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In honor of Dragoš Cvetković on the occasion of his 75th birthday.

For a (simple) graph H and non-negative integers c0, c1, . . . , cd (cd 6= 0),

p(H) =
∑d

k=0 ck ·H
k is the lexicographic polynomial in H of degree d, where

the sum of two graphs is their join and ck ·Hk is the join of ck copies of Hk.

The graph Hk is the kth power of H with respect to the lexicographic product

(H0 = K1). The spectrum (if H is connected and regular) and the Laplacian

spectrum (in general case) of p(H) are determined in terms of the spectrum of

H and ck’s. Constructions of infinite families of cospectral or integral graphs

are announced.

1. INTRODUCTION

Let G = (VG, EG) be a simple graph (so, without loops or multiple edges),
VG its vertex set, and EG its edge set. The cardinality of VG is called the order
of G. If |VG| = n then, if not told otherwise, we assume that VG = {1, 2, . . . , n}.
If e ∈ EG, we write e = ij, where i and j are its end-vertices. If i ∈ VG, then
NG(i) = {j : j ∼ i} is the set of neighbors of i, while degG(i) = |NG(i)| is its vertex
degree. The graph is called regular if all its vertices have the same degree. If this
degree is r, then we say that the graph is r-regular.
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The adjacency matrix of G, denoted by AG, is the square matrix of the
same order as G, with (i, j)th entry equal to 1 if ij ∈ EG, and 0 otherwise. The
eigenvalues and the spectrum of AG are called the eigenvalues and the spectrum
of G. Since AG is real and symmetric, its eigenvalues are real. The eigenvalues
of G (in non-increasing order) are denoted by λ1(G), λ2(G), . . . , λn(G). If G is
connected, the largest eigenvalue λ1(G) is simple, while if G is r-regular, it is equal
to r.

The Laplacian matrix ofG is the matrix LG = DG−AG, whereDG is the diag-
onal matrix of (vertex) degrees. The eigenvalues and the spectrum of LG are called
the Laplacian eigenvalues and the Laplacian spectrum (for short,
L-eigenvalues and L-spectrum) of G. The Laplacian matrix is symmetric but also
positive semidefinite, and so its eigenvalues are real and non-negative. We de-
note the L-eigenvalues of G (in non-increasing order) by µ1(G), µ2(G), . . . , µn(G).
Recall, µn(G) = 0 for any G, while µn−1(G) is called (by Fiedler) the algebraic
connectivity of G [7].

In general, for any symmetric matrix M , we denote its spectrum (which is a
multiset) by

σ(M) =
{
γ

[g1]
1 , γ

[g2]
2 , . . . , γ[gs]

s

}
.

where γ1 > γ2 > · · · > γs are all distinct eigenvalues of M , while the entries in
the upper brackets stand for the multiplicities. In particular, we write σA(G) for
σ(AG) and σL(G) for σ(LG). For more details on the spectral graph theory see
[2] or [4, 5]; in addition, see the nice survey articles [12, 13] on early results for
Laplacian spectrum and its applications.

The complement of a graph G = (VG, EG) is the graph Ḡ = (VḠ, EḠ) with
VḠ = VG and ij ∈ EḠ if and only if ij /∈ EG. The union of two disjoint graphs
G = (VG, EG) and H = (VH , EH) is the graph G ∪H = (VG ∪ VH , EG ∪EH). The
join of the above (disjoint) graphs is the graph G+H = (VG ∪VH , EG ∪EH ∪{ij :
i ∈ VG, j ∈ VH}. Clearly, G+H = Ḡ ∪ H̄. The union or the join of more than
two mutually disjoint graphs can be defined in a similar way. For a non-negative
integer c, we denote by cG the union of c disjoint copies of G and by c ·G the join
of c disjoint copies of G (the union and the join of 0 copies of G, 0G and 0 · G,
respectively, are both the empty graph K0, i.e., the graph with an empty set of
vertices).

The lexicographic product of graphs was introduced in 1959 by Harary [10],
and independently, in the same year, by Sabidussi [15]. For two graphs G and H,
their lexicographic product G[H] is the graph whose vertex set is the Cartesian
product VG × VH , with two vertices (i1, j1) and (i2, j2) being adjacent whenever
i1i2 ∈ EG, or i1 = i2 and j1j2 ∈ EH . It is easy to see that this graph operation is
associative, but not commutative (see [9, 11] for more details).

The lexicographic product is generalized in the following way [16]. Let G
be a graph of order n, and let H1, H2, . . . ,Hn be an arbitrary collection of n dis-
joint graphs. The generalized lexicographic product G[H1, H2, . . . ,Hn] (or G-join
of graphs H1, H2, . . . ,Hn, according to [3]) is the graph whose vertex and edge sets
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are

VG[H1,H2,...,Hn] =

n⋃
i=1

VHi
and EG[H1,H2,...,Hn] =

n⋃
i=1

EHi

⋃
{∪ij∈EG

EHi+Hj
}.

The spectrum of G[H1, H2, . . . ,Hn] is computed in [3, 16], in terms of the
spectra of the regular graphs H1, H2, . . . ,Hn and the spectrum of a (weighted)
adjacency matrix associated to graph G. In [3, 8], using different approaches, the
L-spectrum of G[H1, H2, . . . ,Hn] is computed in terms of the Laplacian spectrum of
arbitrary graphs H1, H2, . . . ,Hn and the spectrum of a (weighted) Laplacian matrix
associated to graph G. Besides, it is worth mentioning that in [14] the Laplacian
spectrum of the generalized lexicographic product T [H1, H2, . . . ,Hn], where T is a
tree, is determined.

As we announced in the Abstract, in this paper we derive the spectrum (of
the adjacency matrix) of the lexicographic polynomial p(H) of a regular graph H
as well as the Laplacian spectrum of p(H) of an arbitrary graph H. Furthermore,
we indicate certain constructions of cospectral graphs and integral graphs.

The next section is the preparatory one. The main results are given in two
subsections of Section 3, one covering the (adjacency) spectrum, the other the
L-spectrum of graphs. Concluding remarks are given in the last section.

2. SOME PRELIMINARY RESULTS

We start with a particular case of [3, Theorem 5].

Lemma 1. Let G1, G2, . . . , Gd be regular graphs of orders n1, n2, . . . , nd, respec-
tively. Then

σA(Kd[G1, G2, . . . , Gd]) =

(
d⋃
k=1

σA(Gk) \ {λ1(Gk)}

)
∪ σ(C),

where

C =


λ1(G1)

√
n1n2 · · · √

n1nd√
n2n1 λ1(G2) · · · √

n2nd
...

...
. . .

...√
ndn1

√
ndn2 · · · λ1(Gd)

 .

The following lemma is another particular case of the same result (see also
[1, Corollary 2.2]).

Lemma 2. If G is a graph of order n1 with the spectrum

σA(G) =
{
γ

[g1]
1 (G), γ

[g2]
2 (G), . . . , γ[gs]

s (G)
}
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and if H is a connected r-regular graph of order n2 with the spectrum

σA(H) =
{
r, γ

[h2]
2 (H), . . . , γ

[ht]
t (H)

}
,

then

σA(G[H]) = {(n2γ1(G)+r)[g1], . . . , (n2γs(G)+r)[gs]} ∪{γ[n1h2]
2 (H), . . . , γ

[n1ht]
t (H)}.

In what follows, let Hk be the kth power of H with respect to the lex-
icographic product (with H0 = K1). We first recall the following result (see
[1, Corollary 3.4]).

Theorem 1. Let H be a connected r-regular graph of order n with the spectrum

σA(H) = {r, γ[h2]
2 (H), . . . , γ

[ht]
t (H)},

Then, for each integer k ≥ 1, Hk is an rk-regular graph of order nk, such that

rk = r
nk − 1

n− 1
and

σA(Hk) =

(
k−1⋃
i=0

{(niγ2(H) + ri)
[nk−1−ih2], . . . , (niγt(H) + ri)

[nk−1−iht]}

)
∪ {rk}.

Remark 1. If H is a graph as specified in the previous theorem, then

σA(Hk+1) =

(
k⋃
i=0

{(niγ2(H) + ri)
[nk−ih2], . . . , (niγt(H) + ri)

[nk−iht]}

)
∪ {rk+1},

=

(
k−1⋃
i=0

{(niγ2(H) + ri)
[nk−ih2], . . . , (niγt(H) + ri)

[nk−iht]}

)⋃
{(nkγ2(H) + rk)[h2], . . . , (nkγt(H) + rk)[ht]}

⋃
{rk+1}

=

(
k−1⋃
i=0

{(niγ2(H) + ri)
[nk−1−ih2], . . . , (niγt(H) + ri)

[nk−1−iht]}

)⋃
(
k−1⋃
i=0

{(niγ2(H) + ri)
[(n−1)nk−1−ih2], . . . , (niγt(H) + ri)

[(n−1)nk−1−iht]}

)
⋃
{(nkγ2(H) + rk)[h2], . . . , (nkγt(H) + rk)[ht]}

⋃
{rk+1}

=
(
σA(Hk) \ {rk}

)[n]⋃{(nkγ2(H) + rk)[h2], . . . , (nkγt(H) + rk)[ht]}⋃
{rk+1},
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where
(
σA(Hk) \ {rk}

)[n]
means that this spectrum is repeated n times. Therefore,

rk+1 and nkγ2(H) + rk, . . . , n
kγt(H) + rk are the only eigenvalues in σA(Hk+1)

which can be distinct from the ones in σA(Hk).

Finally, if ξ stands for the number of distinct eigenvalues of a graph, then
ξ(Hk+1) ≤ ξ(Hk)− 1 + t.

Now, a simple consequence reads as follows.

Corollary 1. Let H be a connected r-regular graph of order n with the spectrum

σA(H) = {r, γ[h2]
2 (H), . . . , γ

[ht]
t (H)}.

Then, for every k ≥ 1, we have

σA(Hk+1) =
(
σA(Hk) \ {rk}

)[n]⋃{(nkγ2(H) + rk)[h2], . . . , (nkγt(H) + rk)[ht]}⋃
{rk+1}.

and

ξ(Hk+1) ≤ ξ(H) + k(t− 1).

Proof Both parts follow from Remark 1. The first follows directly, while the second
is obtained by the next chain of inequalities

ξ(Hk+1) ≤ ξ(Hk)− 1 + t ≤ ξ(Hk−1)− 2 + 2t ≤ · · · ≤ ξ(H) + k(t− 1).

In what follows we shall also need the spectrum of G[Hk], when G is a
complete graph. This is obtained by applying Lemma 2 and Theorem 1 again.

Corollary 2. Let H be a connected r-regular graph of order n with the spectrum

σA(H) = {r, γ[h2]
2 (H), . . . , γ

[ht]
t (H)}.

If k and p are positive integers, then

σA(Kp[H
k]) = {(nk(p− 1) + rk)[1], (rk − nk)[p−1]}⋃(

k−1⋃
i=0

{(niγ2(H) + ri)
[pnk−1−ih2], . . . , (niγt(H) + ri)

[pnk−1−iht]}

)
,

where rk = rn
k−1
n−1 .

Finally, concerning the L-spectrum we have the following lemma (see [1,
Corollary 3.10]).
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Lemma 3. Let H be a graph of order n with the L-spectrum

σL(H) = {µ1(H), µ2(H), . . . , µn(H)}.

Then Hk is a graph of order nk and, for every k ≥ 2, we have

σL(Hk) =

k−1⋃
i=1

( ⋃
(ji,...,jk−1)∈V k−i

H

{
ni−1µl(H) +

k−1∑
s=i

ns degH(js) : 1 ≤ l ≤ n− 1

})
⋃{

nk−1µj(H) : 1 ≤ j ≤ n
}
.

3. LEXICOGRAPHIC POLYNOMIALS OF GRAPHS

For any graph H and non-negative integers c0, c1, . . . , cd (cd 6= 0), we can
consider the graph p(H) of the form

(1)

d∑
k=0

ck ·Hk = c0 ·H0 + c1 ·H1 + · · ·+ cd ·Hd,

where Hk is a lexicographic power of H (in the sequel, we assume that H0 =
K1 where K1 denotes the graph of order 1). The expression (1) is called the
lexicographic polynomial in H of degree d. Throughout the paper we assume that
d > 0 and p(H) is not a monomial with cd = 1 (that is, p(H) 6= Hd).

It is immediate that two lexicographic polynomials p1(H) and p2(H) can be
summed (by the join), multiplied by a scalar, and consequently multiplied mutually.

Precisely, assuming that p(H) =
∑d1
k1=0 ak1 ·Hk1 and q(H) =

∑d2
k2=0 bk2 ·Hk2 , we

have
p(H) · q(H) =

∑
0≤k1≤d1, 0≤k2≤d2

(ak1bk2) ·Hk1+k2 .

Remark 2. It is worth mentioning that even when the graph H is regular, its
lexicographic polynomial (1), in general, need not be regular. For example, the
lexicographic polynomial p(H) = H0 +H1, where H = K̄n, is the star K1,n.

Recall that the independence number α(G) (the clique number ω(G)) of a
graph G is the maximal order of a co-clique (resp. clique) contained in G as an
induced subgraph (note that a co-clique and clique of the same order are comple-
mentary pairs of graphs). Let diam(G) be the diameter of G. The next proposition
provides a few properties of lexicographic polynomials.

Theorem 2. Let H be a graph of order n and p(H) a lexicographic polynomial
in H of degree d. Then

(i)
∑d
k=0 ckn

k is the order of p(H);
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(ii) ck ·Hk = Kck [Hk], for every k = 0, 1, . . . , d;

(iii) p(H) =
∑d
k=0Kck [Hk] = Kd+1[Kc0 [H0],Kc1 [H1], . . . ,Kcd [Hd]];

(iv) If H is connected but non-complete, then diam(p(H)) = 2;

(v) α(p(H)) = α(H)d and ω(p(H)) = ω(H)d.

Proof We have:

(i) Since the order of the join of two graphs is the sum of their orders, the result
follows by the fact that the order of ck ·Hk is ckn

k, for k = 0, 1, . . . , d.

(ii) Observe that ck · Hk is the join of ck copies of Hk, and thus it is equal to
Kck [Hk].

(iii) Since p(H) is obtained as the join of graphs from the set {c0·H0, c1·H1, . . . , cd·
Hd}, the result follows from (ii).

(iv) The property follows immediately since we have that p(H) = Kd+1[Kc0 [H0],
Kc1 [H1], . . . ,Kcd [Hd]].

(v) This property follows from (iv), taking into account that α(Hk) = (α(H))
k

and ω(Hk) = (ω(H))
k

(see [1]).

4. SPECTRUM OF A LEXICOGRAPHIC POLYNOMIAL OF A
REGULAR GRAPH

Using Lemma 1 and Corollary 2, we can determine the spectrum of the lexi-
cographic polynomial p(H) whenever the graph under consideration is regular.

Theorem 3. Let H be a connected r-regular graph of order n with the spectrum

σA(H) = {r, γ[h2]
2 , . . . , γ

[ht]
t }.

Then

σA(p(H)) =

(
d⋃
k=0

σA(Kck [Hk]) \ {rk + (ck − 1)nk}

)⋃
σ(C∗),(2)

where, for k = 0, 1, . . . , d, rk = rn
k−1
n−1 ,

(3) σA(Kck [Hk]) \ {rk + (ck − 1)nk} =

k−1⋃
i=0

{(niγ2(H) + ri)
[ckn

k−1−ih2], . . . , (niγt(H) + ri)
[ckn

k−1−iht]}
⋃
{(rk − nk)[ck−1]},
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and C∗ is the matrix obtained from

(4) C =


r0 + (c0 − 1)n0

√
c0c1n0+1 · · ·

√
c0cdn0+d

√
c1c0n1+0 r1 + (c1 − 1)n · · ·

√
c1cdn1+d

...
...

. . .
...√

cdc0nd+0
√
cdc1nd+1 · · · rd + (cd − 1)nd

 ,

after deleting the columns and rows intersecting at a negative main diagonal entry.

Proof If there is a negative diagonal entry in C, say ri + (ci − 1)ni, then ci = 0
holds, so ci ·Hi = Kci [H

i] is the empty graph. Now, (2) is obtained from Lemma 1
by taking into account that

p(H) =

d∑
k=0

Kck [Hk] = Kd+1[Kc0 [H0],Kc1 [H1], . . . ,Kcd [Hd]],

while (3) follows from Corollary 2.

Observe that matrix C does not depend on any structural parameter of H,
apart from n and r. In other words, C is an invariant of a lexicographic polynomial
applied to any r-regular graphs of fixed order. Consequently, if H1 and H2 are such
regular graphs, then p(H1) and p(H2) share the part of the spectrum emerging
from C.

We proceed with the following general result.

Lemma 4. Let M be a square matrix of order d + 1 (d ≥ 1) whose diagonal
entries lie in the interval (0, 1) and all off-diagonal entries are 1’s. Then M has
one positive and d negative eigenvalues.

Proof We have M = AKd+1
+ Dε, where Dε is the diagonal matrix consisting of

diagonal entries of M , and ε stands for the maximum of those elements. Using
the Courant-Weyl inequalities [4, 5], we obtain γ2(M) ≤ γ2(Kn+1) + γ1(Dε) =
−1 + ε < 0.

Therefore, we can deduce the following corollary.

Corollary 3. The matrix C∗ (defined in Theorem 3) of order d∗+1 has one positive
and d∗ negative eigenvalues.

Proof Without loss of generality, we may assume that C = C∗, so that we have

ck > 0 for all k = 0, 1, . . . , d. By setting D′ = diag

(
1√
c0n0 ,

1√
c1n1 , . . . ,

1√
cdnd

)
and

M = D′CD′, we obtain

M =


m0 1 1 · · · 1
1 m1 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · md

 ,
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where mk = rk+(ck−1)nk

cknk .

The matrices C and M are congruent. By the Sylvester law of inertia [17,
Theorem 8.3], they have an equal number of positive and an equal number of
negative eigenvalues. Therefore, it is sufficient to show that the claim holds for the
matrix M . Since all ck’s are positive integers, we have that all mk’s are positive,
and so, to apply the previous lemma, we need to show that all mk’s are less than 1.
Since every mk can be written as mk = 1 + rk

cknk − 1
ck

, we deduce that mk < 1 is

equivalent to rk
nk < 1, and the latter inequality follows from the fact that nk is the

order of the rk-regular graph Hk (if necessary, see Theorem 1).

Example 1. Let H be the Petersen graph and consider the lexicographic polyno-
mial

p(H) = 5 ·H + 2 ·H2 + 3 ·H3

of order 3250. In this case we have n = 10 and r = 3. Since the spectrum of H is
given by σA(H) = {3, 1[5],−2[4]}, by applying Theorem 3 we obtain

σA(p(H)) = σA(K5[H]) \ {3 + 4× 10} ∪ σA(K2[H2]) \ {33 + (2− 1)102} ∪
σA(K3[H3]) \ {333 + (3− 1)103} ∪ σ(C∗),

with

C∗ =

 43 100 100
√

15

100 133 200
√

15

100
√

15 200
√

15 2333

 .

So, we have

σA(p(H)) = {43, 1[25],−2[20],−7[4]} \ {43} ∪ {133, 13[10], 1[100],−2[80],−17[8],−67} \ {133}

∪{2333, 133[15], 13[150], 1[1500],−2[1200],−17[120],−167[12],−667[2]}
\{2333} ∪ σ(C∗)

= {133[15], 13[160], 1[1625],−2[1300],−7[4],−17[128],−67,−167[12],−667[2]}

∪
{

1313 + 60
√

489,−117, 1313− 60
√

489
}
.

We can locate the largest eigenvalue of a lexicographic polynomial of a regular
graph as follows.

Theorem 4. Let H be a connected r-regular graph of order n with the spectrum

σA(H) =
{
r, γ

[h2]
2 (H), . . . , γ

[ht]
t (H)

}
.

Then the largest eigenvalue of the lexicographic polynomial p(H) =
∑d
k=0 ck ·Hk of

an arbitrary graph H of order n is the largest eigenvalue of the matrix C∗ defined
in Theorem 3.
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Proof It immediately follows from Theorem 3 that the largest eigenvalue of p(H)

is equal to max{rd−1 + nd−1γ2(H), ρ}, where rd−1 = rn
d−1−1
n−1 , while ρ stands for

the largest eigenvalue of the matrix C∗.

From Corollary 3, we have ρ > tr(C∗) =
∑d
k=0 (max{0, rk + (ck − 1)nk}).

Therefore, it is sufficient to prove that
∑d
k=0 (max{0, rk + (ck − 1)nk}) ≥ rd−1 +

nd−1γ2(H) holds. Indeed, cd > 0 implies that

d∑
k=0

(max{0, rk + (ck − 1)nk}) =

d−1∑
k=0

(max{0, rk + (ck − 1)nk}) + rd + (cd − 1)nd

≥ rd

> rd−1 + nd−1γ2(H),

where the last inequality is true since rd = rn
d−1
n−1 = r

∑d−2
k=0 n

k + rnd−1 > rd−1 +

nd−1γ2(H).

5. L-SPECTRUM OF A LEXICOGRAPHIC POLYNOMIAL OF A
GRAPH

For a graph G of order n its Laplacian eigenvalues are related to the Laplacian
eigenvalues of its complement Ḡ in the following way. If the spectrum of G is
σL(G) = {µ1(G), µ2(G), . . . , µn(G)}, then

(5) µk(Ḡ) = n− µn−k(G), for 1 ≤ k ≤ n− 1,

and µn(Ḡ) = 0.

Consider the lexicographic polynomial p(H) =
∑d
k=0 ck ·Hk of an arbitrary

graph H of order n. Since p(H) = Kd+1[Kc0 [H0],Kc1 [H1], . . . ,Kcd [Hd]], it follows
that its complement is given by

p(H) = Kd+1[Kc0 [H0],Kc1 [H1], . . . ,Kcd [Hd]]

=

d⋃
k=0

Kck [Hk] =

d⋃
k=0

ckHk =

d⋃
k=0

ckH̄
k,

since Hk = H̄k (see [1]). Therefore, we have

(6) σL(p(H)) =

d⋃
k=0

ckσL(H
k
),

where c σ denotes the multiset obtained by the union of c copies of the multiset σ.

We next have the following lemma.
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Lemma 5. Let H be a graph of order n with the L-spectrum

σL(H) = {µ1(H), µ2(H), . . . , µn(H)}.

Then c0σL(H̄0) = {0[c0]}, c1σL(H̄1) = {µi(H̄)[c1] : 1 ≤ i ≤ n}, and, for every
integer k ≥ 2,

ckσL(H̄k) =

k−1⋃
i=1

( ⋃
(ji,...,jk−1)∈V

k−i
H

{(
ni−1(n− µl(H)) +

k−1∑
s=i

ns(n− 1− degH(js))

)[ck]

: 1 ≤ l ≤ n− 1

})⋃{(
nk−1(n− µj(H))

)[ck]
: 1 ≤ j ≤ n− 1

}
∪ {0[ck]}.

Proof The expressions for c0σL(H̄0) and c1σL(H̄1) are immediate. For an integer
k ≥ 2, using Lemma 3 we obtain

σL(H̄k) =

k−1⋃
i=1

( ⋃
(ji,...,jk−1)∈V k−i

H

{
ni−1µl(H̄) +

k−1∑
s=i

ns degH̄(js) : 1 ≤ l ≤ n− 1

})

∪
{
nk−1µj(H̄) : 1 ≤ j ≤ n

}
=

k−1⋃
i=1

( ⋃
(ji,...,jk−1)∈V k−i

H

{
ni−1(n− µn−l(H)) +

k−1∑
s=i

ns(n− 1− degH(js))

: 1 ≤ l ≤ n− 1

})
∪
{
nk−1(n− µn−j(H)) : 1 ≤ j ≤ n− 1

}
∪ {0}.

Finally, taking into account that the Laplacian eigenvalues of ckH̄
k are the Lapla-

cian eigenvalues of H̄k repeated ck times, the result follows.

Applying this lemma we obtain the L-spectrum of a lexicographical polyno-
mial.

Theorem 5. Let H be a graph of order n with the L-spectrum

σL(H) = {µ1(H), µ2(H), . . . , µn(H)}.

Then

σL(p(H)) =

(
d⋃
k=0

ck(ν − σL(H̄k))

)
\ {ν} ∪ {0},

where for k = 0, 1, . . . , d, the multiset ck(ν − σL(H̄k)) is equal to

k−1⋃
i=1

( ⋃
(ji,...,jk−1)∈V

k−i
H

{(
ν −

(
ni−1(n− µl(H)) +

k−1∑
s=i

ns(n− 1− degH(js))
))[ck]

: 1 ≤ l ≤ n− 1

})⋃{(
ν −

(
nk−1(n− µj(H))

))[ck]

: 1 ≤ j ≤ n− 1

}
∪ {ν[ck]},
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while ν =
∑d
k=0 ckn

k is the order of p(H).

Proof Note that the order ν of p(H) is given by Theorem 2(i). By (5), µi(p(H)) =
ν−µν−i(p(H)), for 1 ≤ i ≤ ν−1, and µν(p(H)) = 0. Hence, by taking into account
(6) and using Lemma 5, we get the result. Observe that {ν[c0]} = c0{ν − 0} and
{(ν − µi(H̄))[c1] : 1 ≤ i ≤ n} = c1(ν − σL(H̄)).

It follows that the largest Laplacian eigenvalue of p(H) is ν with multiplicity

at least −1 +
∑d
k=1 ck. For the algebraic connectivity of p(H), we deduce the

following corollary.

Corollary 4. The algebraic connectivity of p(H) is given by

µν−1(p(H)) = ν − nd−1(n− µn−1(H)).

Proof Observe that µj(H) ≤ n, for 1 ≤ j ≤ n − 1 and degH(v) ≤ n − 1, for
v ∈ V (H). Hence, for 2 ≤ k ≤ d, 1 ≤ j ≤ n− 1, 1 ≤ i ≤ k− 1, and (ji, . . . , jk−1) ∈
VHk−i , we obtain

0 ≤ ν − nk−1(n− µj(H)) ≤ ν − ni−1(n− µj(H))

≤ ν − ni−1(n− µj(H)) +

k−1∑
s=i

ns(n− 1− degH(js)).

Taking that k = d and j = n− 1, we obtain the eigenvalue ν − nd−1(n− µn−1(H))
which is not greater than any other eigenvalue except 0. Therefore, since the
eigenvalue 0 has multiplicity 1, the algebraic connectivity of p(H) is given by the
above formula.

Example 2. Let H be the complete bipartite graph K2,3 and consider the lexico-
graphic polynomial

p(H) = 3 ·H0 + 2 ·H +H3

of order 138. Since the L-spectrum of K2,3 is σL(K2,3) = {5, 3, 2[2], 0}, applying
Theorem 5 we obtain

σL(p(H)) =
{

138[8], 136[2], 135[4], 133[2], 128[3], 123[2], 118[7], 113[6], 108[4], 106[4],

105[8], 103[6], 101[6], 100[12], 88, 83[6], 81[6], 80[12], 78[9], 76[9], 75[18], 63[2], 0
}
.

6. CONCLUDING REMARKS

We finish the paper with a few remarks. Recall that cospectral graphs are
non-isomorphic but share the same spectrum and that the spectrum of an integral
graph consists entirely of integers.
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Remark 3. The reader may observe that Theorems 3 and 5 can be used to con-
struct infinite families of cospectral graphs. Namely, if G and H are regular and
cospectral, then (by Theorem 3) their lexicographic polynomials p(H) and p(G) are
also cospectral. Similarly, if we remove the connectivity and regularity conditions
and consider the L-spectrum instead, then Theorem 5 leads to the same conclusion.

For example, it is known that the smallest pair of (connected) cospectral regu-
lar graphs have 10 vertices each [6]. So, we may use these graphs as a starting point
to construct lexicographic polynomials that represent cospectral graphs. Observe
that the order of the corresponding lexicographic polynomials increases dramati-
cally. For example, if H is one of mentioned regular graphs (with 10 vertices), then∑5
k=0 k ·Hk is a graph with 543 210 vertices.

Remark 4. Another application concerns integral graphs. Note that with respect
to the adjacency matrix, the lexicographic polynomial of an integral graph need not
be integral (see Example 1). In order to obtain an integral graph, the coefficients
of the lexicographic polynomial need to be chosen carefully. On the other hand, for
the L-spectrum, the lexicographic polynomial of an integer graph always results in
another integral graph, as illustrated in Example 2.
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4. D. Cvetković, M. Doob, H. Sachs: Spectra of Graphs – Theory and Application
(third edition). Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995.
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