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resumo Os recentes desenvolvimentos na área dos fotodetectores de estado sólido,

nomeadamente os fotomulplicadores de siĺıcio (SiPM), permitiram a proliferação

desta tecnologia num vasto número de aplicações em áreas distintas. Estes

fotosensores robustos, versáteis e com um preço competitivo, tornaram-se uma

das mais promissoras alternativas aos tubos fotomultiplicadores para deteção de

baixo ńıvel de luz, especialmente para aplicações onde é necessário um grande

número de fotodetectores. Estes fotosensores multi-pixel, são capazes de deteção

de fotão único, permitindo obter ao mesmo tempo informação sobre fotão de

interação e energia. Os estudos realizados no âmbito deste programa doutoral e

reportados neste documento dividem-se em três aplicações principais: colaboração

no desenvolvimento do sistema de rastreamento (tracking system) da experiência

NEXT na área da f́ısica de neutrinos e Neutrinoless Double Beta Decay (0⌫��),

que comporta ⇠7.000 SIPMs para identificação da assinatura 0⌫��, um dośımetro

para braquiterapia de próstata e um sistema PET didático - easyPET.

Foram realizados vários estudos para caracterização da nova geração de SiPMS.

Como verificado, estes dispositivos apresentam caracteŕısticas melhoradas tais

como uma maior eficiência quântica e menor crosstalk, afterpulsing e sensibilidade

térmica.

Esta nova geração de SiPMs adequa-se aos requisitos para aplicação no tracking

system no NEXT. No entanto, uma maior eficiência quântica no ultravioleta de

vazio (VUV) é desejável.

Foi avaliada a aplicação de SiPMs em sensores de radiação para dosimetria

médica. Foi desenvolvido um dośımetro com base em fibra ótica cintilante. O

dispositivo foi caracterizado numa larga gama de energia e em regimes de baixa e

de alta taxa de dose. O dośımetro foi avaliado em ambiente cĺınico recriando as

condições de braquiterapia HDR, tratamento aplicado no tratamento de cancros da

próstata e mama. Conforme verificado, os SiPM apresentam elevada dependência

com a temperatura sendo portanto necessárias técnicas de compensação ou de

estabilização. O protótipo do easyPET foi implementado com sucesso. A

tecnologia foi licenciada e é esperada a sua comercialização até ao fim do ano

de 2016.

Dos estudos realizados nas várias aplicações, conclui-se que os SiPMs são

fotodetectores muito versáteis devido à sua alta sensibilidade, elevado ganho,

insensibilidade a campos magnéticos, de rápida resposta e de pequenas dimensões,

abrindo a possibilidade de aplicação desta tecnologia em múltiplos campos

permitindo uma infinidade de novos conceitos de detectores, tais como na f́ısica de

alta energia e aplicações de imagiologia biomédica.
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abstract The recent developments of solid-state photodetectors, namely Silicon

Photomultipliers (SiPMs), allowed a proliferation of this technology through

numerous applications. These robust and versatile photosensors with an attractive

price have become one of most promising alternatives for low light level detection,

especially for applications where a large number of devices is required.

These multi-pixel photosensors, capable of single photon detection, allow to obtain

at the same time information on photon-interaction and energy.

The Ph.D studies reported in this document cover three main applications: the

NEXT experiment, a Neutrinoless Double Beta Decay (0⌫�� ) experiment using

⇠7000 SiPMs in the tracking system for topological signature identification, a

dosimeter for prostate brachytherapy and a simple PET system for education

purposes - the easyPET.

Several studies were conducted envisaging the characterization of a new generation

of SiPMs. As verified, these devices present improved features such as higher

quantum e�ciency, lower crosstalk and afterpulsing and lower thermal sensitivity.

This new generation of SiPMs suits the requirements for application on the NEXT

TPC tracking plane. Although, higher quantum e�ciency at the vacuum ultraviolet

(VUV) is a desirable feature.

The application of the SiPMs in radiation sensors intended for dosimetry in medical

applications was evaluated. A dosimeter was developed and characterized in a

wide energy range and at both low and high dose rates (LDR and HDR). The

dosimeter was evaluated in real treatment facilities related to HDR-brachytherapy

for treatment of prostate and breast cancers. According to the results, SiPMs

present a high temperature dependency and compensation techniques are required

in precision measurements.

The easyPET was successfully prototyped. The technology has been licensed and

is expected to be commercialized in late 2016.

From the studies on the several applications, one concludes that the SiPMs are

very versatile photodetectors due to their high sensitivity, high gain, small size,

insensibility to magnetic fields, easiness of optical couplings, low bias voltage and

fast response, opening the possibility to apply this technology in multiple fields

enabling a plethora of new detector concepts and applications such as in high

energy physics and biomedical imaging applications.
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Outline

The recent developments of solid-state photodetectors, namely with the silicon

photomultipliers, allowed a proliferation of this technology through innumerous applications.

These robust and versatile photosensors with an attractive price have become one of most

promising alternatives for low light level detection, especially for applications where a large

number of devices is required. Our group has been working with these devices in the last

couple of years for applications in the medical field, obtaining some promising results.

The Silicon Photomultiplier (SiPM) recently became one of the most attractive

photodetectors on the market. These multi-pixel photosensors, capable of single photon

detection, are very versatile due to their high sensitivity, high gain, small size, insensibility

to magnetic fields, easiness of optical couplings, low bias voltage and fast response, opening

the possibility to apply this technology in multiple fields enabling a plethora of new detector

concepts and applications such as in high energy physics and biomedical imaging applications.

The capability of these devices to obtain at the same time photon-interaction and energy-

information makes them a promising option.

This thesis is organized into two parts: Part I is related to the NEXT experiment for the

Neutrinoless double beta (0⌫��) decay search and Part II where two application studies are

presented.

Part I is divided in three chapters, Chaper 1 describes the state-of-the-art of 0⌫�� decay

experiments. Chapter 2 is related to the NEXT Time Projection Chamber (TPC) and the

topological signature with SiPM tracking system and in the Chapter 3 experimental work

developed within NEXT during this PhD is presented.

Part II comprises two chapters. Chapter 4 is related to the development and clinical

studies of a dosimeter for real-time dosimetry in prostate brachytherapy. The last chapter,

Chapter 5 presents the studies related to the development of a small PET scanner for

didactical purposes.
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Part I

Studies for the development of the

NEXT tracking system





Chapter 1

Neutrinoless double beta decay

search

1.1 Introduction

Postulated by Pauli in 1930, the neutrino conserved itself as mysterious particle until

second half of XX century. Neutrinos are sometimes referred as ghostly particles due to their

weak interaction being capable of crossing the entire Earth without any interaction. They

are not a↵ected by electromagnetic force once they are not electrically charged and as leptons

won’t be a↵ected by the strong force that acts on particles inside the nuclei. The results

from the Cowan–Reines neutrino experiment1 leaded to the discovery of the antineutrino.

Years later the muon neutrino was confirmed experimentally by Lederman, Schwartz and

Steinberger2.

Stars like the Sun are sources of these particles with reduced probability of interaction.

The nuclear reaction in the Sun’s core produce electron neutrino (⌫e) exclusively. In the Ray

Davis Homestake experiment, in 1968, observations on solar neutrinos revealed intriguing

results when 2/3 of the solar ⌫e were missing (being known as the Solar Neutrino Problem).

Decades later, the KamLAND Reactor observed more than one neutrino flavor originated

from the sun. These results showed that this issue was due to neutrino oscillation in the path

between the Sun and Earth, and the Homestake experiment wasn’t capable to detect other

type of neutrino besides the ⌫e. While bosons are mediators of interactions, fermions are

building blocks for matter. According to the Standard Model, neutrinos were believed to be

massless particles. The study of solar neutrinos allowed to verify that neutrinos oscillate

and do have mass. Massive neutrinos can be Dirac or Majorana particles. Majorana

neutrinos and neutrinoless double beta (0⌫��) decay violate lepton number conservation

and the observation of 0⌫�� decay is enough to prove that neutrinos are Majorana particles,

inform on their mass and shed light on Charge Parity (CP) violation. This can explain the

1
Frederick Reines was honored by the Nobel Prize in 1995 for his work on neutrino physics

2
1988 Nobel Prize in Physics for the neutrino beam method and the demonstration of the doublet structure

of the leptons through the discovery of the muon neutrino
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matter and antimatter asymmetry through the leptogenesis mechanism.

1.2 Neutrinoless Double Beta Decay (0⌫��)

Neutrino oscillation experiments clarified the deficit of upward going atmospheric muon

neutrinos and have established that neutrinos have mass and mix. Neutrino oscillations are

depending on mass (m) di↵erences [2]:

�m2
ij = m2

j �m2
i (1.1)

Oscillations do not probe the absolute neutrino mass scale and the mass scale of the

neutrinos is still unclear. Considering that neutrinos are massive, taking the Standard Model

and no other physics, the 0⌫�� probes the neutrino mass. In particle and nuclear physics,

besides the 0⌫�� the only remaining avenue is the tritium beta decay [3].

In double beta decay (��), two neutrons of an atom simultaneously decay originating two

protons conserving the electric charge with the emission of two electrons. This decay occurs

in even-even nuclei (with even numbers of neutrons and protons), since these nuclei can be

even more stable by the neutron conversion into protons, with the emission of two pairs of

electrons and neutrinos. There are 35 potential natural-occurring double beta emitters. The

two neutrino double beta (2⌫��) (Eq. 1.2) decay has been observed in several nuclides with

typical half-lives in the range of 1018–1021 years, meaning that the single beta decay must

be forbidden or highly suppressed by a large change in angular momentum [4].

(Z,A) ! (Z + 2, A) + 2e� + 2⌫e (2⌫��) (1.2)

The 0⌫�� decay is possible if the annihilation of the two anti-neutrinos occurs. This

represents a lepton violation by two (Figure 1.1, Eq. 1.3).

(Z,A) ! (Z + 2, A) + 2e� (0⌫��) (1.3)

W

W

⌫i

d

d

u

e�

e�

u

Figure 1.1: Feynman diagram leading to neutrinoless double beta decay [5].
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Assuming the seesaw mechanism, if B�L symmetry is verified it has to be spontaneously

broken to give the neutrinos a nonzero mass. A third decay mode with a Majoron emission

(�), a massless Goldstone neutral boson that arise upon a global breakdown of baryon-lepton

(B � L) symmetry, is also considered [6, 7]:

(Z,A) ! (Z + 2, A) + 2e� +N� (0⌫ ���) (1.4)

Considering that neutrinos are Majorana particles, 0⌫�� experiments would allow to

determine the absolute neutrino mass. In that sense, the probability of 0⌫�� is related to

the neutrino mass such that the bigger the neutrino mass, the higher the probability of 0⌫��.

The 0⌫�� decay rate depends on the ⌫e � ⌫e element of the neutrino mass matrix [8]. The

e↵ective Majorana mass of the electron neutrino is:

hm��i =
���
X

U2
eim⌫i

��� (1.5)

where m⌫i are the small masses of the Majorana neutrinos and Uei are the elements of the

neutrino mixing matrix, the so called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing

matrix [9]. Majorana neutrinos explain the smallness of neutrino masses, the so-called seesaw

mechanism, and the measurement of the 0⌫�� decay rate provides direct information on

neutrino masses.

The half-life of 0⌫�� is:

(T 0⌫
1/2)

�1 = G0⌫
���M0⌫

���
2
✓
m��

me

◆2

(1.6)

where G0⌫ is the phase space, M0⌫ is the nuclear matrix element of the transition and me is

the electron mass [2, 10, 6].

In the 0⌫�� mode, the spectrum for the sum of the kinetic energies of the emitted electrons

is a mono-energetic line at Q�� , where Q is defined as the mass di↵erence between the parent

and daughter nuclide:

Q�� ⌘ M(A,Z)�M(A,Z + 2) (1.7)

In the 2⌫�� decay, the total kinetic energy of the two electrons is lower than the total

available energy, while for the 0⌫�� the total kinetic energy of the two released electrons

equals to the Q�� value of the decay. This makes it possible to experimentally distinguish

these two processes (Figure 1.2). If neutrinos are Majorana particles, an energy scale at a

level inversely proportional to the observed neutrino masses should be considered.
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Figure 1.2: Spectra for the sum of the kinetic energies of the two emitted electrons in
three di↵erent �� modes: 2⌫��, 0⌫�� and �� decay with Majoron emission (�0) (arbitrary
amplitudes) [10].

1.3 Absolute scale of neutrino masses

If the neutrino is a Majorana particle it means that it is its own antiparticle and the 0⌫��-

decay, a Standard Model forbidden process, is possible in some isotopes, including 136Xe.

Besides giving an experimental proof of the Majorana nature of neutrinos, the measurement

of the decay’s half-time would allow the absolute scale of neutrino masses, a demanding and

essential task in the understanding of these particles. The only emitted products in this

process are two electrons, which can only occur if the neutrino and antineutrino are the same

particle (i.e. Majorana neutrinos), so the same neutrino can be emitted and absorbed within

the nucleus. There are three types of neutrino with di↵erent flavors: electron neutrino (⌫e),

muon neutrino (⌫µ) and tau neutrino (⌫⌧ ). In the case of three-neutrino mixing, two neutrino

mass spectra are possible [11]:

(1) Normal spectrum (NS)

m1 < m2 < m3; �m2
12 << �m2

23 (1.8)

(2) Inverted spectrum (IS)

m3 < m1 < m2; �m2
12 << �m2

13 (1.9)

The absolute value of neutrinos masses would be solved by the experimental observation

of neutrinoless double beta decay. One could constraint the allowed patterns of neutrino

masses by plotting the values of the masses as functions of the unknown lightest mass mlight

[5] (Figure 1.3). The next generation of 0⌫�� decay experiments will probe the inverted mass

hierarchy region, in which |m�� | ⇠(2 - 5)⇥10�2 eV.
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Figure 1.3: The normal hierarchy (red) and inverted hierarchy (green) possible for neutrino
masses as a function of the lightest neutrino mass. The identified regions came from
experimental bound on the half-life of the 0⌫�� decay. From [12].

1.4 Neutrinoless Double Beta Decay Experiments

As described by Cremonesi [6], the essential criteria in a 0⌫�� experiment are a good

energy resolution, time stability, capable to obtain energy and topology information, low

maintenance due to the long underground running times, large isotope mass and e↵ective

background suppression strategy. The extremely low rates expected impose underground

operation for the development of specific background rejection techniques [8]. The sensitivity

of any 0⌫�� experiment is deeply related to crucial parameters such as low background rate,

energy resolution and detection e�ciency, exposure and source/isotope [10]. The highest

sensitivity to small Majorana neutrino masses can be reached in experiments on the search

of the L-violating 0⌫�� decay process [5].

As pointed by Cadenas and Martin-Albo [10], a high energy resolution is the only

protection against the intrinsic 2⌫�� brackground and improves signal-to-noise ratio at Q�� .

An experiment with poor energy resolution would require optimum background rejection and

high exposure [10]. The sensitivity to the e↵ective Majorana mass of the electron neutrino

(m��) is a figure of merit used to compare between 0⌫�� decay experiments. Considering the

trend for 0⌫�� experiments seeking the inverted hierarchy regions, hundred kilos or tonnes

of isotopes are needed. To increase m�� , isotope mass can be increased. Although, for the

same background, the mass must increase by a factor of 4 to obtain the same increase in m��

sensitivity has doubling its e�ciency [10], since:

S(m��) = A0p1/✏

✓
b.�E

M.t

◆1/4

(1.10)

where ✏ is the detection e�ciency, �E the energy resolution window where the 0⌫�� will be

reconstructed, b is the background rate, M the �� isotope mass and t the data-taking time
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[13].

The best isotope option for �� experiments should have high natural occurrence, thus

reducing cost, avoiding expensive enrichment processes. A high Q-value (Q��) and low 2⌫��

background are ideal. The Q-value has a practical contribution to both background and

sensitivity by a↵ecting the phase space factor G0⌫ (Eq. 1.6) which varies as Q5
�� (Eq. 1.7)

[14]. The isotope choice usually is such that Q�� > 2 MeV, restricting the 35 naturally

occurring isotopes ��-emitters to a group of nine. High Q-values larger than energies of

natural gamma backgrounds (up to 2615 keV) reduces background. High Q-values and

large nuclear matrix elements enhance the expected number of 0⌫�� decay events because

the phase space factor scales as Q5 and |M2|. There are two approaches for reducing the

radioactive budget of a 0⌫�� experiment to very low levels: the use of radiopure components,

with low contents of uranium and/or thorium, and shielding. All the 0⌫�� experiments use a

formula that combines both recipes, but of course, no experiment achieves a null radioactive

budget. Therefore, resolution and possibly other handles are a must to suppress both intrinsic

(e.g. the 2⌫�� channel) and external backgrounds. Considering that the background severely

limits the sensitivity of a 0⌫�� experiment, a high detection e�ciency is crucial.

In summary, an ideal 0⌫�� decay search experiment is characterized by:

1. An arbitrarily large mass of sensitive, 100% enriched target, e.g. target and detector

are the same, reconstruction e�ciency of the signal is one.

2. An arbitrarily small radioactive budget (thus, not a↵ected by external backgrounds).

3. Perfect resolution, necessary to separate the 0⌫�� and ��2⌫ spectra.

1.4.1 State-of-the-art of 0⌫��-decay experiments

Numerous experiments have been carried out to search for neutrinoless double-beta decay.

The next near-future 0⌫�� decay search milestone is to reach a sensitivity of hm��i ⇠ 20 meV

which covers the inverted neutrino mass hierarchy [15]. Most of the 0⌫�� experiments had

been proposed in late 90’s and still there’s no proof of this rare event. The main contribution

for 0⌫�� decay search are the GERDA and Majorana germanium calorimeters, CUORE

bolometers and EXO, combining self-shielding with good event fiducialization [13].

The next generation of 0⌫�� experiments in the tonne-scale with low backgrounds will

explore the inverted-hierarchy region. This may enlighten the neutrino mass question and

together with CP-violation could help to clarify why matter dominates over antimatter in

our Universe [6]. The second and third generations of double beta decay experiments using

large strength source of enriched �� emitter material were proposed at the beginning of the

90’s. Even if neutrinoless double beta decay is observed in next generation experiments we

nevertheless will not be able to decide from beta decay experiments alone whether the mass

hierarchy is normal or inverted [16].
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Heidelberg-Moscow experiment

The Heidelberg-Moscow experiment is a German-Russian collaboration which firstly

claimed the observation of 0⌫�� decay in 76Ge [17–22]. The experiment was initially

proposed in 1987 and started operation at Gran Sasso Underground Laboratory in 1990.

The collaboration uses an active detector (source and detector are the same) operating with

11 kg of enriched 76Ge running the detector from 1990 to 2003. The observation of 0⌫��

has been criticized due to the simple statistical analysis of the measured spectra and poor

statistics [23]. By combining results from Heidelberg-Moscow and IGEX experiments, in

2001, Zdesenko et al [23] established the half-life limit on the 0⌫�� decay of 76Ge:

(T 0⌫
1/2) = 2.5(4.2)⇥ 1025 (1.11)

at 90% (68%) C.L., corresponding to the Majorana neutrino mass of (m��) = 0.3(0.2) eV

[23]. New generations of 0⌫�� experiments such as GERDA, EXO-200 and KamLAND-Zen

allowed to refute the Heidelberg-Moscow claim on the observation of 0⌫�� decay. This new

generation of 0⌫�� decay experiments are described below.

GERDA experiment

Located at Laboratori Nazionali del Gran Sasso the GERmanium Detector Array

(GERDA) experiment as been proposed in 2004 and the Phase I was completed in 2013.

The second phase experiment is under commissioning. GERDA is searching for 0⌫�� with

bare germanium detectors enriched by 76Ge, submerged into high-purity liquid argon (LAr),

a 70 m3 cryostat inside a 650 m3 water tank. Bare Ge detectors allow to decrease background

from the surrounding materials, liquid argon shields from the radiation and cools down the

Ge detectors.

From Phase I, GERDA set limit on 0⌫�� decay half-life T 0⌫
1/2 >2.1⇥1025 yr (90 % C.L.)

and limit on e↵ective neutrino mass m�� < 0.2� 0.4 eV (90% C.L.).

Gerda Phase II expect a background at Q�� of 10�3 counts / (keV.kg.yr) and an expected

sensitivity of T 0⌫
1/2 ⇠1.4 ⇥ 1026 yr, m�� ⇠0.1 eV.

New BeGe detectors for GERDA Phase II provide better energy resolution (FWHM up

to 1.6 keV at 1.3 MeV in a vacuum cryostat) and better Pulse Shape Discrimination.

Recent measurements with BeGe detector inside LArGe test facility show very good

suppression of background. The goal of Phase II background index of < 10�3 cts/(keV ⇥ kg

⇥ yr).

Majorana Demonstrator

The Majorana Demonstrator aims to demonstrate the feasibility of a tonne-scale 76Ge

array detector for 0⌫�� search. The experiment will be constructed at Sanford Underground

Research Facility (South Dakota, USA). The 40 kg 76Ge detector comprises an array of
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detectors with 30 kg enriched to 86% 76Ge (Figure 1.4). The collaboration aims to achieve

a background rate in the 0⌫�� region of interest of no more than 3 counts per tonne of

target isotope per year [1] and determine whether a future 1-tonne experiment can achieve a

background goal of one count per tonne-year in a 4-keV region of interest around 76Ge 0⌫��

Q-value at 2039 keV.

Figure 1.4: Majorana demonstrator illustration [1].

SNO+

SNO+ is a multi-purpose Neutrino Physics experiment under construction at VALE’s

Creighton mine in Sudbury (Ontario, Canada). Besides the search for 0⌫�� it is intended

to investigate neutrino-matter couplings, search for non-standard modes of nucleon decay,

study terrestrial neutrinos and supernova neutrinos [24]. Succeeding the SNO experiment

by replacing heavy water with ⇠800 ton liquid scintillator (linear alkylbenzene with 2,5-

diphenyloxazole (PPO) primary fluor) loaded with 130Te held in a 12 m acrylic vessel and

⇠10000 PMTs held in a support structure inherited by the SNO experiment. These structures

are immersed in 7000 tonnes of ultra-pure water, shielding the scintillator volume from

background radiation. Di�culties in Te loading into scintillator obliged to the addition

of water which increases the U/Th context of the mixture a↵ecting background but still low

enough to allow the use of Bi-Po tagging to reduce associated backgrounds to insignificant

levels [24]. The demonstrator experiment will have 0.3% Te, expecting to reach sensitivity

approaching the top of the inverted neutrino mass hierarchy, for a 3 to 5 year run [24].

Perspectives for improvement are related to the optimization regarding PMT e�ciency

(currently ⇠15%), increasing e↵ective photocathode coverage (currently ⇠ 50%), reducing

external background from the acrylic vessel and increasing fiducial volume (currently ⇠200

tonnes), full cavity volume of ⇠7 kt).
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NEMO-3

The Neutrino Ettore Majorana Observatory (NEMO) collaboration started in 1989. The

concept behinds NEMO is the use of several isotopes in the form of thin foils. The detectors

placed on both sides of the foil are able to detect electrons and positrons emitted in the

double beta decay. Three prototype detectors (NEMO 1, 2 and 3) have been built and used

until 1997 and NEMO-3 finished operation in 2011. In NEMO-3, 7 isotopes (48Ca, 82Se,
96Zr, 100Mo, 116Cd, 130Te and 150Nd) were investigated, obtaining their half-life (energy and

angular distributions were measured) and the strong limits on decays with Majoron emission.

No evidence of both 0⌫�� and Majoron emission 0⌫��0� was found [25]. Data collected allow

to set strong limits on 0⌫ decay of 82Se, 96Zr, 100Mo and 150Nd.

The NEMO experiment allows both energy and topology detection (Figure 1.5). The

tracking consisted of 8000 drift chambers operating in Geiger Mode. The calorimeter was

made of 2000 plastic scintillators coupled to low-radioactivity PMTs. In addition, a small

magnetic field of 10�1 T allows identification of the electron signal [26]. Data with 7 kg of
100Mo in 4.5 years of data set a limit on the half-life of T1/2 < 1 ⇥ 1024 corresponding to a

neutrino mass limit of mv < 0.3� 0.9 eV.

Figure 1.5: Top and side view of a typical �� event in NEMO-3 [26].

The SuperNEMO experiment prospects housing 100 kg of isotope, ten times larger than

NEMO-3, expecting a neutrino mass around 50 meV. For background suppression the 0⌫��

topological signature will be measured together with the energy of the �� decay. The

installation of a first module (using 82Se) at the Modane Underground Laboratory is under

way, with data taking expected in the second half of 2015. From all new generations of 0⌫��

experiments, SuperNEMO is the only experiment that can use many isotopes.

COBRA

The Cadmium Zinc Telluride 0-Neutrino Double-Beta Research Apparatus (COBRA)

experiment comprises monolithic, calorimetric 116Cd (Q-value of 2814 keV) array of

Cadmium-Zinc-Telluride semiconductor detectors in a coplanar grid design [27]. The large-
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scale experiment predicts using 11000 detectors, which corresponds to a total detector mass

of roughly 400 kg [27]. For a 90% enrichment in 116Cd is estimated an energy resolution of

better than 1.5% (FWHM) and a background rate of less than 0.5⇥10�3 counts/keV/kg/yr,

reaching a sensitivity to e↵ective Marojana neutrino mass of less than 50 meV and a 116Cd

half-life sensitivity of 1.0 - 3.5 ⇥1026 [27].

CUORE

The Cryogenic Underground Observatory for Rare Events (CUORE) located at Gran

Sasso National Laboratory (Italy), is a tightly packed array of 988 TeO2 crystals in bolometer

modules ranged in 19 towers of 13 layers each with 4 crystals, each bolometer 5⇥ 5⇥ 5 cm3

and 750 g, for a total mass of 741 kg of TeO2 with 204 kg of 130Te [28]. The detector is

cooled to ⇠ 10 mK. In a proof of concept experiment, CUORICINO, was obtained a 90%

C.L. lower limit of 3.0⇥ 1024 yr on the 130Te lifetime for 0⌫�� decay [28].

The CUORE prototype version, the CUORE-0, comprises a single tower of 52 bolometers

and started operation in spring 2013 [29]. Operating from March 2013 to May 2014, the total

exposure is ⇠18.1 kg.yr. The CUORE-0 achieved a background reduction of factor 6 in the

↵ region and a factor of 2 in the � region compared to CUORICINO. The CUORE-0 0⌫��

signal region is blinded [29]. The CUORE-0 background is dominated by the � from the

cryostat, the ↵ background is 0.019 ± 0.002 counts/(keV.kg.yr) [30]. CUORE is expected to

reach a 0⌫�� 130Te half-life sensitivity of 1⇥1026 yr [31].

KamLAND-Zen

Built at Kamioka Obervatory (Toyama, Japan), the KamLAND detector designed for

electron neutrino detection is running since 2002. The KamLAND-Zen experiment started

in 2011. The detector consists in of a onion like design, comprising several concentric spherical

shells. The phase-2 detector used 320 kg of 91% enriched 136Xe dissolved in 13 ton liquid

organic scintillator placed in the inner balloon of the detector. Phase-2 had 383 kg of Xe.

This 3 m diameter mini-balloon is surrounded by a 13-meter diameter spherical balloon with

1 kton liquid scintillator made of 135 µm thick transparent film. This balloon is suspended

in 18-meter stainless steel tank containing a bu↵er oil because the film is too thin to support

the 1000-ton of liquid. The space between the detector and the cavity walls is filled by a

pure water layer that absorbs the radioactivity coming from the walls and moderating the

fast neutrons produced by cosmic rays in the rock. This layer is equipped with 255 20-inch

PMTs for detection of cosmic-ray muons traversing the detector.

Recently the KamLAND-Zen collaboration published a lower limit for the 0⌫�� decay

half-live of T 0⌫
1/2>1.1⇥1026 yr (90% C.L.), corresponding to a Majorana neutrino mass upper

limit in the range 60 � 161 meV (Figure 1.6). The Figure 1.6 right-panel shows the

corresponding limits for each nucleus as a function of the mass number [32].

With 1 ton of enriched xenon, brighter scintillator, high quantum e�ciency PMTs and

by introducing light collective mirrors, the KamLAND2-Zen aims to cover inverted hierarchy
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Figure 1.6: hm��i as a function of the lightest neutrino mass with new limits provided by
KamLAND-Zen collaboration [32].

by improving energy resolution against 2⌫�� background, to < 2.5 % at the Q-value of 136Xe

�� decay, targeting a 20 meV sensitivity in a 5 year measurement [15].

EXO-200

The EXO–200 (Enriched Xenon Observatory) consists of 175 kg of liquid Xenon enriched

to 80.6% in 136Xe housed in a double Time Projection Chamber (TPC). The liquid vessel

allows 110 kg in the active volume of the detector (Figure 1.7). The TPC with liquid xenon

operates at 167 K and 147 kPa (Xe density of 3.0 g/cm3). EXO-200 aims to achieve a

sensitivity close to 100 meV for Majorana neutrino masses [4]. An extended version with

1 ton capable to perform Ba+ tagging is planned, allowing a very low background of about

10�4 counts/(kg keV yr) [11]. Although the 2⌫ contribution to the background remains, the

energy resolution at ��-decay Q-value of 2457.8 keV is largely improved by reading both

ionization and scintillation signals. EXO–200 has recently claimed the first observation of

2⌫�� in 136Xe (Q�� = 2457.8 keV) [25].

In [33], the collaboration reported a 90% confidence level lower limit on the 0⌫�� half-life

of 1.1⇥1025 yr, corresponding to an upper limit on the Majorana neutrino mass of 190-450

meV.

NEXT

The Neutrino Experiment with 136Xe Time-projection-chamber (NEXT), at Canfranc

Underground Laboratory (LSC), Spain, will search for 0⌫�� decay in 136Xe using a
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Figure 1.7: Cutaway view of the EXO-200, with the primary sub-assemblies identified [4].

High-Pressure Gaseous Xenon Time-Projection Chamber [34]. This detector allows both

calorimetry and tracking with dedicated readouts and provides a fully active volume

detector. The initial NEXT prototypes, the NEXT-DEMO and NEXT-DBDM, are small

scale detectors with 1 kg of natural xenon at 10-15 bar. Extrapolation form energy resolution

measurements show a 0.74% and 0.5% FWHM for NEXT-DEMO [35] and NEXT-DBDM

[36], respectively. The NEXT-100 is a TPC with 100 kg of gaseous xenon with commissioning

at LSC by 2017. NEW is a 1:2 scale detector from NEXT-100 with 10 kg of xenon and is

under commissioning at the LSC. NEXT detectors are summarized in Chapter 2.

1.4.2 Barium tagging and the tonne-scale 0⌫�� experiments

The next generation of 0⌫�� decay experiments will be searching the full inverted

hierarchy of neutrino masses, seeking sensitivities of Majorana neutrino mass of 20 meV.

This will require isotope masses in the ton scale. For these big scale experiments, the biggest

challenge is to achieve a high background suppression, up to some counts per tonne-year.

The technology of the NEXT-100 time-projection-chamber, with both energy and tracking

capability, can be extrapolated for the next generation of 0⌫�� decay experiments with

fiducial masses in the tonne-scale. To scale to this masses, at 20 bar a 10 m3 vessel would

be required.

The identification both barium daughter atom (Ba++) in the decay 136Xe ! Ba + 2e�

and the two emitted electrons would allow full background rejection and identification of a

0⌫�� event. A future generation of EXO-200 is the nEXO experiment, a 5-ton liquid Xe

TPC capable to recover barium decay product by surface adsorption and it’s identification

by Resonance Ionization Spectroscopy (RIS), allowing a background-free measurement of

neutrinoless double-beta decay and increase the half-life sensitivity of the experiment by at
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least one order of magnitude [37]. The 136Ba has been suggest by Moe [38] and currently

investigated by EXO collaboration [37, 39, 40]. A basic principle was investigated by Mong

[39], consisting in the capture of the 136Ba daughter at the tip of a fiber optic probe by

freezing a sample of xenon capable to contain the barium ion. In concept, the barium ion

would the trapped at the tip of the probe in the solid xenon ice by the application of electric

fields. The identification of the barium ion might by achieved by tagging the ion or atom

by laser induced fluorescence. While for the Ba2+ the expected emission would be in the

extreme ultraviolet, around 75 nm, making it di�cult to detect, the irradiation of the Ba+

ion with blue-green at 493 nm would lead to red fluorescence at ⇠650 nm [38, 41].

Summary

Double beta decay experiments can address the Majorana or Dirac nature of the neutrino.

If neutrinos are Majorana particles, the neutrino is it’s own anti-particle. These experiments

allow to know the absolute scale of neutrino masses, normal or inverse mass hierarchy and

CP violation in leptonic sector. The leptonic decay of massive Majorana neutrinos would

explain leptogenesis.

The NEXT experiment is one of the late runners on the race to search for 0⌫�� decay.

It has several key features such good energy resolution and low background rates with the

possibility of scalability to ton-scale [10]. This putts the NEXT experiment side-by-side with

other ongoing projects. Two main aspects are crucial for the NEXT-100, first to achieve

good signal detection e�ciency and second to achieve optimal background rejection most

importantly at Q�� . The main sources of background are natural occurring high-energy

gamma rays from detector materials (mainly 208Tl and 214Bi) and surroundings, airborne

radon, muons and neutrons. Further analysis on this issue is found in [12]. For NEXT-100,

an energy resolution close to 0.5% FWHM at 2.5 MeV is predicted.
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Chapter 2

The NEXT TPC

topological signature with a

SiPM tracking System

2.1 Physics potential of NEXT

The Time Projection Chamber (TPC) was initially proposed by David Nygren in the late

1970s. This particle detector consists in a gas-filled chamber with an electric field applied

over the volume, providing position-sensitive electron collection.

As detector medium, xenon provides both primary scintillation signal that can be used to

establish event triggering and ionization signal usable for calorimetry and tracking [42, 43].

Gaseous xenon presents a low Fano factor and W -value allowing a good intrinsic limit on

the energy resolution, 0.3% full width at half maximum (FWHM) at Q�� (⇠2500 keV) in

addition to a slow two-neutrino mode (2⇥1021 yr). Besides an improved resolution, gaseous

xenon provides long attenuation length for high-energy gammas (>3 m) and allows event

topology information. When high pressure 136Xe emits two electrons they propagate in the

medium ionizing and exciting its atoms, causing the prompt emission of vacuum ultraviolet

(VUV) scintillation light of 172 nm that lasts 10� 30 ns [36].

The NEXT TPC comprises two main readout systems for calorimetry and for tracking.

On the cathode side (Figure 2.1), a Photomultiplier Tube (PMT) plane allows both

signaling the start-of-event (t0) by measuring the primary scintillation signal (S1) and energy

measurement by the detection of a fraction of the secondary scintillation (S2) light, providing

a precise measurement of the total energy deposited in the gas [42]. On the anode side a

panel with Silicon Photomultipliers (SiPMs) detects the same S2 signal, allowing topological

signature recognition.

In the NEXT TPC (Figure 2.1) the ionization electrons, when prevented ongoing

recombination by a moderate electric field (⇠ 0.3 � 0.5 kV/cm), will drift into the anode

(with a velocity around ⇠1 mm/µs) and are subjected to a higher intensity electric field (2�3
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Figure 2.1: NEXT TPC with PMT plane at the cathode and SiPM plane on the anode [34].

kV cm�1bar�1) capable to excite Xe atoms without ionizing thus generating isotropic VUV

photons by electroluminescence (EL) [12, 34]. The NEXT-100 addresses two major features,

both energy resolution better than 1% at Q value of 136Xe and topological signature for

signal identification and background rejection [34]. The granularity and detection e�ciency

provided by the light tracking system will be major contributions for background suppression

and at the same time for particle event identification. As a result, the background rate is

expected to be one of the lowest of the new generation of 0⌫�� experiments, placing the

NEXT experiment in good position in the 0⌫�� race.

2.2 0⌫�� topological signature in NEXT

In gaseous xenon at 10 bar, 0⌫�� events present a distinctive topological signature in the

form of a Brownian-like continuous ionization track, 30 cm long and with two energy blobs

at each end corresponding to the larger energy deposition from the two stopping electrons,

about 20% of the event energy shared by the two blobs [10, 34, 44]. This blob is a result

of multiple scattering where ⇠300 keV is deposited in a short path. The continuous track

connecting the two blobs is a minimum ionizing particle (MIP)-like region with dE/dx ⇠70

keVcm�1. The emission of delta electrons and bremsstrahlung photons and the di↵usion

of the electron cloud during drift are the main physical e↵ects to consider regarding the

topological signature identification [45]. The 208Tl and 214Bi (isotopes of the progeny of
232Th and 238U) present gamma lines at 2.615 MeV and 2.448 MeV, respectively, strongly

contributing for background due to the probability of generating a signal-like track in the

fiducial volume with energy ⇠ Q�� [46]. For NEXT, at 15 bar the 0⌫�� topological signature

is expected as a single track ⇠15 cm long [44]. The expected 0⌫�� decay topological signature

is shown in Figure 2.2, from Monte Carlo simulation of a 0⌫�� event and a single electron
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Figure 2.2: Monte Carlo simulation of a 0⌫�� event (left) and a single electron background
event from a 2.44 MeV 214Bi gamma (right) at 15 bar [44].

background event from a 2.44 MeV 214Bi gamma at 15 bar [44]. For single electrons, one

should observe a single blob from high energy deposition at one end of their track, allowing

to identify these background tracks (Figure 2.2, right).

The NEXT tracking plane is located behind a transparent EL grid and comprehends

several Dice Boards (DBs) with 8⇥8 SiPMs distributed with a pitch of 1.1 cm [34, 13]. This

pitch is a compromise due to several constraints related to the detector physics, namely: in

a dense gas a moving electron doesn’t behave exactly as a MIP, losing significant part of its

energy by the emission of discreet delta rays and bremsstrahlung radiation; typical rms of

the charge distribution for electrons produced in the center of the chamber is of the order of

1 cm; as the pitch increases, the background rejection capability decrease due to constraints

in the identification of low-energy photons (e.g. 35 keV X-rays) nearby the electron track

[34].

2.3 NEXT experiment roadmap

In an initial proof-of-concept phase (2009-2014), the NEXT collaboration constructed

two scaled version of detectors, the NEXT-DEMO and NEXT-DBDM.

The NEXT-DBDM is a TPC prototype with 1 kg high pressure xenon gas developed

by the Lawrence Berkeley National Laboratory (LBNL) group for NEXT. The purpose of

NEXT-DBDM was the demonstration of near-intrinsic energy resolution [36]. The prototype

had a cylindrical fiducial volume with 16 cm diameter and 16 cm length. The energy plane

was equipped with 19 R7378A PMTs (Hamamatsu). Energy resolutions of ⇠1% FWHM for
137Cs 662 keV gamma rays were obtained at 10 and 15 atm and ⇠5% FWHM for 30 keV

fluorescence xenon X-rays, demonstrating the feasibility of 0.5% FWHM energy resolution

at the 136Xe double beta Q-value (2.48 MeV) with 3D tracking capabilities [36, 47].
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The NEXT-DEMO, operated at Instituto de F́ısica Corpuscular (IFIC) in Valencia

(Spain), provided the validation of the NEXT-100 design, meaning the evaluation of the

energy resolution in large active volumes, reconstruction of the topological electron signature

in a high-pressure xenon chamber, test long drift lengths and high voltages, understand

gas recirculation and purification in large volumes and understand light collection using

wavelengths shifters (WLS) [42].

Beginning 2016, NEXT-White1 (or NEW) started commissioning at Laboratorio

Subterráneo de Canfranc (LSC).

In the following sections, the tracking plane of the several NEXT detectors is described.

2.3.1 NEXT-DEMO prototype

The NEXT-DEMO detector (Figure 2.3) is a prototype with ⇠1.5 kg of natural xenon at

10 bar in a 60 cm long pressure vessel with 30 cm diameter. The DEMO detector characterizes

by comprising both energy and tracking plane, having two active regions, a 30 cm long drift

region between the cathode and the gate with a typical drift field of 500 V.cm�1 and a 0.5

cm long electroluminescence (EL) region between the gate and the anode. A set of six panels

made of polytetrafluoroethylene (PTFE/Teflon) coated with tetraphenyl butadiene (TPB)

mounted inside the electric field cage form a light tube of hexagonal cross section [45]. The

energy plane comprises 19 1-inch Hamamatsu R7378A PMTs, with a photocathode coverage

of the energy plane of about 39%. Degradation of photocathode detection e�ciency has been

observed in NEXT-DEMO [35], due to direct exposure to xenon ultraviolet (UV) scintillation

light.

Figure 2.3: Cross-section drawing of the NEXT-DEMO detector with all major parts labeled
[42].

The tracking plane is an array of 256 Hamamatsu S10362-11-050P SiPMs, distributed

into 4 boards, 64 photodetectors per board with a 1 cm pitch and sharing the bias voltage

(Figure 2.4). For an operation voltage of 73 V, these SiPMs have a gain of ⇠ 7.5⇥105 at room

temperature and a dark current of 0.2 � 0.3 photoelectrons per µs [45]. The SiPM boards

1
in memory of James White
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Figure 2.4: SiPM boards for NEXT-DEMO. The SiPMs are mounted on multilayer printed-
circuit-boards (PCBs) of PTFE substrate with copper layers, gold plated. Four tantalum
capacitors per board reduce detector dead time and maintain the nominal supply voltage
[45].

are 2 mm behind the EL production region. Each SiPM has a 1 mm2 active area of 50 µm

cells. The SiPM coating with a WLS material allows the increase of VUV light detection,

since at the short wavelength of xenon emission of ⇠173 nm the SiPM quantum e�ciency is

very low. The peak of the emission spectrum of TPB (430 nm) matches the region of highest

quantum e�ciency (QE) of the SiPMs. With a 0.1 mg.cm�2 thickness the transmittance of

the shifted light is >96% [43].

The K-shell X-ray interactions were used to study the gas properties and drift region

[48]. The measured mean electron drift-time allows the correction of the charge loss due to

attachment. Results from NEXT-DEMO demonstrated a 22Na 511 keV photopeak energy

resolution of 1.62% and a predicted Q�� resolution of 0.63% [48].

The DEMO tracking allowed the reconstructed single electron from 22Na and 137Cs and

double electron from the double escape peak of 208Tl [10]. Recent work with data from

the NEXT-DEMO prototype, using 22Na 1275 keV gammas to recreate background and
228Th electron-positron pair representing the signal from 0⌫�� allowed to demonstrate that

topology provides extra handles to reject background events [44]. A 24.3±1.4% background

rejection factor was obtained while maintaining an e�ciency of 66.7±1% for signal events.

The NEXT-DEMO enabled the demonstration of NEXT-100 detector, namely the

tracking capability with SiPMs and track reconstruction, to test long drift lengths and high

voltages (50 kV in the cathode and 25 kV in the anode) [13].
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2.3.2 NEXT-100 and NEXT-White (NEW) detectors

The NEXT-100 is a TPC with 100 kg of gaseous xenon (136Xe) enriched to 91% where

the xenon is simultaneously �� source and detector, providing a fully active volume and

homogeneity with no dead regions. The detector is a TPC of 1.4 m diameter and 1.3 m

drift length, with both calorimetry and tracking capabilities. The detector is placed on an

anti-seismic platform and shielded by 20 cm thick lead castle, set into two movable half’s,

mounted in two rails as illustrated in Figure 2.5. The NEXT-100 stainless-steel (316Ti, with

low level of natural radioactivity) pressure vessel has a cylindrical shape of 160 cm length,

136 cm inner diameter and 1 cm wall thickness. The inner shield is made of 12 cm ultra-pure

copper bars and further provides attenuation of � radiation from the stainless-steel vessel,

where a 32 mBq residual activity is estimated.

The energy plane is located behind the cathode of the TPC (Figure 2.6), comprising 60

R11410-10 PMTs (Hamamatsu). The PMTs provide ⇠30% fill factor of the energy plane.

As detailed in [12], there’s a compromise regarding the number of photodetectors with cost,

complexity and radioactivity. The PMTs, rated to 6 bar, are inserted into pressure-resistant

vacuum-tight copper enclosures coupled to sapphire windows to be located behind the TPC

cathode. The PMT cans are maintained at vacuum well below Paschen minimum, avoiding

sparks and glow discharge across PMT pins [13]. The low background contribution PMTs

have a synthetic silica window and a photocathode made of low temperature bialkali with

quantum e�ciency above 30% for the emission wavelengths of xenon and TPB [49]. The

PMTs in the energy panel measure both primary scintillation light which defines the start

of event (t0) and secondary EL light. The radioactivity budget from the energy plane is 35

mBq mainly due to PMTs.

The NEXT-100 tracking plane is located behind a fused-silica window close to the EL

Figure 2.5: NEXT-100 stainless-steel vessel
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Figure 2.6: Cross-section drawing of the NEXT-100 detector. A) stainless-steel vessel,
B) copper shield, C) tracking plane, D) time-projection-chamber including the field cage,
cathode, EL grids and HV penetrators E) energy plane. From [10].

gap [12] and will comprise ⇠7000 MicroFC-10035-SMT-GP SiPMs from SensL. The SiPMs

are distributed into Kapton boards with 64 SiPM each (Figure 2.7), in a 1 cm pitch. The

Kapton board cabling is shaped in order to pass through the zig-zag copper shield slit made

to avoid a straight path for external gammas.

The NEXT-100 commissioning at LSC is planned for 2017.

The NEW detector is a first approach of the NEXT-100, being limited to 10 kg of enriched
136Xe and only 20% of the energy and tracking plane sensors of the NEXT-100 version (Figure

2.8). NEW is a 1:2 scale detector from NEXT-100, providing technology demonstrator

by using the same materials and photosensors. NEW will allow to optimize calibration

techniques for NEXT-100 and perform new studies on 2-electron tracking, background rate

model and radon contribution and measure the half-life of the ��-decay mode of 136Xe. In

addition, the NEW detector is intended for validation of the NEXT-100 background model.

Figure 2.7: Schematic of the Kapton board for the SiPMs (left) and NEXT-100 tracking
plane comprising 111 Kapton SiPM boards (right). From [10].
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Currently, NEW is under commissioning at the LSC, Canfranc (Spain), Figure 2.9. For

NEXT-NEW and NEXT-100, the Cuflon boards were replaced by Kapton boards, allowing

oven soldering instead of hand-soldering like in the Cuflon boards. To increase light reflection,

the SiPM boards were covered with Teflon masks for light reflection, as shown in Figure 2.10.

The main features of the NEXT detectors are listed in Table 2.1.

Figure 2.8: Cross-section drawing of the NEXT-White (NEW) detector.

Figure 2.9: NEXT NEW TPC installed at LSC (Canfranc, Spain) and detail of the vessel
interior showing the PMTs copper enclosures.

Figure 2.10: NEXT NEW teflon covered DBs.
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Table 2.1: Main features and characteristics of the NEXT detectors. Adapted from [50].

NEXT-DEMO NEW NEXT-100

Isotope mass 1 kg, pure Xe
10 kg of 90 %
enriched 136Xe

100 kg of 90 %
enriched 136Xe

Pressure 10 bar 15 bar 15 bar
Drift length 30 cm 50 cm 1.4 m
Energy plane 19 PMTs 12 PMTs 60 PMTs
Tracking plane 256 SiPMs 1800 SiPMs 7000 SiPMs
Pressure 10 bar 15 bar 15 bar
Radiopure no yes yes
Running period 2011� 2014 2016� 2017 2017� 2020
Localization IFIC LSC LSC

2.4 Silicon Photomultipliers

The developments of solid-state photodetectors, namely with the silicon photomultipliers,

allowed a proliferation of this technology through numerous applications. SiPMs became

one of the most attractive photodetectors on the market. They are robust and versatile

photosensors with an attractive price, turning into one of most promising alternatives for low

light level detection, especially for applications where a large number of devices is required.

2.4.1 SiPM principle of operation

A typical SiPM consists of hundreds or thousands of µ-pixels, where each pixel

behaves like a Geiger-mode avalanche photodetector (Figure 2.11). The designation silicon

photomultiplier results from the resemblance with a PMT operation mode as single photon

detector with a very high gain. A single µ-pixel has only two states, on or o↵, implying

that only one photon can be detected per pixel at the same time. The produced charges

from individual pixels sum up in the common anode and the sum charge is proportional

to the number of fired pixels, thus allowing to know how many cells have been fired. An

incident photon will trigger a Geiger avalanche starting by a discharge of the capacitor until

it arrives at breakdown voltage. On normal mode of operation, with a reverse bias below

the breakdown voltage the gain obtained is on the order of dozens or several hundreds. On

the other side, when a reverse bias above the breakdown voltage is applied, the avalanche

photo diode (APD) operating in Geiger mode allows gains of the order of 105 to 106. In

linear mode APDs, the avalanches are mostly started by electrons (almost 100%), developing

unidirectionally, from the p to the n layer, and stopping when the charge carriers reach the

low field area of the n region.
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V       > Vbias               breakdown voltage

Rq

Q i

GM - APD

Vout

Q       = ∑ Qtotal                  i

Figure 2.11: SiPM equivalent circuit with i number of Geiger-mode APDs.

2.4.2 SiPM properties

Dynamic range

The dynamic range of the SiPM is related to the number of pixels and the device photon

detection e�ciency (PDE) and translates the number of fired pixels as a function of the

number of incident photons. This means that at high flux rates, SiPM reveal a non-linear

behavior. This can be minimized by increasing the number of pixels per active area although

at PDE cost due the lower fill factor.

Gain

The gain refers to the ratio of the number of multiplied electrons to one electron ejected

by one incident photon on the APD, and can be represented as:

G =
C ⇥ (Vop � Vbr)

e⇥Nfired
(2.1)

where C is the device capacitance, Vop is the operation voltage, Vbr is the SiPM breakdown

voltage, Nfired is the number of pixels fired and e is the electron charge. The SiPM provides

a gain for single photoelectrons ⇠106 with an amplitude of a single cell proportional to the

capacitance of the cell and to the overvoltage (the di↵erence between the operation voltage

and the breakdown voltage).

Quantum e�ciency and photon detection e�ciency

The output of the device is the total sum of the outputs from all the pixels and is

proportional to the number of incident photons, given that this number is lower than the

total number of pixels of the device. The total output charge of the SiPM is:

Qout = C ⇥ (Vop � Vbr)⇥Nfired (2.2)
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The SiPM charge output should be an integer multiple of the single pixel output, depending

on the number of detected photons, but due to several reasons such as small di↵erences

between pixels, noise, photon interactions in recharging pixels or in boundary regions between

pixels, there are slight variations in the output signals of di↵erent pixels.

The quantum e�ciency (QE) of the photodetector is the response of the photodetector for

a given wavelength and is the fraction of incident photons that contribute to the photocurrent.

In practical terms, QE corresponds to the probability of a single photon generate an electron-

hole pain in the active region of the device. QE is related to the device photo sensitivity (S)

(in A/W units) and depends on the wavelength (�) (in nm units) of incident photons [51].

The PDE is related to the number of incident photons that are converted into measurable

electric charge. PDE is, by definition, the product between the quantum e�ciency, the fill

factor and the probability of avalanche:

PDE = QE ⇥ fill factor ⇥ Pavalanche (2.3)

It depends on the pixel active area, quantum e�ciency, geometric factor and avalanche

probability (probability of primary electron to trigger the pixel breakdown which depends

on the breakdown voltage, in that way, the PDE increases as the bias voltage is increased).

In addition, at high light levels, dead time and recovery time also limit PDE. The PDE can

be measured by determination of the device response (measured photocurrent) in relation to

the incident optical power at a single wavelength. Experimental determination of the PDE

can be conducted by the direct current (DC) method by measuring the number of incident

photons (Ni) over the number of recorded photons (Nr) using a calibrated photodetector,

such as a PMT. Once:

Nr = Npixels ⇥
✓
1� exp

�
�PDE⇥N

i

N

pixels

�◆
(2.4)

where Npixels is the number of SiPM pixels. For low light levels the SiPM response is linear

once Ni ⌧ Npixels. In this regime, the output current of the SiPM (ISiPM ) is proportional

to Nr and depends on the device gain, such as:

Nr =
ISiPM

gain⇥ qe
(2.5)

where qe is the elementary electron charge. The number of incident photons is determined

using a calibrated photosensor such an photomultiplier tube (PMT). Ni is obtained from the

photocurrent of the PMT collected at its first dynode (IPMT ), originated by incident photon

on the PMT active area (Aactive):

Ni =
IPMT

QEPMT ⇥ CE ⇥ qe
⇥ SiPMA

active

PMTA
active

(2.6)

where QEPMT is the PMT quantum e�ciency and CE its collection e�ciency. This method

doesn’t allow to reject the noise contributions (such as cross-talk and after pulsing) leading
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to a over-estimation of the PDE. A second method uses pulse counting and is best for low

light flux. In this method the number of photons recorded by the SiPM corresponds to the

pulse count di↵erence between light pulses and dark pulses.

Noise

The main drawback of the SiPM, particularly for low light level applications, is related

to its noise, which comes from three distinct sources:

i) dark pulses

The primary source of noise consists of dark pulses triggered by non-photo-generated

charge carriers, mostly thermally generated but also by field-assisted generation (tunneling)

of free carriers. The former ones can be reduced only by reducing the electric field.

The temperature dependence is one of the main concerns when operating SiPMs, once

the gain is temperature dependent. This is due to the lattice vibrations in the crystal, which

become stronger as the temperature rises increasing the probability of a carrier striking the

crystal before the accelerated carrier energy has become large enough, making it more di�cult

for ionization to occur.

ii) cross-talk

The optical cross-talk is the excitation of neighbor pixels due to photon emission during an

avalanche discharge in a given pixel. This is observed when photons are produced during the

pixel breakdown, some in the infrared region. These photons can travel reasonable distances

and penetrate another pixel firing it. In this situation, the SiPM output shows a value higher

than the number of photons that were actually input and detected by the SiPM. Besides

photons, breakdowns can be triggered by any generation of free carriers. This implies dark

currents at a rate up to few MHz per mm2 (for a threshold of 0.5 p.e.). The cross-talk can

be reduced by an optical isolation setting trenches between the µ-cells but this reduces the

overall PDE.

iii) afterpulses

Afterpulses are spurious pulses following the true signal, which occur when the generated

carriers are trapped by crystal defects and then released at a certain time delay. This results

as a second avalanche for the same cell and cause detection errors. Each SiPM pixel requires

a short period to recover after breakdown (typically a few ns), so the afterpulse amplitude

depends on the time. In addition, the lower the temperature the higher the probability that

carriers may be trapped by crystal defects, so afterpulses will increase.

2.4.3 SiPM electrical model

The Geiger operation mode is a three step process: the discharge from a pixel occurs when

the pixel is hit by a photon producing an avalanche generating a current proportional to the
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cell capacity (Cd) and the SiPM overvoltage (Figure 2.12 (a)). The avalanche is terminated

by the quenching resistor in series with the pixel. When the junction breaks down a large

current flows through the resistor resulting in a voltage drop across the resistor. If the voltage

drop is su�cient, the reverse voltage drops to the breakdown voltage after which there’s a

recharge to the operating voltage allowing a new cycle. The discharge-and-reset cycle is

known as the Geiger mode of operation [51].

A SiPM electrical model has been initially proposed by Pavlov and Meier et al. [52],

modeling the SiPM micro-cell as a current generator, where Cd is the pixel capacity in series

with a quenching resistor, Rq. This model assumes a current pulse with constant amplitude

and duration [53]. An updated model was proposed by Corsi et al. [54], including the

parasitic grid capacitance.

Other SiPM electrical models consider that the micro-cell is modeled by a voltage

generator (setting the breakdown voltage), resistor and switch or a self-quenching micro-

cell, as proposed by Seifert et al. [55] (Figure 2.12 (b)). The closing of the switch defines the

start of a breakdown event generating a current through the resistor. The quenching is set

by a threshold on the current, such once the current is below the threshold the switch opens.

To overcome the fact that trigger generation as a constant switch timing, Marano et al. [56]

proposed and update to this model also providing equal switching time for all bias voltages

(Figure 2.12 (c)). In the proposed model, a negative feedback loop, including a discriminator

monitors the diode current and acts upon the switch opening time when this current falls

below the current threshold [56]. A new model was proposed by Villa et al. [53], (Figure

2.12 (d)), allowing to simulate the SiPM as two macrocells or as an array of individually

triggered microcells.

Rq

Cq

Cd

.IAV

cathode

anode

.

Rq Cq

Cd

.

Vbr

cathode

anode

.

Cg

Rq
Cq

Cd

.

Vbr

anode

.

Cg
+

-

(a) (b) (c)

Rq

Cq

Cd

.

Vbr

cathode

anode.

Cg

(d)

Rd

cathode

Figure 2.12: SiPM electrical models as proposed by (a) Pavlov and Meier et al. (b) Corsi et
al. [54] (c) Marano et al. [56] and (d) Villa et al. [53].
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2.5 Final remarks

The NEXT detectors are based on a xenon gas time projection chamber o↵ering scalability

to large masses of �� isotope and a low background rate. The first two prototypes, the

NEXT DBDM and the NEXT DEMO [44], allowed to perform energy resolution studies

and demonstrate the principles of the NEXT-100 detector, namely the tracking capability

with SiPMs and track reconstruction. The NEW detector is under commissioning at the

LSC, Canfranc (Spain). It is a 1:2 scale detector from NEXT-100, providing technology

demonstrator by using the same materials and photosensors.

The NEXT-100 should start taking data in 2017.

The next generation of 0⌫�� experiments is seeking to explore the inverted-hierarchy

region, thus requiring �� isotope masses in the tonne-scale, excellent resolution and low

backgrounds. Currently, the most viable path for full background rejection is based on

barium-tagging. These new 0⌫�� experiments are under development/planning and new

technological challenges are presented.



Chapter 3

Studies on the NEXT Tracking

System

3.1 Introduction

SiPMs are a good option for NEXT tracking system, allowing high fill factor at low cost.

Silicon is a radiopure material, with activities of 238U and 232Th in the order of µBq/kg

[46]. Notwithstanding, other materials used in the SiPM construction can be radioactive. To

achieve a low background level is one of the most demanding tasks in NEXT. The screening

of radioactivity levels of all components is under going at LSC [12, 46, 57, 58]. To reach

the lowest background level, all the electronics are placed outside the chamber. The power

consumption is also a concern, considering the large number of channels. Several versions of

the SiPM readout for NEXT were developed by the Valencia group at IFIC.

The NEXT-100 detector will use 111 Dice Boards comprising 64 SiPMs each. For the

NEXT-DEMO, the tracking plane comprised only four DBs made of Cuflon due to lower

radioactivity (Figure 3.1, left). For NEXT-NEW and NEXT-100, the Cuflon boards were

replaced by Kapton boards (Figure 3.1, right), allowing oven soldering instead of hand-

soldering like in the Cuflon boards.

In this chapter are presented the studies related to the experiment tracking plane, namely

related to SiPM characterization, readout and possible alternatives for event topology and

tracking in large TPCs.

3.2 SiPMs for the NEXT tracking plane

The Hamamatsu SiPMs, MPPC S10362-11-050U, were the selected SiPMs for NEXT-

DBDM and NEXT-DEMO [59]. Although, new SiPMs provided by SensL (MicroFC-10035-

SMT) are operated at lower bias voltage and present lower radioactivity. For the SensL SiPM,

were obtained activities of 3⇥10�5 mBq and 9⇥10�5 mBq for 208Tl and 214Bi, respectively

[12]. For this reason, the SensL MicroFC-10035-SMT was the selected SiPM for the tracking
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Figure 3.1: NEXT-DEMO Cuflon daughter board with 64 SiPM (left) and the Kapton boards
for NEW and NEXT-100 tracking panel (before SiPMs installation) (right).

plane of the NEXT-NEW detector [46, 59]. Other interesting features from the SensL

MicroFC-10035-SMT are a fast output and advertised lower dark noise and lower sensitivity

to temperature. This new SiPM will be evaluated in the following section and compared

with the Hamamatsu MPPC S10362-11-050U.

The SensL MicroFC-10035-SMT and the Hamamatsu MPPC S10362-11-050U are SiPMs

with 1 mm2 active area. The Sensl SiPM has 35 µm⇥ 35 µm area pixels (504 pixels in total)

and the MPPC S10362-11-050U has 50 µm⇥ 50 µm pixel size (400 pixels in total).

More recently, new VUV-sensitive SiPM prototypes were provided by Hamamatsu. This

new SiPM has a 3 mm⇥ 3 mm active area and 50 µm⇥ 50 µm pixel size. PDE studies

at VUV range where performed and results are presented here and have been published

elsewhere [60].

3.3 Evaluation of SiPM readout methods

Specific SiPM readout methods can be employed envisaging better signal to noise ratio

(SNR), dynamic range and data throughput [61], depending on the applications. The most

common readout methods are continuous current, gated integrator and photon counting or

pulse mode. In current mode, the SiPM is illuminated with almost steady light level. In

this regimes, the SiPM readout circuit is performing a charge amplification and acting like

a picoammeter or electrometer by continually measuring the photocurrent and sampling the

result over time. When the light level is extremely low, as in some scintillation detectors used

in nuclear and particle physics, the SiPM sees discrete single photon events consisting of short

duration pulses at random intervals rather than large bursts of photons or the continuous

flow of multiple overlapping photons, as mentioned previously. Under these conditions, a

threshold is set allowing discriminating the incident light and counting the number of events

over a time period.

When several SiPMs are placed in an array, it is possible at some extension to apply
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multiplexed readouts scheme at the cost of signal integrity. Notwithstanding, this might

represent a significant saving regarding the ⇠7000 SiPMs channels used.

The readout schemes developed were based in commercial integrated circuits (ICs). In

Table 3.1 are listed the majority of all the ICs evaluated. In the following Sections (3.3.1 and

3.3.2) only the best ICs or the ones with which a stable design was achieved are presented.

Table 3.1: List of evaluated ICs.

Manufacturer Texas Instruments Analog Devices Maxim Integrated Linear Technologies Hittite
operational amplifier OPA656

OPA657
OPA847

AD8000
AD8099

LTC6400

transimpedance amplifier HMC799
current mirror ADL5317 DS3920

MAX4007
MAX4008

log converter AD8304
ADL5303
ADL5304

DC-DC converter MAX1932

3.3.1 SiPM pulse mode readout

For SiPM characterization, a dedicated SiPM readout was developed, comprising two

ultra-low noise 3.8 GHz AD8099 high speed op-amps from Analog Devices. Further details

about the SiPM readout electronics are present in Appendix A. In Figure 3.2 is depicted a

typical SiPM pulse amplified (as described in Appendix A, Figure A.2), with pulse rise time

(10 - 90 %) of ⇠5 ns. It is also observable the afterpulsing. When occurring after the recovery

time, these events cannot be distinguished from photon-induced events, thus degrading the

device photon-counting resolution.

Figure 3.2: Oscilloscope screen captured with triggered SiPM pulse (top) and respective
histogram (bottom) from a Hamamatsu MPPC amplified by circuit from Appendix A, Figure
A.2.
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The SensL MicroFC-10035-SMT SiPM has an additional fast output. In Figure 3.3 is

depicted an oscilloscope screen captured (Lecroy Waverunner 625 Zi) with triggered pulse

from a SensL SiPM coupled to a 2⇥2⇥30 mm3 LYSO scintillator irradiated with a 22Na

radiation source. The two pulses correspond to the fast output (blue pulse), used for

triggering the ADC and the anode output (green pulse). Both pulses are amplified by circuit

from Figure A.2 (Appendix A).

Figure 3.3: Oscilloscope screen captured with triggered pulse from a SensL SiPM coupled to
a 2⇥2⇥30 mm3 LYSO scintillator irradiated with a 22Na radiation source. The two pulses
correspond to the fast output (blue pulse), used for triggering the ADC and the anode output
(green pulse). Both pulses are amplified as circuit from Figure A.2 (Appendix A).

3.3.2 SiPM current mode readout

Evaluation of current mirrors

SiPMs are available with di↵erent pixel number, ranging from hundreds to thousands

of pixels, allowing higher dynamic range at the cost of the photon detection e�ciency. In

some conditions, when the light flux is high, the easiest way to read a SiPM is in current

mode, whereas one can subtract the dark current. On the other hand, in low light flux the

dark current easily masks the signal from incident photons. In these situations, operation in

pulse/count mode is recommended. Typically, dark noise pulses go up to 3 p.e. (depending

on parameters such as the over-voltage and temperature) making it di�cult the identification

of spurious signals from incident photons. When operating on a wider range of light flux, the

ideal is to use dual mode, reading the SiPM in current and pulse modes simultaneously. This

is possible using a Current Mirror. Typically these IC’s output is a current proportional to

the input current but with lower intensity.

Four current mirrors were evaluated, MAX4007, MAX4008, DS3920 (Maxim Integrated)

and ADL5317 (Analog Devices). The devices specifications are summarized in Table 3.2.

The MAX4007 and DS3920 Current Mirrors (CM) from Maxim Integrated have 10:1 and
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5:1 output mirrors, respectively. MAX4008 is equivalent to MAX4007 but the output is a

voltage, with a mirror ratio of 1 mV/mA. The ADL5317 current monitor allows avalanche

photodiode bias control.

Table 3.2: Current mirrors evaluated.

MAX4007 MAX4008 DS3920 ADL5317
Mirror ratio 10:1 1mV/mA 5:1 5:1
Input voltage (V) 2.7 to 76 2.7 to 76 2.97 to 76 6 to 75
Max input current (mA) 20 20 4.4 21
Package 6 SOT23 6 SOT23 6 SOT23 16 LFCSP-VQ

The calibration of the four current mirrors was performed by placing a resistor in the

pin corresponding to the voltage output pin, whereas the SiPM is connected. The resistor

is connect to the ground. Resistors of 1 M⌦, 10 M⌦, 100 M⌦ and 1 G⌦ where used. The

resistors were shielded in an aluminum enclosure with SMA connectors. The ADL5317 was

set in supply tracking mode and Keithley 6487 picoammeter was used as voltage source and

for measurement of current output from the current mirror. The measurements performed

with the picoammeter correspond to the average of 100 acquisitions in normal rate mode

(fast and slow rate modes are also options). The voltage at VAPD (output voltage pin) is

clamped to 2.0 V below VPHV (input voltage pin). To read the mirrored current with an

ADC or voltmeter, a grounded resistor can be placed at the current mirror output to convert

the mirrored current into a voltage. When an ADC is used to digitize the signal, the resistor

to ground can be selected in such a way to maximize the ADC full-scale voltage to the

maximum mirrored current. The results obtained by measuring the devices in both current

and voltage are depicted in Figure 3.4.

The best results in terms of linearity where achieved by reading the current mirror

response in current mode. However, one should note that the picoammeter provides higher

resolution and the acquired measurements correspond to a 100 measurements average. The

ADL5317 and DS3920 are the two current mirrors evaluated showing best performance at

currents in the tens of nA.

Evaluation of AD8304, ADL5303 and ADL5304 logarithmic converters

The signal of the current mirror can be directly read by an ADC using a resistor connected

to the ground. Although, when there’s a need for large dynamic range a log converter can

be used. The output of the log amplifier Vout is:

Vout = Kln
Vin

Vref
(3.1)

where K is the scale factor, Vin is the input voltage and Vref the normalization constant.

Three log amps were evaluated, all from Analog Devices, being the main characteristics

listed in Table 3.3. AD8304 is a 160 dB logarithmic converter optimized for measurement
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of low frequency signal power in fiber optic systems. ADL5303 is a 160 dB logarithmic

converter, corresponding to 100 pA - 10 mA. ADL5303 is a low cost version of the ADL5304

logarithmic converter with 200 dB range, from 1 pA to 10 mA. ADL5304 has a 25 kHz

bandwidth at 1 nA, while the AD8304 and ADL5303 bandwidth at 1 nA is 2 kHz.

Table 3.3: Logarithmic converters evaluated.

AD8304 ADL5303 ADL5304
Input range 100 pA to 10 mA 100 pA to 10 mA 1 pA to 10 mA
Input range (dB) 160 160 200
Output bandwidth at 1nA 2 kHz 2 kHz 25 kHz (350 kHz at 10 nA)
Max output bandwidth 10 MHz 10 MHz 4 MHz
Package 14 TSSOP 16 LFCSP 32 LFCSP

The three logarithmic converters were calibrated using an 1 G⌦ resistor. The resistor

was shielded in an aluminum enclosure with SMA connectors. A Keithley 6487 picoammeter

was used as voltage source and connected to one pin of the resistor, while the other pin

is connected do the logarithmic converters input pin. The output from the logarithmic

converter was measured with a Fluke 287 multimeter. Results are plotted in Figure 3.5.

From the three devices evaluated, the ADL5304 is the logarithmic amplifier with higher

gain of 200 dB, as clearly visible from Figure 3.5. This device is intended for operation in

the 1 pA to 10 mA input current range. However, the observed threshold for the device

response was 1.6 nA. The responses of the AD8304 and the ADL5303 converters are similar

once the devices have the same input range. The measured minimum input for AD8304 was

500 pA while for ADL5303 was 800 pA. All the three logarithmic converters have a default

logarithmic slope of 10 mV/dB and basic logarithmic intercept at 100 pA, notwithstanding,

both slope and intercept can be adjusted. From the three logarithmic converters evaluated,

ADL5304 present higher bandwidth at low currents, making this one the most suitable option

for measurements at low light levels.

This study allowed to conclude that the AD8404 is the most suitable device for a wider

operation range. For this reason it was the selected logarithmic converter for integration

with the ADL5317 current mirror.

ADL5317 current mirror and AD8304 logarithmic converter

A printed circuit board was developed to test the ADL5317 current mirror with a AD8304

logarithmic converter (as described in Appendix A, Figure A.2). The system was evaluated in

the 1�100 V range with a 1 G⌦ resistor, allowing currents up to 98 nA (due to the 2 V voltage

drop featured in ADL5317). The VAPD pin of ADL5317 is connected to a 1 G⌦ resistor that

is connect to ground. The ADL5317 photodiode monitor current output pin is connected to

the AD8304 logarithmic converter. The output of the AD8304 was measured with a Fluke

187 multimeter. Calibration result is plotted in Figure 3.6. The ADL5317 current mirror has

an operating threshold corresponding to an input voltage ⇠ 6 V, corresponding to 4 V at the

1 G⌦ resistor. This corresponds to an mirrored current of ⇠ 800 pA. As one observed from
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the previous study regarding the logarithmic converters, the AD8304 operates at currents

above 50 nA. As observable in Figure 3.6, small deviations are related to the change on the

decade of the logarithmic converter. The observed behavior is belied to be imposed by the

AD8304 device. Further studies are required in order to optimize the system.
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Figure 3.6: Analog Devices AD8304 calibration with 1 G⌦ resistor.
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3.4 SiPM characterization

The typical parameters required for SiPM characterization are listed in Table 3.4 [62, 63].

Two SiPMs were evaluated, the SensL MicroFC-10035-SMT (recently adopted as the SiPM

for the NEXT tracking plane due to their low radioactive footprint) and the Hamamatsu

MPPC S10362-11-050, both with an active are of 1 mm2. For the characterization studies,

the SiPMs were biased with a Keithley 6484 picoammeter and voltage source, also used for

the SiPM current measurement. The SiPM was placed inside a dark box built for these

studies. The box temperature was monitored with a DB18B20 (MAXIM Integrated) digital

temperature sensor. The temperature was adjusted with a Peltier cell controlled by an

Arduino Mega microcontroller loaded with a motor-shield including a TB6612 dual H-bridge

with 1.2 A per channel current capability. The measurements were performed in the 15� to

45 �C temperature range.

3.4.1 I-V curves

The study of the I-V curves is important when SiPMs are operated in continuous light

flux or high illumination in periods longer than hundred of nanoseconds. These tests allow

to estimate the current range and to identify the breakdown voltage of the SiPM. The dark

current was measured over the bias voltage in the 70 � 74.5 V range for the Hamamatsu

SiPM and 22 � 25 V for the SensL SiPM. The obtained I-V curves for the two SiPMs are

depicted in Figure 3.7. From the analysis of the I-V curves, one can determine the breakdown

voltage. Besides direct observation of the curves, a more precise method can be performed

by calculating the second derivative to identify the inflexion points of the I-V curves. This

analysis is presented and discussed in Section 3.4.4 together with the breakdown voltage

determined by the SiPM gain study.
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(right) I-V curves.
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3.4.2 Dark-count rate and crosstalk probability

The dark-count rate (DCR) has been measured at di↵erent reverse voltage values for the

temperature range of 20� 40 �C. The DCR is measured by performing a threshold scan and

registering the mean frequency. The pulse signal from the SiPM is fed into a comparator

with threshold adjusted with a digital potentiometer controlled by an Arduino DUE micro-

controller. The TTL signal from the comparator output is a digital signal, having only two

states, o↵ when amplitude of input signal is below the threshold and on when the input

signal is above the threshold. Considering that the amplified SiPM signal has width between

40� 100 ns, a monostable multi-vibrator is used to stretch the comparator output to a fixed

width, allowing to measure the signal frequency with an Arduino DUE microcontroller. The

curves for the SensL MicroFC-10035-SMT and the Hamamatsu MPPC S10362-11-050U are

depicted in Figure 3.8. Due to the observable plateaus corresponding to the 0.5, 1.5, 2.5,

etc. photo-electron (p.e.), these curves are typically known as SiPM staircase diagrams or

staircase curves.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
10

0

10
2

10
4

10
6

Threshold (p.e.)

D
C

R
 (

H
z
)

20.0ºC

22.5ºC

25.0ºC

27.5ºC

30.0ºC

32.5ºC

35.0ºC

37.5ºC

40.0ºC

Hamamatsu MPPC S10632-050

0.0 0.1 0.2 0.3 0.4 0.5 0.6
10

0

10
2

10
4

10
6

Threshold (p.e.)

D
C

R
 (

H
z
)

15.0ºC

17.5ºC

20.0ºC

22.5ºC

25.0ºC

27.5ºC

30.0ºC

32.5ºC

35.0ºC

37.5ºC

40.0ºC

42.5ºC

45.0ºC

SensL MicroFC-10035-SMT

Figure 3.8: Crosstalk study for the SensL MicroFC-10035-SMT (at 2.5 V overvoltage) and
the Hamamatsu MPPC S10362-11-050U (at 1.5 V overvoltage).

The same study was repeated at several overvoltage levels for the same temperature

ranges. From the resulting staircase diagrams, one can calculate the inflexion point of the

derivative, allowing to know the 0.5 p.e. and 1.5 p.e. levels at each temperature. Data

are presented in Figure 3.9. One can observe the exponential increase of the DCR with the

temperature increase. For an 1.5 p.e. threshold the SensL SiPM presents a DCR one order

of magnitude lower than the Hamamatsu SiPM. In addition, for the Hamamatsu SiPM, for a

given temperature, it is observable an increase of the DCR as the overvoltage increases. This

can be due to a bigger probability of crosstalk and afterpulsing. The crosstalk probability

was estimated by computing the ratio between the DCR at 1.5 p.e. and DCR at 0.5 p.e.
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threshold (Figure 3.10). The crosstalk probability increases with increasing overvoltage. For

the Hamamatsu SiPM, an increase from an average 6% at 1.0 V overvoltage to 25% for 2.0

V overvoltage was observed (Figure 3.10, right).
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Figure 3.10: Crosstalk probability for the SensL MicroFC-10035-SMT and the Hamamatsu
MPPC S10362-11-050U.

3.4.3 Gain

Studies on gain dependence with overvoltage and temperature were performed for both

SensL MicroFC-10035-SMT and Hamamatsu MPPC S10362-11-050U SiPMs.

The SiPM gain was measured by illuminating the SiPM with a low photon flux from a

blue LED, with emission peak at ⇠ 474 nm (measured with USB4000-UV-VIS spectrometer,
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Ocean Optics). Both LED and SiPM temperature were constantly monitored with a DS18B20

(Maxim Integrated) digital thermometer. DS18B20 is programmable providing 9�12 bit and

±0.5� accuracy from �55� to +125�. The SiPM was placed inside a light tight aluminum

enclosure (Figure 3.11) with temperature controlled by a Proportional–integral–derivative

(PID) controller system with a large Peltier Cell placed below the aluminum enclosure. The

signal from the SiPM was amplified by the 2-stage readout described in Section 3.3.1. The

acquisition of the pulses was done with a CAEN V1724, 14 bit 100 MS/s digitizer, with an

external trigger from the pulse generator used to power the LED. The LED was biased with

an Agilent pulse generator, using pulses of 90 ns width and 8.4 ns egde time, at 100 kHz.

The pulse amplitude for the LED was selected in order to optimize the best descrimination

between the photopeaks in the spectrum. A pulse amplitude of 875 mV amplitude was set

for the Hamamasu SiPM and 1.150 V for the SensL SiPM.

Figure 3.11: Experimental setup for the studies of the SiPM gain with overvoltage at several
temperatures.
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Figure 3.12: SensL MicroFC-10035-SMT pulse-high spectrum when illuminated by a blue
LED, showing multiple peaks. The SiPM was at 25.0 �C, biased at 26.0 V.
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Measurements were performed with a 2.5 �C step in the 20� to 40 �C range for the

Hamamatsu SiPM and in the 15� to 45 �C range for the SensL SiPM. At each temperature,

a pulse high histogram was obtained in the 73.0� 74.5 V bias voltage range with a 100 mV

step, in a total of 144 histograms for the Hamamatsu SiPM and in the 25.5 � 27.0 V bias

voltage range with a 100 mV step, in a total of 208 histograms for the SensL SiPM. The

pulse high histograms were analyzed with MATLAB, using find peaks function to identify

photoelecton before performing gaussian fit. The number of ADC channels between adjacent

peaks was used to calculate the gain value for each spectrum. Results are presented in

Figure 3.12. This number of ADC channels between adjacent peaks increases with gain and

is expected to be the same between adjacent peaks for the same spectrum, corresponding to

the charge from a single Geiger discharge. Once known the charge of a single discharge, one

can calculate the SiPM gain using Eq. 2.1. The gain from the electronics and the ADC was

determined using a 6.8 pF capacitor using a fast pulse in the 0.1� 1 V amplitude range from

a pulse generator.

In Figure 3.13, one observes a variation on the SiPM pulse-height spectrum over

temperature even with gain correction by bias voltage adjustment using the temperature

coe�cient determined experimentally. Although the SiPM gain variation is small, at higher

temperatures the spectrum moves to the left, meaning that the pulse amplitude is lower.

The possible explanation is the increase of crosstalk and afterpulses within the gate window,

resulting in the broadening of the p.e. peak in the spectrum.

The SiPM gain for each temperature at di↵erent overvoltage was calculated and is

depicted in Figure 3.14.

3.4.4 SiPM temperature coe�cient and gain stabilization

As mentioned in previous chapter (Section 2.4.2), the gain of the SiPM is the ratio between

the total charge from a Geiger discharge and the electron charge. The total charge generated

by a single discharge corresponds to the pixel capacitance times the over voltage. As verified

above (Section 3.4.1), the breakdown voltage has a strong dependence on temperature.

The breakdown voltages over temperature were extracted from both I-V curves (Figure

3.7) and Gain study (Figure 3.14), for the Hamamatsu MPPC S10362-11-050U and the

SensL MicroFC-10035-SMT. The first method consists of obtaining the second derivative

to identify the inflexion points of the I-V curves. The second method from the SiPM gain

study is achieved by obtaining the x-axis intercept of the linear fit which returns the SiPM

breakdown voltage [64]. The data resulting from the two methods are depicted in Figure

3.15.

The temperature coe�cient can be obtained from the slope of the breakdown voltage over

the temperature (Figure 3.15). In Table 3.5 are listed the temperature coe�cients obtained

from the I-V curves and from the gain over temperature studies.

For the SensL SiPM, the reference value is closer to the value obtained for the gain

method while for the Hamamatsu SiPM the temperature coe�cient obtained from the IV-
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Figure 3.14: SiPM gain variation as a function of the bias voltage for the SensL MicroFC-
10035-SMT (left) and the Hamamatsu MPPC S10362-11-050U (right).
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Figure 3.15: Breakdown voltage at several temperature for SensL MicroFC-10035-SMT (left)
and the Hamamatsu MPPC S10362-11-050U (right), determined from IV curves (blue) and
from Gain curves (red).

curves is in agreement with the reference value. For both SiPMs, a higher temperature

coe�cient was obtained with the gain method. The main reason can be justified by the

contribution of crosstalk and afterpulses, which is not verified in the gain method due to

the use of an external trigger to the ADC. For the SensL SiPM, the temperature coe�cient

obtained in the gain method is in accordance with the data provided from the manufacturer,

although for the SiPM the temperature coe�cient resulting from the I-V curve method is

the closest to the value provided from the manufacturer. More studies should be addressed

Table 3.5: SiPM breakdown voltage and temperature coe�cient obtained from the I-V curves
and Gain variation over temperature methods.

breakdown voltage (V) at 25 �C Temperature coe�cient (mV/�C)
I-V curves Gain datasheet I-V curves Gain

SensL MicroFC-10035-SMT 24.71 24.62 21.5 17.8 20.4
Hamamatsu MPPC S10362-11-050U 72.01 71.77 56 57.7 68.2
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in order to evaluate the two methods and access which one should be considered, once SiPM

temperature coe�cients allow to set a constant gain with temperature variations by bias

voltage adjustment.

Once known the SiPM temperature coe�cient one can set a system to perform bias

adjustment to overcome temperature fluctuations. SiPM gain correction by bias voltage

adjustment was performed for the SensL MicroFC-10035-SMT and the Hamamatsu MPPC

S10362-11-050U silicon photomultipliers according to the temperature coe�cients listed in

Table 3.5. The experimental apparatus is the same as described in the previous section. For

the SensL SiPM, four sets of measurements were taken, one of them using the temperature

coe�cient obtained by the IV-curves and the other three using the temperature coe�cient

obtained by the gain measurements. For the Hamamatsu SiPM, two sets were taken for

temperature coe�cient obtained by I-V curves and one set using the temperature coe�cient

from the gain measurements. Results are plotted in Figure 3.16. For reference, the

uncorrected gain values are included for both SiPMs, corresponding to the overvoltage of

2.5 V at 25 �C.

As one can see from Figure 3.17, the best results for the SensL SiPM show a �G/G

below 1% in the 15 � 45 �C range using the temperature coe�cient obtained by the gain

method. For the Hamamatsu SiPM, a �G/G higher than 5% was obtained for both cases.

For the last one, the gain stabilization was not very well succeeded, revealing some problem

with the experimental setup. New studies are required. Using the same correction methods,

Marrocchesi et al [65] obtained a stability �G/G below ±1% in the range 9� 31 �C for the

Hamamatsu MPPC.

Li et al [66] implemented a voltage-controlled current sink module with temperature

compensation using thermistors, achieving a drift in the gain lower than 0.3%/�C in the

temperature range 5.1 � 33.3 �C. Licciulli et al [67] implemented a method where a second

blinded SiPM is used for pulse-high monitoring, allowing the tracking in gain variation. The

detector is enclosed in a negative feedback loop which automatically adjust bias voltage,
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Figure 3.16: SiPM gain fluctuations as a function of temperature for the SensL MicroFC-
10035-SMT (left) and the Hamamatsu MPPC S10362-11-050U (right).
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Figure 3.17: SiPM gain fluctuations as a function of temperature for the SensL MicroFC-
10035-SMT (left) and the Hamamatsu MPPC S10362-11-050U (right).

having the advantage of not requiring the knowledge to the SiPM parameters, although, the

two SiPMs must have the same temperature sensitivity. The authors reported a �G/G ⇠5%.

For the SensL SiPM a �G/G ⇠0.5% was observed. From the pulse high spectrum obtained

for the SensL SiPM (Figure 3.18), one can verify that the gain slightly diminished at higher

temperature. The possible explanation to this observation is the possible variation of room

temperature a↵ecting the LED and/or electronics, since the acquisition of all pulse high

spectrum takes ⇠4 hours. Future studies will be conducted to access possible factor leading

to gain variation even when the system is automated in order to compensate temperature

variations with SiPM bias voltage adjustment.
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3.4.5 Photon-detection e�ciency of VUV-sensitive SiPM prototypes

Several applications envisage the detection of UV or VUV light. Common solutions

require a WLS material to match the photodetector highest quantum e�ciency. Similar to

the NEXT experiment, experiments with SiPMs for imaging in noble gas detectors, namely

for �� decay and Dark Matter experiments are pushing to the development of VUV-sensitive

SiPMs [60].

PDE measurement for the SensL SiPMs

New SiPMs prototyped by SensL with improved PDE in the UV range were characterized.

This characterization was performed by the photocurrent method, by measuring incident light

flux with a calibrated PMT and determining the number of incident photons, as described in

[68]. For the purpose, a xenon lamp (Hamamatsu Photonics E7536, 150 W) was used, coupled

to a monochromator. To obtain the spectrogram of the input light an optical fiber was

coupled to the monochromator output and coupled to an integrating sphere. A Hamamatsu

Photonics Multichannel Analyzer C10027 spectrometer with a monochromator was used. The

SiPMs were placed inside a dark box built for the purpose. The light from the monochromator

is guided into the dark box by a quartz optical fiber. To control the illumination level, a

di↵raction lens and various collimators were used [69]. A polished Polytetrafluorothylene

(PTFE) reflector was placed facing the light entrance port from the quartz optical fiber.

The SiPMs and PMT are facing the PTFE plane and the distance can be adjusted. In

these studies the photodetector plane was at 850 mm distance from the PTFE plane. The

measurements were performed at room temperature (25 �C). The setup was intended for a

preliminary characterization of the PDE response range of these SiPMs. Afterwards, it was

verified that the illumination conditions weren’t ideal. For that reason no absolute values of

the PDE are presented.

These SensL SiPM samples present a window cap that can be removed so that the silicon

layer can be exposed directly to the light. The PDE was measured for the SensL SiPMs

with (CAP) and without the cap (NO-CAP). The normalized response as a function of the

wavelength is depicted in Figure 3.19. For comparison, preliminary data provided from

the vendor is included. The samples show higher sensitivity to the visible region of the

spectrum, mainly in the blue region as the majority of the SiPMs available in the market.

As expected, by removing the window (CAP) the sensitivity at lower WLs is improved.

The measured sensitivity over the analyzed wavelength range is ⇠10% lower than the data

provided by SensL. The PDE depends of three factors: geometrical e�ciency, quantum

e�ciency and triggering probability (see Eq. 2.3). In a practical way, PDE changes with the

photon wavelength and overvoltage level. As mentioned in Section 2.4.2, the photon detection

e�ciency can be measured by photo-current method or pulse-mode method. Typically the

PDE obtained by the current method is overestimated due to the contribution of the after-

pulsing and crosstalk to the total number of photons measured. This could explain the

di↵erence from the obtained results and the ones provided by the manufacturer.
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Figure 3.19: Experimental PDE measurements for SensL SiPM samples and comparison to
the manufacturer provided data.

Hamamatsu VUV-sensitive MPPC prototypes

Two Hamamatsu VUV-sensitive MPPC samples, of 3⇥3 mm2 sensitive area and 50⇥50

µm2 pixel, with manufacturer references VUV2-A0023 (sample 1) and VUV2-A0024 (sample

2) were evaluated. The relative photon detection e�ciency study was performed in the

160 � 300 nm spectral range using a deuterium lamp. The lamp is coupled to a vacuum

monochromator (VM-502, Princeton Instruments). The SiPMs were placed in a vacuum

chamber coupled to the monochromator (Figure 3.20). For light di↵usion a fused silica

di↵user sanded with 220 grit polishes (DGUV10-220, Thorlabs) was used. At a pressure

of 10�4 mbar, the number of incident photons was measure with a PMT (R8520-0SEL,

Hamamatsu) and the output current was read at the first dynode (no gain). The SiPMs were

biased at recommended voltages (⇠67 V) with a gain of 1.25⇥106 at 25� C. To identify the

linear response of the SiPMs, the light intensity was varied by adjusting the monochromator

slits. The number of incident photons was determined with the calibrated PMT (R8520-

0SEL, Hamamatsu). PDE measurements were performed for SiPMs gain of 1.25⇥106 at 25
�C.

Results shown that SiPMs response was linear for low light levels, corresponding to slit

apertures lower than 1.5 mm (Figure 3.21). For a 1 mm slit aperture, the VUV-SiPM relative

PDE was measured using the same method as before. The results obtained show a 25% PDE

at 170 nm, which is lower than the reference value of 30%, as claimed by the manufacturer

(also determined using the photo-current method).

To improve the PDE measurements, a new setup is being prepared, allowing to perform

the PDE study in pulse mode, thus allowing to discard the contribution from crosstalk and

afterpulsing, which highly contribute to the PDE measurement. In addition, a complete

characterization of this new SiPMs will be performed soon.
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Figure 3.20: Schematic of the experimental setup to measure relative PDE of VUV-sensitive
SiPM samples.
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Figure 3.21: VUV-SiPM response at 170 nm for di↵erent light intensities (left) and VUV-
SiPM relative PDE in the 160� 300 nm region.

3.5 Studies on scintillating optical fibers

The application of scintillating optical fibers in high energy physics namely for particle

detection has been well studied. Examples of applications are charged particle tracking [70]

or hadronic calorimeters [71]. Other works use WLS optical fibers for 2D imaging [72, 73].

In concept, a large area tracking plane based on scintillating optical fibers would be feasible

for application in a large gaseous TPC. Introductory studies on SOF and WLS fibers are

presented here.

3.5.1 BCF12 emission spectrum

The characterization of the BCF-12 scintillating optical fiber emission spectrum was

performed by irradiating the fiber with X-rays. The X-ray tube used was an Oxford

Instruments series 5000, with molybdenum anode, 125 µm Be window and 25� cone angle.

The voltage was set to 50 kVp and the current to 800 µA. A BCF-12 fiber, 15 cm long was

placed at 2 cm from the X-ray tube window and perpendicularly to it, so only a small portion

of the fiber was irradiated. An Oceans Optics USB4000 portable spectrometer was used for
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the measurements of the scintillation emission of the fiber.

From the obtained emission spectra (Figure 3.22), the BCF-12 scintillating optical

fiber reveals a maximum emission at 430.9 nm, followed by a second peak at 475.2 nm.

Notwithstanding that the manufacturer data sheet indicates a value of 435 nm without

this second peak, other studies presented a similar behavior. Therriault-Proulx et al. [74]

obtained for the BCF-12 scintillating optical fiber an emission spectrum in the 400 � 600

nm range, with a maximum at 450 nm and a secondary maximum at 525 nm. Archambault

et al. [75] experimentally measured the emission spectra for BCF-12, obtaining an emission

peak at 438 nm and an apparent second peak at ⇠460 nm. The possible explanation for the

result obtained in this study can be related to the improved resolution of the Oceans Optics

USB4000 portable spectrometer, with 16-bit ADCs, over other spectrometers.

For comparison, the measurements were repeated for a wavelength shifting fiber, BCF-

91A (Saint-Gobain) and the obtained spectrum is depicted in Figure 3.23. For BCF-91A

a similar response has been previously observed for the same WLS fiber [76]. Jang et al.

evaluated the fast BCF-92 WLS optical fiber, equivalent to the BCF-91A WLS fiber but

with a shorter decay time (2.7 ns). The author’s irradiated a sensitive probe consisting in an
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Figure 3.22: Emission spectrum for the BCF-12 scintillating optical fiber when irradiated
with 50 kVp X-rays.
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Figure 3.23: Emission spectrum for the BCF-91A scintillating optical fiber when irradiated
with 50 kVp X-rays.
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Ø1 mm and 1 cm long BCF-92 fiber coupled to a 20 m long PMMA optical fiber (SH4001).

The probe was irradiated with 88 keV �-rays from a 109Cd source. The author’s presented

data show the same behavior has the one observable in this study, and therefore the double

emission peak of the BCF-12 shouldn’t be related to the spectrometer.

3.5.2 Readout of scintillating optical fiber in coincidence mode

This configuration uses two MPPCs that read in coincidence the light output at each

extremity of a 1.5 m-long BCF-12 single-clad scintillating fiber. A 137Cs source with an

activity of 4.25 µCi was used and aluminum filter was added for beta particle blockage.

The reference voltage of the comparators was set as low as 0.5 photoelectrons (p.e.). For

coincidence operation, a dedicated electronics readout system was developed, including a

transimpedance amplifier, units for threshold detection and signal coincidence. Due to the

fast scintillation decay time of 3.2 ns, fast electronics are needed to allow a pulse rise time as

close as possible to the scintillation decay time. The circuit developed consists of an OPA656

at the 1st stage for charge-to-voltage conversion followed by an OPA847 for a 40 V/V gain at

the 2nd stage. Two MAX9011 (MAXIM Integrated) fast comparators (propagation delay of

5 ns) were used. The logic unity is a SN74AUC1G08 single 2-input positive AND gate (Texas

Instruments). A MCA 8000A (Amptek) was used for signal acquisition. The experimental

system used for the coincidence measurement is presented in Figure 3.24.

The results obtained when operating the system both with and without the coincidence

circuit are presented in Figure 3.25. For comparison, dark noise spectra were also obtained

(without the presence of the radioactive source). All spectra were obtained with the same

acquisition time. Acquisition without the radiation source shows that thermal noise is mainly

below 4–5 p.e. at 26 �C but with a strong impact on the spectral distribution, contributing

Figure 3.24: Experimental setup for tests of the coincidence mode readout electronics and
future TOF tests.
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Figure 3.25: Coincidence mode pulse-high histograms with and withoud radiation.

with a large number of false events. The strong reduction of dark noise events down to residual

values is clearly visible when operating in coincidence mode. Considering the symmetry of

the electronic circuitry (both MPPC1 and MPPC2 could initialize the coincidence), the rate

of these accidental coincidences (Nacc) is below the rate given by Nacc = 2N1N2⌧ , where N1

and N2 are the rates of MPPC1 and MPPC2, respectively, and ⌧ is the AND gate width.

Because N1 is approximately equal to N2, Nacc = 2N1⌧ . When the radiation source is used

in coincidence mode, only events from the source are detected, and most of the dark noise

events are rejected. In coincidence mode, also some of the scintillation events are undesirably

rejected, suggesting the need for optimization of the electronic coincidence system.

3.6 Final remarks

These first three Chapters complete the Part I of this document. The work described

is related to the NEXT experiment and the SiPMs which are the main component of the

tracking plane. During Ph.D period I participated in R&D tasks abroad, namely a 3-month

period at LBL (Berkeley, USA) and several month-periods at IFIC (Valencia, Spain). As

NEXT collaborator, I have co-authored several works published elsewhere [12, 34–36, 42, 44–

46, 57–60, 77–82].

A high energy resolution and low background are the two essential factors for a 0⌫��

experiment. The components for the NEXT detector are tested for radioactivity levels. The

Hamamatsu MPPC S10362-11-050U was the initial SiPM chosen for the NEXT tracking

plane. Notwithstanding, the SensL MicroFC-10035-SMT was recently adopted has the SiPM

for the NEXT tracking plane due to their low radioactive footprint. The gammas emitted in
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208Tl and 214Bi decays are the the main source for background. For the SensL SiPM, were

obtained activities of 3⇥10�5 mBq and 9⇥10�5 mBq for 208Tl and 214Bi, respectively [12].

The studies here presented are a first analysis to the new SensL SiPM. Some features

reveal the evolution of the SiPM technology. The SensL SiPM is a new generation SiPMs

showing lower operation voltage, lower crosstalk and lower dark noise. The dark noise

includes primary pulses (uncorrelated) mainly due to carriers thermally generated in the

depletion regions of MPPC µcells and secondary (correlated) pulses due to afterpulsing and

crosstalk e↵ects [83]. In the studies here performed, afterpulsing wasn’t evaluated. Further

studies should address this aspect.

Hamamatsu provived samples of a new SiPM with improved sensitivity for the VUV range

and with expected lower radioactivity. Further studies will be conducted for characterization

of these samples and PDE measurement in the VUV range for all the SiPM candidates for

integrating the NEXT tracking plane.
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Applications of the developed

technologies





Chapter 4

Application case:

Dosimeter for Brachytherapy

4.1 Motivation

The growing cancer incidence is a major public health concern and a subject of wide

attention. Nowadays, cancer is the leading cause of disease worldwide and accounting 14

million new cases are diagnosed each year. Prostate cancer is the fourth cancer of highest

incidence worldwide and the most common cancer in European men. The World Health

Organization (WHO) forecast a 75% increase of new cancer cases until 2030, which translates

into about 22 million new cases per year. Despite the high incidence of prostate cancer, the

survival rate is high due to a prompt diagnosis combined with innovative therapies. Nowadays

a screening test like prostate specific antigen (PSA) blood test allows an early stage detection

[84, 85]. Typically, in low or medium risk prostate cancers PSA levels are below 20 ng/mL,

being eligible for less severe treatment options such as prostate brachytherapy. Prostate

brachytherapy has several modalities that translate into di↵erent systems and techniques of

radiation delivery to the patient [86, 87]. The two most common are Low-Dose-Rate (LDR)

also know as seed brachytherapy and High-Dose-Rate (HDR) brachytherapy.

LDR brachytherapy is one of the most safe and e�cient treatments [88–91], although

several deviations from treatment plan can occur. One issue is the possibility of radioactive

material misplacement, that besides increasing the risk of tumor under-dosage and normal

tissue over-dosage [92–95], will induce higher risks to the patient by increasing treatment

side e↵ects such as bleeding, urinary incontinence, infertility, etc. In addition, cases have

been reported of radioactive seed migration (e.g. to the chest) in patients treated for

prostate cancer by LDR brachytherapy [96–98]. Other issues result from needle displacement,

prostate deformation [99], seed drifting along the needle path, blood flow, oedema, seed

migration, gland motion and anatomic changes (e.g., colorectal gas, stomach filling, and

bowel distension) [100].
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In a study conducted by Able et al [101] the procedures of HDR brachytherapy were

evaluated in order to assess the quality of treatment delivery. The authors stated that

the potential for error is relatively high due to the many individual tasks which must

be interwoven into a team approach for successful treatment delivery. The recommended

quality assurance (QA) procedures for HDR brachytherapy only test whether individual

aspects of HDR brachytherapy treatment (source strength, catheter length, and other

factors) are within set tolerance values. The 1997 American Association of Physicists in

Medicine (AAPM) Task Group 56 [102] recommends a dose delivery accuracy of 5-10%

and a positional accuracy of ±2 mm. Almost twenty years later, there is no device in the

market capable to perform in-vivo dosimetry in real-time and integration with treatment

planning software, which would allow performing real-time corrections during brachytherapy

treatments. Over the last decades, technological advances allowed new treatment options and

imaging techniques using low doses of ionizing radiation [103]. Vaz [103] identifies several

topics which the International System of Radiological Protection (ISRP) should address,

namely accidents in HDR brachytherapy, patient exposure tracking, radiation risk assessment

in radiotherapy and hybrid modalities and development of strategies and methodologies for

radiation risk communication to patients.

Incorrect dose delivery during treatments is a reality and currently there is no device

capable of performing real-time in-vivo dose measurements, making it impossible to perform

real-time dose correction. The prostate periphery and apex are regions of high-dose gradient

being prone to treatment delivery errors. Dosimetry has a major importance in the e�ciency

of ionizing radiation treatments. It can be challenging in some modalities, such as in Prostate

LDR-brachytherapy, where nowadays the only possible quality control is by postoperative

imaging techniques such as Computed Tomography (CT) for seed distribution mapping [104]

or ultra-sound imaging during treatment procedures [105]. Interest in real-time in-vivo

dose monitoring has grown with the increase of complex and time-dependent radiotherapy

modalities [100]. The QA through in-vivo dosimetry in radiation therapy is mandatory in

some countries and largely recommended for some radiotherapy modalities [106]. However,

due to the specificity of these prostate brachytherapy techniques, there is no commercial

device capable of doing so.

The interest for in-vivo dosimetry in brachytherapy is growing and the e↵ort from

research teams and companies translates this need. The in-vivo and in-situ measurement

of the radiation dose administered during brachytherapy faces several technical challenges,

requiring a very compact, tissue-equivalent, linear and highly sensitive dosimeter, particularly

in low-dose rate brachytherapy procedures, which use radioactive seeds with low energy and

low dose deposition rate. Dosimeters based on fiber optic probes are the most promising

approach up to this date and are a trend in research for small field dosimetry and in-vivo

dosimetry in radiotherapy, namely for brachytherapy, external beam radiotherapy (EBRT),
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Intensity-Modulated Radiation Therapy (IMRT) and 2D scintillation dosimetry for beam

characterization in linear accelerators.

In the context of these Ph.D. studies, a dosimeter employing disposable sensitive probes

based on a scintillating optical fiber was developed. The low size and high flexibility of the

disposable probe allows the introduction in the region to treat and subsequent monitoring

of the dose in key areas such as areas of high dose gradients where the tumor is located and

areas where excessive radiation dose can damage healthy organs and tissues. In addition, the

developed dosimeter allows in-vivo and real-time dose measurements opening the possibility

for real-time dose correction.

4.2 Dose

4.2.1 Dose quantities

Guidelines regarding dosimetry and dosimetric quantities are mainly provided by the

International Commission on Radiation Units and Measurements (ICRU) and International

Commission on Radiological Protection (ICRP). While ICRU is related to the operational

quantities and to the physical aspects of dosimetry, ICRP considers the biological e↵ects of

radiation in human body, providing recommendations related with radiation protection and

establishing radiation protection quantities [107].

These protection quantities are primarily limiting dose quantities and take into account

human body properties, while operational quantities refer to monitoring of external exposure.

These protection and operational quantities are both related by the directly measurable

physical quantities: fluence (�), kinetic energy release per mass (KERMA) (K) and absorbed

dose (D). � relates to the number of particles or photons crossing over a sphere of unit cross

section, KERMA to the ionizing e↵ect of the radiation field and D to the deposited energy

per unity of mass (Figure 4.1).

For a monoenergetic ionizing radiation beam, the particle fluence (�) can be used to

characterize the radiation field. By definition, � is

�� =
dN

dA
(4.1)

where dN corresponds to the number of incident particles in a small sphere with di↵erential

cross-sectional area dA [109, 110] and is expressed in m�2 units (SI). The energy fluence ( )

(in J.m�2) can be calculated from the particle fluence [110],

 =
dN

dA
E = �E (4.2)

where E is the particle energy and dN the number of particles with energy E [110]. For

polyenergetic particle beams particle fluence spectrum (�E(E)) and energy fluence spectrum
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Physical quantities

Fluence, Φ

Kerma (tissue, air), K (gray)

Absorbed dose, D (gray)

Operational quantities

Protection quantities

Ambient dose equivalent

Directional dose equivalent

Personal dose equivalent

Organ absorbed dose,

Organ equivalent dose,

Effective dose, 

Radiation weighting factors

1

photons

electrons

muons

20

alpha particles

fission fragments

heavy nuclei

2

protons

5

neutrons

(from 5 to 20)

Tissue weighting factors

W
T

W
T

∑

red bone marrow. colon, lung, stomach

remainder tissues*

0.12

0.60

bone surface, brain,

salivary glands, skin

0.01

0.04

bladder, oesophagus

liver, thyroid

0.05

0.20

breast

gonads

0.08

0.16

* Adipose tissue, Adrenals, Connective tissue, Extrathoracic airwaysa, Gall bladder, Heart wall, Kidneys, Lymphatic nodes, Muscle, 

Pancreas,Prostate, SI wall, Spleen, Thymus and Uterus/cervix

WR

Equivalent dose
W R

W
T

WT

H* (d)

H’(d,Ω)
H  (d)

D 

H

E

p

T

T

Figure 4.1: Relationship between reference radiation fields, physical protection and
operational quantities. Adapted from [107, 108].

( E(E)) are considered. By definition, particle fluence spectrum in energy E is

�E(E) ⌘ d�

dE
(E) (4.3)

and the energy fluence spectrum is

 E(E) ⌘ d 

dE
(E) =

d�

dE
(E)E (4.4)

KERMA is the initial kinetic energy of all charged particles originated by ionizing

radiation corresponding to the energy given by a photon per unit of mass for a given material.

The SI unit of KERMA is gray (Gy) corresponding to 1 joule per kilogram.

Although KERMA dose and absorbed dose are expressed in the same units they are

di↵erent quantities, KERMA is a measure of the whole transfered energy by an uncharged

particle (photon or neutron) to primary ionizing particles while the absorbed dose is a

measure of the absorbed energy by unit of mass [111].

According to American Brachytherapy Society (ABS) orientations, the air KERMA

strength of each new source should be independently measured and compared to vendor

specifications. Dose calculation should be performed in accordance with the TG43 (1995)
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[112] and TG43U1 (2004) [113] formalisms. The prescribed dose will be the intended

minimum dose delivered to the planning target volume (PTV).

The energy fraction of a radiation field that is absorbed in the body is energy dependent,

so it is useful to distinguish radiation exposure from absorbed dose (D). Regarding dosimetry,

the main physical quantity is D, expressed in gray (Gy) units, as mentioned before. The

absorbed dose corresponds to the energy deposited by ionizing radiation per unit of mass of

a material:

D =
�E

�m
(4.5)

The radiation e↵ects in the human body are not well defined from the absorbed dose point

of view, since these e↵ects depend on the nature of radiation, how it distributes in the body

and on the radio-sensitivity of the tissues and organs. By these reasons, other quantities are

defined. According to the International Atomic Energy Agency (IAEA) [108], radiation can

be characterized as weakly or strongly penetrating as a function of which dose equivalent is

closer to its limiting value. For strongly penetrating radiation the limiting quantity is the

e↵ective dose equivalent, while for weakly penetrating radiation the dose equivalent to the

skin and to the lens of the eye is the limiting quantity.

Protection quantities

Protection quantities are not directly measurable, nevertheless they can be calculated

from the absorbed dose by using weighting factors (dimensionless) for radiation (WR), tissue

(WT ) or anthropomorphic phantoms (e↵ective dose, Eeff ). ICRP recommended values for

the tissue-weighting factors can be found in [114, 115]. These quantities are used as reference

for observed radiation e↵ects on the body, allowing to set exposure limits. In the scenario

of full body irradiation, WR is the only weighting factor to consider since the sum of WT

corresponds to the unit (
P

WT = 1). The organ equivalent dose (HT ) and Eeff are weighted

averages of absorbed dose and are related to stochastic health e↵ects of radiation. These two

quantities are expressed in sievert units (Sv).

To obtain Eeff , one calculates the absorbed dose (D) (in gray) corrected for the radiation

type (obtaining HT ) and then the former is corrected for the tissue or organ. The organ or

tissue equivalent dose (HT ) is defined by

HT =
X

R

WR.DT,R (4.6)

where DT,R is the absorbed dose in tissue T by radiation type R [116]. The e↵ective dose,

Eeff is defined as

Eeff =
X

T

WT .HT =
X

R

WR.DT,R (4.7)
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Operational quantities

To relate the protection quantities to instruments and dosimeters, operational (or

dosimetric) quantities based on point doses determined at defined locations in specific

phantoms are used [107]. These quantities are personal (Hp(d)), directional (H 0, (d,!))

and ambient (H⇤(d)) dose equivalent and have the same unit, sievert (Sv).

The ambient dose equivalent (H⇤(10)) is the operational quantity for area monitoring.

By definition, it is the dose equivalent produced at a point of interest in the real radiation

field by the corresponding aligned and expanded radiation field in a 300 mm diameter sphere

of unit density tissue (ICRU-sphere phantom [116]) at a depth of 10 mm in the radius vector

opposing to the direction of the aligned field [107].

The directional dose equivalent (H 0(d,!)) allows the calculation of equivalent dose to

tissue or organ for the di↵erent radiation types. By definition, the directional dose equivalent

at a point of interest in the actual radiation field, is the dose equivalent that would be

produced by the corresponding expanded radiation field, in the ICRU sphere at a depth d.

The point is lying on a radius which has the direction ! [107]. Typically, a depth (d) of

0.07 mm, 3 mm and 10 mm are used for dose equivalent in skin, eye lens and deeper laying

organs, respectively [107].

The personal dose equivalent (Hp(d)) is the operational quantity for individual monitoring

and corresponds to the dose equivalent in soft tissue (ICRU-sphere phantom [116]) at a point

located at a certain depth, d, and can be used at both surface or organ dose [107, 117].

As highlighted by Bartlett [117], this quantity is defined at a location where the detector

cannot be placed, causing di�culties in the definition of both the point of test and dosimeter

reference point for calibration.

4.2.2 In-situ dosimetry and the Cavity theory

Radiation detectors typically mismatch the composition (atom-number, density) of the

medium for which dose value is desired. When a detector doesn’t provide a direct measure of

the dose in the medium, the dose determination relies on both measurements and calculations.

The cavity theory assumes that the presence of the detector originates a cavity in the

medium. This allows relating the absorbed dose by a dosimeter (Dcav) to the absorbed dose

in that medium (Dmed) in the absence of the detector. If the detector material has radiation

absorption properties similar to those of the tissue, one can rely on the Bragg-Gray cavity

theory for measuring tissue dose directly [111].

The Bragg-Gray theory was the first cavity theory proposed. This theory is based

on the assumption that the wall cavity must be small when compared to the range of

secondary charged particles produced by photons in the cavity medium, so that the presence

of the detector does not perturb the fluence of charged particles in the medium [110, 118].

Considering that this theory doesn’t consider photon interaction, the only contribution to the
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absorbed dose is due to charged particles, meaning that no secondary electrons are produced

inside the cavity and that no electrons stop within the cavity volume [110]. By the Bragg-

Gray cavity theory, the dose in the medium (Dmed) relates to the dose in the cavity (Dcav)

as follows [110]:

Dmed = Dcav

✓
S

⇢

◆

med,cav

(4.8)

where (S/⇢)med,cav is the ratio of the average unrestricted mass collision stopping powers of

the medium and the cavity [119]. The Bragg-Gray cavity theory assumes that the particle

fluence does not change over the cavity and that the deposited energy is only due to charged

particles and does not consider secondary electrons with su�cient energy to produce further

ionization in the detector volume. The deviation of measurements from the Bragg-Gray

theory was severe for smaller cavities, such as the ionization chambers with small air cavities

and high-Z walls [118].

The Spencer-Attix cavity theory [110] takes into account delta electrons. The Spencer-

Attix cavity theory relates Dmed to Dcav as

Dmed/Dcav = Smed,cav (4.9)

where Smed,cav is the ratio of the mean restricted mass collision stopping powers of

the medium to that of the cavity. Considering the medium electron fluence spectrum

�e�e
med,E

K

(EK), Smed,cav is [110]

Smed,cav =

R E
K0

� �e�e
med,E

K

(EK)(L�,med/⇢)d(EK) + TEmed
R E

K0

� �e�e
med,E

K

(EK)(L�,cav/⇢)d(EK) + TEcav

(4.10)

where TEmed and TEcav are track end terms and account for a part of the energy deposited

by electrons with initial kinetic energies between � and 2� [110]. A deeper analysis of the

Spencer-Attix cavity theory can be found in [110] and revisions can be found in [120] and

[121].

An extended cavity theory, the Burlin theory, considers both electron and photon

absorption in the cavity and is applied to intermediate size cavities. This theory introduces

a weighting parameter d as a cavity limit to the Spencer–Attix equation [110]. This method

has been considered too simplistic and the Burlin cavity theory in no longer used in practice

[110].

4.2.3 Dose formalism

The AAPM Task Group No. 43 report [112] provides the protocol for the dose calculation

to brachytherapy sources. The dose rate
.
D(r, ✓) at a point of interest P(r0, ✓0) due to a sealed
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brachytherapy source can be determined in two dimensions 2D, as [112, 110]:

.
D(r, ✓) = SK .⇤.

GL(r, ✓)

GL(r0, ✓0)
.gL(r).F (r, ✓0) (4.11)

with r =
p

d2a + x2 and ✓ = arctan(da/x) where r is the distance (cm) from the origin to the

point of interest P, ✓ is the angle between the direction of radius vector r and the long axis of

the source, ✓0 defines the source transverse plane and is equal to ⇡/2 radians, SK is the air

kerma strength of the source (µGym2h–1) and GL(r, ✓), gL(r) and F (r, ✓) are the geometric,

radial dose and anisotropy functions, respectively. ⇤ is defined as the dose rate to water at

a distance of 1 cm on the transverse axis per unit air kerma strength source in water [110]:

⇤ =

.
D(r, ✓)

SK
(4.12)

4.3 Challenges in dosimetry for prostate brachytherapy

4.3.1 Prostate LDR and HDR Brachytherapy

Brachytherapy is a minimally invasive technique in which the radioactive material is

placed near (intracavitary) or inside (interstitial) the treatment area, making it a common

treatment for breast, prostate and melanoma cancers. This is the main treatment option for

prostate cancer when it is diagnosed at early stages. In addition, brachytherapy is also applied

as a boost therapy in advanced stage prostate cancers [122]. Prostate brachytherapy has the

particularity of placing the radioactive material inside the prostate, allowing a localized

irradiation of the tumor, seeking to minimize damage to healthy tissues and organs. This

treatment is divided into two di↵erent modalities based on isotope and dose rate (Figure

4.2).

LDR prostate brachytherapy uses permanent implantation of small 125I, 103Pd or 131Cs

radioactive seeds (with a size close to that of a grain of rice) with energy close to 30 keV.

HDR prostate brachytherapy uses higher energy isotopes, typically 192Ir radioactive wires

for temporary (⇠ 15 min) implantation.

Contrary to LDR prostate brachytherapy, HDR treatments are usually divided in up to

three sessions, with a typical duration of 15 min each [122]. Both treatments are ultra-sound

guided. The typical isotopes used in prostate brachytherapy are listed in Table 4.1 [123].

The relative biological e↵ectiveness (RBE) for low-energy X-rays was found to be very similar

to the low-energy gamma-ray brachytherapy isotope 125I [124]. Low-energy X-rays (40� 50

kVp) are used as electronic brachytherapy source (EBS) for 192Ir brachytherapy replacement.

The use of 131Cs in prostate brachytherapy is relatively recent (introduced in 2004 [125]).

This isotope emits photons with the higher energy (29 keV) and lower half-live (10 days) in

LDR prostate brachytherapy.
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Figure 4.2: (left) LDR prostate brachytherapy treatment scheme, with permanent
implantation of small radioactive seeds inside the prostate; (right) HDR prostate
brachytherapy using radioactive wires. The wires are introduced in the transperineal region
through brachytherapy needles. From [126].

Table 4.1: Most common isotopes for LDR and HDR prostate brachytherapy.

125I 103Pd 131Cs 192Ir
Year introduced 1965 1986 2004 1960s (afterloader)
Half-life (days) 59.4 16.97 9.7 73.83
Photon energy (average) (keV) 28 21 29 350
Seed spacing not critical <1.7 cm n.a.

Total dose Monotherapy 144 Gy 125 Gy
9.5 Gy BID ⇥ 2
6 Gy ⇥ 3 fractions ⇥ 2

Initial dose rate 7 cGy/hr 18-20 cGy/hr

Total dose EBRT + BT 108 cGy 100 Gy
9.5 Gy ⇥ 2
6 Gy ⇥ 3

4.3.2 The ideal dosimeter

Dosimetry is essential for quality assurance and quality control in prostate brachytherapy,

allowing real-time verification of the treatment and conceptually making it possible to

perform real-time dose correction thus optimizing the irradiation of cancer cells. In

addition, radio-sensitive organs must be spared to overdoses resulting from inaccurate source

placement. The main concern regarding in-vivo dosimetry is patient perturbation, so in that

sense the dosimetric system should not add complexity to the treatment. It should give real-

time information about dose distribution, envisaging real-time dose correction. Compatibility

with imaging systems, such as Computed Tomography (CT) andMagnetic Resonance Imaging

(MRI) is desired in order to establish and monitor both dosimeter and source positions [127].

An ideal dosimeter should present the following characteristics:

• high sensitivity;
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• high spatial resolution - brachytherapy sources produce high dose gradients due to their

small size [128];

• no dependencies on beam parameters/particle type independence for photons and

electrons;

• energy independence;

• real-time dose measurement;

• universality (ability to function with proton and electron beams);

• dose-rate independence;

• dose linearity;

• temperature independence;

• tissue equivalence;

• easy to use and calibrate;

• detectable in the anatomic volume to allow checking its position;

• not expensive, disposable use of its implantable part;

• insensitive to radio-frequency and magnetic fields;

• real-time readout.

In the following section, dosimetry tools and techniques are analyzed, envisaging the best

option for real-time in-vivo dosimetry in prostate brachytherapy.

4.3.3 Dosimetry tools and techniques

A dosimeter is a device capable of providing a reading correspondent to the dose deposited

by ionizing radiation in a sensitive volume. Based on di↵erent material properties, the most

common dosimetry techniques are radio-luminescence (RL), optically stimulated luminescence

(OSL), thermoluminescence (TL), ionization chambers, diodes, diamond and metal-oxide

semi-conductor field e↵ect transistor (MOSFET).

The ionization chamber is the golden standard for dosimetry, being used for beam

calibration in radiotherapy equipments. It has high sensitivity and linearity over a wide

energy range. However, its large volume, interference with imaging techniques, high cost and

reduced flexibility make it less suitable for in-vivo dosimetry applications.

Technologies based on delayed signals like the OSL or the thermoluminescence dosimeter

(TLD) have limited performance in in-vivo and real-time dosimetry. TLDs have to be

thermally annealed to erase the residual signal. Semiconductor based dosimeters, such as the

MOSFET or the diodes allow a real-time readout and currently are the most suitable options

for in-vivo dosimetry [129–131]. However, MOSFET dosimeters are prone to radiation

damage and have limited life-time. In addition they are not water equivalent.
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The first diamond dosimeters are now in the market [132]. These dosimeters are nearly

water equivalent for all beam energies, having precise and accurate measurements in photon,

electron and proton fields, radiation hardness, minimal energy, temperature and directional

dependence and a very small sensitive volume (0.004 mm3), being suitable for small field

dosimetry. Notwithstanding their outstanding properties for beam assessment and small

field dosimetry, they are still too bulky for in-vivo and in-situ dosimetry in brachytherapy.

Currently, the trend for in-vivo and real-time dosimetry is towards optical fiber

dosimeters. These dosimeters have a sensitive probe consisting of a small volume radio-

sensitive material coupled to an optical fiber light guide to the photodetector. The use of

scintillators as detection medium is one of the most common options in radiation physics,

mainly when fast timing is desired.

Organic scintillators, usually consisting of a fluor dissolved in an organic polymer such

as polymethylmethacrylate (PMMA) or polystyrene (PS), are well known for their fast

response, low-cost, flexibility, excellent spatial resolution and near-tissue/water equivalence

(Figure 4.3). These properties make them a straightforward option for in-vivo and real-time

dosimetry. Notwithstanding, a non-linear response of organic scintillators has been reported

for energies below 200 keV [133–141] as well as a temperature dependence lower than 0.5%

per �C [141–143].

In Table 4.2 are listed the main characteristics of the most common techniques for

radiation detection. Weighting the pros and cons of the available techniques for radiation

detection, the most suitable technologies for in-vivo dosimetry in brachytherapy are the

devices based on radioluminescent and scintillator materials, typically applied in fiber optic

dosimeters. The main disadvantage of the fiber optic dosimeters is the noise, know as stem

e↵ect, in the light guide. This e↵ect and the state-of-the-art in fiber topic dosimetry are

discussed in the following sections.
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Figure 4.3: X-ray mass attenuation coe�cients (left) and mass absorption coe�cients (right)
for water, soft tissue, polystyrene and polymethyl methacrylate. From [144].
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Table 4.2: Radiation detection technologies and their suitability for in-vivo dosimetry
Dosimeter type Pros Cons

Ionization chamber
fast
reference dosimeter

not tissue equivalent
requires correction factors
bulky
expensive

Diode
small dimension
real-time readout
low cost

not tissue equivalent
temperature dependence
directional e↵ects
dose rate dependence
not tissue equivalent

MOSFET

very small size
good spatial resolution
direct readout
low directional e↵ects

not tissue equivalent
expensive
short life-time

Diamond

almost tissue equivalent
radiation hard
no directional e↵ects
small volume

expensive
pre-irradiation
energy dependence
temperature dependence (small)

OSL
TLD

stability
no directional e↵ects
dose rate independence

laser readout
non real-time readout
Cherenkov

Radiographic film

2D dosimetry
good spatial resolution
permanent info
low cost

non real-time readout
no linearity
calibration prior usage

Organic scintillators

small volume
good sensibility
good spatial resolution
dose rate independence
fast readout
direct readout
no need for correction factors

Cherenkov
slight temperature dependence [142, 145]
dependence at low energies

Inorganic Scintillators slower than organic scintillators temperature dependence

4.4 State-of-the-art in fiber optic dosimeters

4.4.1 Introduction

The first works on fiber optic sensors for ionizing radiation detection are dated from the

decade of 1990 [134, 146–149]. Typically, these dosimeters use a radio-sensitive material for

conversion of gamma radiation into visible light, that in turn is transmitted to a sensitive

photodetector through the fiber optic. Such dosimeters can be scintillation dosimeters

(organic) or radioluminescent dosimeters. Typical works on fiber dosimeters use polyvinyl

toluene (PVT) based scintillators and scintillating optical fibers. Other fiber dosimeters

employ aluminum oxide doped with rare-earth elements, presenting RL and OSL signals.

OSL was first suggested as a dosimetry tool in the 1950s�1960s by Antonov-Romanovskii et

al., Braunlich et al. and Sanborn and Beard [150].

OSL materials also emit prompt RL signal during irradiation. This signal can be
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used for dosimetry as the scintillator luminescence emission [151]. RL/OSL optical fiber

dosimeters, based on doped SiO2, Mg2SiO4:Tb and Al2O3:C have been studied for application

in brachytherapy and for photons, electrons and protons in the MV range [152–158]. These

materials present relevant temperature dependence [157, 158] and usually there’s a need for

pre-irradiation for stabilization [159, 160] or annealing to eliminate prior irradiation history.

Some works report on thermoluminescence properties of doped SiO2 for LDR and HDR

brachytherapy [161–163], although not suitable for real-time and in-vivo dosimetry.

Fiber optic dosimeters with organic scintillators are the most promising devices for in-

vivo and real-time dosimetry and have been extensively explored over the last decades. The

most significant works on fiber optic dosimeters are listed in Table 4.3.

Up to the date, the Exradin W1, from Standard Imaging, is the only optical fiber based

dosimeter available in the market, making a mark in a 25 year research period on the subject.

The Exradin W1 scintillator is near-water equivalent thus minimizing beam perturbation and

artifacts in imaging devices. The device is based on organic scintillators. Studies on pre-

commercial and commercial versions have been reported [164–170]. The device consists of a

scintillating optical fiber (SOF) (1 mm diammeter by 3 mm long, outer diammeter 2.8 mm)

coupled to a PMMA optical fiber with a 2.2 mm diameter jacket. The light is measured

by a RGB photodiode (MCSiAT, Mazet, Germany) [164] and the green and blue channels

are connected to a SuperMAX dual-channel electrometer (Standard Imaging). The detector

nominal response is 60 pc/Gy.

Up to this date, the main challenges regarding in-situ dosimetry with fiber optic

dosimeters in prostate brachytherapy are the probe volume, temperature dependence [141–

143, 255–257], position information, large range of dose and dose rate [127] and the noise

generated in the optical fiber cable (stem e↵ect) [217, 142]. In addition, brachytherapy

dose distributions present high gradient [127] so uncertainties in the detector position may

generate substantial dose uncertainties [258]. In the following section, causes for stem e↵ect

and the techniques to overcome this issue will be presented.

4.4.2 Stem e↵ect in fiber optic dosimeters

The stem e↵ect in a fiber optic dosimeter has two major contributions: Cherenkov

radiation and the fluorescence and phosphorescence generated in the fiber by electron

excitation [134, 221, 255, 258]. Fluorescence may occur in the light guide due to the intrinsic

scintillation properties of the material constituting the optical fiber [154]. In addition, defects

in the matrix, which act as electron traps, can originate phosphorescence [155], which is

caused by charge trapping and detrapping phenomena.

The fluorescent light emission is isotropic, while the Cerenkov e↵ect is characterized by

anisotropic emission [171].

Cherenkov radiation is the light emitted when a charged particle, such as a beta-particle,
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crosses a dielectric medium with velocity higher than the velocity of light propagation in that

medium:

�n > 1 (4.13)

where n is the refractive index of the medium and � is the ratio of the velocity of the particle

in the medium to that of light in vacuum [109]. The particle generates a cone of light

spreading out at the Cherenkov angle 

 = arccos

✓
1

�

◆
(4.14)

which projection gives the ellipse or ring of the ring-imaging Cherenkov (RICH) detectors.

The Cherenkov radiation contribution to the stem e↵ect depends on the type of the radiation

and on the volume of the dosimeter in the radiation field. For photon beams, the Cherenkov

background might be negligible but not for electron beams [146, 134]. Considering Eq. 4.13,

the energy threshold (Eth) for Cherenkov radiation production in a given material depends

on the refractive index (n) of that material:

Eth = m0c
2

✓
1�

r
1 +

1

n2 � 1

◆
(4.15)

where the m0c
2 corresponds to the electron rest-mass energy of 511 keV.

The Cherenkov emission spectrum covers the entire visible domain and the energy

threshold of production depends on the refractive index of the medium and on the type

of charged particles. For electrons, this threshold energy is 178 keV in PMMA and 144 keV

in PS [207], typical materials used in plastic optical fibers.

The emissions of the most common radioactive sources used in LDR prostate

brachytherapy (125I, 103Pd, 131Cs) present an average energy of about ⇠30 keV, i.e. below

the energy threshold for Cherenkov radiation production in common plastics such as PMMA

or PS used in optical fibers. However, in the case of HDR prostate brachytherapy, the photon

energy spectrum for 192Ir is between 0.136 and 1.06 MeV with an average energy of 380 keV,

which is above Cherenkov radiation production threshold for PMMA or PS. For this reason,

dosimeters using plastic optical fiber cables should take into account the Cherenkov radiation

contribution to stem e↵ect. Cherenkov radiation is mainly produced by Compton electrons.

The Cherenkov light emission occurs during the time required for the electron to slow down,

reaching an energy value below the threshold energy, so Cherenkov light emission decay time

is usually in the order of picoseconds in solids. The number of photons emitted per electron

in common Cherenkov media is only several hundred per MeV [109]. The yield of Cherenkov

photons per unit of wavelength (�) is proportional to 1/�2 [109]. The spectral distribution of

Cherenkov radiation is broad, covering the entire visible range but it is stronger in the blue

region (400-480 nm) where typical plastic scintillators emit their light. Since the magnitude

of the Cherenkov radiation emitted depends on the optical fiber extension being irradiated,

optical fiber cross section and its numerical aperture [259], Cherenkov radiation is particularly
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relevant in external beam dosimetry [146, 260] and both primary radiation beam and stray

radiation present in the treatment room contribute to the stem e↵ect [255].

4.4.3 Techniques for stem e↵ect removal

The two main contributions to stem e↵ect, the radioluminescence of the material and

Cherenkov radiation, are both related to the material properties and the stem e↵ect intensity

is related to the portion of the cable being irradiated. Several studies have proposed di↵erent

solutions to overcome this issue. The main options are based on the subtraction of the

background signal, timing di↵erences between scintillation and Cherenkov radiation and

chromatic removal (Figure 4.4).

photodetector

i) filtration

ii) chromatic removal or spectral discrimination

iii) temporal discrimination

iv) air core light guide

CCD

optical filter

PMT

PMT

current meter

current meter

LINAC gate to photodetector

cherenkov signal

scintillation signal

cherenkov signal

gate

luminescence signal

Figure 4.4: Techniques for Cherenkov radiation removal.

i) background removal

A simple solution for background removal was initially proposed by Beddar et al.

[146, 186], consisting on the use of a second optical fiber but without the scintillator. This

would allow to quantify the amount of stem e↵ect generated in the light-guide fiber. In

this solution the current signal generated in the dummy fiber, containing no scintillator, is

subtracted to the signal of the fiber with the scintillator. The main inconvenience of this
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technique is the limitation for high gradient dose fields due to the very small size of the

radioactive sources used in HDR brachytherapy [128] and the doubling of the probe volume

due the the addition of a second dummy fiber.

ii) chromatic removal or spectral discrimination

Optical filtration and chromatic analysis have been proposed by de Boer et al. [195], in

1993. If the scintillation light has an emission wavelength out of the Cherenkov radiation

range, it is possible to remove the stem e↵ect contribution by filtration using dichroic mirrors.

However, there are some technical di�culties regarding this technique since typical organic

scintillators have emission in the blue region.

Guillot et al. [207] evaluated the spectral method in situations where the Cherenkov light

is dominant over the scintillation light, with 6 MV photon beam from a medical linac. The

authors found that the accuracy of the spectral method depends on the procedure used to

determine the calibration factors of the plastic scintillator dosimeter and on the attenuation

properties of the optical fiber used. They reported that the spectral method can correct the

Cherenkov light e↵ect with an accuracy level of 1%.

iii) temporal discrimination

Temporal discrimination is based on the temporal discrepancies between RL signal in

Al2O3:C crystal and the produced Cherenkov. The Cherenkov emission is prompt emission, in

the picoseconds range and the fluorescence is in the nanoseconds range. Both are very short-

lived when compared with the RL signal that is a delayed process [158]. A temporal filtration

based method has been proposed by Clift et al. [198–200] for pulsed mega-voltage electron

and photon beams that are commonly used in radiotherapy treatment. The dosimeter

comprises the scintillator long decay time constant (264 ns) BC-444G (Saint-Gobain) coupled

to a polystyrene core optical fiber. However, this method is only applicable in pulsed radiation

sources where the trailing edge of the incident pulse is shorter than the decay time of the

scintillator used. Clift et al. [200] concluded that the temporal method of minimizing the

stem e↵ect (Cherenkov and fluorescence) is more e�cient than optical filtration methods.

Similar approach was proposed by Andersen et al. [261]. This method is based on gated

counting in connection with pulsed linear accelerator radiation beams.

iv) air core light guide

Lambert et al. [223, 224], Suchowerska et al. [243, 244] and Liu et al. [259] developed

a Cherenkov-free scintillation dosimeter with an air core light guide for external beam

radiotherapy. The setup comprises a BC400 (Saint-Gobain) scintillator coupled to a silvered

air core light guide with 200 mm length. The air core is connected to a PMMA optical fiber. A

second fiber with the same length is used to subtract the stem e↵ect produced in the PMMA

waveguide. Both PMMA fibers are outside the primary radiation field. Although Cherenkov

radiation production is highly suppressed since it is not generated in the air core due to
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refractive index of the air (close to that of vacuum), the remaining PMMA optical guide

may su↵er from stray radiation. The dosimeter was evaluated in 6 MV and 18 MV photon

beams and 6 MeV and 20 MeV electron beams, in both static and dynamic fields. The depth

dose measurements for the photon beams agreed with ionization chamber measurements to

within 1.6%, except in the build-up region due to positional uncertainty. For the 6 MeV and

20 MeV electron beams, the percentage depth dose measurements agreed with the ionization

chamber measurements to within 3.6% and 4.5%, respectively. For field sizes of 1⇥1 cm2

and greater, the air core dosimeter readings agreed with diamond detector readings to within

1.2%.

v) other techniques

In a similar approach to the temporal discrimination, Lee et al [225] developed a solution

which adds shutter mechanisms to block the signals quantifying the residual background

signal. The shutter is placed outside the primary beam and is connected to a 20 m, 1 mm

core PMMA optical fiber coupled to a Hamamatsu H3164–10 photomultiplier unit located

outside the radiation room. The background signal is subtracted from the total measurement

acquired in a subsequent irradiation, enabling the luminescence signal to be extracted. The

tested LCD shutter version presented large uncertainty (±2.4%) and the mechanical shutter

version was in close agreement (±0.29%) with output factors measured with an ionization

chamber.

4.5 Development of the brachytherapy dosimeter prototype

4.5.1 The dosimeter concept

Currently, prostate brachytherapy procedures are performed without proper quality

assurance and quality control [262]. The presented studies and results of this work envisage

the development of a dosimeter prototype for both LDR and HDR prostate brachytherapy.

Although these treatments present some similarities, when referring to in-vivo dosimetry,

di↵erent challenges arise mainly concerning the automation of HDR afterloaders whereas

LDR procedures require manual loading of the radioactive seeds. Besides these operational

di�culties, technical challenges regarding stem e↵ect removal are a major concern in HDR

brachytherapy. It is intended that the dosimeter can be inserted into the human body throw

standard catheters or typical brachytherapy needles of gauge 17 (nominal inner diameter of

1.067 mm) and perform in-situ real-time dosimetry (Figure 4.5). In addition, complementary

probes can be used and inserted with urinary catheters into the urethra. Besides providing

a tool for both quality assurance and control, dosimetric data will be acquired in real-time

which in turn will allow performing real-time dose correction and treatment adjustments.

The dosimeter comprehends two main parts, a disposable probe and the photodetector

and readout electronics (Figure 4.6). A low cost disposable probe is an attractive feature
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Figure 4.5: Concept of the prostate LDR-brachytherapy dosimeter.

for this type of device, as it is intended for insertion into the human body, avoiding time

consuming sterilization procedures and storage logistics. The disposable probe consists of a

radiation sensitive tip made with a scintillating optical fiber which is optically attached to a

clear PMMA core plastic optical fiber for scintillation light guidance into the photodetector.

SiO2 optical fibers are known for lower attenuation (up to 10 times lower at 650 nm),

however plastic optical fibers present some advantages over the SiO2 fibers, namely higher

numerical aperture and higher acceptance angle thus allowing higher light collection from

the scintillators and minimum bending radius [171]. Notwithstanding,the lower density and

larger numerical aperture and acceptance angle of the PMMA fibers make them more prone

to be a↵ected by Cherenkov radiation when compared to the SiO2 fibers.

Two versions were developed, with 0.5 mm and 1.0 mm PMMA waveguides, as depicted in

Figure 4.7. A standard ionization chamber, a MOSFET based dosimeter (typically used for

dose assessment in the rectum in prostate brachytherapy) and a brachytherapy needle gauge

17 (ga17) are also included for size comparison. The dosimeter is intended for application

in both LDR and HDR brachytherapy. Considering the low-light level of scintillation light

produced in LDR regimes, a high-gain photodetector and low noise electronics are required.

The SiPMs were the natural choice for photodetector due to their versatility, small size,

robustness and lower cost when compared with the standard photomultiplier tubes.

The developed system allows simultaneous current and pulse mode operation (based

on the same electronics previously described in Section 3.3) and in Appendices A and

B. In the following sections, works related to the dosimeter probe and initial tests in

clinical environment are presented. Up to this date no solution for stem e↵ect removal
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Figure 4.6: Prototype of the dosimeter showing the optical fiber probe placed in a PMMA
phantom.

Ionization chamber

MOSFET dosimeter

1mm ø BCF-12 dosimeter

0.5 mm ø BCF-12 dosimeter

Brachytherapy needle ga17

Figure 4.7: Prototype of the dosimeter probes with 0.5 mm and 1.0 mm diameter showing
the relatively small size in comparison with an ionization chamber, a MOSFET dosimeter
and a brachytherapy needle gauge 17.

was implemented and initial studies were performed to assess the magnitude of this e↵ect in

the plastic optical fibers.

4.5.2 Sensitive probe development

Temperature dependence

The response of scintillating optical fibers and clear optical fibers was evaluated in the

20 � 40 �C temperature range. Several optical fibers 9 cm long (Table 4.4), hand-polished

on both sides, were inserted into a copper rod and placed inside a light tight aluminum

enclosure. The fibers under evaluation were coupled to two optical fibers, one for blue light

input from a light emitting diode (LED) and the other one for light output, connected to a
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Table 4.4: Measured optical fibers light loss for the BCF-12, BCF-91A, Avago HFBR-
R/EXXYYYZ and ESKA HMCKU-1000PW optical fibers.

Optical fiber Core material Light loss
(%/�C )

other studies
(%/�C )

Saint-Gobain BCF-12 PS �0.01 -0.13 (light generated) [142]
-0.15[143]
-0.263 [141]

Saint-Gobain BCF-91A PS -0.50� 0.55
Avago (HFBR-R/EXXYYYZ) PMMA -0.01� 0.04
Multi-core (HMCKU-1000PW) PMMA 0.19� 0.20

SiPM biased and read by a picoammeter (Keithley 6487). The temperature was monitored

with two digital temperature sensors (DS18B20, Maxim Integrated) and controlled by a

Peltier cell with a PID system composed by a micro-controller (Arduino Mega) and a motor

shield (Adafruit) (Figure 4.8). Both SiPM and LED temperature were monitored and kept

constant. Four fibers were evaluated, a BCF-12 (Saint-Gobain) scintillating optical fiber,

a BCF91-A (Saint-Gobain) WLS fiber, a clear optical fiber (Avago) and a multicore POF

(HMCKU-1000PW, 19 cores, from Asahi Kasei, Japan). Measurements were performed by

increasing the temperature from 20 up to 40 �C and decreasing the temperature from 40

down to 20 �C. Results are depicted in Figure 4.9 and summarized in Table 4.4.

The Avago (HFBR-R/EXXYYYZ) PMMA optical fiber has low temperature coe�cient

for blue light. Similar results had been reported elsewhere [141]. The multicore fiber

(HMCKU-1000PW) presented a high temperature coe�cient in the conditions of this study.

The core and clad materials are PMMA and fluorinated polymer, respectively. The observed

high temperature coe�cient might be related to separation between cores due to thermal

expansion with the temperature increase.

The scintillating optical fiber (BCF-12, Saint-Gobain) and the clear optical fiber (PMMA

core, Avago) showed little dependence on temperature, of about -0.01%/�C and -0.01 �
0.04%/�, respectively. The BCF91-A WLS fiber presented a -0.50 � 0.55%/�C variation

in the amount of transmitted light. This value is similar to temperature dependence

Figure 4.8: Experimental apparatus for the study of scintillating fiber optics temperature
dependence.
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Figure 4.9: Fiber optics dependence on temperature.

observed by Wootton and Beddar [142] for the BCF-60 green scintillating optical fibers

(Saint-Gobain). The author’s [142] examined the temperature dependence of the BCF-60

and BCF-12 scintillating fiber (both from Saint-Gobain) and two reference optical fibers

without the scintillator. The variation on the intensity and spectral distribution of light

was quantified with a spectrometer. The authors verified that the total intensity of the

light generated by the BCF-60 and the BCF-12A decreased by 0.32% and 0.13% per �C,

respectively. By measuring the temperature dependence of the scintillating fibers with blue

light from a LED we are assuring that the possible temperature dependence is a property

of the plastic solvent and not of the fluor. In addition, this study allows the assessment

of the possible contribution of the optical fiber light guide to the dosimeter temperature

dependence. Studies on temperature dependence of organic scintillators (or RL dosimeters

with Al2O3:C) from Andersen et al. [256], Lee et al. [141] and Wootton and Beddar [142]

evaluate the temperature dependence of the dosimetric probe, accounting for the contribution

of the optical fiber guide. The majority of these studies immerse the sensitive tip of the

dosimeter in a beaker with water that is heated gradually and the dosimeter is irradiated

with X-rays or with a linear accelerator in the MeV range. Buranurak et al. [143] evaluated

the temperature dependence of four scintillating fibers (BCF-12 and BCF-60 from Saint-

Gobain and 81-0083 and 81-0087 from Industrial Fiber Optics, 2 mm long and coupled to a

10 m long GH2001-P ESKA PMMA optical fiber) by placing the dosimeter probe directly on

top of the thermo electric cooler plate. The fibers were tested in the 15� 40 �C range with

a 50 kV X-ray source. In a second test, a 10 cm long BCF-60 scintillating fiber was coupled

to a PMMA fiber cable to ensure that only the scintillating fiber was exposed to the X-ray

beam. The authors used four di↵erent band pass filters and verified that the temperature
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e↵ect depends on the emission wavelength. For the emission peak of the scintillators, the

authors reported a temperature coe�cient of -0.15 ± 0.01 %/K for the BCF-12 and -0.55

± 0.04 %/k for the BCF-60 fiber and concluded that the optical fiber cable didn’t present

temperature dependence.

The BCF-91A wavelength shifting fiber revealed a larger dependency with temperature,

in comparison with the BCF-12 blue scintillating optical fiber. Both fibers core is made of

PS, in BCF-12 a fluor shifts the ultraviolet light to blue and in BCF-91A a second fluor

shifts this blue light into green light. The emission spectrum of the BCF-91A is similar

to the BCF-20 green scintillating optical fiber [263] and both present similar temperature

dependence. The probable cause is due to the fluor responsible for the blue to green shift.

Because the setup used in this study does not excite the BCF-12, we’re not able to evaluate

the contribution of the first fluor to the possible temperature dependence of the fiber. This

can be the reason for the di↵erent results obtained in comparison with other works. Also this

is in agreement with the results from Lee et al.[141], attributing the temperature influence

to the scintillation kinetics. New studies will be performed using a UV-LED or radioactive

source.

Irradiation of the optical fiber cable in a Linac with 60Co photons

The BCF-12 emission is in the 400 � 600 nm range (Figure 3.22), with a peak emission

at 435 nm. It is known that the Cherenkov emission wavelength range is broad and in the

blue region. To verify if there is a superposition of the scintillating light with the stem e↵ect,

the optical fiber cable was irradiated with 60Co photons in a LINAC. A 25 m long spool of

optical fiber was placed in a 20⇥20 field and a source to surface distance of 20 cm. The

irradiation rate was set to the maximum value of 900 MU/min. A spectrometer USB-4000

from Ocean Optics was used. The resulting spectrum is presented in Figure 4.10.
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Figure 4.10: Wavelength range of the stem e↵ect light produced in the optical fiber cable
when irradiated by 60Co photons in a LINAC.

The wavelength range of the stem e↵ect light produced is wide and in the 300 � 700

nm range with an apparent peak at ⇠500 nm. This is in agreement with other studies
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[136, 217, 74, 257, 264, 265]. However one should note that the length of the optical fiber is

enough due to the di↵erent attenuation (dB/km) with �. Typically a step-index POF presents

lower attenuation at green, yellow and red wavelengths. Nowotny et al. [266] reported the

lower stem e↵ect of the PMMA fibers in comparison to PS or silica fibers, although it is

not negligible once the stem e↵ect emission spectrum overlaps the emission of the BCF-12

scintillating optical fiber. Further studies on the stem e↵ect contribution to the total signal

are presented in Section 4.5.4.

Dosimeter response under low energy X-ray beam

The dosimeter response when irradiated with a low energy X-ray beam was evaluated

using a 0.5 mm diameter probe (5 mm long BCF-12 scintillating fiber and 3 m long DC-500

PMMA optical fiber). This probe allows insertion into standard stainless steel brachytherapy

needles, gauge 17 (17ga) (see Figure 4.7). The brachytherapy needle was placed inside a

PMMA phantom, at 3.5 cm depth, as schematized in Figure 4.11. The X-ray tube used

was an Oxford Instruments series 5000, 50 kVp and 1 mA max, with a 125 µm Be window

and a 25� cone angle. The dosimeter probe was inserted into the brachytherapy needle.

The fiber optic probe was shielded from ambient light. Measurements were performed in

the 15 � 50 kVp range, by varying the X-ray tube current in the 0.1 � 1.0 mA range. The

same measurements were repeated by removing the brachytherapy needle and placing the

dosimeter probe in the same configuration in the PMMA phantom. Results are plotted in

Figure 4.12. The dosimeter response is 30 times lower when placed inside the brachytherapy

needle, for the 50 kVp X-ray beam. At lower tube voltages of 40 and 30 kVp, the dosimeter

response when placed inside the brachytherapy needle is almost 50 and 100 times lower,

respectively. For the lower energy X-ray tube voltages of 15 and 20 kVp, the beam is fully

filtered.

The brachytherapy needles (17ga) have a nominal thickness of 0.203 mm. At 15 and

50 kVp, the X-ray mass attenuation coe�cients (µ/⇢) for the titanium are 35.87 and 1.213

cm.g�2 and for iron 57.08 and 1.958 cm.g�2 [144], respectively. Attenuation ranging from

96% to 10.5% is expected for 15 kVp and 50 kVp X-rays, for a titanium target with 0.203

Figure 4.11: Illustration of the experimental setup for the study of the dosimeter response
under low energy X-ray beam with and without brachytherapy needle.
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Figure 4.12: Dosimeter response for 15 � 50 kVp X-rays in PMMA phantom (left) and
inserted in a stainless steel brachytherapy needle (right).

mm length. For a iron target of 0.203 mm, the attenuation is in the 99.98 � 26.86% range

for the 15 � 50 kVp energy range. This fact must be taken into consideration regarding

applications such as LDR brachytherapy, where the average isotope decay energy is 30 keV

and the brachytherapy needles are made of stainless steel or titanium. The X-ray beam

attenuation due to the stainless steel brachytherapy neddle is depicted in Figure 4.13.

For a 15, 20 and and 30 kVp X-ray beam, the beam attenuation is above 99%. Although,

for a 50 kVp X-ray beam an average attenuation of 96.8% was observed, whereas a ⇠27%

was estimated. This is mainly justified by the strong component of low energy X-rays even

at 50 kVp voltage. To verify this, the X-ray tube spectrum was acquired placing aluminum

filters in front of the X-ray tube window. An Amptek XR-100SDD silicon thermo-electrically
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Figure 4.13: Variation of the dosimeter response for 15�50 kVp with X-ray beam hardening
due to filtration resulting from the brachytherapy needle.
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cooled solid-state silicon drift detector with Be window was used. This detector doesn’t allow

to obtain the X-ray spectrum at energies above ⇠30 kVp, for that a CdZ detector would be

required. The X-ray spectra without Al filter and for 0.5, 1.0 and 1.5 mm Al filters are

plotted in Figure 4.14, showing a strong attenuation of low energy X-rays, justifying the

results presented in Figure 4.13.
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Figure 4.14: X-ray emission spectrum with and without Al filters of di↵erent thickness for
30� 50 kVp tube voltage.

4.5.3 Dosimeter calibration

An initial evaluation of the dosimeter response to low energy X-rays was performed. The

X-ray tube used was an Oxford Instruments series 5000, 50 kVp and 1 mA max, with a 125

µm Be window and a 25� cone angle. The measurements were taken for 30, 40 and 50 kVp

with 0.5, 1.0 and 1.5 mm Al filters for X-ray beam hardening.

The measurement of the dose rate was performed using an ionization chamber (RaySafe

Xi Transparent). The ionization chamber was placed in a PMMA phantom, at 10 mm depth

and in line with the X-ray window at 10 cm distance (Figure 4.15). The measurements were

repeated for phantom depths of 10 to 30 mm, in 5 mm intervals and during the measurements

the X-ray tube voltage was kept constant, while the current varied from 0.05 to 1.0 mA.

The measurements were repeated by replacing the ionization chamber with the optical fiber

dosimeter. The fiber optic dosimeter probe consisted of a 5 mm BCF-12 (Saint-Gobain)

scintillating optical fiber, coupled to a 3 m long PMMA 1 mm diameter core optical fiber.
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Figure 4.15: Illustration of the experimental setup for the dosimeter calibration to low energy
X-ray beams.

The light was read by a Hamamatsu S10362-11-100U MPPC. The MPPC was biased at 73.5

V and read using a Keithley 6487 picoammeter. The SiPM temperature was kept constant

at 21�C with a peltier cell. The dosimeter response is presented in Figures 4.16 and 4.17

related to the dose rate measured with the ionization chamber.

From Figure 4.16, one observes a linear response of the dosimeter for all the energies

and dose rates. When there is no aluminum filter for beam hardening, for X-rays at higher

tube voltages it is observable a strong attenuation. For a 50 kVp tube voltage, a 72% beam

absorption was observed for a PMMA depth variation of 20 mm. For a PMMA depth in the

range 10 � 30 mm, the estimated attenuation ranges from 22.40% up to 53.29% [144]. The

data obtained with the fiber optic dosimeter are in agreement with the data obtained with the

ionization chamber, corresponding to a dose rate variation of 7.1 cGy/s to 2.0 cGy/s (Figure

4.18), translating into a 72% absorption also measured with the ionization chamber. When

a 1.5 mm Al filter is used for beam hardening, the observed attenuation due to the PMMA

(10� 30 mm) was ⇠57%. For a 50 keV X-ray beam, the estimated X-ray attenuation due to

a 1.5 mm Al filter is ⇠14%, while for a 30 keV X-ray beam it is ⇠37% [144]. For the same

PMMA thickness of 10 mm, for a 50 kVp voltage an attenuation of ⇠73% was observed for

the ionization chamber while for the fiber optic dosimeter a ⇠59% attenuation was observed

and for a 30 kVp voltage a ⇠81% attenuation was observed with the ionization chamber

and ⇠72% with the fiber optic dosimeter. The deviation of the experimental data from the

expected attenuation are justified by the strong contribution of the low energy X-rays where

no filtration is used (Figure 4.14).

Figure 4.17 depicts the dosimeter response in terms of the dose rate, measured with the

RaySafe Xi Transparent ionization chamber for the same conditions. The measurements

range from dose rates of hundreds nGy/s to hundreds of µGy/s. The ionization chamber is

specified for a dose range of 100 nGy/s to 20 mGy/s with an uncertainty of 5% (60 � 150

kVp). This ionization chamber has a 7.5 mm diameter while the dosimeter probe has a

sensitive volume of 3.9 mm3, corresponding to a BCF-12 SOF 1 mm diameter, 5 mm length.

From the results, one can observe that the dosimeter dependency with energy is low for
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X-ray beams at tube voltages > 40 kVp at dose rates below 1 µGy/s but it presents some

dependency at higher dose rates. This behavior is observable at PMMA depth ranging from

10 to 30 mm and for the di↵erent aluminum filtering conditions, so it should not be related

to the X-ray beam hardening.

The developed fiber optic dosimeter can be operated in both pulse and current mode.

Measurements were repeated for pulse mode readout at 30, 40 and 50 kVp voltages without

aluminum filtering. The color map is obtained by dividing the normalized response of the

fiber optic dosimeter by the normalized response of the ionization chamber. From the color

map of the plots on the left (pulse mode, no Al filter) and the ones on the right (current

mode, with additional Al filters) of Figure 4.18 one can observe that the pulse mode readout

presents a sensitivity closer to the one of the ionization chamber. This analysis also shows

that, for the same PMMA depth, the response of the dosimeter reveals low dependency on

the dose rate for both pulse and current operation modes.

For the same filtration conditions, PMMA depth and Al filtering, one can observe that

for the 30�50 kVp voltages (columns) the pulse mode data presents lower variation than the

current mode. This is mostly significant at extreme values corresponding to higher PMMA

depths and no Al filtration.

Lee et al. [141] developed a dosimeter comprehending a 10 mm long, Ø 1.0 mm BCF-12

SOF, coupled to a PMMA optical fiber (GH-4001). The author’s evaluated the dosimeter

response in count mode in the 25 � 60 �C temperature range, for a 50 � 150 kVp X-ray

tube potential. The dosimeter revealed a non-linear behavior, with the count rate increasing

exponentially as the X-ray tube potential increases. The author’s compared the optical fiber

dosimeter sensitivity to a semiconductor dosimeter, obtaining a linear relation corresponding

to a 0.678% increase across the X-ray tube potential. The comparison is not reliable since

the semiconductor dosimeter was rated for operation in the 15 � 35 �C temperature range

and also revealed nonlinear behavior.

Lambert et al. [220] evaluated a dosimeter comprehending a organic scintillator (BC-400)

coupled to an 1.0 mm Ø core optical fiber for the 50� 125 kVp energy range. The dosimeter

showed linear response in the energy range.

Boivin et al. [194] evaluated a dosimeter comprehending a SOF, BCF-60 Ø 1.0 mm

coupled to a PMMA POF. The calibration was performed in a 120-kVp and 220 kVp

orthovoltage unit beam. The authors evaluated several photodetectors, namely PMT, APD

and PIN photodiode. The authors compared the signal to noise ratio of the several versions.

Although the behavior is linear as the dose rate increases, the presented data reveal high

deviations in the PMT and APD readout versions when compared with the commercial

Exradin W1 and PIN photodiode.

In comparison with other works related to SOF and plastic dosimeters, the results here

presented reveal an improvement in terms of sensibility, linearity and low dependency with

energy by operation in pulse mode. This is mainly due to the stability achieved with the

developed system.
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4.5.4 In-vitro studies with 192Ir HDR-Brachytherapy source

The dosimeter response was evaluated under HDR regimes by irradiation with an 192Ir

HDR-brachytherapy source from an afterloader (Nucletron, Figure 4.19). The gamma-ray

emission from the 192Ir source ranges from 50 to 800 keV with peaks at 316 keV and 468 keV

and 380 keV average energy [128, 220].

The studies were performed at the installations of Serviço de Radiologia of CHUC. The

afterloader is placed in a treatment room (bunker) and for safety reasons the Afterloader

equipment is controlled remotely throw a control room. During brachytherapy treatments

only the patient stays inside the treatment room. This required to prepare a remote system

to control the dosimeter prototype. A portable PC, used for data acquisition and control

of the dosimeter was placed inside the bunker to communicate via a network cable with a

second laptop at the control room. The dose measurements were performed with an ionization

chamber (PTW 31010 Semiflex Chamber 0.125 cm3) read by an electrometer (PTW UNIDOS

Universal Dosemeter) also controlled remotely.

The dosimeter optical fiber probe was placed in a PMMA phantom on top of a

microSelectron (Nucletron) source position check ruler, as depicted in Figure 4.20.

The measurements were repeated for the ionization chamber. The measurements of

the dosimeter response were performed using two probe setups of Ø 0.5 mm and Ø 1.0

mm versions, both with 5 mm long BCF-12 scintillating optical fibers of the corresponding

diameter. For reference and stem e↵ect quantification a passive plastic optical fiber Ø 0.5

mm and with the same length (but without scintillator) was used. Results are plotted in

Figure 4.21. Both Ø 0.5 mm and Ø 1.0 mm versions present similar response. The observed

di↵erence of these relative to the ionization chamber is mainly due to the higher volume of

the ionization chamber.

The stem e↵ect is generated from direct irradiation of the waveguide optical fiber but

also due to stray radiation. When operated in current mode, a simple approach for stem

(a)                                                 (b)                                                       (c)                                            (d)

Figure 4.19: (a) Nucletron microSelectron 192Ir afterloader used at CHUC (b) treatment
bead with the calibration ruler and ionization chamber (c) detail of the ionization chamber
in a PMMA phantom, 15 mm thick (d) detail of the calibration ruler with the SOF dosimeter
placed in a PMMA phantom.
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PMMA phantom
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Figure 4.20: Schematics of the setup used for the HDR tests with an afterloader using an
192Ir source.
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Figure 4.21: Fiber optic dosimeter response when irradiated with 192Ir and comparison with
ionization chamber and clear optical fiber for stem e↵ect account.

e↵ect removal can be achieved by subtracting the stem e↵ect signal. By computing the ratio

of the normalized response of the Ø 0.5 mm reference probe (without scintillator) to the Ø

0.5 mm dosimeter probe (with scintillator) one verifies that the stem e↵ect contribution is

lower than 1.6% when the 192Ir source is at 0.0 mm position. The amount of observable stem

e↵ect increases up to ⇠10% at 3 cm from the 192Ir source and ⇠25% at distances above ⇠10

cm from the 192Ir source (Figure 4.22). Envisaging the application in dosimetry for prostrate

brachtherapy, the dosimeter should comprehend correction for stem e↵ect contribution or

stem e↵ect removal techniques.
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Figure 4.22: Stem e↵ect contribution with 192Ir source for Ø 0.5 mm probe.

4.6 Final remarks

The dosimeter shows a linear response with dose and is capable of detecting nGy/s dose

rate variations like an ionization chamber. From the calibration of the dosimeter response

in a wide dose rate range, nGy/s to µGy/s (Figure 4.17), it was possible to verify that the

dosimeter based on scintillating optical fibers allows operation in a wide dose range even at

low energies. In addition, the operation in current mode presents lower dependency on the

dose rate and on X-ray beam energy. Further studies at higher energies are under planning.

It was observed a deviation between the fiber optic dosimeter and the ionization chamber

response for the di↵erent conditions of PMMA depth and aluminum filtering. Although the

dosimeter response is linear, the sensitivity of the fiber optic dosimeter shows not to be the

same for all X-ray energies, dose rate and beam hardening.

The results obtained for both studies at low energies, performed by irradiation of the

dosimeter probe with X-rays from an X-ray tube operating in the potential range 30�50 kVp,

and at higher energies with an 192Ir source from an afterloader used for HDR-brachytherapy

treatments, are in agreement with similar studies with optical fiber dosimeters with organic

scintillators [220].

Besides fulfilling all the requirements for in-vivo and real-time dosimetry, the high

sensitivity of this device makes it a suitable candidate for application in LDR brachytherapy.

The first round of studies in the clinical setting allowed to demonstrate that fiber optical

based dosimeters are suitable for dosimetry in regimes such the ones in HDR prostate

brachytherapy. Although the stem e↵ect was minimal, future work should comprehend more

studies regarding the stem e↵ect in optical fiber cables. The versatility and easiness of use of

this kind of device allows application in other radiotherapy modalities such as brachytherapy

for macular degeneration and breast cancers.
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The studies presented in this chapter follows previous works [76, 267] and have been

partially published elsewhere [232–234].

Technology related to the dosimeter has been patented [268] by the University of Aveiro

and a spin-o↵, NU-RISE, was created in April 2015. This project has been awarded in several

occasions, namely:

• Concurso Nacional de Inovação, Novo Banco, 2015, 30000e

• Building Global Innovators, 5th edition, Medical & Health IT track. Accelerator

Program by ISCTE (Lisbon) and MIT (Boston), with Caixa Capital investment of

100000e

• Prove it, Universidade de Aveiro

• Arrisca C, 1000e



Chapter 5

Application case:

easyPET

5.1 Motivation

Position Emission Tomography (PET) and Single-photon Emission Computed

Tomography (SPECT) are the two nuclear imaging techniques with the highest potential

for high-resolution molecular imaging. Both techniques allow functional imaging but several

features di↵er between them. PET isotopes emit positrons which produce two 511 keV

gamma photons per nuclear decay, thus requiring coincidence detection. PET scanners are

usually stationary ring detectors with electronic collimation (best for detection e�ciency).

PET isotopes are produced in cyclotrons and have short half-life (min - hrs). SPECT

isotopes produce a single gamma photon per nuclear decay and have longer half-lives (hrs

- days) and can be produced by reactors, generators or cyclotrons. SPECT detectors use

physical collimation (poor detection e�ciency) and usually have single-head rotating 360� or

dual and triple-head systems rotating 180� (or static) and 120�, respectively. A triple-head

SPECT scanner is three times faster than a single-head one. Modern SPECT detector-

heads have body-contouring orbit allowing to stay closer to the patient body favoring the

system position resolution. PET’s main applications are in diagnostic nuclear medicine for

cancer and brain functional imaging, drug delivery, cardiology, neuroscience and metabolic

disorders. As pointed by Schnockel [269] and Phelps [270], small-animal PET would promote

the transfer from the in-vitro molecular findings to in-vivo applications in humans, bridging

the gap between basic preclinical and clinical research and the clinical application.

Small size PET systems for small animal imaging have been an active topic of research

in the last two decades. Preclinical molecular imaging discoveries in small animals allow

a better understanding of human diseases and the development of more e↵ective ways

for disease diagnosis and treatment. The transition from the preclinical research into the

medical practice has an important role in drug development, noninvasive quantification of 3D
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distribution of radio-pharmaceutical administered to a live subject, fundamental molecular

processes at cellular level and imaging of gene expression [269, 271]. These systems, generally

designated by microPET systems, are intended for small organs, typically 2 to 3 orders of

magnitude smaller than the equivalent human structures. For instance, a rat heart is close

to 100 times smaller than the human heart. These microPET systems, typically have a ring

diameter below 150 mm in comparison with the 800 mm for human PET systems [271]. The

smaller gantry of the preclinical PET systems allows better spatial resolution in comparison

with clinical PET scanners, 1 - 2 mm for preclinical systems and 4 - 6 mm in clinical PET.

This is mainly due to the lower resolution degradation resulting from the non-colinearity of

the annihilation �-rays [272].

Research topics where functional imaging systems are required would benefit from a

portable detector with a lower cost than the devices available in the market. Large amount

of research on neuronal diseases such as Alzheimer’s are conducted with small animals, but

current technologies for functional imaging can be expensive.

5.2 Positron Emission Tomography detectors

5.2.1 Principle of operation

In a basic approach, cancer cells reveal a high growth rate and high metabolic rate showing

a higher glucose uptake. By linking a positron-emitting radionuclide to a glucose molecule

and injecting it into the patient’s bloodstream, it is possible to obtain the localization

of the cancerous tissues. In these applications, positron emitting radioisotopes are used.

Replacement of an atom in a molecule with its radioactive counterpart is known as isotopic

labeling [273]. The most common PET radiotracer is the 18F-fluorodeoxyglucose 18F-FDG.

The positron emitted from 18F travels a very short distance (on average 200 µm, 2.4 mm

maximum range [274]) before losing its kinetic energy. Afterwards, the positron interacts with

an electron, su↵ering an annihilation process with the emission of two 511 keV gamma (�)

photons. These emitted �-photons are collinear but with opposite directions, being detected

by detectors in the same line and almost at the same time. Typically, a PET-scanner has

a ring composed by many sensitive cells, allowing the simultaneous detection of these two

�-photons resulting from the annihilation process (Figure 5.1). Only these coincidence events

are considered as lines of response (LOR). Moving the patient through the detector ring will

allow acquiring several 2D slices that later allow a full body 3D image reconstruction.

The limitations of PET arise from the physics of �+ decay and the detector design,

electronics for position determination of the two two �-photons in coincidence and algorithms

for image reconstruction [275].
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Figure 5.1: 18F-fluorodeoxyglucose radiotracer.

5.2.2 True vs. random coincidences

Due to several factors, the detected coincidence can be a true coincidence, a random event

or coincidence due to scattered photons (Figure 5.2).

A scatter coincidence is originated by two gamma photons created in the same

annihilation process, however due to scatter of one or the two photons the event is assigned

to a wrong LOR (Figure 5.2, center). On the other hand, a random coincidence might be

triggered by noise or by two di↵erent annihilation processes. This number of accidental

coincidences (Nacc) can be estimated, considering that:

Nacc = 2⌧N1N2 (5.1)

where N1 and N2 are the background rates of each detector and ⌧ is the coincidence time

window. Once known the number of random coincidences, a simple correction method is

to subtract the number of random coincidences to the total number at each LOR. Further

details and discussion on correction of random coincidences can be found in [276, 277].

5.2.3 Spatial and energy resolution

Three major factors limit the spatial resolution in PET scanners: (1) detector intrinsic

spatial resolution, (2) positron range, i.e., average distance traveled by the positron before

annihilation, and (3) photon acollinearity, i.e., the two photons are not emitted at exactly

180� [275]. Besides the positron range and photon acollinearity, Yao et al [271] highlight that

Figure 5.2: True coincidence (left), scatter coincidence (center) and random (accidental)
coincidence (right). From [276].
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the spatial resolution in small-animal PET scanners is also highly influenced by the size of

the scintillator and the detectors decoding scheme. Other factors that limit PET resolution

are inter-crystal scattering and inter-crystal penetration.

The spatial resolution can be expressed as the full-width-at-half-maximum (FWHM) of

the point spread function (PSF) after a filtered back-projection [275] in terms of the crystal

pitch (d), detector ring diameter (DR), e↵ective source diameter including positron range (r)

and the parallax error (p):

FWHM = 1.2

r⇣d
2

⌘2
+ b2 + (0.0022DR)2 + r2 + p2 (5.2)

where 1.2 is the degradation factor due to tomographical reconstruction. From eq. 5.2, the

spatial resolution in PET is intrinsically limited to 0.7� 0.8 mm FWHM [275].

5.2.4 Scintillators for PET

Regarding scintillators, the best option for PET applications are high density scintillators

with short absorption length for 511 keV photon detection. In commercial PET scanners,

typically crystal size is below 20 mm to reduce parallax errors. Knowing that each photon

will travel di↵erent path lengths, an additional feature of some PET scanners is time-of-

flight (TOF) detection, by measuring the time of arrival di↵erence between the two photons.

This gives further information on the position of the LOR where the annihilation occurred.

For these PET scanners, the low decay time of the scintillator is crucial [278]. A system

with high e�ciency allows the use of radioactive material with lower activity which means

that a lower dose is given to the patient. A scintillator suitable for PET scanners should

present a high attenuation coe�cient for 511 keV photons, should be fast to reduce dead-time

e↵ects and discriminate true from random coincidences [276]. In addition, it is desirable that

the scintillator emission is in the visible region to match the region of highest PDE of the

most common photodetectors (PMTs and SiPMs). Bismuth germanate (BGO), with a decay

time of 300 ns, was a common option for PET detectors. Nowadays it is being replaced by

faster scintillators such as lutetium oxyorthosilicate (LSO), lutetium-yttrium oxyorthosilicate

(LYSO) or gadolinium oxyorthosilicate (GSO) [276].

Table 5.1 shows the main properties of the typical scintillators applied in PET systems.

LYSO and BGO are the most common applied in commercial PET scanners. Other typical

scintillators are GSO, GSO:Ce, LGSO, LSO, LaCl3, LaBr3 and CWO [279].

5.2.5 Photon attenuation correction

The probability of absorption or scattering of a photon in a given material occurring by

photoelectric e↵ect, Compton or pair production, is given by the linear attenuation coe�cient
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Table 5.1: Typical crystals for PET scanners
% FWHM

Density
(g/cm3)

Relaxation length
(cm)

Light yield
(photon/MeV)

Decay time
(ns)

Emission
max. (nm)

Hygroscopic Radioactive

BGO 12 7.13 1.1 8000 300 480 no no
LSO:Ce 7.4 1.1 31000 40-47 420 no yes
LYSO:Ce 20 7.1 1.2 32000 41 420 no yes
LGSO:Ce 12 7.3 1.18 20000-30000 41 420 no yes
GSO:Ce/Zr 6.71 1.43 7500 30-60 430 no no
NaI:Tl 3 3.67 2.9 38000 250 415 yes no
LaBr3 8 5.29 1.88 65000 15 360 yes
Lul3 8 5.6 1.8 47000 30 470 yes yes

(µ) of that material. From the Beer–Lambert law, the number of transmitted photons (I) is

I

I0
= e�µl (5.3)

where I0 is the number of incident photons and l is the material depth.

Each coincidence event requires that both photons escape the patient body. The

probability of both photons escaping without interaction is the product of the probabilities

of each escaping the patient (length, l)

e�µ�.e�µ(l��) = e�µl (5.4)

where � and l � � are the distances that each photon has to travel to escape [276].

Nowadays PET scanners are usually multimodal systems, integrating X-ray and CT

imaging systems for attenuation corrections and to overcome the lack of anatomic information

[276]. In these hybrid detectors, the linear attenuation coe�cient of each voxel for 511 keV

photons is estimated from the linear attenuation coe�cient for that voxel obtained by the

CT system [276].

5.3 Small size PET systems: state-of-the-art

The major interest of small size PET systems is related to small-animal and preclinical

PET/CT imaging systems for oncology, drug discovery, immunology, neurology, bone

metabolism and probe development as well as to educational PET systems [269, 280–283].

High-resolution PET imaging of small animals or specific organs require scanners with small

sized FOV and small cross-sectional areas of individual scintillator crystals, to enhance spatial

resolution, as well as relatively long crystals to enhance detection e�ciency and sensitivity.

However, if depth-of-interaction (DOI) of �-rays in the crystal is unknown, spatial resolution

of small PET scanners rapidly degrades from the center to the edges of the FOV, due to

oblique penetration of �-rays in scintillators. Therefore, determination of DOI, to achieve

high spatial resolution and high sensitivity, is one of the most active development topics in

PET. Several DOI determination methods have been proposed, which can be divided in two

groups: multi-layer (using multiple layers of crystal blocks) and single-layer.



100 Application case: easyPET

Currently, a strong research topic on PET scanners is related to the integration of PET

with other imaging techniques. Options such as ultrasound, CT and Magnetic Resonance

Imaging (MRI) allow to gather morphologic information for integration with PET images.

Small size PET scanners allow to provide a proof of concept for several techniques seeking

integration of imagaging detectors with PET scanners. Some of the most significant works

on the subject are presented.

COMPET

The preclinical COMPET, is a PET MRI compatible scanner [284–287]. This detector

adds a new concept based on the detection of the point-of-interaction (POI) by stacking

several layers in a module using WLS fibers perpendicular to the LYSO crystals (Figure

5.3). The COMPET concept consists of four modules of five layers stacked, with 8⇥8 cm2

square layers of 30 LYSO crystals (2⇥3⇥80 mm3) interleaved with 24 wavelength shifting

fibers (3⇥1⇥80 mm3). The authors [287] reported time and energy resolution around 4 ns

and 14% respectively. In MRI compatibility tests, noise counts were observed under radio-

frequency (RF) field and gradient field but gating can remove MRI induced noise.

Figure 5.3: Schematic of the Point-of-Interaction concept used in COMPET PET scanner.
From [287].

ClearPEM

The ClearPEM [288–300] is a dual-head PET scanner for breast imaging. The Clear-PEM

design is intended to achieve low background, minimizing the fraction of random coincidences

under a high flux of single photons (up to 10 MHz), high sensitivity and spatial resolution

down to 2 mm [289]. The authors reported a 1.3 mm FWHM at the center of the FOV [298]

and energy resolution of 16.5% at 511 keV and single photon time root mean square (RMS)

resolution of 1.3 ns also for 511 keV photons [293]. With an improved LYSO:Ce compact

crystal matrix (CCM) the inactive area is reduced increasing the single-photon e�ciency by

57% [300].

In order to overcome the edge e↵ects of monolithic crystal detectors and poor energy

resolution of pixelated crystal detectors, Hwang and Chung et al [301] developed a partially
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segmented block crystal detector. The detector module uses a LSO block crystal segmented

into a 11⇥11 array read by a 4⇥4 MPPC array (Hamamatsu S11064) of 3.0⇥3.0 mm2.

Authors reported a 1.5 mm spatial resolution.

X’tal

The X’tal cube PET system [302–310], is a 146 mm diameter ring comprehending sixteen

18⇥18⇥18 cm3 cubes. The X’tal cubes are laser-processed 3D square grids of 2 mm and 1

mm length. All of the X’tal cube faces are covered with 4⇥4 SiPMs. The average spatial

resolution of the 2-mm X’tal cube was 1.9 mm FWHM over the FOV and 48% improvement

for the 1 mm version [302]. An updated version consists of several layers of 2D segmented

LYSO scintillator plates (18⇥18⇥2.0 mm3) by laser processing. These are stacked together

forming a cube, with SiPM readout in all the six faces of the cube. Updated version is

a crystal block with a 9⇥9⇥9 array of 2.0⇥2.0⇥2.0 mm3 crystal segments coupled to 4⇥4

MPPCs at each face of the cube [310]. Authors report a 10% energy resolution for the outer

segments as well for the center segment.

AX-PET

The AX-PET [311–315], is a 3D axial PET with long LYSO crystals oriented in its axial

arrangement and orthogonally mounted WLS strips for the axial coordinate measurement.

The AX-PET demonstrator [314] consists of two modules operating in coincidence, each

module comprises 48 LYSO crystals with dimension 3⇥3⇥100 mm3 and 156 WLS strips

(3⇥0.9⇥40 mm3 each), arranged in six di↵erent layers, with eight crystals and 26 WLS

strips per layer. Initial tests with a single LYSO crystal and one WLS strip read by two

Phillips digital SiPMs and a 22Na source revealed a 12.3% FWHM. Imaging result from [313]

achieved a combined intrinsic axial resolution of 1.21 mm FWHM. In [315] a coincidence

time resolution of 211 ps FWHM in the coincidence of two axial modules using digital SiPMs

is reported. The coincidence resolving time of 211 ps FWHM is constant over the full FOV

and constrains the annihilation point on the LOR to 3.1 cm FWHM.

Educational PET systems

Nowadays there is an increasing interest on basic PET systems envisaging educational

purposes. However, little work has been published on this subject and only a few references

regarding two di↵erent projects were found. An example of such detector is the MiniPET

[283], a concept detector composed by two detector heads facing each other, each one

comprising 4⇥4 LYSO crystals and read by 16-channel PMTs (Figure 5.4). The system

comprises 3 motors, one for the rotation of the detector cells, a second motor enables the

acquisition of data along LORs not crossing the center of rotation and a third motor for the

transversal motorized litter movement. The detector allows study of samples up to 20 cm

along the axial movement and 350 mm along the transverse plan [283]. Johansson et al [282]

reported a simple educational PET camera model comprising two pairs of �-ray detectors,
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each pair mounted on a common movable arm and set 10 cm apart. Each pair of detectors

can be moved in 10 cm long rails allowing a 10⇥10 cm2 area. The detectors use BaF2 5⇥5⇥30

mm3 scintillators coupled to 13 mm diameter Hamamatsu R647-01 photomultiplier tubes.

Due to the limited translation and rotation movements, the system does not provide imaging

capabilities.

Figure 5.4: Schematic of the MiniPET scanner [283].

5.4 The easyPET

The easyPET1 concept uses multiple rotational movements to cover the whole FOV. From

this idea, a simple and portable PET system for educational purposes can be considered. The

easyPET allows the setup of several studies related to traditional PET scanners, namely the

component characterization and selection regarding scintillators and photodetectors. Its

companion software allows full characterization of the photodetector system (e.g. gain,

crosstalk and noise), scintillator (e.g. energy resolution), coincidence detection and PET

imaging studies.

In a PET scan, the patient is injected with a radio-tracer such as the 18F-

fluorodeoxyglucose (18F-FDG). The radio-tracer will have higher concentration in organs

or tissues with higher metabolic rate. The radio-tracer will produce two 511 keV photons

resulting from the positron annihilation. In the interaction of the gamma photon with

the scintillator, the light produced is proportional to the energy of the �-photon. To

identify a true event, it is necessary to ensure that the two photons detected belong to

the same annihilation thus defining an emission line, meaning that they must be detected

in a coincidence time interval as small as possible. The functional image is obtained by the

detection in coincidence of the two 511 keV photons that are produced simultaneously within

the same line but in opposite directions. When these two photons are detected simultaneously

a line for the emission (LOR) is defined. The emission of the photons is fully isotropic, so

1
Patent pending by the Aveiro University, PCT/IB2016/051487
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for each point of emission there will be line overlap. This is why PET scanners comprehend

a full ring of detectors.

The easyPET is a small PET system simplified to a single pair of detectors oppositely

aligned. This is only possible by placing these two sensitive cells in a single structure (U-

board) that, in contrast to typical systems, moves around the fixed radioactive source or

sample. The system has two rotating axes with two stepper motors executing rotation

movements to cover the whole FOV recreating a full ring. The main motor provides full

rotation of the U-board (a PCB which comprehends the main components of the detection

system). This motor is fixed to a second stepper-motor as represented in Figure 5.5. This

second motor allows the scanning movement with a length dS/2⇥ ✓2 at each position of the

main motor (Figure 5.5), where dS is the distance between the two scintillators. Figure 5.6

illustrates the easyPET FOV in three positions for axis-1 (the axis of the main stepper motor)

and the scanning movement provided by the second stepper motor. The two scintillators are

fully aligned with the center of axis-1.

Figure 5.5: Illustration of the easyPET system, comprising a U-board with two sensitive cells
and two stepper motors.
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Figure 5.6: Illustration of the easyPET principle of operation with two rotating axes and
FOV.

5.4.1 Development of the easyPET detector

PET system with a single pair of cells

The easyPET comprises only two detectors (or cells) (Figure 5.7), aligned and set 56.8

mm apart in the U-board. Each detector is made by a 2⇥2⇥30 mm3 LYSO scintillator and

a Hamamatsu MPPC S10362-11-050P silicon photomultiplier with 1 mm2 active area and

50⇥50 µm2 cell area. The SiPM-scintillator optical coupling is done with optical grease (BC-

630, Saint-Gobain). For the easyPET system, low cost LYSO crystals (Kingheng, China)

were used. The LYSO crystals have an emission peak at 420 nm perfectly matching the

MPPC maximum PDE at 425 nm. The detector cells are isolated from ambient light by a

light-tight 3D-printed plastic enclosure. This enclosure has also a plug-in connector allowing

the use of di↵erent cells (e.g. SiPMs with more or less pixels or higher active area SiPMs

and scintillators).

The easyPET prototype was developed in the 2013-2015 period and 5 versions of the

U-board were developed. The initial U shaped board (U-board) comprised a single pair

of detectors (SiPM + LYSO) and the transimpedance amplifier with a second stage for

additional gain. Following U-board versions were updated to include all the electronics for

SiPM biasing, signal amplification and coincidence event discrimination with the possibility

of software adjustment of threshold levels and coincidence window length (Figure 5.8). The

board, together with the stepper motors of the system are controlled through an Arduino
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Figure 5.7: Illustration of the easyPET principle of operation with two rotating axes and
detection scheme.

Figure 5.8: The first easyPET prototype from University of Aveiro, University of Insubria
and CAEN collaboration.

micro-controller. The main components of the easyPET detector are described in the next

sections.

Readout electronics

The easyPET U-board comprehends all the electronics on-board, allowing full analog

discrimination of coincidence events (Figure 5.9). The SiPMs are biased with a MAX1932

(Maxim Integrated) 8-bit DC-DC converter. The MAX1932 is controlled through the

Arduino micro-controller. The SiPM signal amplification is performed in a 3-stage scheme:
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first a transimpedance amplifier, the second stage is a 10 fold gain and the third stage an

inverter with unitary gain. The pulse signals from the two channels are fed into a logic section

comprising two comparators (MAX9011, Maxim Integrated) and a single 2-input positive

AND gate (SN74AUC1G08, Texas Instruments) for coincidence event discrimination (for

details, see Appendix C). For each line/position of the system, the total number of events in

coincidence is used to trace the 2D image. For counting the number of events in coincidence,

the TTL output signal from the AND Gate is digitized by the Arduino micro-controller. In

Figure 5.10, a scope screen capture shows the triggered signals by a coincidence TTL signal

from the AND Gate output, corresponding to the pulse signal from the two detectors and

the respective comparator outputs (bottom) and the amplitude histograms (top) where one

can see the 22Na 511 keV photopeak and the respective Compton scattering.

Figure 5.9: Detail of the easyPET U-board before the installation of the SiPMs and the
scintillators.

Figure 5.10: Scope capture with 2 detector histograms (top) and pulses in coincidence with
comparator output triggered by a coincidence event.
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5.4.2 Initial characterization of the easyPET system

System noise

The easyPET scanner comprises a single pair of cells. The noise contribution of each cell is

due to crystal radioactivity, SiPM dark noise and electronic noise. As mentioned previously,

two setup parameters of the easyPET system can a↵ect the number of coincidence events.

First, the threshold of each comparator defines the minimum amplitude of the photodetector

signal to be considered and second the time coincidence window.

A simple study was performed to evaluate the relation between the threshold level and the

event rate. In this study the threshold voltage is changed and the rate of events is recorded.

The majority of SiPM pulses generated by dark noise and crosstalk are expected to be below

3 p.e. As the threshold increases, pulses below the threshold are neglected and so, between

the amplitudes of two successive p.e. an abrupt change in frequency is expected. In Figure

5.11 it is depicted the obtained stair-case diagram for the SiPM dark noise, SiPM dark noise

plus LYSO background and detector response with 22Na radioactive source. The threshold

level for the comparator was set with a digital to analog converter (DAC) controlled by an

Arduino micro-controller also used for event counting. For each pulse with amplitude above

the threshold a TTL signal is generated. The measurements were repeated for five SiPM

bias voltages (73 � 75 V range). The SiPM gain increases with bias voltage, a fact that is

observable by the larger steps in the staircase diagram (Figure 5.11), also due to the higher

crosstalk probability. In addition, one can observe the increase of the number of steps due

to the increase of SiPM dark noise. At 73 V the SiPM Vbias is above breakdown voltage but

the gain is still low and the photo-peak plateaus are not clearly defined. When a 22Na source

is placed in front of the LYSO crystal, one can observe that the detector gets saturated, even

close to the breakdown voltage. Typically, in applications such as TOF-PET, to decrease

pulse rise-time the SiPMs are at a voltage where the signal reaches saturation. Although this

fact is undesirable when measuring detector e�ciency, it has no direct impact in coincidence

mode operation.

Coincidence Window

To evaluate the role of the coincidence window to the total rate of accidental coincidences,

several acquisitions were taken, varying the coincidence time window from the minimum (120

ns) to the maximum (1520 ns) allowed by the system. A 22Na radioactive source with an

activity ⇠5 µCi was used. The source was placed at the center of the FOV. The SiPMs bias

voltage were set to 73.6 V. An acquisition corresponding to a complete turn was performed,

with a step of 0.9� for both top and bottom and acquisition time of 0.025 s per step. The

TOP scan range was set to 54�. Before the acquisitions it was verified that the coincidence

rate without the presence of the radioactive source was zero for both thresholds.

In figure 5.12, it is depicted the number of coincidence events for several window lengths

in the 120 � 1520 ns range, for threshold values of 60 and 150 mV for both channels. For
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Figure 5.11: Single channel noise rate dependence on threshold.

a 2.5 increase in the threshold one can observe a decrease of the number of coincidences by

the same magnitude, approximately. Considering Figure 5.11, for a threshold below 100 mV

the typical counting rate is 10 kHz. Assuming equal counting rate for both detectors, from

Eq. 5.1, the number of accidental coincidences for a coincidence window of 120 ns and 1520

ns would be 2 kHz and 30 kHz, respectively. As observed, for 60 mV there is an apparent

increase in the number of events detected in coincidence while for a 150 mV threshold the

system is not a↵ected by the width of the coincidence window. This allows to verify that a

proper threshold level is enough to reduce the number of false coincidences, improving the
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Figure 5.12: Number of coincidences using di↵erent window lengths.

system resolution. Although it must be noted that this threshold level must be such as to

avoid discarding photons from Compton scattering events, at ⇠ 340 keV.

It is known that a wider coincidence time window might reflect a higher number of events

in coincidence. If a portion of these coincidence events are false, the image would present

higher blur surrounding the source position. To check if this is observable, two images were

acquired, using the shorter and wider windows allowed by the system (other ranges might

be set by hardware adjustment). Five complete turns were performed, with a step of 0.9� for

both top and bottom and an acquisition time of 25 ms per step (time per LOR). The SiPMs

were biased at 75.37 V and the thresholds were set to 150 mv and 170 mV for channels 1

and 2, respectively. A total of 2391 and 4460 coincidence events were recorded for the 120 ns

and 1520 ns coincidence windows, respectively, representing a 53% increase with the wider

coincidence window. The two images are plotted in Figure 5.13. The higher background is

clear for the larger coincidence window (Figure 5.13, right).

Images with multiple 22Na sources

A simple evaluation of the system resolution of the easyPET was performed by the

acquisition of several images of up to three 5 µCi 22Na sources. Sources with two di↵erent

dimensions were used, the smaller ones of Ø 2.54 mm, encapsulated in a Plexiglas cylinder

with Ø 12.7 mm and 4.32 mm height (Spectrum Techniques, USA) and a larger source of

Ø 6.35 mm encapsulated in a plastic disk with Ø 25.4 mm. The image obtained for the

two smaller 22Na sources placed side-by-side is presented in Figure 5.14 (left). The distance

between the sources corresponds to the diameter of the Plexiglas, thus the sources are at

⇠12.7 mm distance. A second image was taken with the additional source (Ø 25.4 mm)
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Figure 5.14: easyPET imagens acquired for two (left) and three (right) 5 µCi 22Na sources.

(Figure 5.14, right). Both images were obtained with a step of 0.9� for both top and bottom

step motors and an acquisition time of 25 ms per LOR. Both images presented in Figure 5.14

don’t include additional filtering or reconstruction algorithms.

Test with 18F-FDG radiotracer

Two tests where performed using 18F-FDG radiotracer. A first test used a PMMA

phantom with two cavities of 2 mm and 5 mm diameter, separated by 2 mm (center-to-

center distance of 5.5 mm). The cavities were filled with 18F-FDG radiotracer with a red

dye diluted for easier identification (Figure 5.15, right). The acquisition was performed in a

20 min period with a with a top and bottom mottor step of 0.9 �. The image obtained is

depicted in Figure 5.15, left.
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The obtained image shows the capability of the easyPET system in terms of spatial

resolution. The image pixel size is 250 µm.

Figure 5.15: Image corresponding to 18F-FDG radiotracer inserted in a PMMA phantom
with two cavities of 2 mm and 5 mm diameter, separated by 2 mm (center-to-center distance
of 5.5 mm).

A second test was done using a lab rat, injected with 18F-FDG radiotracer. Post-mortem

the heart and liver were removed. The image was obtained by simple back-projection, without

any filtering (Figure 5.16). The easyPET system resolution allows the identification of the

heart’s left and right auricular and ventricular cavities.

RA

RV

LA

LV

Figure 5.16: Image corresponding to scan of lab rat heart’s left and right auricular (LA, RA)
and ventricular (LV, RV) cavities injected with 18F-FDG radiotracer.
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5.5 Final remarks

A PET scanner should present some key features such as high detection e�ciency, high

spatial resolution, low dead time, good timing resolution and good energy resolution [316].

The easyPET is a fully functional small-size PET system. This system is suitable for

educational purposes as a tool for learning PET physics and electronics. This small FOV

high resolution system is limited to 2D imaging and requires no DOI correction. From the

several studies performed, namely with multiple radioactive sources, a position resolution of

⇠1 mm has been observed [317], believed to be limited by the crystal width. Typical animal

PET systems have lower ring diameter allowing sub-millimeter spatial resolution [318, 319]

compared to the 4–6 mm FWHM of human PET scanners [317].

The lower number of cells relative to other preclinical devices results in lower sensitivity.

On the other hand, a lower number of readout channels simplifies the instrumentation and

decreases the detector cost. The system can be scaled up to several pairs of cells, increasing

sensitivity thus allowing application as preclinical PET scanner.

The easyPET technology has been patented and licensed to CAEN2. An improved

version of the system is under development. In addition, an extended version is being

developed comprehending multiple pair of detector cells, allowing 3D imaging, thus opening

the possibility for application has a pre-clinical system.

2
http://www.caen.it



Conclusion

The studies conducted within this PhD envisaged the application of novel silicon

photodetectors in di↵erent research fields. The versatility of the silicon photomultipliers

allows for current and pulse mode operation, making it easy to adapt to the application in

concern. Several solutions to overcome some of the shortcomes of these detectors have been

proposed and evaluated.

In applications such as the tracking plane for the NEXT detector, high demands are

imposed. One of the major requirements for NEXT as a neutrinoless double beta decay

experiment is to achieve the lowest possible radiation background and high sensitivity to

identify the topological signature expected from the 0⌫��-decay. The Hamamastsu MPPCs

are one of the best SiPMs available, presenting the highest PDE in the blue region and low

crosstalk. However, in the radiation screening tests at Laboratorio Subterraneo de Canfranc,

these revealed levels of radioactivity above the desired. For this reason, SensL SiPMs are the

present choice for the NEXT detector tracking plane.

The NEXT detector is expected to be scaled to 1 tonne before 2020. Preparing this

demanding task, several options are under evaluation, namely the use of scintillating optical

fibers for topological signature recognition. Considering this, several studies were conducted

with a scintillating optical fiber with emission in the blue region, the region of highest PDE

of typical SiPMs.

The application of the developed technologies in the society is always a goal. Having

this principle in mind, several projects came to life, namely a radiation dosimeter for use in

prostate brachytherapy and a small PET scanner for educational purposes. Both technologies

have been licensed and are expected to be in the market in 2017 and 2016, respectively.

The prostate brachytherapy dosimeter could have a major impact in the quality of

treatments and consequently, in the improvement of patient outcome in these treatments.

The SiPM is an attractive photosensor for low light level regimes. The lower cost

comparatively with other single photon detectors, such as the PMT, allows the wide

implementation in experiments or equipments, from medical applications to particle physics

or high energy physics, where a single experiment typically requires thousands of these

photosensors. The MPPCs present some limitations, e.g. high crosstalk, that could be

surpassed with future SiPM generations.

A radiation dosimeter and an educational PET system using SiPMs were successfully

prototyped. From this initial experience, the biggest concern encountered was the di�culty
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of gain stabilization due to temperature variations. In one perspective, where a single or a

couple of SiPMs are used, this control may be straightforward, however in applications using

hundreds of SiPMs the gain adjustment is a great concern and needs to be cost e↵ective.

Considering the recent participation of our group in the NEXT experiment, new challenges

arise.
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[10] J. J. Gómez-Cadenas and J. Mart́ın-Albo, “Phenomenology of neutrinoless double beta

decay”, PoS, vol. GSSI14, pp. 004, 2015.

[11] S. M. Bilenky and C. Giunti, “Neutrinoless double beta decay: a brief review”, Modern

Physics Letters A, vol. 27, no. 13, pp. 1230015, 2012.

[12] J. Mart́ın-Albo et al., “Sensitivity of NEXT-100 to neutrinoless double beta decay”,

Journal of High Energy Physics, vol. 2016, no. 5, pp. 1–30, 2016.

[13] T. N. collaboration, “NEXT a high-pressured xenon-based experiments for ultimate

sensitivity to a Majorana neutrino”, European Strategy Preparatory Group, 2012.



116 References

[14] J. Kotila and F. Iachello, “Phase-space factors for double-� decay”, Phys. Rev. C, vol.

85, pp. 034316, 2012.

[15] K. Asakura, others et al., “Results from KamLAND-Zen”, AIP Conf. Proc., vol. 1666,

pp. 170003, 2015.

[16] J. N. Bahcall, H. Murayama and C. Pena-Garay, “What can we learn from neutrinoless

double beta decay experiments?”, Phys. Rev., vol. D70, pp. 033012, 2004.

[17] H. Klapdor-Kleingrothaus, “Double beta decay and neutrino mass. The Heidelberg-

Moscow experiment”, Progress in Particle and Nuclear Physics, vol. 32, pp. 261 - 280,

1994.

[18] L. Baudis et al., “The Heidelberg-Moscow experiment: improved sensitivity for 76Ge

neutrinoless double beta decay”, Physics Letters B, vol. 407, no. 3–4, pp. 219 - 224,

1997.

[19] H. Klapdor-Kleingrothaus et al., “Latest results from the HEIDELBERG-MOSCOW

double beta decay experiment”, The European Physical Journal A - Hadrons and Nuclei,

vol. 12, no. 2, pp. 147–154, 2001.

[20] H. Klapdor-Kleingrothaus et al., “Search for neutrinoless double beta decay with

enriched 76Ge in Gran Sasso 1990–2003”, Physics Letters B, vol. 586, no. 3–4, pp.

198 - 212, 2004.

[21] H. Klapdor-Kleingrothaus et al., “Data acquisition and analysis of the 76Ge double beta

experiment in Gran Sasso 1990–2003”, Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,

vol. 522, no. 3, pp. 371 - 406, 2004.

[22] H. Klapdor-Kleingrothaus, “First evidence for neutrinoless double beta decay,

with enriched 76Ge in Gran Sasso 1990-2003”, Nuclear Physics B - Proceedings

Supplements, vol. 143, pp. 229 - 232, 2005.

[23] Y. Zdesenko, F. Danevich and V. Tretyak, “Has neutrinoless double � decay of 76Ge

been really observed?”, Physics Letters B, vol. 546, no. 3–4, pp. 206 - 215, 2002.

[24] S. Biller, “SNO+ with Tellurium”, Phys. Procedia, vol. 61, pp. 205-210, 2015.

[25] A. Barabash and F. Piquemal, “Double Beta Decay Experiments: Beginning of a New

Era”, Nuclear Physics News, vol. 23, no. 3, pp. 12-18, 2013.

[26] F. Piquemal, “NEMO 3: the goals, results and legacy”,

http://cerncourier.com/cws/article/cern/48344 accessed on june 2016., 2012.

[27] B. Wonsak, “Status and Perspectives of the COBRA Experiment”, Physics Procedia,

vol. 61, pp. 295 - 299, 2015.



References 117

[28] I. C. Bandac, “Search for neutrinoless double beta decay with the CUORE detector”,

Journal of Physics: Conference Series, vol. 110, no. 8, pp. 082001, 2008.

[29] L. Canonica et al., “Results of CUORE-0 and prospects for the CUORE experiment”,

Nuclear and Particle Physics Proceedings, vol. 265–266, pp. 73 - 76, 2015.

[30] A. Vignati et al., “First data from CUORE-0”, Physics Procedia, vol. 61, pp. 289 -

294, 2015.

[31] F. Alessandria et al., “Sensitivity of CUORE to Neutrinoless Double-Beta Decay”,

arXiv, 2011.

[32] “Search for Majorana Neutrinos near the Inverted Mass Hierarchy region with

KamLAND-Zen”, 2016.

[33] T. E. . Collaboration, “Search for Majorana neutrinos with the first two years of EXO-

200 data”, Nature, vol. 510, no. 7504, pp. 229–234, 2014.
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[36] V. Álvarez et al., “Near-Intrinsic Energy Resolution for 30 to 662 keV Gamma Rays

in a High Pressure Xenon Electroluminescent TPC”, arxiv, 2012.

[37] K. Twelker and S. Kravitz, “Barium Tagging from nEXO Using Resonance Ionization

Spectroscopy”, Physics Procedia, vol. 61, pp. 278 - 282, 2015.

[38] M. K. Moe, “Detection of neutrinoless double-beta decay”, Phys. Rev. C, vol. 44, pp.

R931–R934, 1991.

[39] B. Mong, “Barium tagging in solid xenon for the EXO experiment”, 2011.

[40] B. Mong et al., “Spectroscopy of Ba and Ba+ deposits in solid xenon for barium tagging

in nEXO”, Phys. Rev. A, vol. 91, pp. 022505, 2015.

[41] J. E. Sansonetti and J. J. Curry, “Wavelengths, Transition Probabilities, and Energy

Levels for the Spectra of Barium (BaIII through BaLVI)”, Journal of Physical and

Chemical Reference Data, vol. 39, no. 4, 2010.
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Appendix A

SiPM readout board

The developed dual channel PCB for the SiPMs comprises both dual mode readouts

(Figure A.1).

Figure A.1: Developed dual channel PCB for SiPM dual mode readout (with only 1 channel
populated).

For the pulse mode readout, the developed amplification system comprehends an I-V

conversion stage followed by a 2nd stage for gain, as schematics in Figure A.2. Two ultra-

low noise 3.8 GHz AD8099 high speed op-amps from Analog Devices are used. The supply

current is as low as 15 mA per op-amp. Each stage has a gain of 20, corresponding to a

-3 dB SS Bandwidth. A digital temperature sensor (DS18B20) allows local temperature

monitoring.

For the current mode an ALD5317 current mirror coupled to an AD8304 logarithmic

amplifier is used, as depicted in Figure A.3.
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Appendix B

SiPM bias PCB

A dual channel module for two SiPMs biasing was developed, Figure B.1. For each

channel a MAX1832 is used. The MAX1932 integrates accurate high-side current limiting to

protect APDs under avalanche conditions. The IC integrates an 8-Bit SPI-Compatible DAC.

The PCB schematics is depicted in Figure B.2.

Figure B.1: Printed circuit board of the 2-channel SiPM bias.
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Appendix C

Coincidence board

A module for coincidence detection was developed, Figure C.1. This logic module

comprehends two MAX9011 comparators. The threshold voltage to both comparators is

provided by a MAX5700 DAC. The comparators output signal is a TTL signal with duration

corresponding the the period over which the SiPM signal is higher than the provided threshold

voltage. For the purpose of increase the signal width, a SN74LVC1G123 monostable multi-

vibrator is used. The same IC is used for widening the coincidence signal provided by the

SN74AUC1G08 AND Gate. The PCB schematics is depicted in Figure fg:AP3-logicboard.

Figure C.1: Printed circuit board of the coincidence unit.

In Figure C.2, is depicted an oscilloscope (LeCroy Waverunner 625 Zi) screen capture of

the two SiPM pulses, two comparator outputs (after the monostable multi-vibrator) and the

coincidence signal. As noticed, there is an ⇠15 ns delay between the SiPM and coincidence

signals due to the both comparator and monostable multi-vibrator propagation delay.
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Figure C.2: Screen capture of two SiPMs operating in coincidence mode with coincidence
signal used as oscilloscope trigger.
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