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Abstract The mapping defined by inter-nucleotide distances (InD) provides a
reversible numerical representation of the primary structure of DNA. If nucleotides
were independently placed along the genome, a finite mixture model of four geometric
distributions could be fitted to the InD where the four marginal distributions would
be the expected distributions of the four nucleotide types. We analyze a finite mixture
model of geometric distributions (f2), with marginals not explicitly addressed to the
nucleotide types, as an approximation to the InD. We use BIC in the composite likelihood
framework for choosing the number of components of the mixture and the EM algorithm
for estimating the model parameters. Based on divergence profiles, an experimental study
was carried out on the complete genomes of 45 species to evaluate f2. Although the
proposed model is not suited to the InD, our analysis shows that divergence profiles
involving the empirical distribution of the InD are also exhibited by profiles involving
f2. It suggests that statistical regularities of the InD can be described by the model f2.
Some characteristics of the DNA sequences captured by the model f2 are illustrated. In
particular, clusterings of subgroups of eukaryotes (primates, mammalians, animals and
plants) are detected.

Keywords genomic analysis; inter-nucleotide distances; geometric distributions; DNA

1. Introduction

From the perspective of molecular evolution, DNA sequences can reflect both
random mutation and selective evolution ([17]). In a simple way, DNA sequences
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GEOMETRIC DISTRIBUTIONS IN GENOMIC ANALYSIS 9

are non-numerical sequences of the four-letter alphabet, A, C, G and T , which
stands for the four nucleotides: Adenine, Cytosine, Guanine, and Thymine.
Various transformations of DNA sequences into numerical data have been
proposed in order to take advantage of methodologies available for quantitative
data ([2, 9, 15, 16, 3, 18, 1]). Free-alignment algorithms have been applied to build
distance trees aimed at visualizing historical evolutionary relationships among
species (e.g., [21, 23]).

Numerical transformations that can capture useful information about
mathematical properties discriminative and sensitive enough of variations in
DNA composition and, at the same time, highlight important structural features
of DNA sequences are desirable. Several numerical transformations of DNA
sequences have been used to perform multiple organism comparisons. Basically,
observed DNA sequences and randomly ordered sequences (random background)
are compared using different procedures and discrepancy measures based either
on genomic symbol frequencies (e.g., [22, 14, 13, 20]) or on genomic symbol
distance frequencies (e.g., [1]). This type of residual analysis can highlight the
contribution of DNA selective evolution of each species ([17]). In general, the
random background behavior has a simple description in terms of probability
distribution. For example, the random background for InD can be described using
geometric distributions (e.g., [5, 1, 12]).

Usually, the random background of each species is translated by a independence
model where each genomic symbol (e.g., nucleotide, dinucleotide) in the
DNA sequences is assumed to be generated independently of the others,
with occurrence probability estimated by its corresponding observed frequency.
Using discrepancy-based methods, all studies mentioned above have shown that
comparisons between the empirical distribution and the random background can
be useful in detecting features (i.e., statistical patterns) of DNA sequences, as well
as in obtaining (genomic) profiles for the differentiation of species. Nevertheless,
discrepancy values have not been investigated from the estimation point of view.
We extend the comparison-based approach such that divergence patterns can be
estimated using a theoretical distribution.

In the present study, we describe three approximation models of the empirical
distribution of the inter-nucleotide distances (InD) based on hypothetical evolutive
arguments and independence assumption. The InD transforms any DNA sequence
into a unique numerical sequence with the same length, such that each number
represents the distance of a nucleotide to the next occurrence of the same
nucleotide. If we assume that nucleotides are independently placed along a
DNA sequence, then the InD can be fitted by a 4-component geometric mixture
distribution for which the occurrence probability of each nucleotide type may
be estimated by its corresponding observed frequency (random background).
Furthermore, if the four nucleotides were identically distributed along the genome,
the InD could be fitted by a geometric distribution with parameter p = 1/4
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(baseline). Otherwise, and still under independence assumption, if a greater
structural complexity of the InD in DNA sequences (e.g., different statistical
features of the nucleotides associated to different regions of DNA) is intended
for modelling, a g-component geometric mixture distribution could be suggested
to reflect such complexity, with g to be determined.

Since the InD provides a reversible representation of DNA sequences, a
probabilistic model fitted to the InD should reflect both the complexity, in terms of
the species evolution, and the correlation structure of the nucleotides in the DNA
sequences. The basic idea of taking mixture models of geometric distributions is
to find a simple model suited to some structural complexity contained in InD data
sets, under the independence assumption of the placement of nucleotides along
the DNA sequences, and to investigate whether (divergence) patterns observed in
the InD can also be established using such theoretical model.

In order to analyze the three approximations mentioned above, an experimental
study is carried out using the DNA sequences of 45 different species. We analyze
discrepancy values obtained when the estimated mixture, the random background,
the baseline and the empirical distribution are compared for each species. Two
different expressions for quantifying divergence between two distributions are
considered separately. Our results show that, though the proposed mixture model
does not fit to the InD, it may predict genome-wide characteristics based on
discrepancy patterns. It is not surprising that independence-based models for InD
do not fit all DNA structures, which are very complex systems.

The main contributions of this paper are: (i) the definition of a simple
probabilistic model for each species, which contains information about statistical
characteristics of the InD and allows the identification of biologically expectable
clusterings of organisms and (ii) the exploitation of a divergence-based procedure
to assess the fitting of probabilistic models to data sets.

The rest of this paper is organized as follows. In Section 2, besides formally
defining the InD, we explain our motivation for investigating finite mixture models
of geometric distributions for the InD and report a geometric mixture model to the
InD according to the bayesian information criteria (BIC). The methodology used
to investigate the ability of the proposed mixture model to capture information
about the DNA sequences is described in Section 3. Section 4 presents the results
of the experimental study involving the complete genomes of 45 species. Finally,
in Section 5, we summarize the procedure used and the conclusions obtained.

2. Inter-nucleotide distance

2.1. Definition

Consider the alphabet A = {A,C,G, T} and let Vi = {1, 2, . . . , i} be the set of
the first i positive integers. Taking the definition considered by [1], the InD is a
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mapping that transforms a nucleotide sequence of length L, (S1, S2, . . . , SL) with
Si ∈ A for all i, into a numerical sequence (d1, d2, . . . , dL) such that

di =


L− i+min {d ∈ Vi : Sd = Si} ,

if ∀ d ∈ VL−i : Si+d ̸= Si

min {d ∈ VL−i : Si+d = Si} , otherwise

. (1)

For instance, for sequence ATGATCGG, the InD sequence is (3,3,4,5,5,8,1,3).
Equation (1) assumes every linear DNA sequence as circular. Hence, for each
nucleotide type, four artificial distances (from the last to the first nucleotide) are
included in the mapping of each DNA sequence. It implies that the following
properties are satisfied, in opposition to the definition of InD proposed by [15]:

Prop 1.
∑L

i=1 di =
∑

N∈A
∑

i: Si=N di and, if the nucleotide N exists in the
sequence (S1, S2, . . . , SL), then

∑
i:Si=N di = L;

Prop 2. Given the positions of the first occurrence of the four nucleotides
in a DNA sequence, s1(N) with N ∈ A, and the InD sequence
(d1, d2, . . . , dL), the corresponding nucleotide sequence (S1, S2, . . . , SL)
can be reconstructed iteratively. Indeed,

Si = argmin
N∈A

si(N) , i = 1, 2, . . . , L ,

where si(N) depends on Si−1 and is defined recursively by

si(N) =

{
di−1 + si−1(N) , N = Si−1

si−1(N) , N ̸= Si−1
(2)

for i = 2, . . . , L.

2.2. Geometric finite mixture

Let D be the InD of a nucleotide in a certain position in the DNA sequence. Let
PN denote the (unknown) proportion of the nucleotide N in the DNA sequence
(
∑

N∈A PN = 1), and let µN denote the mean distance between two consecutive
N -type nucleotides, N ∈ A. By the total probability law, D is modeled by a 4-
component mixture distribution in the following manner

P (D = d) =
∑
N∈A

hN (d)PN , d = 1, 2, . . . , (3)

where the marginal hN (d)
.
= P (D = d|N) is the probability distribution of the

distance between two consecutive N -type nucleotides, N ∈ A
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If the distance between two consecutive N -type nucleotides was identically
distributed for the four nucleotide types (say hN (.) = h(.), ∀N ∈ A), then

P (D = d) = h(d) , d = 1, 2, . . . .

If the nucleotide sequences were generated by serially independent random
variables, then the distance between two consecutive N -type nucleotides could
be modeled by a geometric distribution with parameter pN = 1/µN and,
consequently, D would follow a 4-component geometric mixture distribution
defined by

P (D = d) =
∑
N∈A

pN (1− pN )
d−1

PN , d = 1, 2, . . . , (4)

where the four marginal distributions are the corresponding expected distributions
of the four nucleotide types.

In model (4) it is implicitly assumed that when looking for N -type only
nucleotides along the DNA sequences, the success probability pN is the same for
every position of the genome. In case different success probabilities can be taken
into account (this is biologically acceptable, for instance, when µN can vary for
different regions of DNA sequences), the distances between two consecutive N -
type nucleotides would be defined by a gN -component geometric mixture model
with probability distribution

hN (d) = f(d; ΨN )
.
=

gN∑
m=1

πN,m pN,m(1− pN,m)
d−1

, (5)

with d = 1, 2, . . . and parameter vector ΨN
.
=

(πN,1, πN,2, . . . , πN,gN−1, pN,1, pN,2, . . . , pN,gN ), where (i) 0 ≤ pN,m, πN,m ≤ 1,
for m = 1, . . . , gN , and N ∈ A; (ii) πN,m, m = 1, . . . , gN , are related to the
weights of the different success classes in the mixture such that

∑
m πN,m = 1,

forN ∈ A; and (iii) the number gN of mixture components reflects some structural
complexity of the InD for the N -type nucleotides in the DNA sequences.

Thus, under the independence assumption of the nucleotides in the DNA
sequences, from (3) and (5), the probability distribution ofD could be defined by a
mixture of four finite mixtures of geometric distributions involving a total number
of 2G− 1 one-dimensional parameters, where G =

∑
N∈A gN . Additionally, if

the four nucleotide types are identically distributed (parameter vector ΨN is the
same for all N ∈ A, say ΨN = ψg

.
= (π1, π2, . . . , πg−1, p1, p2, . . . , pg)), a similar

probability distribution for D, now with a lower total number of parameters
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(2g − 1), would be provided:

P (D = d) =
∑
N∈A

f(d;ψg)PN = f(d;ψg)

=

g∑
m=1

πm pm(1− pm)
d−1

, d = 1, 2, . . . . (6)

From a mathematical point of view, (6) could be interpreted as a general simple
distribution probability which contains model (4) and model (3) satisfying (5).
On the other hand, from a biological point of view, (6) can be interpreted as
a general expected theoretical model of the InD under the assumption that all
nucleotides are independently placed along the DNA sequences, such that its
marginal distributions are now not explicitly addressed to the nucleotide types.
Motivated by these two interpretations, in this work we analyze the approximation
defined by (6) to the InD.

2.3. Estimation

We investigate the g-component geometric mixture model (6) as an approximation
to the empirical distribution of the InD, where the parameter vector ψg will be
estimated from the observed numerical sequences of InD resultant from a given
genome. Remark that, after a value d in any numerical InD sequence, the value
d− 1 can not be found since if a nucleotide N is observed at position x and
the next occurrence of the same nucleotide N is observed at position x+ d, then
the next occurrence of the nucleotide observed at position x+ 1 cannot be also
found at position x+ d in the numerical sequence (for instance, in the sequence
NXXXNX , where N represents one nucleotide and X represents a nucleotide
that is different from N , the first InD is 4 but the second InD can never be
3 since X ̸= N ). In other words, the successive elements of the InD sequence
obtained from the genetic sequences are not independent. Hence, the parameter
vector ψg will be estimated using the composite likelihood framework ([10]).
The methodology of composite likelihood reduces the dimension of the likelihood
function using low-dimensional likelihood objects defined over subsets of data.

Let d̃ = (d1, d2, . . . , dL) denote the observed numerical sequence of InD from
the DNA sequences of a given species. To form the composite likelihood, we
rewrite d̃ taking into account the distances between the same nucleotide N -type,
for N ∈ A, as

d̃ =
(
d̃A, d̃C , d̃G, d̃T

)
,

where d̃N =
(
dN1 , d

N
2 , . . . , d

N
LN

)
, N ∈ A, denote the vector of observations

sampled independently from the set of distances between N -type nucleotides and
dNi denotes the ith observation contained in d̃ concerning withN -type nucleotides.
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Thus, according to [10], the composite likelihood function will be defined as

CL(ψg; d̃) =
∏
N∈A

LN (ψg; d̃) ,

where LN (ψg; d̃) = f(d̃N ;ψg) is the marginal likelihood with respect to the
distance between the sameN -type nucleotides. Due to the first property of the InD
mentioned above (Prop 1, in Section 2.1), we take the first LN − 1 components of
d̃N as identically and independently distributed observations and the last term dNLN

is fixed. Thus,

LN (ψg; d̃) = f(dN1 , d
N
2 , · · · , dNLN

;ψg)

= f(dN1 , d
N
2 , · · · , dNLN−1|dNLN

;ψg)f(d
N
LN

;ψg)

= f(dN1 , d
N
2 , · · · , dNLN−1;ψg)× 1 , iff

LN∑
i=1

dNi = L

=

LN−1∏
i=1

f(dNi ;ψg)

and, consequently, from (6),

CL(ψg; d̃) =
∏
N∈A

LN−1∏
i=1

g∑
m=1

πm pm(1− pm)
dN
i −1

To find the maximum composite likelihood estimate ψ̂g, we apply the EM
algorithm ([6, 11]) using 10−5 as the tolerance value for the logarithm of the
composite likelihood function CL(ψg; d̃).

To determine g, we use the BIC approximation in the composite likelihood
framework derived by [8] from the usual BIC method defined by [19]. BIC allows
the selection of the number of mixture components needed to provide the best
approximation to the density, penalizing the number of parameters in the model.
Hence, g is the lowest positive integer that minimizes the function

BIC(g) = −2 log CL(ψ̂g; d̃) + ν log(L) ,

where ν = 2g − 1 is the number of free parameters of the model (6).

3. Methodology

Several collections of sequenced genomes are currently available in public
databases (e.g., Ensembl, NCBI). Usually, only one complete sequenced genome

Stat., Optim. Inf. Comput. Vol. 1, December 2013.



GEOMETRIC DISTRIBUTIONS IN GENOMIC ANALYSIS 15

per sequenced species or sequenced strain is provided. DNA sequences available
in public databases are assumed to be genome representatives of the sequenced
species or strain ([7]). All the intrinsic properties of the DNA sequences associated
to individuals belonging to a certain species are assumed to be contained in the
DNA sequence, (S1, S2, . . . , SL). Supposing that the corresponding InD sequence
(d1, d2, . . . , dL) represents a sample of D, statistical inference (confidence
intervals and hypothesis testings) could be done to assess the fit ofD by the model
(6). We pay attention on three particular models by species:

1. f0(d) ≡ f(d;ψ4) with πi = pi = 1/4, i = 1, 2, 3, 4. All the four nucleotides
are supposed to be uniformly distributed in the DNA sequence. Under this
model, DNA primary structure features of all organisms are assumed to be
invariantly described by the same probability law; it will be denoted as the
baseline model.

2. f1(d) ≡ f(d; ψ̂4) with πi = pi, where pi, i = 1, 2, 3, 4, are estimated by the
relative frequencies of each of the four nucleotides in the DNA sequence.
This model is similar to f0 but takes into account the quantity of each
nucleotide needed to describe each organism. It is the baseline specific of
the DNA selective evolution of the species and represents the background
random of the DNA sequence. Remark that f1 coincides with (4) when pN
is replaced by its maximum likelihood estimate.

3. f2(d) ≡ f(d; ψ̂g) with g determined by BIC as described in Section 2.3.
It is expected that this model contains information about the structural
complexity of the InD and so represents an approximation to the InD
empirical distribution provided by an extension of the mixture model f1.

Herein, we do not intend to conduct any statistical test. Our proposal is the
construction of profiles based on divergences between the empirical distribution of
the InD and each of the three models mentioned above. To measure the divergence
between two probability functions fk′ and fk, at a point d, we use the score

sfk′ ,fk(d) =
fk′(d)− fk(d)√

fk(d)(1−fk(d))
L

(7)

and the relative error

efk′ ,fk(d) =
fk′(d)− fk(d)

fk(d)
. (8)

The score (7) is motivated by the well-known test statistic used to test the
null hypothesis H0 : P (D = d) = fk(d), when fk′(d) is the observed relative
frequency fobs(d) of the event {D = d}. The relative error (8) is motivated by [1].
In that paper, the authors compared the empirical distribution of the InD with the
random background and created a genomic signature of a species, given by the
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100-dimensional residue profile [−ef1,fobs(1),−ef1,fobs(2), · · · ,−ef1,fobs(100)].
The choice of the vector dimension was arbitrary. When fobs(d) = 0, for some
d, those authors assigned the value zero to the relative error.

Unlike the score (7), the relative error (8) does not depend on the genome length
L, and is related with (7) by the following equation:

sfk′ ,fk(d) =
efk′ ,fk(d)√
1
L

(
1

fk(d)
− 1

) .

Both statistics (7) and (8) reflect a non-symmetrical measure of the divergence
between fk and fk′ and can be used to construct profiles. Several symmetrical
measures defined by commutative operations of (7) and (8) (e.g., sfk′ ,fk(d) +
sfk′ ,fk(d)) can be easily defined. Independently of what is the formula that we fix,
(7) or (8), the divergence measure value, at a point d, will be denoted by rfk′ ,fk(d).
Thus, for each species, we define a divergence profile given by the vector

rfk′ ,fk =[rfk′ ,fk(1), rfk′ ,fk(2), . . . , rfk′ ,fk(M)]

with fk′ , fk ∈ {fobs, f0, f1, f2}, k ̸= k′, where M is the lowest positive integer
satisfying fobs(d) > 0, ∀d ∈ {1, 2, · · · ,M} and fobs(M + 1) = 0.

Given the sequenced genome of n different organisms, we construct the
divergence profile matrices

Dfk′ ,fk = [rfk′ ,fk(d; i)]d=1,2,...,M ;i=1,2,...,n,

where rfk′ ,fk(d; i) denotes the divergence measure value rfk′ ,fk(d) for the
species i. These matrices are useful for analyzing differences between any
two distributions among n species. Fixing two generic distributions h1 and
h2, a comparison between the divergence profile matrices Dh1,fk and Dh2,fk

allows the identification of similar divergence patterns for the two distributions
h1 and h2 among the n species. An analogous reasoning can be made using
Dfk,h1 and Dfk,h2 . Obviously, since non-symmetrical measures of divergence
are here considered, the divergence profile matrices Dfk,h1 and Dh2,fk are not
comparable. When the divergence profiles between the empirical distribution
(fobs) and the baseline model (f0), or the random background (f1), are considered,
relations among species in terms of evolutionary pattern (i.e., clustering with
close phylogenetic relationships) can be highlighted. Graphically, both traditional
hierarchical clustering techniques and principal component analysis can provide
useful tools for visualizing those divergence similarities among the n species.
By using the former, dendrograms can be constructed that resemble a kind of
distance trees. By using the latter, projections of the divergence profiles on a
two-dimensional space defined by the first two principal components can be
displayed, providing another different manner to visually explore divergence
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Table 1. Notation of the ten euclidean distance matrices constructed from matrices Dg1,g2
for different choices g1, g2 ∈ {fobs, f0, f1, f2}, g1 ̸= g2. Since divergences between
models f0 and f1 are not of interest to this study, the euclidean distance matrices (+)
associated to Df0,f1 and Df1,f0 are not considered. Note that there is no symmetric
behavior since rfk′ ,fk (d) ̸= rfk,fk′ (d).

g2
g1 fobs f0 f1 f2
fobs c0 c1 c2
f0 a0 + A0

f1 a1 + A1

f2 a2 C0 C1

patterns involving fobs and the theoretical models f0, f1 and f2. If f2 is
an approximation acceptable to fobs, then the marginal distributions can be
associated to (homogeneous) classes underlying to the empirical distribution of
the InD and the number of the mixture components can be useful as an initial
number on methods for identifying clusters ([4]).

In order to evaluate the approximation f2 to fobs we propose assessing the
similarity of divergence patterns drawn by two comparable divergence profiles
involving the distributions fobs, f2, f1 and f0. In order to measure the similarities,
we suggest obtaining the matrix (n× n) of the euclidean distances between each
pair of rows (species) for each divergence profile matrix, transform each one into
a n2–dimensional vector and calculate the Kendall coefficient of concordance
between the two n2-dimensional vectors obtained. The Kendall coefficient value is
an estimate of the overall agreement between the two euclidean distance matrices,
regardless of the exact values of the euclidean distance between divergence
profiles. An higher level of concordance implies an higher similarity between
the two euclidean distance matrices, and so an higher similarity between the two
correspondent dendrograms constructed using any linkage criteria based on order
statistics (e.g., single and complete linkages). Following this divergence-based
approach, the levels of concordance between the ten euclidean distance matrices
obtained from matrices Dfobs,fk , Dfk,fobs , for k = 0, 1, 2, and Df2,fk , Dfk,f2 , for
k = 0, 1, sketched in Table 1, are aimed at quantifying divergence between the
empirical distribution fobs and the approximation f2.

4. Results

Based on the methodology described above, we evaluated whether the
proposed mixture model f2 contains information about fobs and thus reveals
important features of the DNA sequences. To perform this evaluation, the
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assembled DNA sequences of a set of 45 species were collected from
several public databases: 42 from the National Center for Biotechnology
Information (NCBI, ftp://ftp.ncbi.nih.gov/genomes/); 1 from
the Joint Genome Institute (http://genome.jgi-psf.org/), 1 from
Xenbase (http://www.xenbase.org/); and other from Genome Project
(http://www.fugu-sg.org/). All symbols in each of the collected
sequences that did not correspond to one of the four nucleotides were removed
before further processing. The names of the species considered are listed in
Appendix (Table 6).

The species under analysis are 5 archaea, 13 bacteria and 27 eukaryotes. Among
the eukaryotes, 4 protozoa, 3 fungi, 4 plants and 16 animals are considered.
Analyzing the genome size of each species, differentiation among groups is
highlighted: prokaryotes and fungi present a shorter genome size than that of
protozoa, which, in turn, is shorter than that of plants and animals (data not
shown).

Taking into account the observed InD sequences, the finite mixture models f0,
f1 and f2 were estimated for each species, as mentioned in Section 3 (the estimated
parameter vector Ψg is not shown). Figure 1 illustrates the model f2 estimated for
the species Streptococcus pneumoniae (St). Figure 2 depicts the choice made for
the number g of components associated to the model f2 and based on BIC (see
Table 5, in Appendix, for more detailed results). While organisms with a shorter
genome size are associated to lower complexity models (g ≤ 4), organisms with
a larger genome size (e.g., mammals) are associated to higher complexity models
(g ≥ 4, except for one species: Oryza sativa). Concretely, the estimated mixture
models with a lower number of components arise more tendentiously associated to
the prokaryotes than to the eukaryotes, suggesting that the genome of prokaryotes
may be characterized by a lower number of homogeneous classes than that of
eukaryotes. Also, a flat shape of the BIC is observed in Figure 2, for all species.
This means that an higher number of marginal geometric distributions could be
incorporated in the model f2 without greatly affecting the balance established
by BIC between the likelihood model and its complexity. From a biological
perspective, this fact suggests that there may be additional classes governing the
InD sequences in genomes, but the identification of those potentially new classes
is probably outside the reach of our model f2.

A preliminary analysis of the maximum likelihood estimates Ψ̂g obtained for
the 45 species was carried out. A summary description of all the estimates
p̂m, m = 1, · · · , g, is presented in Table 2. The estimates p̂m associated to the
geometric distribution with the highest mixture weight in the mixture model
f2 are highlighted in Figure 3. Two interesting features of the model f2 were
observed. The first one is that the estimates for the parameter of the geometric
distribution with the highest mixture weight are close to the value 0.25 for several
species (Figure 3). These values may indicate that a large weight of the model
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Figure 1. Mixture model f2 estimated for the species Streptococcus pneumoniae (St). On
the top, red points represent the estimated model f2 and blue bars represent the empirical
model fobs. On the bottom, the g = 3 geometric distributions and their corresponding
weights in the mixture model f2 are depicted. Hence, for the species St, the model f2
is defined by a mixture with 9% of a geometric distribution with parameter p1 = 0.137,
85% by a geometric distribution with a parameter close to 0.25 (p2 = 0.260) and an extra
weight of 6% for the calculation of P (D = 1).

f2 is associated to randomness of the four nucleotides in the DNA sequence
and, consequently, the ability of model f2 to explain some important features
of the DNA sequences can be questioned. This fact was already expected (e.g.,
the correlation structure of the data was not explicitly considered in the mixture
model (6)). The second interesting feature is that for various species, the estimates
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Figure 2. Graphical representation of the normalized BIC values obtained for each
species. Each line is associated to one species. The total number of species for which each
g is the lowest minimizer of the function BIG(g), and consequently the total number of
species approximated by a g-component mixture model f2, is shown in parenthesis.
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Figure 3. Parameter value of the geometric distribution with the highest weight (maxπi)
observed in the proposed mixture model f2 estimated for each species.

yielded by the EM algorithm led to p̂m = 1, for some m (Table 3). This fact
highlights the importance of the existence of pairs of equal nucleotides in the
DNA sequences provided by model f2 for several species.

Among the 45 species under study, the lowest observed value of the InD with
null frequency was d = 55 (exhibited by the species Chlamydia trachomatis).
Hence, following the methodology described in Section 3, for each divergence
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Table 2. Mean and standard deviation of the parameters of the geometric distributions
sorted by the weight in the mixture model f2. Here p̂(i) represents the estimate of
parameter of the geometric distribution related with the i-th lower weight in the mixture
model f2 for each species.

g = 2 g = 3 g = 4 g = 5 g=6
Prokaryotes p̂(1) 0.13±0.01 0.56±0.47 0.08±0.03

p̂(2) 0.28±0.005 0.38±0.27 0.64±0.49
p̂(3) 0.25±0.03 0.37±0.22
p̂(4) 0.27±0.05

Eukaryotes p̂(1) 0.11 0.06±0.02 0.03±0.03 0.01±0.01 0.01±0.00
p̂(2) 0.30 0.32±0.35 0.06±0.03 0.07±0.02
p̂(3) 0.17±0.03 0.37±0.36 0.47±0.29
p̂(4) 0.32±0.06 0.38±0.16 0.30±0.26
p̂(5) 0.25±0.03 0.28±0.01
p̂(6) 0.28±0.01

Table 3. Mean and standard deviation of the estimated weights π̂m associated to the
estimates p̂m = 1 obtained for the model f2 by organism groups in study. N is the total
number of species where was observed p̂m = 1, for some m, in the estimated model f2.

group N mean standard deviation
Prokaryotes bacteria 8 0.06 0.03
Prokaryotes archaea 0 – –
Eukaryotes fungi 3 0.05 0.01
Eukaryotes protozoa 1 0.12 –
Eukaryotes plants 2 0.04 0.004
Eukaryotes animals 1 0.04 –

formula (7) and (8), we drew the ten euclidean distance matrices depicted in
Table 1 with M = 54 and n = 45.

By applying hierarchical clustering techniques with complete and single
linkage and euclidean distance as similarity index to various divergence profile
matrices, Dfk′ ,fk , and divergence profile matrices based on symmetrical statistics
(e.g., sfk′ ,fk(d) + sfk′ ,fk(d)), several dendrograms as distance trees of the 45
species were obtained. In all of these dendrograms, some scientifically accepted
evolutionary relationships between living organisms were partially detected. For
instance, the separation of prokaryotes, fungi and protozoa from plants and
animals. Also, a mammalian cluster and a primate cluster were detected in
accordance with the scientifically accepted phylogeny (e.g., [20]).

Principal component analysis for 2n× 54 augmented divergence profile
matrices

[Dfobs,fk∥Df2,fk ]
′
, k = 0, 1 ,

with n = 45 (all the species), n = 18 (restricted to the 18 prokaryotes) and n =
27 (restricted to the 27 eukaryotes) aimed at facilitating graphical comparisons
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between divergence profiles rfobs,fk and rf2,fk , for k = 0, 1, through their
projections on the same reduced two-dimensional space of the two first principal
components, were performed. Let’s focus on these projections. In Figure 4 the
projections for the prokaryotes and the eukaryotes are separately displayed. Plots
very similar to the graphs (c) and (d) in Figure 4, with all the prokaryotes
projected over the fungi group, were obtained when the 45 species was displayed
(graphs not shown). Most projections of rf2,fk are not overlapped with the
corresponding projections of rfobs,fk , k = 0, 1, particularly in the case of the
prokaryotes. Although this fact shows that fobs and f2 are different, they share
several interesting features: i) in terms of divergence with f1, the ratio of the
difference between the first principal component of the projection of rfobs,f1 and
that of rf2,f1 to the difference between the second principal component of the
projection of rfobs,f1 and that of rf2,f1 seems very similar for all prokaryotic
organisms (parallel lines joining red and blue points in Figure 4 (b)); ii) in terms
of divergence with fk, k = 0, 1, the first principal component of the projections of
rfobs,fk and that of rf2,fk are visually very close to one another for each eukaryotic
organism (vertical lines joining red and blue points in Figure 4 (c),(d)); it is also
true for prokaryotic organisms only when the divergence is measured in terms
of the model f0 (Figure 4 (a)); iii) in terms of clusterings, from the projections
of rf2,fk and rfobs,fk , k = 0, 1, several clusters of eukaryotes are clearly detected
in accordance with the scientifically accepted evolutionary processes: the fungi
cluster (Sp, Sc, Ca), the primate cluster (Mu, Pt, Hs), and the mammalian cluster
(Bt, Eq, Pt, Mm, Hs, Cf, Oa, Rn, Mu), being this latter linearly separable from the
other species by an oblique (vertical, resp.) line when divergences of both fobs
and f2 are measured from f0 (f1, resp.). These similarities between divergence
patterns involving f2 and fobs show that the model f2 contains information about
the structural features of the InD in the DNA sequence, being sufficiently robust to
enable the identification of clusters of organisms, particularly eukaryotic groups.
In Figure 5 the clusterings mentioned above are highlighted.

For all species, we detected high divergence values rfobs,fk(d) and rfk,fobs(d),
k = 0, 1, 2, for several values of d. Therefore, the InD is not fitted to the models
fk, k = 0, 1, 2. To assess the unfitting of the empirical distribution fobs to f2,
we applied the procedure described in Section 3 with the notation introduced in
Table 1. Concretely, we calculated the Kendall coefficient of concordance between
the euclidean distance matrices a0, a1 and a2 (c0, c1 and c2, resp.) associated
to Dfk,fobs (Dfobs,fk , resp.) and the euclidean distance matrices A0 and A1 (C0

and C1, resp.) associated to Dfk,f2 (Df2,fk , resp.). Table 4 summarizes some
of the results obtained. The levels of concordance were calculated considering
not only the whole set of n = 45 species under study but also subsets of n =
10, 20, 30 species randomly sampled without replacement from those 45 species.
Independently of the value n and the divergence formula considered, (7) and (8),
the results clearly show higher levels of concordance between euclidean distance
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Figure 4. Plots of the first and second principal components for the 2n× 54 augmented
divergence profile matrices

[
Dfobs,fk∥Df2,fk

]′ ((a) and (c) for k = 0, (b) and (d) for
k = 1) restricted to 18 prokaryotes -(a), (b)-, and restricted to 27 eukaryotes -(c), (d)-. In
the four graphs, the projections of the divergence profiles rfobs,fk and rf2,fk are depicted
in blue and red, respectively. The percentage of variability explained by each component
is indicated in the axis labels.

matrices denoted by capital letters with euclidean distance matrices denoted by
the corresponding lowercase letters: a0 and A0, a1 and A1, c0 and C0, and c1
and C1. For different pairs above, the highest levels of concordance are close to
100% (≥ 94.9% for the score s and ≥ 82.5% for the relative error e). These highly
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(a) (b)

Figure 5. Similiar plots as depicted in Figure 4 for the 2n× 54 augmented divergence
profile matrices

[
Dfobs,f1∥Df2,f1

]′ for all species -(a)- and restricted to 27 eukaryotes
-(b)-. Here the detected clusterings are highlighted.

Table 4. Kendall coefficient values (×100) to quantify the level of concordance between
the euclidean distance matrices indicated in Table 1. In parentheses are the mean and
the standard deviation of ten Kendall coefficient values obtained when the procedure
is repeated ten times with 10 species sampling without replacement from the set of 45
species.

residue s residue e
A0 A1 A0 A1

a0 95.6 86.1 82.5 30.1
(94.1±3.8) (85.1±5.8) (79.3±7.9) (31.4±15.2)

a1 83.6 94.9 23.4 86.8
(80.6±8.2) (94.9±4.5) (20.6±15.9) (85.7±6.2)

a2 52.4 56.3 35.5 18.2
(52.3±10.1) (57.2±8.1) (21.1±19.4) (14.5±22.7)

C0 C1 C0 C1

c0 97.1 70.5 89.2 -2.5
(97.1±1.7) (69.3±9.2) (90.3±4.9) (-4.2±13.7)

c1 69.7 95.7 -4.2 90.5
(67.4±10.1) (95.4±4.6) (-7.1±11.4) (91.2±4.5)

c2 51.5 59.1 -1.8 -11.1
(52.2±13.0) (60.2±7.3) (-5.3±10.2) (-11.2±10.2)

concordant euclidean distance matrix pairs correspond to the divergence profile
matrices Dfk,fobs and Dfk,f2 , and to divergence profile matrices Dfobs,fk and
Df2,fk , k = 0, 1. These results show that possible relations among the species in
terms of divergence profiles from random and baseline models can still be captured
by the model f2.
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5. Conclusions

There are different ways of investigating properties of DNA sequences. Herein,
we considered the InD, a reversible numerical representation of DNA sequences,
and explored its fitting by finite geometric mixture models. Based on the DNA
sequences of 45 species, we analyzed divergence between the InD empirical
distribution and the three mixture models: (i) f0, which represents a probable
starting model where all organisms are invariantly described by this same
probability law; (ii) f1, which represents the background random model of the
DNA sequence in its selective evolution; and (iii) f2, which represents a simple
likelihood model suited to some structural complexity contained in the InD, under
independence assumption of the nucleotides in the DNA sequences, where the
number of parameters was selected in accordance with a composite likelihood
version of the BIC and the parameters were estimated by the EM algorithm.

Using two formulas to quantify the divergence between two probability
functions fk′ and fk, (7) and (8), we defined different divergence profile
matrices for n = 45 species. Each profile depends on a function pair fk′ , fk ∈
{fobs, f0, f1, f2}, with k ̸= k′.

The observation of the divergence profile matrix Dfobs,f2 allowed us to check
the unfitting of the empirical distribution fobs to the model f2.

Although the proposed mixture model f2 is still not adequate for modeling the
InD, our experimental analysis, based on divergence patterns from the models f0
and f1, indicts the existence of various common features between the empirical
distribution of InD and the model f2, namely, i) similar relations between
projections of divergence profiles on a reduced two-dimensional space, and ii)
similar clusterings (Figure 4 and Table 4). For the 45 species considered and from
a biological point of view, the model f2 is able

• to predict a discrimination of the eukaryotes organisms for mammalian and
non-mammalian groups when divergence profiles of these organisms are
represented in a two-dimensional reduced space (Figure 5(b)).

• to predict the separation of plants and animals from other species when
divergence profiles of all the species are represented in a two-dimensional
reduced space (see Figure 5(a))

• to highlight an additional weight for the occurrence of dinucleotides with
equal nucleotides in the DNA sequences, for several species (for an example,
see Figure 1).

All these facts lead us to conclude that the model f2 is able to capture information
from DNA sequences.

In addition, regarding the mixture model f2 estimated for each species,
its number of mixture components and the identification of its corresponding
marginal distributions may provide useful insights on biological mechanisms,
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unveiling the existence and the probabilistic structure of homogeneous classes
underlying the DNA sequences. In particular, there is a tendency for the number
of mixture components of the model f2 to be greater in eukaryotes than in
prokaryotes.

Using the InD, we explored the idea of comparing the proposed mixture model
f2 with the empirical distribution fobs after removing the random background (f1)
and the baseline (f0) from both of these distributions, in order to evaluate the
ability of the model f2 for capturing information of DNA sequences. A similar
procedure could be extended to other theoretical models and mappings of DNA
sequences.
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A. Supplementary information

g = 2 g = 3 g = 4 g = 5 g = 6

Prokaryotes Dv, Hr, Pa Ap, Ct, Ec, Ba, Bs, Cb,
Hp, Mg, Pf Hi, Mj

Sa, Sm, St, Tk
Eukaryotes Li Pl, Tb, Os Ca, Sc, Sp Po, Vv, Cf, Hs, Oa

Dd, At Am, Bt, Ce,
Eq, Fu Dm, Dr, Gg,

Mm, Mu, Pt,
Rn, Xt

Table 5. Identification of the number of components g of the mixture model f2
determined by BIC for each of the 45 species in study.
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Species Abbreviation Reference
Aeropyrum pernix Ap NC000854
Halobacterium salinarum Hr NC010364, NC010366, NC010369
Methanococcus jannaschii Mj NC000909, NC001732, NC001732
Pyrococcus furiosus Pf NC003413
Thermococcus kodakarensis Tk AP006878
Bacillus anthracis Ba NC003997
Bacillus subtilis Bs NC000964
Chlamydia trachomatis Ct NC000117
Clostridium botulinum Cb NC009495, NC009496
Desulfovibrio vulgaris Dv NC008741, NC008751
Escherichia coli Ec NC000913
Haemophilus influenzae Hi NC000907
Helicobacter pylori Hp NC000915
Mycoplasma genitalium Mg NC000908
Pseudomonas aeruginosa Pa NC002516
Staphylococcus aureus Sa NC002951, NC006629
Streptococcus mutans Sm NC004350
Streptococcus pneumoniae St NC011900
Arabidopsis thaliana At AGI 7.2
Oryza sativa Os NC008394, NC008405
Populus trichocarpa Po Build 1.0
Vitis vinifera Vv Build 1.1
Bos taurus Bt Build 4.1
Cannis familiaris Cf Build 2.1
Equus caballus Eq Build 2.1
Gallus gallus Gg Build 2.1
Apis mellifera Am Build 4.1
Drosophila melanogaster Dm Build 4.1
M musculus Mu Build 37.1
Caenorhabditis elegans Ce NC003279
Rattus norvegicus Rn Build 4.1
Xenopus Tropicalis Xt Build 4.1
Homo sapiens Hs Build 36.3
Macaca mulatta Mm Build 1.1
Pan troglodytes Pt Build 2.1
Danio rerio Dr Build 3.1
Takifugu rubripes Fu fourth assembly
Ornithorhynchus anatinus Oa Build 1.1
Dictyostelium discoideum Dd Build 2.1
Leishmania infantum Li NC009277, NC009386, NC009420
Plasmodium falciparum Pl Build 2.1
Trypanosoma brucei Tb NC005063, NC007276, NC007283,

NC007334, NC008409, NT165287:88
Candida albicans Ca NC007436
Saccharomyces cerevisiae Sc SGD 1
Schizosaccharomyces pombe Sp Build 1.1

Table 6. List of the species considered in the present study, their abbreviations and the
DNA builds used.
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