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Abstract In this work, we study the connection of the stability of multidimensional
positive systems with the stability of switched positive systems. In a previous work,
we showed that the stability of a multidimensional positive system implies the sta-
bility of a related switched positive system. Here, we investigate the reciprocal im-
plication.

1 Introduction

The study of stability conditions for switched positive systems has attracted the at-
tention of several researchers (see, for instance, [4, 5, 8]). By relating a switched
positive system with a multidimensional positive system, in [1] we provided a sim-
ple sufficient condition, that could be stated in terms of the spectral radius of a
single matrix. However, it turns out that this sufficient condition is not necessary. In
order to understand how far sufficiency is from necessity, here we search for addi-
tional conditions under which the stability of a switched positive system implies the
stability of the related multidimensional positive system.

The remainder of this paper is organized as follows. In the next section, we make
a brief introduction to multidimensional positive systems and their stability. The
connection between the stability of these systems and the stability of switched pos-
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itive system is studied in Section 3. Finally, the paper ends with the conclusions in
Section 4.

2 Multidimensional positive systems and their stability

The k-dimensional (kD) positive linear discrete systems of order n considered here
are of the form

Σ
kD
A1,...,Ak

: ω(i) =
k

∑
j=1

A jω(i− e j), (1)

where ω(i) ∈ Rn represents the non-negative local state at i = (i1, . . . , ik) ∈ Zk,
A1, . . . ,Ak ∈ Rn×n are non-negative matrices, e j ∈ Zk is the j-th unit vector and so
i− e j = (i1, . . . , i j−1, i j−1, i j+1, . . . , ik). Furthermore, letting ī = ∑

k
j=1 ik, the global

state of Σ kD
A1,...,Ak

at time ` ∈ Z+
0 is defined as the set of local states Ω` = {ω(i) : ī =

`}. Note that the notions of local and global state only coincide in the particular case
of k = 1, when (1) describes a 1D system ΣA such that ω(`) = Aω(`−1). Now, it is
obvious that, given a non-negative initial state Ω0, a sequence Ω1,Ω2, . . . is uniquely
determined by (1). The behavior of the global state sequences determines the stabil-
ity properties of the system. In particular, Σ kD

A1,...,Ak
is said to be asymptotically sta-

ble if for every non-negative Ω0 such that ||Ω0|| < ∞, one has lim`→+∞ ||Ω`||= 0,
where ||Ω`|| = sup{||ω(i)||2 : ī = `} and || · ||2 denotes the usual Euclidean norm.
In the area of multidimensional systems, it is well known that the following condi-
tion (which does not explore the fact that the system is positive) is necessary and
sufficient for the asymptotic stability of Σ kD

A1,...,Ak
[2]:

det(In−∑
k
j=1 z jA j) 6= 0 ∀(z1, . . . ,zk) ∈ Dk,

where Dk = {(z1, . . . ,zk) ∈ Ck : |z j| ≤ 1, j = 1, . . . ,k} is the closed unit polydisc in
Ck. This condition is unpractical and is not in general easy to check. However, if we
use the fact that the kD system is positive, then we get a simpler condition stated in
the proposition below. The result was presented for k = 2 in [10]. We presented it
for k ≥ 2 in [1], but without a proof. We now prove it.

Proposition 1. The kD positive system Σ kD
A1,...,Ak

is asymptotically stable if and only
if the 1D positive system ΣA with A = A1 + . . .+Ak is asymptotically stable.

Proof. Let us assume that the kD positive system Σ kD
A1,...,Ak

is asymptotically stable.
Suppose that the local states in Ω0 are all equal to a non-negative ω0 ∈Rn, arbitrarily
chosen. Then, it can be seen that the local states in Ω` are all equal to (A1 + . . .+
Ak)

`ω0 and hence that ||Ω`||= ||(A1+ . . .+Ak)
`ω0||2 for all `∈Z+

0 . The asymptotic
stability of the kD positive system implies that lim`→+∞ ||Ω`|| = 0 and, therefore,
lim`→+∞ ||(A1 + . . .+Ak)

`ω0||2 = 0. Given that ω0 is arbitrary, it follows that the
1D positive system ΣA with A = A1 + . . .+Ak is asymptotically stable.
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Now, let us assume that the 1D positive system ΣA with A = A1 + . . .+Ak is
asymptotically stable. Suppose that the global state Ω0 of the kD positive system
Σ kD

A1,...,Ak
is non-negative and such that ||Ω0|| < ∞. Then, there exists L ∈ R+ such

that, if ω(i) with ī = 0 is a local state in Ω0, then 0n ≤ ω(i)≤ Ln, where 0n and Ln
are vectors of length n with all components equal to 0 and L, respectively, and where
the inequalities should be understood component-wise. Now, let Ψ : (Z+

0 )
k 7→Rn×n

be the map whose value Ψ(i) = Ψ(i1, . . . , ik) corresponds to the matrix resulting
from the sum of all products in {A1, . . . ,Ak} where A j appears i j times for j =
1, . . . ,k, usually known as the Hurwitz product of A1, . . . ,Ak associated with i. For
instance, if k = 2, then Ψ(0,0) = In, Ψ(i1,0) = Ai1

1 when i1 > 0, Ψ(0, i2) = Ai2
2 when

i2 > 0 and Ψ(i1, i2) = A1Ψ(i1−1, i2)+A2Ψ(i1, i2−1) when i1, i2 > 0 [3]. With this
notation, if ω(i) with ī = ` is a local state in Ω`, we have

||ω(i)||2 = ||∑ j̄=`Ψ( j)ω(i− j)||2
≤ ||∑ j̄=`Ψ( j)Ln||2
= ||(∑ j̄=`Ψ( j))Ln||2
= ||(A1 + . . .+Ak)

`Ln||2

and so ||Ω`|| ≤ ||(A1 + . . .+Ak)
`Ln||2 for all ` ∈ Z+

0 . The asymptotic stability of
the 1D positive system ΣA with A = A1 + . . .+ Ak implies that lim`→+∞ ||(A1 +
. . .+Ak)

`Ln||2 = 0 and, therefore, lim`→+∞ ||Ω`|| = 0. Finally, minding that Ω0 is
arbitrary, it follows that the kD positive system Σ kD

A1,...,Ak
is asymptotically stable.

ut

Remark 1. According to the proposition, checking the asymptotic stability of the kD
positive system Σ kD

A1,...,Ak
amounts to check the asymptotic stability of the 1D positive

system ΣA with A = A1+ . . .+Ak, but this is very easy, because ΣA is asymptotically
stable if and only if the spectral radius of A is less than one, that is, ρ(A)< 1.

3 On the connection between the stability of multidimensional
positive systems and the stability of switched positive systems

A switched positive linear discrete-time system of order n composed of k subsys-
tems can be described by

ΣA1,...,Ak : x(`) = Aσ(`−1)x(`−1), Aσ(`−1) ∈ {A1, . . . ,Ak}, (2)

where x(`)∈Rn represents the non-negative state vector at time `∈Z+
0 , A1, . . . ,Ak ∈

Rn×n are non-negative matrices associated with the k subsystems and σ : Z+
0 7→

{1, . . . ,k} is the switching signal. It is clear that, given a non-negative initial state

x(0) = x0 (3)
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and a switching signal σ , a sequence x(1),x(2), . . . is uniquely determined by (2).
The behavior of the state sequences determines the stability properties of the system.
In particular, ΣA1,...,Ak is said to be uniformly asymptotically stable if it is uniformly
stable (u.s.) and globally uniformly attractive (g.u.a.), i.e.:

• ∀ε > 0, ∃δ > 0: ||x(0)||2 < δ ⇒ ||x(`)||2 < ε ∀` ∈ Z+
0 , σ (u.s.);

• ∀r,ε > 0, ∃`? ∈ Z+: ||x(0)||2 < r⇒ ||x(`)||2 < ε ∀`≥ `?, σ (g.u.a.).

As is known, ΣA1,...,Ak is uniformly asymptotically stable if there exists a common
quadratic Lyapunov function (CQLF) V (x) = xT Px such that

P� 0 ∧ P−AT
j
PA j � 0 j = 1, . . . ,k, (4)

where T denotes transposition and P� 0 means that P is positive definite [9].
Now, consider the kD positive system Σ kD

A1,...,Ak
described by (1) and whose global

state Ω0 = {ω(i) : ī = 0} is determined by

ω(0) = x0, ω(i) = 0 ī = 0∧ i 6= 0. (5)

Note that, in ΣA1,...,Ak , the state is updated in each step in a single direction, cor-
responding to the variable `. Moreover, ΣA1,...,Ak has k operation modes, and when
the j-th mode is active, the state update is made according to x(`) = A jx(`−1). On
the other hand, in Σ kD

A1,...,Ak
, the local state is updated in each step in k directions,

corresponding to the variables i1, . . . , ik in i. In addition, the contribution of the j-th
update direction to the overall update, given by

ω(i1, . . . , i j, . . . , ik) = A1ω(i1−1, . . . , i j, . . . , ik)+ . . .+

A jω(i1, . . . , i j−1, . . . , ik)+ . . .+

Akω(i1, . . . , i j, . . . , ik−1),

is represented by A jω(i1, . . . , i j − 1, . . . , ik). Therefore, we can think of an update
direction in Σ kD

A1,...,Ak
as being associated with an operation mode in ΣA1,...,Ak . Fur-

thermore, it is easy to see that the local state ω(i) = ω(i1, . . . , ik) of Σ kD
A1,...,Ak

equals
the sum of all possibilities for the state x(`) of the switching system ΣA1,...,Ak af-
ter ` = ī steps where the value of the switching signal is j for i j times with
j = 1, . . . ,k. Hence, the two systems have state evolutions that are closely re-
lated. This is illustrated in Figure 1 for k = 2. Note for instance that the value of
ω(i) = ω(i1, i2) along the i j-axis evolves in the same manner as the value of x(`)
when the switching signal is such that σ(`) = j for all `. Also remark that the value
of ω(1,1) = (A1A2 +A2A1)x0 results from the sum of the possible values for x(2)
after two steps where the value of the switching signal is 1 in one step and 2 in the
other. Given the close relation between the state evolutions of both systems, it is not
surprising that their stability properties are also related. This is clarified in the next
proposition.
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Fig. 1 State evolution of the 2D system Σ 2D
A1,A2

associated with the switching system ΣA1,A2 .

Proposition 2. The switched positive system ΣA1,...,Ak described by (2),(3) is uni-
formly asymptotically stable if the associated kD positive system Σ kD

A1,...,Ak
described

by (1),(5) is asymptotically stable.

We presented this result in [1]. In the following, we study the reciprocal implica-
tion and identify conditions under which the uniform asymptotic stability of the
switched positive system ΣA1,...,Ak implies the asymptotic stability of the associated
kD positive system Σ kD

A1,...,Ak
.

Start by noting that, as explained in Remark 1, a kD positive system Σ kD
A1,...,Ak

is
asymptotically stable if and only if ρ(A1 + . . .+Ak) < 1. In [1], we showed that,
if ρ(A1 + . . .+Ak) < 1, then it is possible to find a CQLF for the switched posi-
tive system ΣA1,...,Ak . Unfortunately, the converse is not true, as shown in the next
example.

Example 1. Consider the switched positive system ΣA1,A2 described by (2),(3) with
k = 2 and

A1 =

(
0.7 0
0 0.1

)
A2 =

(
0.4 0
0 0.1

)
.

It is obvious that A1 and A2 are such that ρ(A1),ρ(A2)< 1 and commute. Therefore,
it is possible to find a CQLF for ΣA1,A2 [7]. Moreover, it can be seen that ρ(A1 +
A2) = 1.1≮ 1.

At this point, a natural question arises: is there a relation between the existence of a
CQLF for a switched positive system ΣA1,...,Ak and the value of ρ(A1 + . . .+Ak)? If
the CQLF has no special form, then the answer is given by the following:
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Proposition 3. If the switched positive system ΣA1,...,Ak described by (2),(3) has a
CQLF, then ρ(A1 + . . .+Ak)< k.

Proof. Let us assume that V (x) = xT Px is a CQLF for ΣA1,...,Ak such that P� 0 and

P−AT
1 PA1 � 0

...
P−AT

k PAk � 0.

Then, (
P−AT

1 PA1
)
+ . . .+

(
P−AT

k PAk
)
� 0⇔

kP−
k

∑
j=1

AT
j PA j � 0⇔

k2 (kP−1)−1−
k

∑
j=1

AT
j PA j � 0⇔

(
kP−1)−1−

k

∑
j=1

(
1
k

A j

)T

P
(

1
k

A j

)
� 0.

According to [6], the latter condition implies that the kD positive system Σ kD
1
k A1,...,

1
k Ak

is asymptotically stable. This in turn implies that ρ( 1
k A1 + . . .+ 1

k Ak) < 1 and so
ρ(A1 + . . .+Ak)< k. ut

In the proposition just presented, no special form was assumed for the CQLF. How-
ever, if the CQLF for the switched positive system ΣA1,...,Ak is of a certain type, then
the bound on ρ(A1 + . . .+Ak) can be tightened. This is clarified in the next result,
which is the main contribution of this paper. It identifies conditions under which
the uniform asymptotic stability of the switched positive system ΣA1,...,Ak implies
the asymptotic stability of the associated kD positive system Σ kD

A1,...,Ak
. The proof is

omitted because it is based on arguments similar to those previously used.

Proposition 4. If the switched positive system ΣA1,...,Ak described by (2),(3) is uni-
formly asymptotically stable and has a CQLF V (x) = xT Px such that P� 0 and

1
k2 P−AT

1 PA1 � 0

...
1
k2 P−AT

k PAk � 0,
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then ρ(A1 + . . .+Ak)< 1 and the associated kD positive system Σ kD
A1,...,Ak

described
by (1),(5) is asymptotically stable.

Remark 2. It is easy to see that a matrix P in the conditions above also satisfies
P−AT

j
PA j � 0 for j = 1, . . . ,k. This means that in the previous proposition we are

indeed asking for the existence of a CQLF for ΣA1,...,Ak of a special form.

The next example illustrates the application of Proposition 4.

Example 2. Consider the switched positive system ΣA1,...,Ak described by (2),(3) with
non-negative diagonal matrices

A j = diag
(
α j1, . . . ,α jn

)
j = 1, . . . ,k.

Assume that ΣA1,...,Ak is uniformly asymptotically stable. Given that ρ(A1), . . . ,
ρ(Ak)< 1, since the system is stable only if each subsystem is stable, and A1, . . . ,Ak
commute, ΣA1,...,Ak has a CQLF V (x) = xT Px with P of diagonal form [7]:

P = diag(p1, . . . , pn) ,

where p1, . . . , pn > 0. Assume that 1
k2 P−AT

j
PA j � 0 for j = 1, . . . ,k, that is, that the

CQLF is in the conditions of the previous proposition. Then,

1
k2 P−AT

j
PA j � 0⇔

diag
(

p1

(
1
k2 −α

2
j1

)
, . . . , pn

(
1
k2 −α

2
jn

))
� 0⇔

0≤ α j1, . . . ,α jn <
1
k

for j = 1, . . . ,k. It is now simple to check that ρ(A1 + . . .+Ak) < 1 and hence the
associated kD positive system Σ kD

A1,...,Ak
described by (1),(5) is asymptotically stable.

4 Conclusions

In this paper we studied the relation between the stability of multidimensional posi-
tive systems and the stability of switched positive systems. Motivated by the fact that
the stability of the former implies the stability of the latter [1], but not vice-versa,
we searched for additional conditions under which the stability of a switched pos-
itive system implies the stability of a related multidimensional positive system. As
a preliminary result, we showed that if the switched positive system has a common
quadratic Lyapunov function of a certain type, then the associated multidimensional
positive system is stable. In our opinion, this might be a step forward to obtain nec-
essary and sufficient conditions for the stability of a new class of switched positive
systems.
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