the induced quality).

Another important parameter is the number of epochs,
which usually correspond to a full pass over the available
training data or to processing a certain batch of a fixed size
of training instances (most optimisation techniques process
the training instances iteratively). For the latter option, the
batch size determines the number of instances processed per
single epoch (Hastie et al. 2009).

2.2.2 Convolutional Neural Networks

In recent years, so-called deep networks have become more
and more popular. Here, the term “deep” is related to the
number of hidden layers. A special type of such deep archi-

tectures are convolutional neural networks, which consist of
multiple layers of different types. Such networks have been
successfully applied in the context of many application do-
mains. We will focus on image-based input data for the de-
scription of convolutional neural networks.

A typical convolutional neural network with multiple
hidden layers is shown in Figure 3. As standard artificial
networks, convolutional neural networks also exhibit an in-
put and an output layer. Furthermore, the last hidden layers
often correspond to standard fully-connected dense layers
as well. In contrast, the first hidden layers are conceptually
very different and consist of various types of layers. The most
prominent types, applied in this work, are convolutional lay-
ers, pooling layers, and dropout layers:

• Convolutional layers: Such layers form the basis for con-
volutional neural networks and yield so-called feature maps
by sliding a small window of weights across the input feature
maps that stem from the previous layer (the input images of
the input layer form the initial feature maps). In a nutshell,
each feature map of a given layer stems from convolving all
input feature maps using a set of filters (weight matrices),
one filter for each input feature map. For example, in Fig-
ure 3, we have, for each feature map in the first hidden layer,
three filters of size 3 × 3 that are used to convolve all three
input feature maps. The sum of all these convolved images
correspond to the term W jxj−1 in equation (1). Afterwards,
a matrix of bias values is added to this sum image, followed
by an element-wise application of an activation function f .
• Pooling layers: This is the second prominent type of lay-

ers. Pooling layers are used to decrease the number of learn-
able parameters (the filters/weight matrices). More pre-
cisely, such a pooling layer reduces the sizes of the fea-
ture maps by aggregating pixel values. For example, a max-
pooling layer considers patches within each feature map and
replaces each patch by the maximum value in that patch
(e.g., in Figure 3, each feature map of the previous layer is
processed via patches of size 2 × 2, leading to new feature
maps of half the size). Naturally, other operations can be
applied such as taking the mean of a given pixel patch.
• Dropout layers: These guard against overfitting, in

which the trained network relies heavily on aspects of the
training data that do not generalise well to new, unseen data.
Dropout layers randomly omit hidden units by setting their
value to zero with a user-defined probability p ∈ (0, 1) such
that other hidden units cannot fully rely on them (such tech-
niques are also used in standard artificial neural networks).
Thus, these layers force the network to rely on more units,
preventing a reliance on noise or artefacts (dropout layers
are not shown in Figure 3 since dropout basically only af-
fects the underlying optimisation process).

Therefore, convolutional layers aim to extract features
that are somewhat invariant against translation. Note that
there are also significantly less weights/connections for
such convolutional layers (only the values given in the fil-
ters/weight matrices have to be learnt). Similarly, pooling
layers make the network invariant against small transitions
and reduce the number of nodes in the network (i. e., pixels
in the feature maps). These two modifications often signif-
icantly increase the classification performance of such net-
works compared to standard fully-connected artificial neural
networks.

MNRAS 000, 1–14 (2017)

Convolutional Neural Networks for Transient Vetting 5

Convolu�on Layer Pooling Layer Dense
Layer

Dense
Layer

Output
Layer

Input Layer

Figure 3. A convolutional neural network with one convolutional and one pooling layer, followed by two fully connected standard hidden

layers and an output layer. Prior to the fully-connected hidden layers, the pixel-based feature maps are flattened, meaning that all pixel

values of all feature maps of the previous layers are concatenated to form a single vector. Generally, by resorting to multiple convolutional
and pooling layers, convolutional neural networks are capable of learning a hierarchical feature representation of the input instances –

starting with simple features at early layers and more complex features towards the end.

3 DEEP TRANSIENT DETECTION

In this section we provide details of the different models
considered for this paper in order to detect transients.

3.1 Imaging Data

Our models were trained on early science operations, prior
to April 2015, imaging data from the Skymapper Supernova
and Transient Survey. The difference imaging pipeline is de-
scribed in more detail in (Scalzo et al. 2017). The main image
processing tools used are the SWarp (Bertin et al. 2002) for
astrometric registration and resampling to a common coor-
dinate system, SExtractor (Bertin & Arnouts 1996) for
source detection and photometry, and HOTPANTS2 for
photometric registration and image subtraction. Data for
each example include the template image, the target image,
and the difference image. In Figure 4 we show examples of
both “real” and “bogus” taken from the dataset.

We trained our random forest models on features ex-
tracted from the images (Table 1), while the convolutional
neural networks were applied directly on the images them-
selves. To evaluate the performance of each model, we split
the available data into a training set and a test set of roughly
equal size.

To make the most of our limited number of “real” train-
ing instances, we enabled training on multiple distinct detec-
tions of the same transient candidate on different nights; this
allowed us to sample more real variation in seeing and sky
background level for the same candidate than we would if we

2 http://www.astro.washington.edu/users/becker/v2.0/hotpants.html

included only one detection of each candidate. Because we
expected the classifier results to also be affected by details
of the host galaxy placement and morphology, which would
be the same for multiple observations of the same transient,
we placed all observations of the same object (e.g., a super-
nova) within the same partition (i. e., training or test); this
choice enables our training methodology to make honest es-
timates of the generalization error to entirely new transient
sources with different host galaxy properties. Apart from
this constraint, the partition each individual transient can-
didate occupied was chosen at random. The training set con-
tains 2,237 instances (2,010 “bogus” and 227 “real”) of 851
distinct “bogus” and 140 distinct “real” sky objects. The test
set contains 2,236 instances (2,009 “bogus” and 227 “real”)
of 851 distinct “bogus” and 141 distinct “real” sky objects.

We removed those instances that were located less than
15 pixels from the edge of a CCD, in both the training and
test sets, since the pixel cut-outs we use for our analysis (see
Section 3.3) would be incomplete in these cases. This yields
a final training set with 2,162 instances (1,939 “bogus” and
223 “real”) and a test set containing 2,169 instances (1,942
“bogus” and 227 “real”).

3.2 Baseline: Random Forests & Features

For the use of random forests, we extract various features
from the imaging data (see Table 1). Most of the features are
taken from Bloom et al. (2012). A large fraction of the fea-
tures reflect properties of the source in the difference image,
as well as some contextual information such as the presence
of, and distance from, a nearby neighbour in the template
image (Bloom et al. 2012). We supplemented the features

MNRAS 000, 1–14 (2017)

6 Gieseke et al.

Table 1. Features used as input for the random forest models.

Feature Description

xsub x coordinate on difference image, in pixels

ysub y coordinate on difference image, in pixels

esub ellipticity of source on difference image
thsub direction of semi-major axis of source on difference image

fwhmsub full width at half maximum of all difference image sources

f4sub flux within 4-pixel aperture in difference image
f8sub flux within 8-pixel aperture in difference image

flagsub sextractor source flags in difference image

starsub sextractor star-galaxy score in difference image
xref x coordinate on template image, in pixels

yref x coordinate on template image, in pixels

eref ellipticity of source on template image
thref semi-major axis of source on template image

fwhmref full width at half maximum of all template image sources
f4ref flux within 4-pixel aperture in template image

flagref sextractor source flags in template image

starref sextractor star-galaxy score in template image
enew ellipticity of source on difference image

thnew semi-major axis of source on difference image

fwhmnew full width at half maximum of all target image sources
f4new flux within 4-pixel aperture in target image

flagnew sextractor source flags in target image

starnew sextractor star-galaxy score in target image
n2sig3 number of at least 2-sigma negative pixels in 3x3 box in difference image

n3sig3 number of at least 3-sigma negative pixels in 3x3 box in difference image

n2sig5 number of at least 2-sigma negative pixels in 5x5 box in difference image
n3sig5 number of at least 3-sigma negative pixels in 5x5 box in difference image

nmask number of masked pixels in 5x5 box in the target image
Rfwhm fwhmnew/fwhmref ratio

goodcn surface density of detected sources on subtraction

subconv direction of convolution (template-target or target-template)
nndref distance in pixels to nearest neighbour source in template image

nndnew distance in pixels to nearest neighbour source in target image

apsig4 signal-to-noise ratio of 4-pixel aperture flux in difference image
apsig8 signal-to-noise ratio of 4-pixel aperture flux in difference image

normrms ratio of square root of isophotal area in difference image to fwhmsub

normfwhm ratio of full width at half maximum in difference image to fwhmsub
Rfref signal-to-noise ratio of nearest counterpart in difference image

Raref ratio of candidate semi-major axis to all sources in difference image

Reref ratio of candidate ellipticity to all sources in difference image
Dthref difference in candidate semi-major axis direction from all sources in difference image

Rfnew signal-to-noise ratio of nearest counterpart in target image
Ranew ratio of candidate semi-major axis to all sources in target image

Renew ratio of candidate ellipticity to all sources in target image

Dthnew target in candidate semi-major axis direction from all sources in target image

above with new features intended to capture the global prop-
erties of the images - these flag obviously bad (e.g., trailed)
images and subtractions. We also included SExtractor er-
ror codes and star-galaxy separation scores; the latter pro-
vide a redundant output from a different method (neural
network) that may capture aspects of point sources not cov-
ered by our existing features.

As with many other machine learning models, the clas-
sification performance depends on the particular parameter
assignments used to generate the random forest. However,
random forests are usually very robust against small modi-
fications, i. e., given reasonable parameter assignments, the
validation performance is often very similar. The main pa-
rameters that need to be tuned are: (1) the number of es-
timators, (2) the number of features tested per split, (3)

if bootstrap samples are used or not, and (4) the stopping
criterion used. Furthermore, variations of classical random
forests exist such as the extremely randomised trees (Geurts
et al. 2006), which consider“random”thresholds as potential
splitting candidates.

For our analysis, we have tested different random for-
est variants and parameter assignments. However, for sim-
plicity, we only report results of a single configuration (all
others yielded very similar performances). In particular, we
consider the Gini index to measure the impurity of the inter-
nal node splits, make use of 500 trees built using a bootstrap
sample, resort to fully-grown trees, and test

√
d features per

node split, where d is the number of overall features consid-

MNRAS 000, 1–14 (2017)

Convolutional Neural Networks for Transient Vetting 7

(a) Bogus (b) Real

Figure 4. “Best” case examples of three “bogus” and three “real”. The columns represent the template, target, and difference images

per field (from left to right) and the rows represent different fields. The different colours along with the colour bars illustrate the pixel

intensities per image. For “real” sources, there is usually no flux in the centre on the template image. However, there may be “misleading”
instances very close to the centre of the image (which, ideally, would no longer be present in the difference image). The majority of the

instances in the dataset are simple cases. As shown in our experiments, there is still a significant number of difficult instances outstanding,

which can be very challenging for machine learning models to identify correctly. The unit of the colour scale is in counts.

Type Size Parameters

input 3 × 30 × 30
conv A× 28 × 28 fs=(3,3)
maxpool A× 14 × 14 ps=(2,2)

dropout A× 14 × 14 p=0.1
dense B

dropout B p=0.5

dense B

dense 2

(a) Net1(A,B)

Type Size Parameters

input 3 × 30 × 30
conv 32 × 28 × 28 fs=(3,3)
maxpool 32 × 14 × 14 ps=(2,2)

dropout 32 × 14 × 14 p=0.1
conv 128 × 12 × 12 fs=(3,3)

maxpool 128 × 6 × 6 ps=(2,2)

dropout 128 × 6 × 6 p=0.1
dense 512
dropout 512 p=0.5

dense 512
dense 2

(b) Net2

Type Size Parameters

input 3 × 30 × 30
conv 16 × 28 × 28 fs=(3,3)
maxpool 16 × 14 × 14 ps=(2,2)

dropout 16 × 14 × 14 p=0.1

conv 32 × 12 × 12 fs=(3,3)
maxpool 32 × 6 × 6 ps=(2,2)

dropout 32 × 6 × 6 p=0.1
conv 64 × 4 × 4 fs=(3,3)
maxpool 64 × 2 × 2 ps=(2,2)

dropout 64 × 2 × 2 p=0.1
dense 1000
dropout 1000 p=0.5

dense 1000
dense 2

(c) Net3

Table 2. Network structures considered in this work (‘fs’ denotes the filter size of the convolutional layer, ‘ps’ the pooling size of the

pooling layer and ‘p’ the dropout probability). A and B are parameters determining the input sizes of the layers.

ered.3 We also tested various other parameter assignments,
which all yielded very similar classification accuracies (as
long as a sufficiently large amount of trees was considered).

3 We use Python 2.7 and the scikit-learn package

(version 0.18) (Pedregosa et al. 2011) for processing

and analysing the data. More precisely, we make use
of the sklearn.ensemble.RandomForestClassifier class

as the random forest implementation and initialise the

model using the following parameters: bootstrap=True,
n_estimators=500, min_samples_split=2, criterion="gini",

and max_features="sqrt".

3.3 Network Structures & Parameters

While convolutional neural networks have been success-
fully applied to several real-world tasks (see, e.g., LeCun
et al. 2015), choosing the best-performing network structure
(w.r.t. the classification performance on the test set) is often
based on trial-and-error. Very deep structures might be dis-
advantageous given “simple tasks”. On the other hand, too
simplistic structures might not be able to adapt to the learn-
ing task at hand and, thus, may yield unsatisfactory results
as well. Therefore, the goal is to consider models that are
complex enough to capture the characteristics of a learning
task and that are, at the same time, not too complex. This is

MNRAS 000, 1–14 (2017)

8 Gieseke et al.

related to the so-called bias-variance tradeoff (Hastie et al.
2009), which describes the well-known problem in machine
learning of finding models with the right complexity such
that they perform well on unseen data, and to the optimi-
sation process itself. For example, deeper models generally
exhibit more model parameters that need to be tuned/fitted,
whereas in shallower networks one usually tunes less parame-
ters. In this paper, we tackled this problem by starting with
very simple and shallow convolutional networks and then
increasing the complexity of the networks step-wise adding
further convolutional layers. As will be shown in our ex-
perimental evaluation, simple convolutional neural networks
already yield very promising classification results. Further-
more, due to their simplicity, one gains insight into how and
why these networks perform so well. Additionally, the per-
formance may be improved by means of data augmentation
and further preprocessing steps.

The network structures considered in this paper are pre-
sented in Table 2. Unless stated otherwise, the input lay-
ers correspond to the three input images that are available
(i. e., template, target, difference). Each network contains at
least one max-pooling, convolutional, and dropout layers.
The final layers are fully connected, followed by a softmax
activation function to obtain class probabilities (“bogus” vs.
“real”). The corresponding parameters for each layer are pro-
vided in the table. We considered 1,000 training iterations
for all networks without any data augmentation (see be-
low) and 5,000 for the ones with data augmentation. Here, a
training iteration refers to processing a batch of 128 training
images.

For the convolutional neural network approaches, we
cropped the images to a size of 30 × 30 pixels and made use
of the Python package nolearn (version 0.6.1.dev0).4 More
precisely, we made use of the nolearn.lasagne.NeuralNet

class and initialised the models with different parameters
and layers (see Table 2). We complemented Net2 and Net3
with data augmentation steps that were conducted on-the-
fly per training iteration (i.e., per batch of 128 training in-
stances). In particular, we rotated each image by 90◦, 95◦,
100◦, 180◦, 185◦, 190◦, 270◦, 275◦, and 280◦. Subsequently,
all “real” instances were flipped horizontally and vertically.
Note that we did not apply any translation augmentation
step since it is guaranteed that all “real” instances are cen-
tred (up to 1 or 2 pixels).5 Resampling of the augumented
images was done in a manner to perserve the flux using
the scipy.ndimage.interpolation.rotate function. Since
the data augumentation step essentially yields a significantly
larger dataset, we increased the number of training iterations
(5,000 instead of 1,000). For all networks, we resorted to the
nolearn default settings to initialise the weights of all layers
(i.e., Glorot with uniformly sampled weights) (Glorot & Ben-
gio 2010). Furthermore, to train the networks, we resorted
to Adam updates with learning rate γ = 0.0002 (Kingma &

4 The nolearn package implements various wrappers for the

Lasagne package, which, in turn, depicts a lightweight library for

the well-known Theano package (see, Nouri 2014; Dieleman et al.
2015a; Theano Development Team 2016, for details).
5 We also conducted some experiments with very small transla-
tion steps, which, however, did not lead to an improvement w.r.t.
the classification performance.

Ba 2014). The overall process aimed to minimise the cat-
egorical cross entropy as objective with L2 regularisation
(objective_lambda2=0.025).

We made use of standard low-cost gaming graphics pro-
cessing units (GPUs), such as Nvidia GeForce GTX 770, to
speed up the training and validating processes. Training the
models was the most time-consuming phase of the two pro-
cesses. Here, each training iteration (i.e., processing a batch
of 128 images) took about 0.5 to 5 seconds depending on the
network architecture and the particular GPU being used.
Note, however, that the network models considered in this
work can all be generated in a couple of minutes (e.g., 1000
training iterations for the shallow networks) or hours (e.g.,
5000 training iterations and the deeper networks).

4 ANALYSIS

We compared the performance of the random forests ap-
proach, currently used in data processing pipelines, with
those of different convolutional neural networks described
above.

4.1 Experimental Setup

All experiments resorted to data described in Section 3.1
to generate and evaluate the models. In the following, we
assume that the label for a “real” instance is +1 and the
one for a “bogus” instance is −1. We split the data into a
“training part”, used for generating the corresponding mod-
els, and a “testing part”, used for the final evaluation of
the models’ classification performances. We also shuffle the
training dataset prior to training the different models. Note
that none of the final test instances are shown to the model
during the training phase. Therefore, the results indicate the
performance of the classifiers on new, unseen data (given the
same distribution of objects).

For fitting the random forest model, we resort to all
instances given in the training set. For the convolutional
networks, we use 95 percent of the (potentially augmented)
training set to actually fit the models, whereas five percent
are used as a holdout validation set to monitor the objec-
tive values. It is worth mentioning that, for all networks
considered, the objective values steadily descreased during
the fitting process on both these parts of the training set
up to a certain point, where additional epochs did not lead
to any significant changes anymore. Furthermore, the ob-
jectives on both subsets were very close to each other, indi-
cating that the convolutional neural networks did not overfit
on the training set. Hence, both the employed regularization
as well as the dropout layers seem to be effective measures
against overfitting in this context.

Our datasets are inbalanced with regards to more “bo-
gus”than“real” instances (approximately one“real” instance
out of 10 instances). The inbalance is relevant when assess-
ing the performance of a given model. A classifier that sim-
ply assigns the class “bogus” to all instances might already
achieve very high accuracy, is, however, usually not help-
ful from a practical point of view since all “real” instances
would be missed. For this reason, it is crucial to consider
an evaluation criteria that takes such class inbalances into

MNRAS 000, 1–14 (2017)

Convolutional Neural Networks for Transient Vetting 9

account. The evaluation criteria considered are based on dif-
ferent types of correct and incorrect classifications:

• True positives (tp): Is defined as the number of “real”
instances that are correctly classified as “real”.
• False positives (fp): Is defined as the number of “bogus”

instances that are misclassified as “real”.
• True negatives (tn): Is defined as the number of “bogus”

instances that are correctly classified as “bogus”.
• False negatives (fn): Is defined as the number of “real”

instances that are misclassified as “bogus”.

The commonly used accuracy of a classifier is then given
by (tp+tn)×(tp+tn+ f p+ f n)−1. Further, the purity (also called
precision) is given by tp × (tp + f p)−1 and the completeness
(also called recall) by tp× (tp+ f n)−1. Another measure that
combines the above numbers into a single number (still being
meaningful for unbalanced data) is the so-called Matthews
correlation coefficient (MCC) (Matthews 1975):

tp × tn − f p × f n√
((tp + f p)(tp + f n)(tn + f p)(tn + f n))

(2)

Here, an MCC of +1.0 corresponds to perfect predictions,
−1.0 to total disagreement between predictions and the true
classes, and 0.0 to a “random guess”.

For a new instance, all models considered in this work
output some kind of class probability value. More precisely,
we consider softmax non-linearities for all convolutional neu-
ral networks and the mean predicted class probabilities of all
trees for the random forest model (here, the class probability
for a single tree is simply the fraction of the samples that
belong to that class in a leaf). Unless stated otherwise, we
will resort to the default “threshold” of 0.5 to decide for a
class label; we will analyse the influence of other thresholds
at the end of our experimental evaluation.

From a practical point of view, training convolutional
neural networks often takes much longer than training other
machine learning models such as random forests. However,
these models usually only need to be generated from time
to time if new training data becomes available. Computing
predictions for new, unseen instances takes considerably less
time. This renders the networks described in this work appli-
cable in the context of upcoming surveys with correspond-
ing pipelines processing hundreds of thousands of candidate
sources per night.

4.2 Results

We start by providing an overall comparison of various clas-
sification models and will subsequently analyse some of the
models along with certain modifications in more detail.

4.2.1 Classification Performance

A meaningful evaluation measure (also for unbalanced data)
are confusion matrices containing both the number of cor-
rectly classified instances as well as the number of misclassifi-
cations. The confusion matrices for various models, obtained
via the test set, are shown in Figure 5. It can be seen that
each method performs reasonably well, but some of the mod-
els yield a significantly smaller number of misclassifications.
In particular, one can make the following observations:

• Random Forest: The standard random forest performs
reasonably well, which indicates that the features extracted
from the difference images capture the main characteristics
of the learning task. In total, 34 instances are misclassified
out of all 2,169 instances, which corresponds to an MCC of
0.915. Note that a similar performance can be obtained by
slightly different random forest models that stem from differ-
ent splitting mechanisms or parameter assignments (see Sec-
tion 3.2). However, none of these variants yielded an MCC
better than 0.925.
• Shallow Networks: The conceptually very simple and

shallow networks with only a single convolutional layer al-
ready yield a surprisingly good performance that is com-
petitive with the one of the random forest. The MCCs for
the Net1(32,64), Net1(64,128), and Net1(128,256) are 0.937,
0.951 and 0.933, respectively. We will investigate these net-
works and their classification performances in more detail
below.
• Deeper Networks: The deeper networks with two or

three convolutional layers yield a slightly better classifica-
tion performance than the shallow networks. Applying data
augmentation steps prior to training the networks seem to
further reduce the number of misclassifications (see below).
The MCC for Net2 and Net3 without any further data aug-
mentation and transformation steps are 0.949 and 0.954, re-
spectively. Net3 only misclassifies 21 out of the 2,169 in-
stances and, hence, 13 less than the random forest (in par-
ticular, it misses less “real” sources that are assigned to the
“bogus” class).

It is worth mentioning that the classification perfor-
mance is, in general, very similar for slightly different con-
volutional neural networks, i. e., neither the particular net-
work structure nor the involved parameters seem to have a
significant influence on the final classification performance.
The conclusion one can draw at this point is that standard
“out-of-the-box” convolutional neural networks seem to be
well-suited for the task at hand and that even relatively sim-
ple networks yield a performance that is competitive with
state-of-the-art approaches.

4.2.2 Shallow Networks

Although being conceptually very simple, the shallow net-
works already yield a very good classification performance.
This is actually surprising since the images are obtained un-
der different observational conditions (such as the phases
of the moon) that will lead to background levels that differ
from image to image even though the same region/object
is observed. Intuitively, “subtracting” this background level
in the preprocessing phase should simplify the learning
problem and is, for this reason, also part of other ap-
proaches (Brink et al. 2013). However, we observed that such
a normalisation step in the preprocessing phase actually de-
creases the classification performances of the networks, both
for the shallow and deeper models.

To investigate why the shallow networks already
perform so well, we consider the simplest architecture,
Net1(32,64), which only contains a single convolutional
layer. In Figure 6, the activations of the feature maps in-
duced by a “bogus” and a “real” instance are shown. In both
instances, there appears to be feature maps that activate on

MNRAS 000, 1–14 (2017)

10 Gieseke et al.

(a) Random Forest (b) Net1(32,64) (c) Net1(64,128) (d) Net1(128,256) (e) Net2 (f) Net3

Figure 5. Confusion matrices for each of the considered models. While the random forest already achieves a good classification perfor-

mance, the different networks, also the simple ones, seem to yield competitive or even slightly better results.

(a) “bogus” (b) “real”

Figure 6. Activations (feature maps) of the convolutional layer
of Net1(32,64) given a“bogus”and“real” source, respectively. The

top row shows the three input images that are available for each

instance. Below the red line, the 32 feature maps are provided
that are induced by the convolutional layer of Net1(32,64).

the background (“dark centre”), while other maps activate
on different parts of the centre. This suggests that the net-
work can distinguish between the source itself and the back-
ground, thus being able to classify images relatively unhin-
dered by different levels of noise. We also consider occlusion
maps (Zeiler & Fergus 2014) for Net1(32,64). To determine if
a certain area of an image is important for the classification,
one can mask this area and see how this affects the predic-
tion of the model. In Figure 7, occlusion maps are shown for
several“real”and“bogus”instances. In these occlusion maps,
the value of a pixel (x, y) represents the predicted probability
of the correct class by the model, after all pixels in a 3 × 3
square centred on pixel (x, y) have been set to zero. Using the
occlusion maps, one can gain insight into the way the model
makes its predictions. For the“real”sources, occluding pixels
in the centre of an image causes misclassifications, while oc-
cluding the edges of the image has little to no effect. This is
a good sign, as any other behaviour could indicate a reliance
on artefacts or patterns in other regions of the image than
the center. For the “bogus” instances, occluding any part of
the image often makes little to no difference in classification.
This indicates that the network learns that the absence of a
source is an indicator for “bogus” and as such, obscuring the
“bogus” source will still result in a correct classification.

In summary, as expected, the shallow networks seem to

Figure 7. Input images along with occlusion maps (right col-
umn) for two “bogus” (top) and two “real” (bottom) sources. The

different colours along with the colour bars illustrate the pixel

intensities for each of the three left images per row, whereas they
sketch the different probabilities for the occlusion map in the

rightmost image per row. For the “real” sources, the centres of
the input images seem to be important, whereas for the “bogus”

instances, obscuring any part of the image appears to have little

effect.

mainly focus on the centre (e.g., “is there anything in the
centre in the target image”).

4.2.3 Data Augmentation

One of the main challenges that needs to be addressed is
the shift from the given training data to completely new,
unseen objects. Since the number of “real” sources is very
small (e.g., only very few distinct supernovae objects are
known and, hence, available for training), one has to develop
a system that cannot only detect similar objects, but also
new “real” sources whose image representation is related,
but different (e.g., a rotated version of an image contain-
ing a star, supernova, or artefact). A simple yet effective
approach to improve the generalisation performance of con-
volutional neural networks is to augment the training data,
see Section 3.3 for details and the particular augmentation
steps conducted. Note that we only apply the augmentation
on the training, the test set is not modified.

The results for the deeper networks, Net2 and Net3,
enhanced with the data augmentation steps are shown in
Figure 8. Given that we increase the number of instances in

MNRAS 000, 1–14 (2017)

Convolutional Neural Networks for Transient Vetting 11

(a) Net2 (b) Net3

Figure 8. Confusion matrices for Net2 and Net3 with data aug-
mentation steps conducted in the preprocessing phase.

the training data with augmentation, we also increase the
number of training iterations from 1,000 to 5,000. The con-
fusion matrices in Figure 8 show that the addition of a data
augmentation step can further improve the classification per-
formance with Net3 only causing 14 overall misclassifications
for the test dataset. We expect further data augmentations
steps to be helpful as well in this context, see Section 5.

4.2.4 Analysis of Misclassifications

Both Net2 and Net3 only misclassify a small number of test
instances. In Figures 9 and 10, all misclassifications made
by Net3 (with data augmentation) are shown. For the first
type of error, “bogus” objects misclassified as “real”, com-
mon examples are due to non-uniform background noise in
the template and/or target images, or deficits in the tem-
plate image that, after convolution, resemble point sources
in the difference image. For the other type of error, “real”
instances misclassified as “bogus”, a single object (with mul-
tiple observations) is misclassified (top six images). This is
very reasonable since it is generally very hard for any model
to distinguish varying stars and multiple follow-up observa-
tions of a new supernova. However, from a practical per-
spective, such cases can easily be handled by flagging such
a source as “real” the first time it is observed (and correctly
classified as “real”). The remaining two (last two rows) de-
pict a low signal-to-noise detection of a faint supernova near
the core of its host galaxy, and an asteroid moving quickly
enough to show a trail in the target image.

The two deeper convolutional neural networks yield sig-
nificantly less misclassifications as the baseline random for-
est approach (see the appendix for some misclassifications
made by the random forest). Interestingly, the misclassifi-
cations differ slightly, i. e., the ones of Net3 do not form a
subset of those misclassified by the random forest. We will
see that this can actually be beneficial when combining the
different classifiers.

4.2.5 Less Input

The networks considered so far are trained on all three input
images that are available for each instance. By providing all
the data, the networks can automatically determine which
input images are important (see discussion above concerning
the weights). A natural question is whether a competitive
performance can also be achieved using less input data. We
consider two settings: (1) Using only the template and target

Figure 9. Misclassifications made by Net3 with data augmen-
tation (“bogus” instances misclassified as “real”). The different

colours along with the colour bars illustrate the pixel intensities

per image.

images and (2) using only the difference image. Note that
the latter setting usually forms the basis for other techniques
that extract features from the difference images only.

We focus on the simplest network considered in this
work, Net1(32,64), and the best-performing one, Net3 with
data augmentation. The induced confusion matrices are
shown in Figure 11. By comparing this figure to Figure 5,
it can be seen that using only template and target images
yields a competitive performance compared to using all three
input images. This may seem surprising due to the majority
of the existing schemes being based on difference imaging.
The results, however, clearly indicate that the reduced set of
input images is sufficient for approaching the task at hand.
This depicts a desirable outcome since one might be able to
omit image subtraction steps in future detection pipelines.
Further, the networks trained using only the difference im-
ages yield a significantly worse classification performance.
Hence, using only this type of information seems to be not
enough for convolutional neural networks in this context.

MNRAS 000, 1–14 (2017)

12 Gieseke et al.

Figure 10. Misclassifications made by Net3 with data augmen-

tation (“real” instances misclassified as “bogus”). The different
colours along with the colour bars illustrate the pixel intensities

per image.

4.2.6 Ensembles

A common way to improve the classification performance
is to consider ensembles of different models. As mentioned
above, random forests depict ensembles of classification or
regression trees and usually yield a significantly better per-

(a) Net1(32,64)

(b) Net3

Figure 11. Classification performance of Net1(32,64) and Net3
(with data augmentation) in case only the template and target

(left) or the difference images (right) are provided to the networks.

(a) E1 (b) E2

Figure 12. Confusion matrices for two ensemble classifiers. E1

combines three different neural networks. E2 two neural networks

and a random forest.

formance than the individual models. We consider two en-
sembles E1 and E2:

• E1: Net2 (data augmentation), Net3 (data augmenta-
tion), Net1(32,64) (template and target images only), and
Net3 (data augmentation, template and target images only).
• E2: Net2 (data augmentation), Net3 (data augmenta-

tion), and the random forest model.

The results are shown in Figure 12. It can be seen that en-
sembling reduce the number of misclassifications. Further-
more, incorporating the random forest appears to be benefi-
cial, potentially due to features that capture the character-
istics of special cases.

The improvements over the best-performing single con-
volutional neural networks are really small and, due to the
relatively small test dataset, we do not argue that the en-
sembles outperform the individual classifiers. Nevertheless,
the ensembles might exhibit a slightly better performance
on completely new, unseen data since the combination of
many different classifiers usually yield more “stable” results.

MNRAS 000, 1–14 (2017)

Convolutional Neural Networks for Transient Vetting 13

4.2.7 Receiver Operating Characteristic (ROC) Analysis

All results reported so far are based on the default threshold
of 0.5 for deciding which class an instance should belong to
given the probability scores. For random forests, this simply
corresponds to a majority vote among the individual trees.
For the convolutional neural networks, it means the class
with the highest probability. In general, many more “bogus”
than “real” instances are observed in practice and one might
want to adapt the choice for the threshold. For example, one
might prefer finding more “real” sources at the cost of an in-
crease in false positives (i. e., “bogus” instances misclassified
as “real”). This naturally depends on the number of human
experts being available for manual inspection of all instances
classified as “real” sources by the model.

To quantify the performance of a model across a range of
thresholds, one can make use of so-called receiver operating
characteristic (ROC) curves (Fawcett 2006). Here, the recall
tp · (tp + f n)−1 = tp · P−1 is also called true positive rate
(TPR), where P denotes the number of all positive (“real”)
instances. Accordingly, one can define the false positive rate
(FPR) as f p · (f p + tn)−1 = f p · N−1, where N corresponds
to all negative (“bogus”) objects. A classifier assigning only
the class “real” to all instances would therefore achieve an
optimal TPR of 1.0, but also a potentially very large FPR.
Ideally, one would like to have a large TPR and a small FPR;
a ROC curve captures this trade-off.

In Figure 13 the ROC curves for various models are
shown. Of the models plotted, Net3 has the best perfor-
mance, which we can verify by calculating the area under
the ROC curve (AUC). The AUC values for the models are
given in Table 3. To test the significance of the differences in
AUC values, we apply two statistical tests for ROC curves:
the so-called DeLong (DeLong et al. 1988) and the boot-
strap (Hanley & McNeil 1983) methods. In both cases, we
test the null hypothesis that the performance of both models
is the same against the alternative hypothesis that Net3 per-
forms better than the random forest (one-sided test). This
results in p-values of 0.0359 and 0.0352, respectively, indi-
cating that Net3 has a significantly better performance than
the state-of-the-art random forest approach. Even though
this improvement seems small, it could result in a large de-
crease in false positives due to the large number of transient
candidates that are generated each night.

The confusion matrix for NET1(32,64) shows that we
have a TPR of 0.956 for the standard threshold of 0.5. By
moving right on the ROC curve, both the TPR and FPR
increase and the decision of which FPR is still deemed ac-
ceptable is up to the user. In the case of transient vetting,
the optimal threshold is determined by the capability to do
follow-up studies on the possible transients and the will-
ingness to search through a lot of extra “bogus” candidates
to find a couple more transients. Such decisions have to be
made per project and based on the human resources that
are available to manually check the output of the processing
pipelines.

5 CONCLUSIONS AND OUTLOOK

We propose deep convolutional neural networks for the task
of detecting astrophysical transients in future all-sky survey

Table 3. AUC for the different models.

Model AUC

Random forest 0.9907

Net1(32,64) 0.9914

Net3 0.9972
E2 0.9946

Figure 13. ROC curves for various models. The individual per-

formances for a threshold of 0.5 are marked for each curve.

telescopes. The currently used state-of-the-art approach is
based on feature extraction and a subsequent application
of random forest algorithms. In our experimental evalua-
tion, we demonstrate that even conceptually simple net-
works yield a competitive performance, which can be im-
proved further via deeper architectures, data augmentation
steps, and ensembling techniques. It is also worth mention-
ing that the networks considered also perform well (or even
better) by just using template and target images, i.e., the
networks do not rely on image subtraction. This might pave
the way for future classification pipelines not containing im-
age subtraction preprocessing steps.

The machine learning models proposed in this work can
be adapted and extended in various ways. Future telescope
projects will produce significantly more data and we expect
that taking such additional training instances into account
will be beneficial to further improve the classification perfor-
mances. The detection of extremely rare objects or artefacts
will always depict a problem (even with better models due to
many more objects being considered per night). Appropri-
ate data preprocessing and augmentation steps conducted
in the training phase might be one way to handle such in-
stances correctly. In addition, adapting deep convolutional
neural networks to the specific needs of the tasks at hand
might be essential to cope with upcoming learning scenarios
in this field (e.g., by considering specific loss functions that
are suitable for extremely unbalanced datasets). We plan to
investigate such important and interesting extensions in the
near future.

MNRAS 000, 1–14 (2017)

14 Gieseke et al.

ACKNOWLEDGEMENTS

FG and VARMR acknowledge financial support from the
Radboud Excellence Initiative. VARMR further acknowl-
edges financial support from FCT in the form of an ex-
ploratory project of reference IF/00498/2015, from CIDMA
strategic project UID/MAT/04106/2013, and from Enabling
Green E-science for the Square Kilometer Array Research
Infrastructure (ENGAGE SKA), POCI-01-0145-FEDER-
022217, funded by Programa Operacional Competitividade e
Internacionalização (COMPETE 2020) and FCT, Portugal.

REFERENCES

Alard C., 2000, A&AS, 144, 363

Alard C., Lupton R. H., 1998, ApJ, 503, 325

Bertin E., Arnouts S., 1996, A&AS, 117, 393

Bertin E., Mellier Y., Radovich M., Missonnier G., Didelon P.,

Morin B., 2002, in Bohlender D. A., Durand D., Handley

T. H., eds, Astronomical Society of the Pacific Conference Se-
ries Vol. 281, Astronomical Data Analysis Software and Sys-

tems XI. p. 228

Bloom J. S., et al., 2012, PASP, 124, 1175

Breiman L., 2001, Machine Learning, 45, 5

Brink H., Richards J. W., Poznanski D., Bloom J. S., Rice J.,

Negahban S., Wainwright M., 2013, Monthly Notices of the
Royal Astronomical Society, 435, 1047

Buisson du L., Sivanandam N., Bassett B. A., Smith M., 2015,

MNRAS, 454, 2026

Charnock T., Moss A., 2016, preprint, (arXiv:1606.07442)

Coates A., Huval B., Wang T., Wu D. J., Catanzaro B. C., Ng

A. Y., 2013, in Proceedings of the 30th International Confer-
ence on Machine Learning (ICML). JMLR.org, pp 1337–1345

DeLong E. R., DeLong D. M., Clarke-Pearson D. L., 1988, Bio-
metrics, pp 837–845

Dieleman S., et al., 2015a, Lasagne: First release.,

doi:10.5281/zenodo.27878, http://dx.doi.org/10.5281/

zenodo.27878

Dieleman S., Willett K. W., Dambre J., 2015b, Monthly Notices
of the Royal Astronomical Society, 450, 1441

Fawcett T., 2006, Pattern Recognition Letters, 27, 861

Geurts P., Ernst D., Wehenkel L., 2006, Machine Learning, 63, 3

Glorot X., Bengio Y., 2010, in Proceedings of the Thirteenth In-

ternational Conference on Artificial Intelligence and Statistics

AISTATS. pp 249–256

Goldstein D. A., et al., 2015, AJ, 150, 82

Hanley J. A., McNeil B. J., 1983, Radiology, 148, 839

Hastie T., Tibshirani R., Friedman J., 2009, The Elements of

Statistical Learning. Springer

Ivezic Z., et al., 2008, preprint, (arXiv:0805.2366)

Kaiser N., et al., 2010, in Ground-based and Airborne Telescopes
III. p. 77330E, doi:10.1117/12.859188

Keller S. C., et al., 2007, Publ. Astron. Soc. Australia, 24, 1

Kim E. J., Brunner R. J., 2016, preprint, (arXiv:1608.04369)

Kingma D. P., Ba J., 2014, CoRR, abs/1412.6980

LeCun Y., Boser B., Denker J. S., Henderson D., Howard R. E.,
Hubbard W., Jackel L. D., 1989, Neural Computation, 1, 541

LeCun Y., Bengio Y., Hinton G., 2015, Nature, 521, 436

Matthews B. W., 1975, Biochimica et Biophysica Acta, 405, 442

Morii M., et al., 2016, preprint, (arXiv:1609.03249)

Murphy K. P., 2012, Machine Learning: A Probabilistic Perspec-
tive. The MIT Press

Nissanke S., Kasliwal M., Georgieva A., 2013, ApJ, 767, 124

Nouri D., 2014, nolearn: scikit-learn compatible neural network
library. https://github.com/dnouri/nolearn

Pedregosa F., et al., 2011, Journal of Machine Learning Research,

12, 2825

Perlmutter S., et al., 1999, ApJ, 517, 565
Rau A., et al., 2009, PASP, 121, 1334

Riess A. G., et al., 1998, AJ, 116, 1009

Scalzo R., et al., 2017, preprint, (arXiv:1702.05585)
Schmidt B. P., et al., 1998, ApJ, 507, 46

Smartt S. J., et al., 2016, MNRAS, 462, 4094
Theano Development Team 2016, arXiv e-prints, abs/1605.02688

Wright D. E., et al., 2015, MNRAS, 449, 451

Zeiler M. D., Fergus R., 2014, in European Conference on Com-
puter Vision. pp 818–833

APPENDIX A: MISCLASSIFICATIONS

Figures A1 and A2 show misclassifications made by the ran-
dom forest baseline. All false positives instances are given
in Figure A1, whereas only a subset is given for the false
negatives in Figure A2.

This paper has been typeset from a TEX/LATEX file prepared by

the author.

MNRAS 000, 1–14 (2017)

http://dx.doi.org/10.1051/aas:2000214
http://adsabs.harvard.edu/abs/2000A%26AS..144..363A
http://dx.doi.org/10.1086/305984
http://adsabs.harvard.edu/abs/1998ApJ...503..325A
http://adsabs.harvard.edu/abs/1996A%26AS..117..393B
http://dx.doi.org/10.1086/668468
http://adsabs.harvard.edu/abs/2012PASP..124.1175B
http://dx.doi.org/10.1093/mnras/stt1306
http://dx.doi.org/10.1093/mnras/stt1306
http://adsabs.harvard.edu/abs/2013MNRAS.435.1047B
http://dx.doi.org/10.1093/mnras/stv2041
http://adsabs.harvard.edu/abs/2015MNRAS.454.2026D
http://arxiv.org/abs/1606.07442
http://dx.doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.1088/0004-6256/150/3/82
http://adsabs.harvard.edu/abs/2015AJ....150...82G
http://arxiv.org/abs/0805.2366
http://dx.doi.org/10.1117/12.859188
http://dx.doi.org/10.1071/AS07001
http://adsabs.harvard.edu/abs/2007PASA...24....1K
http://arxiv.org/abs/1608.04369
http://arxiv.org/abs/1609.03249
http://dx.doi.org/10.1088/0004-637X/767/2/124
http://adsabs.harvard.edu/abs/2013ApJ...767..124N
https://github.com/dnouri/nolearn
http://dx.doi.org/10.1086/307221
http://adsabs.harvard.edu/abs/1999ApJ...517..565P
http://dx.doi.org/10.1086/605911
http://adsabs.harvard.edu/abs/2009PASP..121.1334R
http://dx.doi.org/10.1086/300499
http://adsabs.harvard.edu/abs/1998AJ....116.1009R
http://arxiv.org/abs/1702.05585
http://dx.doi.org/10.1086/306308
http://adsabs.harvard.edu/abs/1998ApJ...507...46S
http://dx.doi.org/10.1093/mnras/stw1893
http://adsabs.harvard.edu/abs/2016MNRAS.462.4094S
http://dx.doi.org/10.1093/mnras/stv292
http://adsabs.harvard.edu/abs/2015MNRAS.449..451W

Convolutional Neural Networks for Transient Vetting 15

Figure A1. A subset of the“bogus”objects misclassified as“real”

by the random forest model. The different colours along with the

colour bars illustrate the pixel intensities per image.

Figure A2. A subset of the“real”objects misclassified as“bogus”

by the random forest model. The different colours along with the
colour bars illustrate the pixel intensities per image.

MNRAS 000, 1–14 (2017)

	1 Introduction
	2 Background
	2.1 Random Forests Revisited
	2.2 Deep Convolutional Neural Networks

	3 Deep Transient Detection
	3.1 Imaging Data
	3.2 Baseline: Random Forests & Features
	3.3 Network Structures & Parameters

	4 Analysis
	4.1 Experimental Setup
	4.2 Results

	5 Conclusions and Outlook
	A Misclassifications

