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Objective: To compare treatment outcome of patients

with head and neck (HN) tumours treated with definitive

radiation therapy that, mainly owing to differences in the

fractionation scheme used with simultaneous integrated

boost techniques, resulted in a different biological dose.

Methods: 181 patients with HN cancer, prescribed to

about 70.2Gy in the primary tumour, were included in

this study. Population cohort was divided into Group

,70 and Group $70 when the mean dose converted to

a 2Gy fractionation in the primary tumour was less or

higher than 70.2Gy, respectively. The probability of local

control (LC), locoregional control (LRC), disease-free

survival (DFS) and overall survival (OS) was determined

for both groups. The incidence of acute and late compli-

cations was compared between the two groups.

Results: At 24 months for Groups ,70 and $70, LC was

83.2% and 87.5%, LRC was 79.5% and 81.6%, DFS was

56.3% and 66.8% and OS was 63.9% and 71.5% p5ns,

respectively. The incidence of acute dysphagia, odyno-

phagia and pain, and late mucositis was significantly

higher in Group $70 than in Group ,70. The rate of

xerostomia, dysphonia, radiodermatitis, alopecia, dental

complications, hypoacusia and weight loss was compa-

rable between the two groups.

Conclusion: The biological dose escalation was safe, but an

increase in the incidence of the acute side effects: dysphagia,

odynophagia and pain and late mucositis, was obtained.

Advances in knowledge: Despite the significant biological

dose escalation, within the range of doses delivered to this

cohort, no clear dose–response effect was observed.

INTRODUCTION
With increased knowledge on tissue response to radiation
therapy (RT), fractionation schedules may be optimized for
each tumour type. Fractionation optimization aimed at in-
creasing tumour cure, by minimizing tumour proliferation,
or at reducing adverse effects by allowing normal tissue
damage to repair between fractions. A reduction in overall
treatment time (OTT) through accelerated RT, compared
with conventional fractionation, resulted in a significant
improvement in locoregional control (LRC).1 However,
significant clinical benefits in terms of LRC and overall
survival (OS) were obtained with hyperfractionated RT
compared with accelerated regimens without increasing
late toxicity.2,3

With the clinical implementation of intensity-modulated
radiation therapy (IMRT) simultaneous integrated boost
techniques or simultaneous modulated accelerated RT,
using a dose per fraction larger than conventional in the

primary tumour, were widely adopted in the clinical
routine.4 The integration of different prescription dose
levels in the same plan is straightforward with inverse
treatment planning. Reducing the number of plans
per patient was a necessity to decrease the workload
required with pre-treatment patient-specific IMRT
verifications. Theoretically, both a reduction in OTT and
an increase in dose per fraction should result in a ther-
apeutic gain in terms of the probability of tumour
control. Interestingly, an increase in the average weekly
dose had a significant impact on LRC for patients with
squamous cell cancer of the head and neck (HN) receiving
RT alone, but not for those undergoing concurrent
chemotherapy.5

Inversely optimized IMRT was implemented in 2008 at
IPOCFG and simultaneously integrated boost plans, with
at least two prescription dose levels per plan, were used
as much as possible. This fractionation methodology
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gradually replaced the conventional fractionation of five frac-
tions per week of 1.8Gy applied with forward optimized IMRT.6

As a result of the evolution in RT, a cohort of patients with the
same prescribed dose but different biological doses was col-
lected. Differences in biological dose, i.e. dose converted to
a 2Gy fraction scheme, were a consequence of the total delivered
dose, the fractionation schedules used, OTT and the shape of the
three-dimensional (3D) dose distribution planned with different
dose algorithms. Thus, the aim of this study was to compare

treatment outcome in patients with HN cancer treated with
definitive RT prescribed with the same therapeutic physical dose
but resulting in a different biological effective dose.

METHODS AND MATERIALS
Patients and treatments
From 2007 to 2013, 181 patients with HN squamous cell car-
cinoma (90.0%) or undifferentiated carcinoma, treated with
definitive RT and prescribed with a total dose ranging from 68.0

Table 1. Patient, disease and treatment characteristics for both groups

Characteristic Group ,70, N (%) Group $70, N (%) p-value

Age (years)

#55 37 (46.8) 61 (59.8) x2 (1)5 3.0

.55 42 (53.2) 41 (40.2) p5 0.082

Gender

Male 69 (87.3) 79 (77.5) x2 (1)5 2.9

Female 10 (12.7) 23 (22.5) p5 0.087

Site

Larynx 15 (19.0) 9 (8.8)

n.a.

Oral cavity 8 (10.1) 7 (6.9)

Oropharynx 22 (27.8) 30 (29.4)

Nasopharynx 14 (17.7) 31 (30.4)

Pharyngeal–laryngeal 11 (13.9) 15 (14.7)

Hypopharynx 7 (8.9) 8 (7.8)

Others 2 (2.5) 2 (2.0)

T stage

1–2 40 (50.6) 49 (48.0) x2 (1)5 0.1

3–4 39 (49.4) 53 (52.0) p5 0.715

N stage

0–1 30 (38.0) 21 (20.6) x2 (1)5 7.5

2–3 49 (62.0) 81 (79.4) p5 0.006

Type of RTCT

Concomitant CT 53 (67.1) 71 (69.6) x2 (2)5 0.1

Sequential CT 11 (13.9) 13 (12.7) p5 0.936

Intensive RTa 15 (19.0) 18 (17.6)

RT techniqueb

3DCRT 3 (3.8) 4 (3.9) Fisher 5 53.1

fIMRT 34 (43.0) 2 (2.0) p, 0.001

rIMRT 29 (36.7) 56 (54.9)

IMRT 13 (16.5) 40 (39.2)

Total 79 102

3DCRT, three-dimensional conformal radiotherapy; fIMRT, forwardly optimized intensity-modulated radiation therapy; IMRT, intensity-modulated
radiation therapy; RTCT radiochemotherapy; rIMRT, rapid intensity-modulated radiation therapy; RT, radiation therapy.
aIn intensive RT, RT was used as the single oncological treatment.
bfIMRT uses sequential plans manually optimized, rIMRT and IMRT are inversely optimized IMRT with simultaneous integrated boost using a different
number of segments (approximately 35 and 75, respectively).
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to 70.6 Gy to the primary tumour, delivered with a dose per
fraction varying from 1.8 to 2.15Gy, were included in this study.
The clinical data electronically stored during the routine RT
medical appointments were used in this retrospective study.7

Patients were divided into two groups depending on whether the
value of the mean dose converted to a 2Gy fractionation in the
primary tumour was inferior or superior to 70.2 Gy (Group,70
and Group$70, respectively). The reasons for selecting the dose
delivered to the primary tumour were threefold: first, recur-
rences occurred mostly in the vicinity of the primary tumour;8

second, the biological dose escalation, through an increase in
dose per fraction, was mostly applied to this volume; and third,
reducing OTT resulted in clinical benefits in controlling the
gross tumour but had little effect on the control of neck
nodes.2,9 A dose–response effect, resulting from the biological
dose escalation obtained by an increase in dose per fraction and
reducing OTT, would thus be more evident in the primary tu-
mour. Patient, disease and treatment characteristics for both
groups are summarized in Table 1.

Treatment details are described elsewhere.6,8 In summary, target
volume delineation followed Gregoire et al.10 Prescription dose to
primary tumour volume and large adenopathies was around
70.2Gy and to high- and low-risk lymph nodes, it ranged from
50.4 to 59.4Gy. The main organs at risk included in plan opti-
mization were: spinal cord, brainstem, mandible, parotid glands,
thyroid and others considered relevant for each pathology.

Planning was performed in the treatment planning systems
Oncentra® (Nucletron; Elekta, Stockholm, Sweden) and de-
livery was performed in ONCOR™ Avant-Garde from Siemens
(Germany) (step-and-shoot technique for inverse IMRT).
During the time frame of this study, i.e. 2007–2013, simpler
target volumes were irradiated with 3D conformal treatment
techniques (3DCRT, i.e., a simplified version of forward op-
timized IMRT), using up to 10 beams and a daily fraction of
1.8 Gy. More complex cases were irradiated with IMRT. From
2007–2012 forwardly optimized IMRT (fIMRT) was used.
This technique used 5–7 gantry directions with a total of
15–25 segments manually optimized. Dose fractionation
schedule was also based on the delivery of five fractions of
1.8 Gy per week. This technique was replaced by inversely
optimized IMRT using 30–55 segments (rIMRT) (rapid
intensity-modulated radiation therapy) or 70–80 segments
(IMRT) for more complex targets and when the patient could
sustain longer irradiation times. With inversely optimized
IMRT, dose integration of at least two prescription dose levels
per plan was made. Therefore, in most cases, the first target
volume, generally low-risk lymph nodes, was being irradiated
with a minimum daily fraction of 1.8 Gy and the second or
third with a maximum daily fraction of 2.15 Gy.

Although in this population cohort, different delivery techniques
were used for treatment, it is the delivered dose distribution that
should be related to the outcome. Therefore, in this study, the

Figure 1. Histograms of overall treatment time, number of fractions and dose per fraction (of the first plan) in the primary tumour for

Group ,70 and Group $70.
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analysis was based on the information gathered from the 3D
dose matrix aiming to minimize the dependency on the delivery
technique. Dose was calculated using collapsed cone as the dose
computation algorithm for all patients. Plans made using the
pencil beam dose algorithm were restored in the treatment
planning system and recalculated using the most recent dose
algorithm. For patients with significant anatomic deviations
relatively to the planning CT, replanning was performed and the
total accumulated dose was used for dosimetric assessment.
Image co-registrations between different CTs were made using
Velocity AI 2.7 (Varian).

Using the planned 3D dose matrices of each patient (from one to
three sequential plans), total dose was converted to a 2Gy
fractionation scheme, in each structure of interest and/or voxel,
using the Biological Effective Dose (BED) concept and the
methodology described in detail in Ferreira et al.6
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where Np is the number of plans and Di is the total nominal or
physical dose in each voxel delivered in plan i in fractions of size
di. a/b is the ratio of the linear quadratic model. Tpot is the
tumour potential doubling time, T is the real OTT for the
prescribed treatment and Tk is the time at which repopulation
begins. D2Gy is the total dose converted into a fractionation of
2Gy, delivered during T2Gy days, which results in the same bi-
ological effect. In this study, for HN tumours, an a/b of 10,
a potential doubling time of 3 days and a kick-off time for
repopulation of 28 days were used.11 For the organs at risk, the
repopulation term was disregarded and an a/b of 3 was used.

Concomitant chemotherapy was mainly cisplatin based.
Patients unable to undergo this scheme were evaluated to
cetuximab. In the sequential protocol, RT was administered
between cycles of chemotherapy using mostly docetaxel cisplatin
and Fluorouracil (TPF) or cisplatin and fluorouracil (PF).

During treatment, all patients attended a weekly medical
appointment at the RT department. After that, follow-up
occurred with 3-month intervals during 2 years, after which
periodicity was reduced to every 6 months. At each follow-up
visit, a complete physical examination, CT and/or MRI,
assessment of radiation-induced secondary effects was
performed. Radiation Therapy Oncology Group/European
Organisation for Research and Treatment of Cancer guide-
lines were mostly used to score observed complications.12

Routine blood tests and thyroid function assessment also
made part of the clinical follow-up protocol. Mean follow-up
time for Groups ,70 and $70 was 27.8 months [95% con-
fidence interval (CI): 23.9–31.7 months] and 18.9 months
(95% CI: 16.4–21.4 months), respectively. Median follow-up
time for Groups ,70 and $70 was 24.8 months (95% CI:
21.5–28.0 months) and 17.6 months (95% CI: 13.7–
21.4 months), respectively.

Statistical analysis
Local control (LC) and LRC were defined from the time complete
tumour response to the initial treatment protocol was obtained.
Disease-free survival (DFS) was defined from the time of complete
tumour response to the therapy up to the time of recurrence,
metastasis, second tumour or death. Time to distant metastasis
(DM) and OS were calculated from the start of RT. LC, LRC, DFS,
distant metastasis (DM) and OS were calculated using the
Kaplan–Meier method. Log-rank test was used to test the equality
of the survival distributions between both groups.

Summary statistics were reported as mean and standard de-
viation values for continuous variables and as counts and per-
centages for categorical variables. Comparisons between patient
characteristics and groups were evaluated using x2 test for
contingency tables (when the expected cell count assumption is
verified) or Fisher’s exact test (otherwise). The dose statistics in
the primary tumour: prescribed dose, the physical dose and the
dose converted for 2Gy fractions were compared for both
patients groups using the independent t-test (normality as-
sumption verified by Kolmogorov–Smirnov test) or using the
Mann–Whitney U test (otherwise). For the difference between
two independent proportions, a z-test was used.

Figure 2. Comparison between the prescribed dose (Dpresc),

the nominal mean dose in the primary target volume (Dmean)

and the mean dose converted to 2Gy (Dmean_2Gy) for patients

with a mean biological dose in the primary tumour inferior and

superior to 70.2Gy.
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The incidence of complications in the salivary glands (xero-
stomia), oesophagus (dysphagia), pharynx (odynophagia), larynx
(dysphonia), skin (radiodermatitis), hair (alopecia), mucous
membrane (mucositis), teeth and ear (hypoacusia), as well as pain
and weight loss, for both patient groups was compared at the time
maximum severity of RT side effects was observed, at 7 weeks
(43.063.2 days), at 1264 months and 246 5 months after RT,
selecting the closest medical appointment from the period under
evaluation. x2 test for contingency tables or Fisher’s exact test was
used for this comparison. For the longitudinal analysis of patient
response to RT, the information gathered in all RT appointments
was grouped into time intervals of increasing extent, as follow-up
time became longer, i.e. as the numbers of patients significantly
decreased with increasing follow-up time, even larger time
intervals had to be considered for analysis.

Potential prognostic factors (hazard ratios and 95% CIs) asso-
ciated with LC, LRC, DFS and OS were explored in univariate
and multivariate analyses performed using the Cox regression
models. These were: age, gender, tumour site (hypopharynx,
pharyngeal–laryngeal, larynx vs oropharynx vs oral cavity vs
nasopharynx), T stage (1–2 vs 3–4) and N stage (0–1 vs 2–3),
mean dose converted to 2Gy in the primary tumour (,70 vs
$70Gy), dose per fraction (#2 vs . 2Gy) and OTT. The var-
iable dose per fraction and OTT were excluded from the mul-
tivariate analysis owing to high correlation with the mean dose
converted to 2Gy in the primary tumour. Cox regression was
performed using a forced entry method (all the considered
variables are entered into the equation in one step).

All statistical analyses were performed using SPSS® Software,
v. 20.0 (IBM Corp., New York, NY; formerly SPSS Inc., Chicago,
IL), and p-values under 0.05 were considered significant.

RESULTS
Figure 1 shows the histograms for OTT, the number of fractions
and the dose per fraction for Groups ,70 and $70. 60.8% of
the patients of Group ,70 were irradiated with 39 fractions of
1.8 Gy, while 79.4% of the patients of Group $70 were irradi-
ated in the primary tumour with 33 fractions of around 2.13Gy.
For this population cohort, 65.7% of the patients received RT as
planned. Mean OTT for Group ,70 was 51.26 3.9 days (range:
42–61 days) and for Group $70, it was 45.16 2.2 days (range:
39–57 days) (p, 0.001). The percentage of treatment breaks due
to different causes was similar between the two groups, except
for interruptions due to holidays. Major cause for prolongation
of OTT was RT toxicity and intercurrent disease (26.6% and
21.9%, respectively). Possibly, owing to the longer treatment
prescribed to Group ,70, breaks due to holidays were 31.3%
compared with 21.9% in Group $70.

In Figure 2, the frequency distribution of the prescribed dose,
the mean physical dose and the dose converted to 2Gy fractions,
or biological dose, in the primary tumour for both patient
groups is shown. The average nominal mean doses in the pri-
mary tumour for Group ,70 and Group $70 were 68.76
1.9 Gy and 70.26 1.6Gy (p, 0.001), respectively, and the av-
erage mean doses converted to 2Gy were 62.76 4.2 Gy and
73.16 2.7Gy (p, 0.001), respectively. Other dose statistics in
the primary tumour may be seen in Table 2. For the parotid
glands, a statistically significantly larger average mean dose was
delivered in Group ,70 than in Group $70 (p# 0.015).

For Groups ,70 and $70, complete tumour response was
obtained in 70.9% and 72.5% of the patients (p5 0.81), re-
spectively; partial tumour response was obtained in 19.0% vs
15.7% of the patients (p5 0.56), respectively, and tumour

Table 2. Dose statistics for Groups ,70 and $70 for the planning target volume of the primary tumour (PTV-T) and the
parotid glands

Group

Physical dose/Gy
Average6 SD

(minimum–maximum)

Dose converted to 2Gy fractions/Gy
Average6 SD

(minimum–maximum)

,70 $70 Statistics ,70 $70 Statistics

PTV-T

D98%
64.26 3.2
(48.1–68.9)

65.36 1.9
(60.1–70.9)

t(179)523.0
p5 0.005

54.26 4.7
(36.8–63.5)

63.76 3.4
(54.6–74.2)

t(179)5215.8
p, 0.001

Dmean
68.76 1.9
(62.4–72.4)

70.26 1.6
(68.4–77.5)

t(179)525.8
p, 0.001

62.76 4.2
(52.1–69.9)

73.16 2.7
(70.0–87.4)

t(179)5220.2
p, 0.001

D2%
71.76 1.9
(66.9–77.3)

73.36 1.9
(70.4–81.1)

t(179)525.9
p,0.001

68.46 5.1
(55.9–79.5)

79.36 3.5
(73.9–95.7)

t(179)5217.0
p,0.001

Contralateral parotid

Dmean
36.56 8.3
(0.8–58.0)

34.26 6.0
(13.6–55.1)

t(174)5 2.1
p50.035

31.56 8.3
(0.5–53.7)

28.86 5.9
(9.5–50.1)

t(174)5 2.5
p50.015

Ipsilateral parotid

Dmean
41.36 9.6
(0.9–67.2)

37.16 5.9
(19.1–56.8)

t(175)5 3.6
p, 0.001

36.26 9.6
(0.5–63.7)

31.86 6.1
(14.6–52.4)

t(175)5 3.7
p, 0.001

Dmean, mean dose in the primary target volume; SD, standard devaition.
D2% and D98% are the maximum and minimum significant doses.
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progression was observed in 7.6% vs 10.8% of the patients
(p5 0.45), respectively. At 24 months, LC for Groups ,70 and
$70 was 83.2% and 87.5%, LRC was 79.5% and 81.6%, DFS
was 56.3% and 66.8%, DM was 29.4% and 25.1% and OS was
63.9% and 71.5%, respectively (Figure 3).

In univariate and multivariate analyses, non-concomitant radio-
chemotherapy, compared with concomitant radiochemotherapy,
was significantly related to poorer LC, LRC and DFS (Table 3).
More advanced tumour stages were significantly related to worst
OS, while nasopharynx tumours were related to better DFS and
OS compared with the reference group (hypopharynx,
pharyngeal–laryngeal and larynx tumours). The total delivered
dose, converted to a 2Gy fractionation, was not significantly as-
sociated with any of the survival endpoints.

The incidence of acute and late side effects for both groups is
compared in Figures 4 and 5 for several organs at risk. For
maximum acute RT side effects, observed at 26.06 12.4 days
(range: 0–69 days), statistically significant associations between
dysphagia (p5 0.006), odynophagia (p5 0.040) and pain
(p5 0.025) (only for 7 weeks after RT) and the two groups were
found. For Groups ,70 and $70, the incidence of maximum
acute toxicity G3–G4 for the oesophagus was 6.3% vs 23.5%; for
the pharynx, it was 6.4% vs 17.6%; and for pain, it was 7.6% vs
15.7%, respectively. Acute complications G3–G4 in the mucous

membrane, skin and larynx were similar between the two groups
with an incidence of around 30%, 13% and 3%, respectively. G2
xerostomia, alopecia and weight loss had also comparable inci-
dences among the two groups of about 61%, 14% and 9%,
respectively.

12 months after RT [12.16 1.8 months (range: 7.8–
15.9 months) and 110 patients evaluated], no statistically sig-
nificant differences in the incidence of complications were
obtained between the two patients groups. For Groups ,70 and
$70, the incidences of G2–G3 skin complications were 21.3% vs
9.4% and the incidences of hypoacusia (ear) were 4.5% vs 19%,
respectively. For the other side effects evaluated, almost no
differences in the rate of RT side effects were obtained between
the two patients groups. Thus, the incidence of G2–G3 com-
plications for the salivary glands was around 22%, for oesoph-
agus, larynx and teeth, it was about 10% and for mucous
membrane and pain, it was around 5%.

For complications evaluated in 58 patients at 23.66 2.3 months
(range: 19.3–28.0 months) after RT, a statistical relationship in
the incidence of late mucositis between Groups ,70 and $70
was obtained (G1–G2: 12.1% vs 44.0%, respectively)
(p5 0.002). Without reaching statistical significance (p# 0.1),
an association between late xerostomia and dysphonia with the
two groups evaluated was noticed (lower panel in Figure 4).

Figure 3. Kaplan–Meier for the probability of: local control, locoregional control, disease-free survival, distant metastasis (DM), and

overall survival (OS) for Groups ,70 and $70 (the numbers of patients in the last panel refer to the endpoint OS).
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DISCUSSION
Two or three sequential plans were commonly used in confor-
mal RT of HN tumour cases. With IMRT and the high workload
required with this treatment technique, both in treatment
planning and patient-specific quality control, a reduction in the
number of plans made for each patient was mandatory. Simul-
taneous integrated boost techniques in the IMRT context were
first suggested by Butler et al in 1999,13 later discussed by Mohan
et al in 200014 and widely implemented by the clinical commu-
nity. This represents the delivery of a dose per fraction in the
different target volumes ranging from 1.6 to 2.5Gy.6,15,16 The
conventional fractionation of 2Gy was historically embraced be-
cause it represents the optimal balance between tumour cell kill
and late side effects. Increasing the dose per fraction, relatively to
this standard fractionation, should result in higher probability of
tumour control. With the protective effect obtained with IMRT,
by reducing both total delivered dose and the dose per fraction in
the organs at risk, the levels of toxicity may be reduced or at least
maintained if a dose escalation approach was adopted. Acceptable
clinical results with simultaneous integrated boost techniques in
HN cancer were already reported by several.15–18

In this study, the population cohort was divided into two groups
depending on the biological dose delivered to the primary tumour.
The heterogeneity in the values of the biological dose resulted
mainly from differences in the fractionation schedule and the dose
assessed by different dose algorithms at the time of planning.
Group ,70 was mainly composed of patients treated with 39
fractions of 1.8Gy in 52–54 days, while Group $70 was mostly
composed of patients treated with inverse IMRT in 44 days with
a dose per fraction of 2.13Gy in the primary tumour (Figure 1). In
this cohort, 20% of the patients were planned using pencil beams
(up to 2010). Thus, for Group ,70, differences between the pre-
scribed dose and the planned physical dose, recalculated with the
collapsed cone algorithm in here, were obtained (Figure 2).

Physical dose was converted into biological dose so that the
comparison between the outcomes of patients treated with

Table 3. Multivariate results from Cox’s regression for the
endpoints: local control (LC), locoregional control (LRC),
disease-free survival (DFS) and overall survival (OS). Gender
(male) was excluded from multivariate analysis owing to poor
estimation. Dose per fraction and overall treatment time were
also excluded owing to high correlation with mean dose
converted to 2Gy in the primary tumour (Dmean).

Variables HR 95% CI p-value

LC

Age 1.00 (0.96; 1.05) 0.88

Tumour site

Hypo1Ph/la1 Lar 1 – –

Oral cavity 3.05 (0.51; 18.13) 0.22

Oropharynx 0.70 (0.20; 2.53) 0.59

Nasopharynx 0.29 (0.05; 1.58) 0.15

T stage (3–4) 2.81 (0.80; 9.87) 0.11

N stage (2–3) 0.96 (0.29; 3.23) 0.95

Non-concomitant RT 3.70 (1.09;12.50) 0.04

Dmean ($70Gy) 1.14 [0.39; 3.31] 0.82

LRC

Age 1.02 [0.98; 1.06] 0.43

Tumour site

Hypo1Ph/la1 Lar 1 -- --

Oral cavity 2.56 [0.45; 14.39] 0.29

Oropharynx 0.57 [0.18; 1.78] 0.33

Nasopharynx 0.34 [0.08; 1.41] 0.14

T stage (3–4) 2.47 [0.83; 7.35] 0.10

N stage (2–3) 0.88 [0.30; 2.60] 0.82

Non-concomitant RT 4.78 [1.61;14.13] 0.005

Dmean ($70Gy) 1.18 [0.46; 3.04] 0.73

DFS

Age 1.00 [0.97; 1.03] 0.80

Tumour site

Hypo1Ph/la1 Lar 1 – –

Oral cavity 1.21 [0.34; 4.34] 0.77

Oropharynx 0.55 [0.26; 1.13] 0.10

Nasopharynx 0.28 [0.11; 0.69] 0.006

T stage (3–4) 1.29 [0.67; 2.48] 0.45

N stage (2–3) 0.88 [0.44; 1.76] 0.72

Non-concomitant RT 2.00 [1.03; 3.86] 0.04

Dmean ($70Gy) 0.95 [0.51; 1.79] 0.88

OS

Age 1.02 [0.99; 1.05] 0.15

Gender (male) 0.64 [0.25; 1.64] 0.36

(Continued)

Table 3. (Continued)

Variables HR 95% CI p-value

Tumour site

Hypo1Ph/la1 Lar 1 – –

Oral cavity 1.92 [0.80; 4.64] 0.15

Oropharynx 0.97 [0.46; 2.06] 0.94

Nasopharynx 0.24 [0.08; 0.72] 0.01

T stage (3–4) 2.07 [1.01; 4.27] 0.048

N stage (2–1) 2.12 [0.89; 5.02] 0.09

Non-concomitant RT 0.75 [0.36; 1.55] 0.43

Dmean ($70Gy) 1.02 [0.55; 1.91] 0.94

CI, confidence interval; Dmean, mean dose in the primary target volume;
HR, hazard ratio; RT, radiation therapy.
Hypo 1 Ph/Lar 1 Lar is the group of patients with hypopharynx,
pharyngeal-laryngeal and larynx tumours.
Variables in bold have p#0.05.
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different fractionation schedules could be made using the well-
established BED concept. The real OTT, the number of fractions
delivered and the planned 3D dose distribution were thus taken
into account in the calculation of the biological effective dose.
Owing to the influence of these factors in the biological effect,
the curve of the biological dose, in Figure 2, is more spread out
than the curve of the physical dose. For the patients included in
Group $70, the curve showing the biological dose moved to-
wards higher values than the physical dose owing to the positive
effect of shortening OTT and increasing dose per fraction,
compared with the reference fraction dose of 2Gy, while the
opposite happens to Group ,70. As a consequence of all these
factors, the dose delivered to Group$70 was significantly higher
than the dose delivered to Group ,70 (Table 2).

A trend for better survival outcome in Group $70, compared
with Group ,70, was noticed. A 10% difference in DFS and
almost 8% in OS between the two groups was obtained. The
difference in DFS was also related to the higher incidence of
second neoplasias in Group ,70 compared with Group $70
(6% vs 1%, respectively). By contrast, the higher DM in Group
$70, compared with Group ,70, may be related to the higher
rate of N2–3 tumour cases in this group (Table 1). At short
follow-up times, the difference in LC and LRC between the two
groups was negligible, becoming more pronounced 30 months
after RT (Figure 3). Although the level of evidence of this ret-
rospective study is low, similar results were obtained by Miah
et al18 and Leclerc et al15 for larynx and hypopharynx tumour
cases. Differences in LRC, and OS, of around 10% were obtained

Figure 4. Incidence of acute and late side effects to radiation therapy (RT) for patients of Group ,70 and Group $70 (first and

second bars, respectively). The star indicates the RT side effects that resulted in statistically significant differences between the two

groups. MucMembr, mucosal membrane; SalGland, salivary gland; Oesoph, oesophagus.
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only 2 years after RT when escalating the dose from 63Gy to
67Gy, delivered in 28 fractions, and from 69Gy to 72Gy, de-
livered in 30 fractions, respectively. In this study, despite the
larger dose delivered with the new fractionation schedule, no
statistically significant survival differences between the two
groups were obtained. Thus, it is not possible to conclude
whether these differences are potentially due to the biological
dose escalation, as it would be expected, and significance was
lost by the lack of statistical power of the study (small sample,
small number of events in each category and short follow-up
time), or whether the heterogeneity of this cohort, grouping
tumour cases that may respond differently to fractionation, re-
duced the steepness of the dose–response curve, and no signif-
icant dose effect actually happens at such dose levels. With the
availability of new treatment regimens based on improved

knowledge of risk factors and radiobiology, therapies will be
increasingly personalized.19,20 Survival and radiobiological
studies are therefore needed, ideally, grouping tumour cases by
factors that affect patient response to radiation such as: general
health status, living habits, normal tissues and tumour biological
parameters, tumour microenvironment features etc.20–23 Dose–
response models on tumour response to radiation certainly need
to be investigated more.

With simultaneous integrated boost IMRT, organ sparing is
achieved through the highly conformal dose distributions pro-
duced by intensity-modulated beams and by avoiding the ad-
ditional dose delivered by multiple plans. Thus, although the
total dose in the primary tumour was larger in Group $70,
compared with the Group ,70, the total dose in the parotid

Figure 5. Incidence of xerostomia (above), dysphagia (middle) and mucositis (below) from Week 1 up to 36 months after radiation

therapy for Group ,70 (first bar) and Group $70 (second bar).
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glands was significantly reduced in the first group compared
with the delivery of RT using sequential plans with no clear
clinical differences in terms of xerostomia (Table 2, Figure 4).
However, a significantly higher incidence of acute dysphagia,
odynophagia and pain was obtained in Group $70 compared
with Group ,70 (Figure 4). With the present data, it remains
unclear whether this increased toxicity was a consequence of the
new fractionation scheme used or the larger proportion of
patients with advanced N stage tumours in Group $70 com-
pared with Group ,70 (Table 1). Patients with more advanced
tumours have a larger irradiated volume, but simultaneously
these were irradiated with more sophisticated treatment tech-
niques resulting in improved normal tissue sparing (Table 2).
Further protection of oesophagus and pharynx by using IMRT
are thus strongly recommended.

In Figure 5, the increase in incidence and severity of side effects
with the delivery of the radiation dose can be seen (up to Week 7).
Patient recovery starts immediately after the end of RT, and
during Week 9, the rate of patients free from complications al-
ready increased compared with previous weeks. Interestingly, re-
covery from dysphagia was considerably faster in Group,70 than
in Group $70 (Months 3–7 in Figure 5). Generally, the rates and
severity of dysphagia were higher for Group $70, compared with
Group ,70, but were significantly different only for acute dys-
phagia. No significant dose relation was obtained for dysphagia 1
or 2 years after RT, as also seen by others.18

Late toxicity, except for mucositis, was not significantly dif-
ferent for both groups (Figure 4). Mucosa response to RT was
usually very similar among the two groups up to Year 2. From
24 months onwards, significant differences in the incidence of

late mucositis were in fact obtained (Figure 5). Similarly, in
the longitudinal analysis of xerostomia, in general, the in-
cidence of this injury was comparable between the two
groups; but, after Month 15, there was a trend for worst
toxicity in the high-dose group (p, 0.1). Caution is recom-
mended here, as with increasing follow-up time the number
of patients included in the analysis becomes very small and
misrepresentation of the true dose–response effect may occur.
Further evaluation of the long-term side effects for this new
form of biological dose escalation is therefore highly
recommended.

CONCLUSION
For patients with HN cancer undergoing definitive RT, a sig-
nificant increase in delivered dose was obtained with the
clinical implementation of simultaneous integrated boost
IMRT, by increasing the dose per fraction and shortening OTT
compared with conventional treatment schemes. This biological
dose escalation resulted in an acceptable treatment outcome with
similar rates of survival and late toxicity, except for mucositis, as
the dose prescribed with the conventional fractionation. The new
treatment strategy was safe, but further protective measures to
minimize acute dysphagia, odynophagia and pain may be
achievable by outlining the structures responsible for these side
effects previously to IMRT optimization.
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