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Palavras-chave Objetos móveis, Dados espácio-temporais, Agrupamento de trajetórias, 

Sistemas de recomendação 

 

  

Resumo 
 

 

  O uso generalizado de dispositivos capazes de obter e transmitir dados 
sobre a localização de objetos ao longo do tempo tem permitido recolher 
grandes volumes de dados espácio-temporais. Por isso, tem-se assistido a 
uma procura crescente de técnicas e ferramentas para a análise de grandes 
volumes de dados espácio-temporais com o intuito de disponibilizar uma 
gama variada de serviços baseados na localização. 
 
 Esta dissertação centra-se no desenvolvimento de um sistema para 
recomendaSr trajetos com base em dados históricos sobre a localização de 
objetos móveis ao longo do tempo. O principal problema estudado neste 
trabalho consiste no agrupamento de trajetórias  e na extração de 
informação a partir dos grupos de trajetórias. Este estudo, não se restringe 
a dados provenientes apenas de veículos, podendo ser aplicado a outros 
tipos de trajetórias, por exemplo, percursos realizados por pessoas a pé ou 
de bicicleta.  
 
  O agrupamento baseia-se numa medida de similaridade. A extração de 
informação consiste em criar uma trajetória representativa  para  cada 
grupo de trajetórias. As trajetórias representativas podem ser visualizadas 
usando uma aplicação web, sendo também possível configurar cada 
módulo do sistema com parâmetros desejáveis, na sua maioria distâncias 
limiares. Por fim, são apresentados casos de teste para avaliar o 
desempenho global do sistema desenvolvido. 
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Abstract 

 
  The widespread use of devices to capture and transmit data about the 
location of objects over time allows collecting large volumes of spatio-
temporal data. Consequently, there has been in recent years a growing 
demand for tools and techniques to analyze large volumes of spatio-
temporal data aiming at providing a wide range of location-based services. 
 
  This dissertation focuses on the development of a system for 
recommendation of trajectories based on historical data about the location 
of moving objects over time. The main issues covered in this work are 
trajectory clustering and extracting information from trajectory clusters. 
This study is not restricted to data from vehicles and can also be applied to 
other kinds of trajectories, for example, the movement of runners or bikes. 
 
  The clustering is based on a similarity measure. The information 
extraction consists in creating a representative trajectory for the 
trajectories clusters. Finally, representative trajectories are displayed using 
a web application and it is also possible to configure each system module 
with desired parameters, mostly distance thresholds. Finally, case studies 
are presented to evaluate the developed system. 
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1. Chapter  

Introduction 

 The recent technological advances allowed to obtain large amounts of location data using devices 

such as Smartphone, GPS or RFID tags. Moreover, the widespread use of these location-aware devices 

has encouraged many researchers and developers to explore this huge amount of information in a 

diversity of applications such as fleet management systems, GPS-tracking and logger applications. My 

Tracks and RunKeeper (Android applications) are two examples of solutions that allow recording 

trajectories data such as, time, location, speed, distance travelled and elevation, as well as estimating 

fuel consumption or calories burned during physical activity. Other works are focused on spatial-

temporal data streams analysis, for example, using surveillance data, for monitoring and study animal’s 

trajectories (in case of hibernation), earthquakes, hurricanes and touristic itineraries (Yoon, Zheng et al. 

2010). The solutions proposed in these works consider that there are no or very few constraints on the 

spatio-temporal behavior of the represented entities. However, another important class of applications 

deal with the analysis of data about networked Moving Objects (MO), e.g., the movement of taxis in 

roads networks. 

One of today’s major environmental concerns is the pollution generated by vehicles in low rotations 

caused by traffic congestion. Several applications were developed to detect congested roads. Successful 

examples are Waze (Shinar 2009), which is a collaborative platform used to register aperiodic live 

events and traffic information and V-Traffic 1 a French traffic real-time information system. These are 

live applications based on user collaboration, information feedback or aggregation of several sources 

of information, which do not predict or recommend alternative routes based on historical data. 

Recently Google Maps has released a service to search for the path between two predefined locations 

using real-time traffic information (Figure 1). 

                                                      
1 Source: v-traffic.com 
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Figure 1: Trajectories found by Google Maps with traffic information. 

 

Currently, real-time traffic information is only available at certain places and this information is also 

dynamic, which means that it may change significantly along time, e.g., because drivers have different 

behavior patterns in rush hours or they change decisions when traffic jams occur. Hence, the analysis 

of historical data can also play an important role in this context, to extract spatio-temporal data patterns 

for traffic data and use that information for the recommendation of trajectories. 

 

1.1 Objectives 

Spatial Data Mining (DM) is a process to extract meaningful information from a source, normally a 

dataset, and transform it into something understandable. There are three main dimensions explored in 

moving objects Cluster analysis: spatial, temporal and semantic. The spatial domain is related with 

coordinates, specifically with the MO position. The temporal domain consists of timestamps. Finally, 

the semantic domain refers to places, i.e., positions that can be associated to a semantic tag, such as 

churches, metro stations, pubs, etc. 

The focus of this work is on clustering unconstrained trajectories data, i.e., it is considered that 

objects move freely in space (e.g., ships in the ocean), and if spatial constraints exist (e.g., road 

networks) they are ignored. 

 

 The objective is to develop a trajectories recommendation system that should be able to answer 

questions such as: 

1. “Which trajectories exist from a given origin to a given destination?” 

2. “Which trajectories are similar?” 

3. “What useful information can be extracted from a cluster of similar trajectories?” 
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4. “What is the best trajectory from an origin to a destination?” 

 The data sources are GPS positions recording the trajectories of moving objects along time. A 

trajectory is considered as a set of GPS positions and the system must be able to extract trajectories in 

a dataset and prepare them for data analysis. It must be possible to discover trajectories that share an 

origin and a destination and to find clusters of similar trajectories using a similarity measure. Finally, it 

must be possible to extract information from trajectories clusters and use this information to recommend 

a trajectory between an origin and a destination. The generated results must be presented through a web 

application. 

 The main issues studied in this work are: 

- Clustering: how to create clusters of similar trajectories. 

- Outlier Detection: outliers are positions that are highly unlikely to occur in a trajectory. The 

outliers and anomalies are rare and usually they indicate faulty device collection. This kind of 

anomalies make the process of finding similar trajectories more difficult. 

- Representative Trajectory (RT): usually real-world entities do not have a random behavior, 

hence it is possible to estimate a representative trajectory from a set of similar trajectories. 

 

1.2 Outline of the Dissertation 

The contents of this document is organized in five chapters: 

 Chapter 1 – Introduction, presents the motivation and purpose of this work. 

 Chapter 2 – Overview on spatial and trajectory data analysis, presents related work on 

clustering spatio-temporal data with particular focus on moving object trajectories. It presents 

an overview of clustering algorithms, trajectory clustering applications, Delaunay 

Triangulation, and trajectories similarity including distance measures and clustering 

comparison. 

 Chapter 3 – Methodology, describes the conceptual framework. It starts with the problem 

formulation, followed by a description of the four main steps required to implement the 

solution proposed in this work. It also presents the implementation components, web 

application, technical specifications and end user interface. 

 Chapter 4 – Results, presents three test cases for the evaluation of the proposed system.  

 Chapter 5 – Conclusion, presents a brief overview of this work. It discusses the limitations 

and presents an outline of future developments and recommendations to deal with the 

limitations of the solutions proposed in this work. 
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2. Chapter 

Overview on spatial and trajectory data analysis 

This chapter presents an overview on clustering spatio-temporal data, with particular emphasis on 

trajectories of moving objects. The aim of this technique is to partition spatial data into groups, called 

clusters or subclasses. Each cluster has several features (e.g., geometrical shapes) in common, i.e. the 

spatial objects or the trajectories in a cluster are similar to each other and in general dissimilar to the 

rest of the clusters. The similarity concept is very important in clustering and the results depend largely 

on the data source. For instance, the sampling rate, used to record the trajectories of moving objects, is 

of great importance on the similarity measures. 

Section 2.1 describes the main techniques for clustering spatial data, Section 2.2 presents recent 

solutions for trajectory clustering, Section 2.3 presents a comparison of clustering algorithms and 

Section 2.4 presents a summary of the main achievements in this area.  

 

 

2.1 Spatial and Trajectories Clustering 

Clustering is largely used in the field of spatial data analysis. According to (Mahrsi 2013) and (Han, 

Kamber et al. 2000), it is important to take into consideration the following characteristics when using 

clustering techniques:  

 

Application objective 

The choice of a clustering algorithm is based on the goal of the application, i.e., if it is based, on 

positions density or trajectories, probably a type of algorithm could be more suitable in terms of 

performance and accuracy. If the objective is the clustering of trajectories, the use of algorithms or 

methods based on sub-trajectories or line segments is more interesting.  

 

Speed versus quality 

The clustering of large datasets raises a major problem: computation time. This means that the 

clustering of data in a quickly and accurately way is not always possible. 
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Data Characteristics 

The type of data to be clustered is another important aspect. Usually, the algorithms compute 

numeric features, for example, the similarity (distance measures) between objects (for example, 

trajectories) in the Euclidean space. Some clustering algorithms take also into consideration spatial, 

temporal, or both, and semantic attributes, depending on the goal. Another concerning to be aware of, 

are outliers or noise in the data sets, because some of clustering algorithms are very sensitive to this 

abnormalities. 

 

 Classical Spatial Clustering algorithms 

 The spatial clustering algorithms can be classified into seven categories  (Han, Kamber et al. 2000), 

(Yang and Cui 2009) and (Liu, Nosovskiy et al. 2008): density-based, hierarchical, grid-based, graph-

based, partitioning, model-based and combinational algorithms. In this section we briefly review only 

the most relevant for our study, which are: density-based, hierarchical, graph-based, partitioning and 

clustering with Delaunay Triangulation (DT). The latter two, are important, because they are directly 

involved in solving the clustering and representative trajectory problems.  

The variety of algorithms developed during the past decade is huge, and the best choice depends on 

the problems that we want to solve. In (Liu, Deng et al. 2012), several algorithms are compared, in 

order to find the best solutions for distinct problems in spatial clustering, namely: (i) discovery of 

arbitrary shaped clusters; (ii) discovery of clusters with uneven density; (iii) robustness to noise; (iv) 

heavily reliant on prior knowledge; (v) consideration of both spatial proximity and attribute similarity. 

It was known, that an algorithm cannot solve all the requirements, and a new density-based algorithm, 

called DBSC, was developed to deal with two important issues in spatial clustering: (1) the construction 

of spatial proximity relationships and (2) the cluster of spatial objects with similar attributes. To manage 

the first issue, the authors propose using a Delaunay Triangulation, which will be discussed in Section 

2.1.7, as it is used in the generation of the representative trajectory of clusters.  

 

 Density-based algorithms 

These types of algorithms are commonly used to identify regions which are separated from other 

regions by low-density regions (Bäcklund, Hedblom et al. 2011), i.e., the clusters are defined as regions 

of higher density compared with the entire regions in the dataset. The existence of sparse areas, i.e., 

regions with low density, are usually considered as noise, and these are discarded by the algorithm. 

There are two well-known density-based algorithms in the literature, which are: DBSCAN (Ester, 

Kriegel et al. 1996), and a variant of this, known as OPTICS (Ankerst, Breunig et al. 1999). Other 

algorithms, such as DENCLUE (Xie, Chang et al. 2007) or CURD (Ma, Wang et al. 2003), also integrate 

this category of density-based algorithms. This section, only focuses on the most relevant: DBSCAN 

and OPTICS.   
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The DBSCAN data clustering algorithm was proposed by (Ester, Kriegel et al. 1996) to deal with 

the following issues: (i) to reduce à priori knowledge, in terms of points density, to make it easier to 

determine the input parameters in a large dataset (ii) to discover clusters of arbitrary shapes and (iii) 

efficiency when dealing with large datasets.  

DBSCAN algorithm uses two parameters, which are ε-eps denoting a maximum distance radius and 

MinPts denoting the minimum number of points required to create density clusters. It is sensitive to 

these two parameters, and a trial-and-error approach is mandatory, to find a good combination of these 

parameters. 

Figure 2 depicts three density clustering examples, using three datasets obtained from the SEQUOIA 

2000 2 benchmark database. This algorithm is fully described in (Ester, Kriegel et al. 1996) and 

(Bäcklund, Hedblom et al. 2011). 

 

 

Figure 2: DBSCAN clustering of three point datasets. (Ester, Kriegel et al. 1996) 

  

The DBSCAN algorithm has many applications such as the analysis of satellites images, anomaly 

detection in temperature data or even x-ray crystallography. Classifying large spatial datasets is 

complex, computationally heavy and the DBSCAN algorithm can address these requirements well. 

The OPTICS algorithm (Ankerst, Breunig et al. 1999) and (Han, Kamber et al. 2000), is a 

generalization of DBSCAN to multiple ranges, by considering a maximum search radius. As DBSCAN, 

this algorithm also requires two parameters (Eps and MinPts), but instead of producing a clustering, it 

produces an ordering of the dataset points to identify the clustering structure. The aim is to addresses 

one of DBSCAN's major weaknesses: the problem of detecting meaningful clusters in data of varying 

density.  

The authors of (Birant and Kut 2006) introduce a clustering algorithm based on DBSCAN, called 

ST-DBSCAN. The goal of this algorithm is to discover clusters using non-spatial, spatial and temporal 

data.  

                                                      
2 Sources: s2k-ftp.cs.berkeley.edu/ , asc.llnl.gov/sequoia/benchmarks 
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A similar approach is followed in (Lee, Han et al. 2008) for the classification of trajectory data. This 

work considers two types of clustering: (i) region-based clustering and (ii) trajectory-based clustering. 

The trajectory-based clustering, is particularly relevant to this work, and uses the partition-and-group 

framework proposed in (Lee, Han et al. 2007) for line segments classification. The main purpose of this 

type of clustering, is to create clusters of similar partitioned trajectories. This subject is covered in detail 

in the following sections.  

NETSCAN (Kharrat, Popa et al. 2008) is an algorithm also based on DBSCAN, to deal with the 

clustering of trajectories, with application to traffic-density analysis. This algorithm follows a two-step 

approach: (i) define the similarity between road segments and aggregate them in dense paths; (ii) 

compute a similarity measure between trajectories and compose the trajectory clusters around the dense 

paths. 

 

 Hierarchical algorithms and Moving Clusters 

Hierarchical algorithms create a decomposition of a given dataset using a dendrogram. A 

dendrogram, is a tree, which displays the arrangement of clusters. It can be created in two ways: the 

agglomerative (“bottom-up”) or divisive (“top-down”) approaches. The agglomerative approach starts 

with each object forming a separate group, i.e., each object starts in its own cluster, and pairs of clusters 

are merged recursively towards the top of the hierarchy. The divisive approach starts with all objects in 

the same cluster, which is divided recursively as the algorithm moves down in the hierarchy (Han, 

Kamber et al. 2000), (Yang and Cui 2009). 

There are several works in the literature based on these approaches, for example: BIRCH (Zhang, 

Ramakrishnan et al. 1996), CURE (Guha, Rastogi et al. 1998) and CHAMELEON (George, Karypis et 

al. 1999). The last developments on hierarchical algorithms are also able to deal complex data, but 

determining the input parameters of clustering algorithms remains an open issue and the application of 

these clustering algorithms to spatial data is not straightforward (Liu, Deng et al. 2012).     

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) is a notable example, and it 

consists of an algorithm to compress data objects into small sub-clusters. According to (Zhang, 

Ramakrishnan et al. 1996), the BIRCH algorithm is capable of finding a good clustering with a single 

scan of the data. However, the quality of the results can be improved with a few additional scans and 

the algorithm is also capable of handling “noise” effectively.  The main purpose of BIRCH is to solve 

the problem of lack (limited) of memory, which is usually smaller than the dataset size.  

  

 Graph-based algorithms 

This type of algorithms are applied in several areas, such as biology, social sciences, technology, 

economy and traffic management. Typically, data is organized in a graph representation, based on 

relationships or proximity among objects (Guo 2009). It is possible to discover clusters of arbitrary 
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shapes, but when dealing with datasets associated with noise, this type of algorithm is disadvantageous. 

There exists a variety of types of graphs, including spatial graphs where the edges represents the 

proximity (weight) between objects. In the case of trajectory graphs, the edges represent the similarity 

between trajectories. There are methods using minimum spanning trees (Zhong, Miao et al. 2010), k-

nearest neighbors (George, Karypis et al. 1999) or Delaunay Triangulation (DT) (Guo, Liu et al. 2010), 

(Zheng, Chen et al. 2008) and (Kang, Kim et al. 1997).  

The basic approach is to firstly construct the graph and then apply an algorithm to create a set of 

sub-graphs. For example, the authors of (Zahn 1971) apply methods based on the minimum spanning 

tree (commonly calculated by Prim and Kruskal algorithms) to create the clusters and eliminate 

“inconsistent” edges. 2-MSTClus (Zhong, Miao et al. 2010) uses a similar approach, applied in pattern 

recognition to calculate clusters in graphs. The problems of the clusters are classified into two 

categories: (i) “distance-separated” and (ii) “density-separated”. Figure 3, depicts some examples of 

typical cluster problems.  

 

 

Figure 3: Clusters problem associated to distance and density: (a) to (e) are distance-separated cluster problems and (f) to 

(h) density-separated. (Zhong, Miao et al. 2010). 

 

Figure 3 (a), shows two independent clusters with similar shapes, density and size. This occurs, because 

inter-cluster density is higher than the intra-cluster pairwise distance. The remaining distance-separated 

clusters, (b) to (e), illustrate that there are different kinds of clusters regardless of their size or density. 

Density-separated clusters, illustrated in figure 3 (f-h), consider a density gradient rather than a distance. 

The clusters in (g) and (h) differ from (f) because the two clusters touch each other superficially, but 

they are distinct. These are usually denoted as touching clusters. (Zahn 1971)    

 

The methods based on DT rely on the concept of a connected graph where the nodes represent spatial 

objects and the edges denote the nearest pairs of spatial data points (Liu, Nosovskiy et al. 2008). There 

are several approaches that have been implemented in the context of geographical information systems 

(GIS) (Kang, Kim et al. 1997), (Isenburg, Liu et al. 2006), (Liu, Deng et al. 2012), (Yang and Cui 2009) 

and (Zheng, Chen et al. 2008). According to (Liu, Deng et al. 2012) there are two main issues to perform 
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the spatial clustering: (i) the construction of spatial proximity relationships and (ii) the clustering of 

spatial objects with similar attributes. The first step consists in capturing the proximity relationships 

and the second consists in a density-based method. The main purpose of using a DT is to find a quick 

way to capture the proximity relationships, between the points in the spatial dataset. In other words, a 

DT is used to identify the natural neighbourhood of spatial objects in 𝑂(𝑛𝑙𝑜𝑔𝑛) time complexity.  

An example of how a DT can be used in spatial clustering problems is presented in (Liu, Nosovskiy 

et al. 2008). This work presents a clustering algorithm called TRICLUST, based first on a DT 

construction, followed by a process of feature extraction, from data point’s neighborhood relationships. 

Then, it is defined a criteria function and a K-Means 3 method is applied to compute a threshold for the 

criteria function. The classification of the objects is performed, by applying a threshold. Figure 4, 

depicts this method, used in two-dimensional testing dataset. 

 

 
Figure 4: (a) Graph constructed by Delaunay Triangulation; (b) Distribution of final feature values of D1; (c) The data 

point’s boundary of D1 detected by TRICLUST; (d) Clustering result of D1. (Liu, Nosovskiy et al. 2008) 

 

In (Liu, Deng et al. 2012) an algorithm called DBSC is proposed. The first step, consists also in 

creating a spatial proximity relationships graph, using DT, and the second step is derived from the 

                                                      
3 Source: en.wikipedia.org/wiki/K-means_clustering 
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density-based clustering strategy, called ASCDT (Deng, Liu et al. 2011). The latter is used for clustering 

spatial objects with similar attributes, i.e., considering the distance relationships among objects. The 

authors have used two simulated datasets (generated in ArcGIS4) and three real datasets to validate the 

algorithm. In addition, DBSC is compared with five spatial clustering algorithms: CURE, K-Means, 

GDBSCAN, Geo-SOM and ASCDT. Figure 5, presents the clustering results obtained using each 

algorithm. 

 

 

Figure 5: Clustering results of one simulated dataset (x represents the noise): (a) DBSC algorithm; (b) K-Means algorithm; 

(c) CURE algorithm; (d) GDBSCAN algorithm; (e) Geo-SOM algorithm; (f) ASCDT algorithm. (Liu, Deng et al. 2012) 

 

                                                      
4 Source: arcgis.com 
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The ASCDT algorithm (e) is able to separate the points in dataset into 10 clusters and it was also able 

to deal with noise successfully.  

The three real datasets used in the experiments are: meteorology, environment and urban 

development. The latter, is a dataset of 853 records from Jiangsu Province in China and represents per 

capita road area in the Jiangsu Province town for the year 2008. Aiming to study the traffic development 

level, figure 6 shows the clustering results achieved using the DBSC algorithm, followed by table 1, 

containing statistical information about the clusters. 

 

 

Figure 6: Spatial clustering using DBSC algorithm in Jiangsu Province per capita road area data (the x symbol represents 

noise). (Liu, Deng et al. 2012) 

 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 𝐶9 𝐶10 𝐶11 𝐶12 

Number 197 92 230 16 6 8 6 9 7 10 7 7 

Mean value 17.7 11.2 17.4 8.6 8.7 12.9 14.2 17.4 23.6 14.4 23.8 10.5 

Standard deviation 1.9 2.2 2.0 1.9 1.2 2.3 2.5 1.9 1.3 2.0 1.3 0.8 

Table 1: Statistical information for per capita road area data clusters (units: 𝑚2) (Liu, Deng et al. 2012) 

 

The DBSC algorithm discovers 12 main clusters, and according to table 1 and figure 6, it is possible 

to conclude the existence of 3 main clusters (C1, C2 and C3). It is also possible to conclude, that traffic 

development is more significant from the north to southeast. C2 has an area value lower than the other 

two main clusters. In the center of the map in figure 6, several clusters are presented, with no statistics 

relevance, because of noise. 
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2.1.5 Partitioning algorithms 

TRACLUS (Lee, Han et al. 2007) is an algorithm that aims at discovering common sub-trajectories 

by partitioning trajectories into a set of line segments and then on clustering them based on the similarity 

between the line segments. The framework consists of two phases, as presented in Figure 7: the first is 

the partitioning, followed by the line segments grouping phase. 

 

 

Figure 7: Trajectory clustering in the partition-and-group framework. (Lee, Han et al. 2007) 

  

The partitioning phase transforms each trajectory into a set of feature points, which are discovered 

by searching for important changes in trajectories positions. The connection of two feature points forms 

a trajectory partition, which is represented by a line segment, as depicted in Figure 8. The partitioning 

phase, uses the Minimum Description Length (MDL) (Grnwald, Myung et al. 2005) to capture the 

optimal trade-off, between two main and desirable requisites: (i) preciseness and (ii) conciseness.  

 

 

Figure 8: Trajectory partitions. (Lee, Han et al. 2007) 

 

The second phase, consists in grouping similar line segments (trajectory partitions) into a cluster. 

The clustering proceeds as follows: a distance function is primarily defined, in analogy to a proximity 

measure, in order to obtain the similar line segments. The distance function consists of three components 

and it is adapted from similarity measures used in pattern recognition domain (Chen, Leung et al. 2002).  

Figure 9 illustrates the three components of the distance function: (i) perpendicular distance (𝑑⊥), (ii) 

parallel distance (𝑑∥) and (iii) angle distance (𝑑𝜃). These distance function components, estimate the 
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similarity between two line segments in a two-dimensional space, where 𝐿𝑖 and 𝐿𝑗 represent the two 

line segments (Figure 9).  

 

Figure 9: The three components of the distance function for line segments  𝐿𝑖 and 𝐿𝑗. (Lee, Han et al. 2007) 

 

The three measures are as follows: 

 

𝑑⊥(𝐿𝑖, 𝐿𝑗) =
𝑙⊥1

2 + 𝑙⊥2
2

𝑙⊥1 + 𝑙⊥2
 (1) 

 

𝑑∥(𝐿𝑖, 𝐿𝑗) = 𝑀𝐼𝑁(𝑙∥1, 𝑙∥2) (2) 

 

𝑑𝜃(𝐿𝑖 , 𝐿𝑗) = {
‖𝐿𝑗‖ × sin(𝜃) , 𝑖𝑓 0° ≤ 𝜃 < 90°

‖𝐿𝑗‖,                      𝑖𝑓 90° ≤ 𝜃 ≤ 180°
     (3) 

 

The purpose of the distance function is to define the density of line segments. Then a DBSCAN 

based algorithm is proposed, where the clustering of points is adapted to perform the clustering of line 

segments. At the end, the representative (RT) of each cluster is computed. This trajectory represents the 

major behavior or overall movement of the moving objects (line segments) in a cluster. The ordering 

of the line segments in the representative trajectory is determined by applying a sweep line technique.  

There are several works (Lee, Han et al. 2008), (Jiashun 2012) and (Lee, Han et al. 2008), which 

have been proposed in literature based on this framework. The first work focuses on trajectories outlier 

detection. In (Jiashun 2012) an algorithm based on TRACLUS, called SPSTC (Shielding Parameters 

Sensitivity Trajectory Clustering), is proposed to deal with issues concerning input parameters 

sensitivity. The authors consider parameters sensitivity an important limitation in trajectory clustering, 

because the results differ according to the input parameters values and thus results are uncertain. 

 

 Applications of Clustering Trajectories 

This section presents examples of trajectory clustering applications. The authors of (Rinzivillo, 

Pedreschi et al. 2008) introduce the concept of progressive clustering on large real datasets. The 
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objective is to use clustering techniques in visual exploration of a large number of trajectories. It uses 

the OPTICS algorithm to cluster the trajectories and several distance functions are provided. The 

experimentation scenario consists of a dataset composed by GPS-positions of 17.241 vehicles tracked 

during one week in Milan city. The total number of trajectories is 176.000 trajectories, but the study 

has used a subset of 6187 trajectories collected in one day.  Figure 10 shows a progressive clustering. 

The authors have obtained the clusters (in the left) by clustering with the distance function “common 

destination” according to the trip destinations. The algorithm, also uses a distance function named 

“route similarity” (one of the four distance functions used in the experiments) to find the clusters 

members. The result is depicted in the middle, and it is shown that most trajectories are short. The right-

hand image depicts the results obtained using another distance function “common source and 

destination” to group the trajectories according to the trips origin and destination. 

 

 

Figure 10: Trajectory clustering using different distance functions result. (Rinzivillo, Pedreschi et al. 2008) 

 

 The paper (Yuan, Zheng et al. 2011) presents a recommender system for taxi drivers and persons 

who wish to take a taxi. The recommendations are based on parking locations obtained from historical 

taxis GPS positions and status information to determine when taxis are parked, cruising or occupied. 

The goal is to reduce fuel consumptions and to make peaking a taxi an easier task. The solution is based 

on a partition-and-group framework, which consists of an offline mining of the trajectories and an online 

recommendation for taxi drivers and passengers. The proposed solution uses OPTICS to discover the 

taxis parking zones.  

 In (Liu, Zheng et al. 2011) it is proposed a solution to discover abnormal traffic streams on road 

networks, i.e., unusual patterns of moving objects trajectories. The authors use spatial and temporal 

features to detect traffic outliers as follows: (i) decompose a city (in this case, the major roads of the 

city of Beijing) into regions and build a region graph by scanning the Beijing dataset trajectories; (ii) 

detect outliers in graph links; (iii) create a list of temporal and spatial trees denoting the possible paths, 

as depicted in Figure 11.  
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(a)  

(b) 

Figure 11: Traffic on May 5 and on August 7, at midnight. (Liu, Zheng et al. 2011) 

 

These examples report two unusual events and put in evidence the kind of causal interactions that 

are detected by the algorithm. Figure 11 (a) depicts a situation on May 5, at midnight, when the highway 

(the dotted line) was under traffic control for building viaducts. It is possible to observe the impact 

caused by traffic in the highway during that period of time. Figure 11 (b) refers to August 7, when 

access to the Olympic Sports Center of Beijing was free of charge. There is a loop where a denotes the 

origin on the way to the park and later, after the event, 𝑑 becomes a destination of the traffic leaving 

the park. The experiments were performed using a dataset with GPS trajectories generated by 33.000 

taxis during 6 months in 2009. The distance travelled by the taxis is greater than 800 million km.  

 The main challenge covered in (Yoon, Zheng et al. 2010) is the recommendation of smart itineraries 

to new travelers based on historical users travel routes and experiences. The aim is to extract relevant 

information about the locations and the duration of visits from GPS historical data. This work shows 

how to: (i) create a Location-Interest Graph which is generated offline, containing location-related 

information (location, interest, stay time, travel time, classical travel sequence), and (ii) define a good 

itinerary and (iii) how to evaluate and compare recommendations. The solution relies on a density-

based algorithm (OPTICS) to cluster stay points into unique locations (density regions). The stay points 

are geographical regions where a user stayed at least during a certain minimum time interval. The 

dataset consists of 17.745 GPS samples from 175 users. Figure 12 illustrates the architecture of this 

system. 
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Figure 12: Architecture of smart itinerary recommender. (Yoon, Zheng et al. 2010) 

  

The offline tasks are time-consuming, for example, the analysis of user GPS log files (static 

information) and the Location-Interest Graph creation. The online tasks, refer to the processing of user 

queries using the pre-processed offline Location-Interest Graph for the top-k recommendations. 

In (Li 2010) another framework for trajectories is presented, which is based on micro-clusters and 

macro-clusters. The micro-clusters are used to store compact summaries of similar sections of 

trajectories (line segments) for the purpose of space reduction. The definition of a micro-cluster 

trajectory is an extension of the cluster feature vector in BIRCH algorithm.  By applying this concept, 

the authors try to solve the clustering problem in terms of computational effort versus cluster time 

processing. So, they proposed the TCMM (an incremental Trajectory Clustering using Micro and Macro 

clustering) has the following steps: (i) trajectories are partitioned into line segments in order to find the 

sub-trajectory clusters; (ii) the micro clusters of partitioned trajectories are computed and maintained 

incrementally; (iii) micro clusters are used to generate the macro-clusters. Figure 13 illustrates the 

process, which starts with trajectories simplification followed by the micro-clustering and the macro-

clustering tasks. The final result (macro-cluster), shows the representative trajectory derived from 

micro-clusters line segments. 
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Figure 13: TCMM framework. (Li 2010)The representative line segment from the cluster is computed in each one micro-

cluster. The distance function is adapted from a similarity measure used in pattern recognition (Chen, Leung et al. 2002) 

also used in (Lee, Han et 

 

A similar approach is followed in (Li, Han et al. 2004), where micro-clustering is applied to detect 

spatio-temporal variations of moving objects in a very large datasets. The concept used is analogous to 

micro-clustering in BIRCH (Zhang, Ramakrishnan et al. 1996), but it is extended to handle moving 

micro-clusters that, according to (Li, Han et al. 2004), are a group of moving objects not only similar 

in terms of spatial (closeness or proximity) and temporal aspects (similar at the same time), but must 

also have similar movements during a period of time. This solution also uses a K-Means algorithm in 

the experimental evaluation to select objects with similar behavior. The evaluation was made using a 

collection of synthetic datasets. 

 

2.1.7 Delaunay Triangulation 

Delaunay Triangulation (Delaunay 1934) is well known in computational geometry and consists in 

creating triangles from a set of points in the Euclidean space, where none of this points are inside the 

circumcircle of any triangle. Figure 14 depicts an example of a DT, with the triangles and all the 

circumcircles centers (points in red).  

 
Figure 14: Delaunay Triangulation example. 
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The solutions proposed in (Guo, Liu et al. 2010) and (Guo 2007) use DT to create clusters of 

trajectories.  

The main challenge, in (Guo, Liu et al. 2010) is to find patterns in trajectories datasets. The authors 

consider a set of trajectories as a complex network and focus on the analysis of vehicle movements. The 

first step consists in aggregating GPS points to reduce the number of positions. This step is carried out 

by creating a DT and the search of neighbors is performed in the DT, followed by the identification of 

representative points. This step is called the ‘smooth phase’ and each trajectory is interpolated using 

the extracted representative points. The clustering is performed using a modified shortest distance 

measure. Figure 15 shows an example where 112.203 GPS points are reduced to 12.029 representative 

points. 

 

 
Figure 15: (A) The GPS data points in the map. (B) A selection of five trajectories represented on the map. (C) The 

representative points (blue color). (D) Approximated representative trajectories. (Guo, Liu et al. 2010) 
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Figure 16 displays the density of trajectories at different times. 

 

Figure 16: Density trajectories at different timestamps. (Guo, Liu et al. 2010) 

 

 To obtain the results in Figure 16, a graph based on the extracted representative points (first step) 

and the interpolated trajectories (second step), is constructed as follows. The representative points are 

nodes and they are linked when they correspond to consecutive nodes belonging to the same trajectory. 

The edges between the nodes represent the weight, i.e., the total number of trajectories that they share. 

Knowing this, a spatially constrained graph partitioning method (Guo 2009) is applied to discover a 

hierarchy of regions, where locations inside a region share trajectory connections with each other. The 

clustering of trajectories is considered to be region-based. Figure 17, represents two regions of clustered 

trajectories. 
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Figure 17: (a) Two clusters of trajectories. (b) The blue cluster has 94 trajectories (c) the red cluster contains 136 

trajectories, mainly in the south region. (d)  46 trajectories are in both regions. (Guo, Liu et al. 2010) 

 

2.2 Trajectory Similarity and Distance Measures 

This section presents solutions to determine the similarity between trajectories, focusing on (1) free 

movements in Euclidean Space and (2) network-constrained movements, where similarity is applied in 

a spatial network context, usually represented by a graph (Tiakas, Papadopoulos et al. 2006), (Mahrsi 

2013), as depicted in Figure 18.   

 

 

Figure 18: Representations of trajectories in unconstrained and constrained contexts. (Tiakas, Papadopoulos et al. 2006) 
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The similarity between moving objects in a roads network space is gaining relevance, but so far, few 

studies have been developed in that domain. On the other hand, several works exist concerning the 

similarity of moving object trajectories in the Euclidean space. 

 

2.2.1 Distance function for time series on free moving objects 

A time series S =  [𝑠1, 𝑠2, . . . , 𝑠𝑛] is defined as a sequence of real values, where each value 𝑠𝑖 is a 

sample at a specific timestamp and 𝑛 is the length of 𝑆 (Chen and Ng 2004). This sequence is called the 

raw representation of the time series. Trajectories can be treated as time series data as well, but it is 

necessary to change the distance functions to deal with multidimensional values.  

  The definition of distance function between trajectories based on similarity measures raises several 

issues (Chen, Tamer et al. 2005) (Vlachos, Gunopoulos et al. 2002): (i) The presence of outliers or 

noise, caused by sensors anomalies, due to GPS positions precision, or even due to human failures. 

These issues have an impact in the clustering phase, because similar trajectories in real world may be 

considered dissimilar. (ii) Different sampling rates, i.e., the time interval between observations tends to 

be constant, but failure in sensors can cause ‘shifts’ in data and trajectories shapes will be different from 

the expected. (iii) Similar motions in different space regions, i.e., the movement of two objects can be 

similar but they can differ in the space they move (Vlachos, Gunopoulos et al. 2002).  

In most cases, the similarity between trajectories is focused on shape, i.e., it considers the spatial 

attributes but it ignores the temporal dimension (Chen, Tamer et al. 2005). Although, the similarity 

between trajectories can be classified into the following categories (Dodge, Weibel et al. 2009): (i) 

spatial similarity: the focus is on the similarity of the geometric shape of moving objects trajectories; 

(ii) temporal similarity: it is usually implemented using Time Wrapping Distance (TWD) to retrieve 

similarity between two trajectories (Yi, Jagadish et al. 1998) (Yanagisawa, Akahani et al. 2003); (iii) 

spatial-temporal similarity:  spatio-temporal and some dynamic features, like speed, are taken into 

account; (iv) semantic similarity: trajectories are associated with one or more semantic tags. These 

semantic tags can denote airports, restaurants, shops, hotels, etc. in the form of (x1, y1, t1, S1), 

where (x1 , y1) is a position, t1 is a timestamp and 𝑆1 is a semantic tag (Liu and Schneider 2012). 

 The Euclidean Distance 5 is often used to compare trajectories, but it has several drawbacks. Formula 

4, describes how to calculate the distance between two points, where 𝑛 denotes the number of 

dimensions. The trajectories must have the same length, as depicted in Figure 19, where the first position 

of trajectory 𝜆1 is compared with first position of trajectory 𝜆2, and so on. This measure is also sensitive 

to noise. Hence, some similarity measures were studied in the past years to address these issues: Edit 

Distance (ED) (Wagner and Fischer 1974), Edit Distance with Real Penalty (ERP) (Chen and Ng 2004), 

Dynamic Time Warping (DTW) (Chen, Gu et al. 2013), (Senin 2008) and (Muller 2007),  Longest 

                                                      
5 Source: en.wikipedia.org/wiki/Euclidean_distance 
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Common SubSequences (LCSS) (Vlachos, Gunopoulos et al. 2002), and finally the Edit Distance on 

Real sequence (EDR) (Chen, Tamer et al. 2005). 

 

𝑑(𝑞, 𝑝) = √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 + … + (𝑞𝑛 − 𝑝𝑛)2 =  √∑(𝑞𝑖 − 𝑝𝑖)2

𝑛

𝑖=1

      (4) 

 

 

Figure 19: Euclidean distance. (Yanagisawa and Satoh 2006) 

 

 The Edit Distance (ED) is an old method used to calculate the minimum cost of all sequences of edit 

operations (substitution, insertion and deletion) required to transform one string into another. In moving 

objects trajectories context, ERP and EDR were developed based on ED. ERP supports time shifting 

and it is a metric distance function (L1-norm), but like in Euclidean distance it is vulnerable to noise. 

On the other hand, EDR is more robust, because it can reduce the effect of noise. In (Yuan and Raubal 

2012), the authors used a modification of Edit Distance algorithm to measure trajectories similarity of 

mobile phone users. 

The DTW (Yi, Jagadish et al. 1998), is a distance function usually applied in speech recognition 

(Sakoe and Chiba 1990), gesture recognition, handwriting matching, surveillance (Zhang, Huang et al. 

2006), (Berndt and Clifford 1994), as well as in moving objects trajectories (Chen, Gu et al. 2013), to 

compare and align two sequences. It is not mandatory to have trajectories with the same length and this 

technique is also capable of handling time shifting, but it is sensitive to noise like ERP and Euclidean 

distance. Figure 20, illustrates the comparison between Euclidean Distance and DTW and shows that 

DTW can deal with trajectories of different lengths.  
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 (a) 

 

(b) 

Figure 20: (a) Difference between Euclidean distance and DTW; (b) DTW. (Yanagisawa and Satoh 2006) 

 

 The LCSS (Yanagisawa and Satoh 2006), (Zhang, Huang et al. 2006), is another variant of the ED 

used to match two sequences and then to define the distance of sub-sequences. This method do not 

requires rearranging the sequence of the elements and allows elements to be unmatched, i.e., it only 

considers the matched sub-sequences and ignores the unmatched portions of the trajectories.  This 

similarity measure is applied on video tracking trajectories (Vlachos, Gunopoulos et al. 2002), 

surveillance (Buzan, Sclaroff et al. 2004), trajectory semantics (Liu and Schneider 2012) and it is not 

vulnerable to noise, but the fact of being non-metric difficult its usage in clustering algorithms. This 

method cannot hold the Triangle Inequality6 (TI). The TI theorem states that the sum of the lengths of 

two edges of a triangle must be greater or equal than the length of the remaining edge (Formula 5). In 

the Euclidean geometry the edges of the triangle are vectors. 

 

‖𝑥 + 𝑦‖ <= ‖𝑥‖ + ‖𝑦‖ (5) 

 

Distance functions robust to noise, normally violate the triangle inequality theorem.  

According to (Chen, Tamer et al. 2005), EDR needs three pruning techniques to hold the triangle 

inequality. In addition, this is the most accurate and robust similarity measure with or without noise. 

LCSS can deal with the existence of gaps in the sequences defining the shapes to be compared and EDR 

assigns penalties according to the sizes of the gaps. Table 2, shows the differences among the five 

similarity measures, according to what the measures are able to handle and the computational costs of 

each one. 

 

 

 

 

                                                      
6 Sources: en.wikipedia.org/wiki/Triangle_inequality, mathworld.wolfram.com/TriangleInequality.html 
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 Support 
Computation cost 

Local Time Shifting Sensitive to Noise Metric 

Euclidean distance No Yes Yes O(n) 

ERP Yes Yes Yes O(m ∗ n) 

EDR Yes No Yes (pruning techniques) O(n^2) 

DTW Yes Yes No O(n^2) 

LCSS Yes No No O(n^2) 

*m and 𝑛 are the length of the two trajectories. 

Table 2: Overall of the similarity measures. (Chen, Tamer et al. 2005) 

 

The next example depicts the ranking differences among five similarity measures: L1-norm, EDR, 

ERP, DTW and LCSS. Figure 21, illustrates a simple time series 𝑄, and other five time series (𝑇1 −

𝑇5) with time shifting and noise. Time series 𝑇1 is shifted from 𝑄, 𝑇2 has noise in position 4, and the 

others are also variations of the initial one. 

 

 

Figure 21: Example of time-series for ranking. (Chen and Ng 2004) 

 

 The rankings according to the similarity with 𝑄 (defined as the time series reference) it is as follows: 

L1-norm: 𝑇1, 𝑇4, 𝑇5, 𝑇3, 𝑇2 

ERP: 𝑇1, 𝑇2, 𝑇4, 𝑇5, 𝑇3 

EDR: 𝑇1, {𝑇2, 𝑇3}, 𝑇4, 𝑇5 

DTW: 𝑇1, 𝑇4, 𝑇3, 𝑇5, 𝑇2 

LCSS: 𝑇1, {𝑇2, 𝑇3, 𝑇4}, 𝑇5 

 

L1-norm is sensitive to noise data and considers 𝑇2 as the worst match. LCSS focus only on the matched 

parts of the time series and ignores the unmatched parts, and considers 𝑇5 as the worst match. EDR 

ranked 𝑇2 and 𝑇3 equally, higher than 𝑇4, which the authors consider more similar to 𝑄 than 𝑇3. DTW 
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is sensitive to noise but not to local shifts and 𝑇2 is the worst ranked. According to the authors, ERP is 

the most “natural” order (Chen and Ng 2004). 

 

2.2.2 Similarity of Trajectories in Spatial Networks 

Network-constrained moving objects are studied in (Hwang, Kang et al. 2005), (Xia, Wang et al. 

2010), (Chang, Bista et al. 2007), (Tiakas, Papadopoulos et al. 2006). This has become a hot research 

topic, because in many real applications, moving objects move in road networks rather than in the 

Euclidean space. Notable examples are vehicles (road networks) and train (railroad networks) but the 

same may also hold when considering invisible air and sea routes. A road network is modelled by a 

graph G(V, E), where 𝐸 denotes the set of edges representing the smallest unit of a road segment, and 𝑉 

is the set of vertices (nodes) representing road junctions (intersections).  

The Euclidean distance is an inappropriate measure to apply to road networks, because a distance is 

a sum of roads lengths between two positions in the network. Figure 22 shows that the distance between 

positions 𝑎 and 𝑏, using the Euclidean distance is 4 km, but in reality, the sum of the road segments to 

travel from 𝑎 to 𝑏 is 9 km.  

 

 

Figure 22: Distance example between Euclidean space and network space. (Hwang, Kang et al. 2005) 

 

In addition, the Euclidean distance considers only spatial similarities and do not takes advantage of 

spatial-temporal aspects (Hwang, Kang et al. 2005). Figure 23 shows an example of trajectories 

(𝑇𝑅𝐴, 𝑇𝑅𝐵, 𝑇𝑅𝐶) in three-dimensional space (x, y, t). The trajectories 𝑇𝑅′𝐴, 𝑇𝑅′𝐵, 𝑇𝑅′𝐶 are projected 

only in two-dimensional (x, y). The trajectories 𝑇𝑅𝐴 and 𝑇𝑅𝐵 have an equal trace, but the temporal 

components are different. If a two-dimensional (x, y) space is considered, we can conclude that 𝑇𝑅𝐴 

and 𝑇𝑅𝐵 are similar to each other. However, considering the temporal and spatial dimensions 𝑇𝑅𝐴 and 

𝑇𝑅𝐶  are closer than 𝑇𝑅𝐵. 
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Figure 23: Spatio-Temporal trajectories.  (Hwang, Kang et al. 2005) 

 

In (Hwang, Kang et al. 2005) three methods to search for similar trajectories are proposed: (i) using 

the spatio-temporal distance between trajectories; (ii) filtering trajectories based on temporal similarity 

and refining similar trajectories based on spatial distance; (iii) filtering trajectories based on spatial 

similarity and refining similar trajectories based on temporal distance. The conclusion is that the best 

method is third one, which is based on the Hausdorff Distance (HD), defined as: 

 

dist𝐻(l, m) = max𝑎∈𝑙{𝑚𝑖𝑛𝑏∈𝑚𝑑𝑖𝑠𝑡(𝑎, 𝑏)} (6) 

 

where l and 𝑚 are curves and 𝑑𝑖𝑠𝑡(𝑎, 𝑏) is the distance between two points. However, this distance 

measure proved to be a poor choice, because it classifies trajectories such as those depicted in Figure 

24 as similar: dist𝐻(𝑇𝑅𝐴, 𝑇𝑅𝐵) = dist𝐻(𝑇𝑅𝐶 , 𝑇𝑅𝐷) = 𝑑. The distances are determined using the pair 

of points 𝑝 and 𝑞.  

 

Figure 24: Hausdorff distance d on road network; (a) 𝑇𝑅𝐴 and 𝑇𝑅𝐵; (b) 𝑇𝑅𝐶 and 𝑇𝑅𝐷. (Hwang, Kang et al. 2005) 

 

Hence, the authors have proposed a similarity measure based on the concept of POI (Points of 

Interest) instead of using HF, where two trajectories are considered similar if they cross the same POI. 

The measure is defined as the difference between the timestamps when two objects have crossed the 

same POI.  The temporal distance between 𝑇𝑅𝐴 and 𝑇𝑅𝐵 for a set of POIs is as follows: 
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dist𝑇(𝑇𝑅𝐴, 𝑇𝑅𝐵, 𝑃) =  𝐿𝑝(𝑇𝑅𝐴, 𝑇𝑅𝐵, 𝑝) = (∑|𝑝𝑖(𝑇𝑅𝐴) − 𝑝𝑖(𝑇𝑅𝐵)|𝑝

𝑘

𝑖=1

)
1
𝑝 (7) 

 

where 𝑃 is the set of POIs, 𝑝 ∈ 𝑃 and 𝑘 is the number of POIs. 

The algorithm has two phases: (i) the filtering phase based on spatial similarity and (ii) refining phase 

to search for similar trajectories based on a temporal distance.  

 

In (Tiakas, Papadopoulos et al. 2006), it is proposed a similarity model for trajectories in spatial 

networks, based on the distance between trajectories. It is assumed that the trajectories have the same 

length and are represented using a graph 𝐺(𝑉, 𝐸). A trajectory 𝑇 is defined as sequence (Formula 8), 

where 𝑣𝑚 denotes a node in the graph, 𝑡𝑚 is the time instance and 𝑚 is the trajectory length: 

 

𝑇 = ((𝑣1, 𝑡1), (𝑣2, 𝑡2), … , (𝑣𝑚, 𝑡𝑚)) (8) 

 

The similarity of two trajectories is not directly related with the number of shared nodes, but with the 

cost associated to each transition between nodes in trajectories, i.e., the similarity measure must 

consider the trajectories proximity. The distance is based on a transition cost between two nodes 

(Formula 9), where the 𝑐(𝑣𝑠, 𝑣𝑑) represents the cost to travel from a source node 𝑣𝑠 to a destination 

node 𝑣𝑑 .  

 

𝑑(𝑣𝑠, 𝑣𝑑) = {

0, 𝑐(𝑣𝑠, 𝑣𝑑) = 0 ∧  𝑐(𝑣𝑑 , 𝑣𝑠) = 0

𝑚𝑖𝑛{𝑐(𝑣𝑠, 𝑣𝑑), 𝑐(𝑣𝑑 , 𝑣𝑠)}

𝑚𝑎𝑥{𝑐(𝑣𝑠, 𝑣𝑑), 𝑐(𝑣𝑑 , 𝑣𝑠)}
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (9) 

 

Formula 10, gives the network distance between two trajectories 𝑇𝑎  and 𝑇𝑏 , where 𝑚 is the length of 

both trajectories. 

 

𝐷𝑛𝑒𝑡(𝑇𝑎 , 𝑇𝑏) =  
1

𝑚
∙ ∑(𝑑(𝑣𝑎𝑖, 𝑣𝑏𝑖))

𝑚

𝑖=1

 (10) 

 

However, time information is also important in traffic analysis and so, it is necessary to consider the 

time required to travel from one node to the next one (Formula 11). 

 

𝐷𝑡𝑖𝑚𝑒(𝑇𝑎 , 𝑇𝑏) =  
1

𝑚 − 1
∙ ∑

|(𝑇𝑎[𝑖 + 1]. 𝑡 −  𝑇𝑎[𝑖]. 𝑡) − (𝑇𝑏[𝑖 + 1]. 𝑡 − 𝑇𝑏[𝑖]. 𝑡)|

𝑚𝑎𝑥{(𝑇𝑎[𝑖 + 1]. 𝑡 − 𝑇𝑎[𝑖]. 𝑡), (𝑇𝑏[𝑖 + 1]. 𝑡 − 𝑇𝑏[𝑖]. 𝑡)}

𝑚−1

𝑖=1

 (11) 

Formula 12 combines the two measures using weighs. 
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𝐷𝑡𝑜𝑡𝑎𝑙(𝑇𝑎, 𝑇𝑏) =  𝑊𝑛𝑒𝑡 ∙ 𝐷𝑛𝑒𝑡(𝑇𝑎 , 𝑇𝑏) + 𝑊𝑡𝑖𝑚𝑒 ∙ 𝐷𝑡𝑖𝑚𝑒(𝑇𝑎 , 𝑇𝑏) (12) 

 

Trajectories of different lengths are decomposed into sub-trajectories. 

 

 The solution proposed in (Xia, Wang et al. 2010) starts with the reconstruction and partition of raw 

trajectories to suppress useless positions in data and to reduce storage requirements. It uses feature 

points (Lee, Han et al. 2007) to perform the partitioning of the trajectories into sub-trajectories. Then, 

a spatio-temporal similarity measure is used, followed by a normalization, to classify the similarity as 

0 (non-similar trajectories) or 1 (similar trajectories). The method is based on Jaccard similarity 

coefficient, where similarity between trajectories is calculated as the ratio of the common parts divided 

by the summation of the common and uncommon parts, as follows:   

 

𝑆𝑖𝑚(𝑇𝑅𝑖, 𝑇𝑅𝑗) =  
𝐿𝑐(𝑇𝑅𝑖, 𝑇𝑅𝑗)

𝐿(𝑇𝑅𝑖) + 𝐿(𝑇𝑅𝑗) − 𝐿𝑐(𝑇𝑅𝑖 , 𝑇𝑅𝑗)
 (13) 

 

The term 𝐿𝑐(𝑇𝑅𝑖, 𝑇𝑅𝑗) is the total length of the common part, between 𝑇𝑅𝑖 and 𝑇𝑅𝑗, 𝐿(𝑇𝑅𝑖) represents 

the length of the trajectory, which can be spatial or temporal. The authors compare their method with 

(Tiakas, Papadopoulos et al. 2009) in order to find similar trajectories, considering spatial and temporal 

features. The authors search for similarity in terms of temporal and spatial, i.e., spatio-temporal 

neighbors. Figure 25, shows an example of three clusters of trajectories by considering spatial and 

temporal features, cluster A only has spatial similar trajectories. Nevertheless, cluster A could be refine 

into cluster 1 and also cluster 2 due to temporal similarity, it demonstrates, trajectories in cluster 1 are 

spatio-temporal similar. 

 

 

Figure 25: Temporal and spatial attributes of trajectories. (Xia, Wang et al. 2010)  

 

The Formula 14 assumes that spatial and temporal features have the same impact on the similarity 

between trajectories. The result of this formula is between [0 − 1], i.e., if the result is 1, the two 

trajectories overlap in the spatio-temporal dimensions.   
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𝑆𝑇𝑆𝑖𝑚(𝑇𝑅𝑖, 𝑇𝑅𝑗) =  𝑆𝑆𝑖𝑚(𝑇𝑅𝑖, 𝑇𝑅𝑗) ×  𝑇𝑆𝑖𝑚(𝑇𝑅𝑖, 𝑇𝑅𝑗) (14) 

 

𝑆𝑆𝑖𝑚 refers to spatial and 𝑇𝑆𝑖𝑚 to temporal similarities. The proposed method proved to be effective 

and capable to reduce the use of memory.  

 

2.3 Comparison of clustering algorithms 

In (Liu, Deng et al. 2012) it is presented, a summary of spatial clustering algorithms (Table 3). This 

table puts in evidence the major issues in spatial clustering and the main solutions proposed in the 

literature. The authors conclude that any algorithm can’t handle efficiently all the clustering problems.    

 

Algorithm 

Problems 

Discovery of 

arbitrary shaped 

clusters 

Discovery of 

clusters with 

uneven 

density 

Robust to 

noise 

Heavily reliant 

on prior 

knowledge 

Consideration of both spatial 

proximity and 

attribute similarity 

k-means  X X X ✔ X 

CLARANS    X X ✔ ✔ ✔ 

Single-link ✔ X X ✔ X 

Complete-link X X X ✔ X 

CURE  X X ✔ ✔ X 

BIRCH X X ✔ ✔ X 

AMEOBA     ✔ ✔(partial 

solution) 

X X X 

CHAMELEON ✔ ✔(partial 

solution) 

X ✔ X 

DBSCAN ✔ X ✔ ✔ X 

GDBSCAN ✔ X ✔ ✔ ✔ 

OPTICS ✔ ✔(partial 

solution) 

✔ ✔ X 

DENCLUE ✔ X ✔ ✔ X 

DBRS   ✔ X ✔ ✔ ✔ 

ADACLUS ✔ ✔ ✔(partial 

solution) 

X X 

MST  ✔ ✔(partial 

solution) 

✔(partial 

solution) 

✔ X 

AUTOCLUST   ✔ ✔(partial 

solution) 

✔(partial 

solution) 

X X 

2-MSTClus  ✔ ✔(partial 

solution) 

X ✔ X 

STING ✔ X ✔(partial 

solution) 

✔ X 

WaveCluster  ✔ X ✔ ✔ X 

EM  X X ✔(partial 

solution) 

✔ X 

Geo-SOM   X X X ✔ ✔ 



31 

 

ICC X X X X ✔ 

CSM ✔ ✔ ✔ ✔ X 

Table 3:  A comparison of spatial clustering algorithms. (Liu, Deng et al. 2012) 

 

 (Mahrsi 2013) is a recent work based on graph structures oriented towards sampling moving objects 

datasets and clustering network-constrained trajectories and road segments that also presents a 

comparison of trajectory clustering algorithms considering constrained (networked) and unconstrained 

(free) moving objects. Table 4, lists the different approaches in trajectory clustering.   

 

Approach 
Dimensions Clustering 

granularity 
Clustering type 

Network-

constrained Space Time 

(Li, Han et al. 2004) Yes Yes  moving objects Partitioning No 

(Jensen, Lin et al. 2007)  Yes  Yes moving objects Hierarchical No 

(Kalnis, Mamoulis et al. 

2005) 

Yes  Yes moving objects density-based No 

(Vieira, Bakalov et al. 

2009) 

Yes  Yes moving objects - No 

(Jeung, Shen et al. 2008) Yes  Yes moving objects density-based No 

(Lee, Han et al. 2007) No  Yes  segments density-based No 

(Guo, Liu et al. 2010) No Yes Data points Graph-based No 

(Nanni and Pedreschi 2006) Yes Yes trajectories density-based No 

(Pelekis, Kopanakis et al. 

2009) 

No Yes trajectories fuzzy-clustering No 

(Kharrat, Popa et al. 2008) No Yes road segments density-based Yes 

(Kharrat, Popa et al. 2009)  Yes Yes road segments density-based Yes 

(Roh and Hwang 2010) No Yes trajectories Hierarchical Yes 

Table 4: Comparison of different trajectory clustering approaches.(Mahrsi 2013) 

 

 This comparison shows that existing methods are mainly focused on unconstrained moving objects 

trajectories (e.g., hurricanes, vehicles, hiking, bicycle) and few studies deal with clustering network-

constrained (e.g., cars) trajectories. (Guo, Liu et al. 2010) is an exception, which presents a graph-based 

algorithm rather than a density-based algorithm as in most existing works making it a reference work 

in graph-based approaches. 

 

2.4 Summary 

This chapter presents a literature review on trajectories clustering. It starts with basic concepts on 

clustering and presents the main algorithms proposed for clustering spatial data. Next, an overview on 

clustering spatio-temporal data is presented followed by a presentation of solutions for trajectories 

clustering. Several techniques to determine similarity and distance measures between trajectories are 

presented. It also puts in evidence the particularities of existing solutions when dealing with network-

constrained and unconstrained trajectories. 

Research on network-constrained trajectories is less extensive than for unconstrained trajectories, 

and most works use only synthetic datasets using the Thomas Brinkhoff (Brinkhoff 2002) generator to 
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simulate the movement of cars in road networks. The solutions for dealing with unconstrained 

trajectories are generic and may also be applied to network-constrained trajectories. However, the 

modelling of trajectories using an underlying graph may reduce search space and improve the 

performance and the quality of results. 
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3. Chapter 

Methodology 

This chapter presents the methods and the application developed in this work for trajectory clustering 

and the recommendation of routes between two given locations.  

Google maps offers a panoply of features, enabling the user to easily plan driving routes from a point 

A to a point B. It provides multiple routes choices and the option to choose the desired means of 

transport. Moreover, in the last years, it also includes real-time traffic information. To provide this 

functionality, Google has integrated Waze (Shinar 2009), a crowd-sourced traffic data system. Our work 

focuses on a similar problem, but we only consider the user’s historical trajectory data generated by 

GPS devices. The aim is be able to provide personalized route recommendations using for instance, 

collaborative filtering techniques. For that purpose, this work focuses on three important sub-problems: 

trajectory clustering, outlier detection and creating representative trajectories for clusters. 

The case study is based on a real dataset tracking the movement of trucks in Athens, Greece7. We 

have only considered a sample composed of five hundred trajectories representing the movement of 25 

trucks during 33 days (Figure 26). 

 

 

Figure 26: The five hundred trajectories derived from 25 moving objects. 

                                                      
7 Source: “The Greek Trucks Dataset”, www.chorochronos.org 
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3.1 Problem Formulation 

The goal is to develop a framework for recommending routes between a given source and destination 

using GPS historical data. It is assumed that objects (cars, bicycles, ships, etc.) move freely in space 

and so this framework should be able to deal with network-constrained and unconstrained trajectories. 

This requires implementing methods to find which are the representative trajectories between source 

and destination positions and defining the criteria to recommend one or several alternative (ranked) 

trajectories (routes) for a specific moving object. 

 The inputs of the system are the origin and destination positions, and GPS log files. The GPS log 

files have date and time (timestamp), latitude and longitude coordinates (the WGS84 reference is the 

standard for GPS data), but some datasets also include coordinates represented using other reference 

systems, such as UTM or GGRS87. 

In the following, it is considered that  

 

Trajectory: a trajectory 𝑇𝑖 = {𝑝𝑖,1, 𝑝𝑖,2, … , 𝑝𝑖,𝑛}, is an ordered sequence of time stamped positions in 

a two-dimensional Euclidean space, where 𝑖 denotes a moving object and 𝑛 is the number of GPS 

samples. Each point 𝑝𝑖,𝑘 = (𝑥𝑖,𝑘, 𝑦𝑖,𝑘 , 𝑡𝑖,𝑘) corresponds to a GPS sample, such that (𝑥𝑖,𝑘 , 𝑦𝑖,𝑘) 

represents the coordinates (latitude and longitude) and 𝑡𝑖.𝑘 is a timestamp.  

 

Line Segments: Line segments are used in the clustering phase and are represented as 𝑅𝑆𝑠𝑒𝑞 =

(𝑝𝑖,𝑘 , 𝑝𝑖,𝑘+1) , with 1 ≤ 𝑘 ≤ 𝑛 − 1 and 𝑠𝑒𝑞 is an index denoting the order of the line segment in a 

trajectory or sub-trajectory. This definition is based on the concept of trajectory partitions proposed in 

(Lee, Han et al. 2007). This means that each trajectory is split into line segments such that 𝑇𝑖 =

{𝑅𝑆1,𝑅𝑆2, … , 𝑅𝑆𝑛−1,}.   

 

Cluster: Let  𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑚} denote a set of clusters, where 𝑚 is the number of clusters. Each 

cluster 𝐶𝑗 = {𝑇1, 𝑇2, … , 𝑇𝑝} represents a set of similar sub-trajectories, where 𝑝 is the number of similar 

trajectories in a cluster. 

 

Representative Trajectory: A representative trajectory is an approximation or “average” of all 

trajectories belonging to a cluster, i.e., 𝑅𝑡 = {𝑝𝑟,1, 𝑝𝑟,2, … , 𝑝𝑟,𝑘}, where each 𝑝𝑟,𝑘  denotes a position 

(vertex). There are several alternatives to estimate the position of these vertices, e.g., they can be 

centroid positions of an agglomeration of neighbor positions.  

As an example, Figure 27 illustrates four trajectories, where the origin is the blue circle and the 

destination is the red circle. These are the trajectories of four moving objects that have crossed the origin 

and destination regions within a certain time interval. The trajectory 23 puts in evidence the partitioning 
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of a trajectory into line segments. The clustering result should be two clusters: 𝐶1 = {23} and 𝐶2 =

{28, 29, 30}.   

 

 

Figure 27: Representations of four trajectories crossing a given origin and destination. 

 

3.2 Implementation 

 The implementation of this work is organized in four main steps (Figure 28): (1) Trajectories 

Filtering, (2) Trajectories Clustering, (3) Cluster Representative Trajectory and (4) Trajectories 

Recommendation.  
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Figure 28: High-level conceptual model. 

 

3.2.1 Trajectories Filtering Step 

 Before proceeding to trajectory clustering, it is necessary to read the data from the available data 

source. The source information can be stored in a CSV text file, a PostgreSQL (PostGIS8) Spatial 

database, etc. and it is usually organized as a set of GPS positions. So, it is required to define the 

trajectories in a GPS dataset.  

 GPS datasets can be easily ordered by object identification and by time. The movement of an object 

along time can be decomposed into trajectories by scanning the time dimension. In this work it is 

assumed that each trajectory corresponds to trip. Thus, each trajectory consists of the set GPS positions 

for which the elapsed time between consecutive samples is less or equal than a given threshold. This 

means that when this constraint does not hold it assumed that the moving object has stopped, e.g., for a 

work journey, and the trip ends. It is also necessary to look for inconsistent data to avoid problems such 

as ‘teleportation’, i.e., consecutive GPS positions that are miles away from each other. Then, it is 

necessary to select the set of trajectories 𝑇, that have crossed the origin (O) and the destination (D), as 

illustrated in at the top of Figure 29.  

                                                      
8 Source: postgis.net/ 
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The selection of these trajectories is performed as follows: 

 Select the origin (O), destination (D) and the radius of the circles (𝑑𝑟) centered at O and D.  

 Select the sub-trajectories that intersect the circle centered at O and D. The sub-trajectories of 

interest are those including at least a line segment (𝑅𝑆𝑠𝑒𝑞) that intersects the circle centered at 

 

 

Figure 29: Set of trajectories crossing an origin and a destination. 
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𝑂 and a line segment that intersects the circle centered at 𝐷. These distances include 𝑅𝑆𝑠𝑒𝑞 

positions to O and D and an aditional perpendicular distance defined as 𝑑⊥(𝑅𝑆𝑠𝑒𝑞 , 𝑃𝑂 𝑜𝑟 𝐷) ≤

𝑑𝑟 𝑡ℎ𝑑 . 

 Clip the selected sub-trajectories by deleting all line segments that do not belong to the path 

between O and D. The sub-trajectories have the same direction from O to D. 

The output of this step is a set of sub-trajectories that will define the possible routes between O and D 

as defined in Section 3.1.  

 

3.2.2 Trajectory Clustering Step 

This sections describes the distance function used in similarity calculations and the clustering 

algorithm.  

 

3.2.2.1 Distance Function 

The distance function used in this work comprises three distance measures adapted from (Chen, 

Leung et al. 2002). All these distances are geometric measures. To the best of our knowledge, the first 

work to use these measure distances with trajectories is (Lee, Han et al. 2007). Therefore, the clustering 

step implemented in this work was based on these two works. We have made a small modification by 

adding intermediate points (the blue dots in Figure 30) to the line segments to improve results when the 

elapsed time between GPS samples is large.  

 

 
Figure 30: The three measures types between two line segments with the corresponding intermediate points. 

 

The three measures to estimate the similarity between two line segments 𝐿𝑎 = (𝑝𝑎𝑠, 𝑝𝑎𝑒) and  𝐿𝑏 =

{𝑝𝑏𝑠, 𝑝𝑏𝑒} are: (i) angle distance (𝑑𝜃) (ii) perpendicular distance (𝑑⊥) and (iii) parallel distance (𝑑∥).  

 

Perpendicular distance: The perpendicular total distance is calculated using the Lehmer Mean (LM) 

concept, which consists of a set of 𝑛 numbers (𝑥𝑘)𝑘=1
𝑛  defined as (𝑥) =  

∑ 𝑥𝑘
𝑝𝑛

𝑘=1

∑ 𝑥𝑘
𝑝−1𝑛

𝑘=1

 . A reference line 
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segment is chosen and the positions are extracted (start, end and intermediate positions) for comparison 

with others line segments. Formula 15 defines a generic perpendicular distance between a point and a 

line segment:   

 

𝑙⊥𝑖
(𝑝𝐿𝑎 , 𝐿𝑏) =  

|(𝑦𝑒 −  𝑦𝑠)𝑥𝑝 − (𝑥𝑒 − 𝑥𝑠)𝑦𝑝 − 𝑥𝑠𝑦𝑒 + 𝑥𝑒 𝑦𝑠|

√(𝑥𝑒 − 𝑥𝑠)2 + (𝑦𝑒 −  𝑦𝑠)2
 (15) 

 

where 𝐿𝑏 = {(𝑥𝑠, 𝑦𝑠), (𝑥𝑒 , 𝑦𝑒)} is the line segment to be compared and 𝑝𝐿𝑎 denotes a starting, ending or 

intermediate position from line segment 𝐿𝑎.   

 

The perpendicular total distance (Formula 16) is then the summation of all the perpendicular distances 

between the positions in 𝐿𝑎 and 𝐿𝑏:  

 

𝑑⊥𝑻𝒐𝒕𝒂𝒍 (𝐿𝑎, 𝐿𝑏) =  
∑ (𝑙⊥(𝑝𝐿𝑎, 𝐶𝐿𝑏)𝑖)2 𝑛

𝑖=1

∑ (𝑙⊥(𝑝𝐿𝑎, 𝐶𝐿𝑏)𝑖)𝑛
𝑖=1

   (16) 

where 𝑛 is the number line segment positions in 𝐿𝑎. 

 

Angle distance: The angle distance is the angle between two line segments 𝐿𝑎 and 𝐿𝑏 . Formulas 17, 

18 and 19 show how to compute the angle distance in degrees. 

 

𝑚1 =  
(𝑦𝑎𝑒 −  𝑦𝑎𝑠)

(𝑥𝑎𝑒 −  𝑥𝑎𝑠)
   (17) 

 

𝑚2 =  
(𝑦𝑏𝑒 −  𝑦𝑏𝑠)

(𝑥𝑏𝑒 −  𝑥𝑏𝑠)
   (18) 

 

𝜃 = tan−1 (|
(𝑚2 −  𝑚1)

(1 +  𝑚2 ∗  𝑚1)
|) ×

180

𝜋
   𝑑𝑒𝑔𝑟𝑒𝑒𝑠   (19) 

 

Formula 20 defines the total angle distance between 𝐿𝑎 and 𝐿𝑏, where ‖𝐿𝑏‖ denotes the length of 𝐿𝑏. 

 

𝑑𝜃𝑻𝒐𝒕𝒂𝒍 
(𝐿𝑎, 𝐿𝑏) = {

‖𝐿𝑏‖ × sin(𝜃) , 𝑖𝑓 0° ≤ 𝜃 < 90°
‖𝐿𝑏‖,                      𝑖𝑓 90° ≤ 𝜃 ≤ 180°

 (20) 

 

Parallel distance: The parallel distance is the minimum distance between 𝐿𝑎 and 𝐿𝑏 and is given by 

Formula 21.     

 

𝑑∥𝑻𝒐𝒕𝒂𝒍 
(𝐿𝑎, 𝐿𝑏) = 𝑀𝐼𝑁(𝑙∥1

, 𝑙∥2
) (21) 
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The measures 𝑙∥1
 and 𝑙∥2

 are the distances at the start and the end of 𝐿𝑎 and 𝐿𝑏 (Figure 31). Formulas 

22 and 23 represent the distances for each line segment.  

 

𝑙∥1
=  √(𝑥𝑎𝑠 − 𝑥𝑏𝑠)2 + (𝑦𝑎𝑠 − 𝑦𝑏𝑠)2 (22) 

 

𝑙∥2
=  √(𝑥𝑎𝑒 − 𝑥𝑏𝑒)2 + (𝑦𝑎𝑒 − 𝑦𝑏𝑒)2 (23) 

 

 
Figure 31: Line distance measures. (Chen, Leung et al. 2002) 

 

Total distance: The total distance is a weighted average of the three distance measures mentioned 

above (Formula 24). 

 

𝑤∥ = 1, 𝑤𝜃 = 1, 𝑤⊥ = 1 

𝑑(𝐿𝑎, 𝐿𝑏) =  𝑑∥𝑇𝑜𝑡𝑎𝑙
× 𝑤∥ + 𝑑𝜃 𝑇𝑜𝑡𝑎𝑙 

× 𝑤𝜃 + 𝑑⊥𝑇𝑜𝑡𝑎𝑙 × 𝑤⊥ (24) 

 

By default, the weights are equal to 1, but the last test case in this work, the parallel distance is set 

to 0.5, because if two line segments have very different of lengths, this measure has a strong effect on 

the distance function value.  

 

3.2.2.2 Clustering Algorithm 

The clustering algorithm is based on the similarity between trajectories, which is calculated using 

Formula 24. After the execution of the filtering step we have the sub-trajectories which share the same 

origin (𝑂) and destination (𝐷). This section shows how to perform a synchronized traversal of the line 

segments to compute the similarity between two trajectories and how to implement the clustering 

algorithm.  

 



41 

 

 

Figure 32: Two similar trajectories with the corresponding line segments. 

 

Synchronized Traversal (ST): The synchronized traversal is a sequential process. The algorithm 

starts with the two first line segments (𝑙𝑠1. 𝑖 and 𝑙𝑠2. 𝑗, with 𝑖 = 𝑗 = 1 ) of two trajectories or sub-

trajectories 𝑇𝑎 and 𝑇𝑏 (analogous to Figure 32, 𝑇1 and 𝑇2), and proceeds as follows: 

 Compute the total distance between 𝑙𝑠1. 𝑖 and 𝑙𝑠2. 𝑗. If the total distance (𝑑𝑆𝑇) is less than a given 

threshold then 𝑙𝑠1. 𝑖 and 𝑙𝑠2. 𝑖 are considered similar, and the process continues; 

 To proceed for the next line segments comparison a verification is performed. Is necessqry to 

chose which of the previous compared line segments is greater. For example, trajectories 𝑇1 and 

𝑇2 (Figure 32), after the similarity calculation, if both line segments are similar, the algorithm 

verifies both line segments length and choose the greater one, if 𝑙𝑠1. 𝑖 > 𝑙𝑠2. 𝑗 then add 1 to 𝑖, 

else add 1 to 𝑗. In this example, 𝑙𝑠1.1 is chosen, and will be compared with the next line segment 

from 𝑇2, the 𝑙𝑠2.2.  

 

Clustering: Algorithm 1 is a simplified description of the clustering of trajectories. 

 

Algorithm 1 Clustering trajectories  

Input: 𝑇: trajectory set; 𝑑𝑆𝑇: similarity distance threshold 

Output: 𝐶: set of clusters  

1: 𝑇𝑂𝑡𝑜𝐷 = searchForRoutesOtoD(𝑟𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , 𝑇) 

2: while exists 𝑇𝑂𝑡𝑜𝐷 𝑛𝑜𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝐶 do 

3:  𝑐𝑟𝑒𝑎𝑡𝑒 𝑖𝑛𝑖𝑐𝑖𝑎𝑙 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑙 = {𝑇𝑖} 

4:  for 𝑇𝑖 ∈ 𝑇 do 

5:      for  𝑇𝑗 ∈ 𝑇 do   

6:         𝑔𝑒𝑡 𝑙𝑖𝑛𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ls𝑎  𝑎𝑛𝑑 ls𝑏 𝑓𝑟𝑜𝑚 𝑇𝑖  𝑎𝑛𝑑 𝑇𝑗    

7:         if sim(ls𝑎 , ls𝑏) <= 𝑑𝑆𝑇 then 

8:             𝑎𝑑𝑑 𝑙𝑖𝑛𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑡𝑜 𝑝𝑟𝑜𝑣𝑖𝑠𝑜𝑟𝑦 𝑙𝑖𝑠𝑡  

9:             𝑐ℎ𝑒𝑐𝑘 𝑤ℎ𝑖𝑐ℎ 𝑙𝑖𝑛𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑒𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 

10:             𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑙𝑠 

11:       else 
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12:           𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡  𝑇𝑗;  𝑏𝑟𝑒𝑎𝑘; 

13:       end if 

14:    end for 

15:    if all line segments from 𝑇𝑗 𝑎𝑟𝑒 in provisory list then 

16:       𝑎𝑠𝑠𝑖𝑔𝑛 𝑇𝑗 𝑡𝑜 𝑐𝑙 

17:    else   

18:       𝑎𝑠𝑠𝑖𝑔𝑛 𝑇𝑗 𝑡𝑜 𝑛𝑒𝑤 𝑐𝑛 

19:    end if 

20:    𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑇𝑖 

21:  end for 

22:end while 

 

The inputs are a set of trajectories and 𝑑𝑆𝑇 a similarity distance threshold used to check if two line 

segments are similar. If two line segments are not similar, or an outlier is detected, we stop the line 

segment similarity process (line 12). Otherwise, the line segment is inserted into a provisory list and 

the loop continues. At the end of the loop, line 15 checks whether all line segments have been inserted 

into the provisory list. If so, the trajectory or sub-trajectory is inserted into an existing cluster, otherwise, 

a new cluster is created. 

 

 
Figure 33: Representation of two visually clusters. 

 

Figure 33 illustrates a set of trajectories 𝑇 = {𝑇23, 𝑇28, 𝑇29, 𝑇30, 𝑇214, 𝑇362, 𝑇366} that can be grouped 

in two clusters, 𝐶1 and 𝐶2. However, our algorithm 1, discovered three clusters, 𝐶1 =

{28, 29, 30, 214, 366}, 𝐶2 = {23} and 𝐶3 = {362}. This occurs due to the algorithm sensitivity to 

noise and outliers. The authors of (Lee, Han et al. 2007) describe two types of outliers: positional and 
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angular. Positional refers to location while the angular is associated with the direction.  Our definition 

of outlier detection is different from other works in the literature, because our goal is to find similar 

trajectories and not outliers. If algorithm 1 detects an outlier in the similarity process, the sub-trajectory 

is not associated to the cluster, and a new cluster is created. 

 

3.2.3 Representative Trajectory Step 

Finding the representative trajectory of a cluster is a challenge. The representative trajectory should 

represent the overall movement of the trajectories that belong to a cluster. The solution implemented in 

this work is based on representative GPS points extraction as proposed in (Guo, Liu et al. 2010). This 

method searches for representative points using a circular window to aggregate GPS positions. The 

representative points are the centroids of the circular windows. The radius of the circles must be fixed 

in advance. This method also uses a moving-window smoothing process based on a Delaunay 

Triangulation.  

The purpose of this feature is to have a unique trajectory representation and retrieve useful 

information from it, e.g., length, time travel or average speed. This method has two steps: (i) positions 

connectivity extraction via Delaunay Triangulation and (ii) centroid representation. These steps are 

presented in the following sections.  

 

3.2.3.1 Positions Connectivity Extraction 

The goal of the Positions Connectivity Extraction (PCE) step is to obtain the positions connections 

from DT. This step is illustrated in Figure 34 where all trajectories belong to the same cluster. The gray 

circles represent regions of neighbor positions. The DT is first constructed in a lower level, i.e., instead 

of using line segments, we construct the DT on the GPS positions directly.   
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Figure 34: Representation of regions of neighbor positions. 

 

The DT was implemented with the help of a two-dimensional constrained DT library9, developed in 

java, which is based on the algorithm of V. Domiter and B. Zalik (Domiter and Zalik 2008). This library 

allowed us to construct the DT for each cluster based on the trajectories detected on the clustering phase. 

Figure 35 depicts the triangulation based on the cluster of Figure 34.   

 

Figure 35: Delaunay Triangulation of the cluster. 

                                                      
9 Source: code.google.com/p/poly2tri 
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Table 5 shows the DT triangles with the related positions vertices for the cluster illustrated in figure 35: 

 

⊿1 =  [16, 17, 26] 

⊿2 =  [25, 17, 16] 

⊿3 =   [7, 25, 17] 

⊿4 =  [6, 7, 25] 

⊿5 =  [8, 6, 7] 

⊿6 =  [18, 6, 8] 

⊿7 =  [27, 6, 18] 

⊿8 =  [24, 19, 27] 

⊿9 =  [24, 27, 6] 

⊿10 =  [23, 9, 5] 

⊿11 = [14, 9, 23] 

⊿12 = [4, 9, 14] 

⊿13 =  [22, 9, 4] 

⊿14 = [13, 9, 22] 

⊿15 = [21, 13, 3] 

⊿16 = [21, 9, 13] 

⊿17 = [12, 9, 21] 

⊿18 =  [2, 9, 12] 

⊿19 =  [20, 9, 2] 

⊿20 = [11, 9, 20] 

⊿21 =  [1, 9, 11] 

⊿22 = [0, 9, 1] 

⊿23 = [10, 0, 9] 

 

Table 5: Triangles resulted from DT. 

 

Then we search for vertices connections (Table 6) presents the result: 

𝑣0 = [9, 1, 10] 

𝑣1 = [9, 11, 0] 

𝑣2 = [9, 12, 20] 

𝑣3 = [21, 13] 

𝑣4 = [9, 14, 22] 

𝑣5 = [9, 15, 23] 

𝑣6 = [7, 25, 8, 18, 27, 24] 

𝑣7 = [25, 17, 6, 8] 

𝑣8 = [6, 7, 18] 

 

𝑣9 = [15, 28, 5, 23, 14, 4, 22, 13, 21, 12, 2, 20, 11, 1, 0, 10] 

𝑣10 = [0, 9] 

𝑣11 = [9, 20, 1] 

𝑣12 = [9, 21, 2] 

𝑣13 = [9, 22, 21, 3] 

𝑣14 = [9, 23, 4] 

𝑣15 = [19, 24, 28, 9, 5] 

𝑣16 = [17, 26, 25] 

𝑣17 = [16, 26, 25, 7] 

𝑣18 = [6, 8, 27] 

𝑣19 = [24, 27, 15, 28] 

𝑣20 = [9, 2, 11] 

𝑣21 = [13, 3, 9, 12] 

𝑣22 = [9, 4, 13] 

𝑣23 = [9, 5, 14] 

𝑣24 = [19, 27, 6, 15] 

𝑣25 = [17, 16, 7, 6] 

𝑣26 = [16, 17] 

𝑣27 = [6, 18, 24, 19] 

𝑣28 = [15, 19, 9]  

 

Table 6: The vertices connections. 

 

 The neighbors are obtained from these vertices connections and this step is explained in detail in the 

following section.  

 

3.2.3.2 Centroid Position Representation 

The Centroid Representation Position (CRP) is the centroid a group of neighbors and it is represented 

by a centroid. This centroid will be part of the representative trajectory of the cluster. This methods is 

divided in two phases: (i) finding neighbors closeness and (ii) centroid assignment.   

The neighbors closeness step uses the vertices connections from DT to determine which positions 

are neighbors. This step allows to reduce the search space and so, improve the computational 

performance of the algorithm  

The next step is the centroid assignment, which computes the centroid of neighbor positions based 

on (Guo, Liu et al. 2010). 
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3.2.3.2.1 Neighbors Closeness 

For the closeness step, a neighbors distance threshold (𝑑𝑡ℎ𝑣) should be previously defined. The value 

used in this work is 𝑑𝑡ℎ𝑟 = 30 meters. According to (Guo, Liu et al. 2010), this threshold is the error 

range for GPS datasets. The result of this method for the case illustrated in (table 6) is shown in table 

7.  

 

𝑔𝑟𝑜𝑢𝑝1 = [0, 10] 

𝑔𝑟𝑜𝑢𝑝2 = [1, 11] 

𝑔𝑟𝑜𝑢𝑝3 = [2, 12] 

𝑔𝑟𝑜𝑢𝑝4 = [3, 13] 

𝑔𝑟𝑜𝑢𝑝5 = [4, 14] 

𝑔𝑟𝑜𝑢𝑝6 = [5, 15] 

𝑔𝑟𝑜𝑢𝑝7 = [7] 

𝑔𝑟𝑜𝑢𝑝8 = [8, 18] 

𝑔𝑟𝑜𝑢𝑝9 = [19] 

𝑔𝑟𝑜𝑢𝑝10 = [20] 

𝑔𝑟𝑜𝑢𝑝11 = [21] 

𝑔𝑟𝑜𝑢𝑝12 = [22] 

𝑔𝑟𝑜𝑢𝑝13 = [23] 

𝑔𝑟𝑜𝑢𝑝14 = [15, 24] 

𝑔𝑟𝑜𝑢𝑝15 = [6, 16, 25] 

𝑔𝑟𝑜𝑢𝑝16 = [17, 26] 

𝑔𝑟𝑜𝑢𝑝17 = [18, 27] 

𝑔𝑟𝑜𝑢𝑝18 = [9, 28] 

Table 7: Groups of neighbor vertices. 

 

3.2.3.2.2 Centroid Assignment 

The centroid assignment is performed for neighbors, i.e., vertices that are close to each other.  

However, we found that if we check the distance between the pre-calculated centroid groups, we can 

reduce even more the number of groups and thereby improve the representative trajectory. Table 8 

shows the result achieved: 

 

𝑔𝑟𝑜𝑢𝑝𝐶1 = [9, 19, 28] 

𝑔𝑟𝑜𝑢𝑝𝐶2 = [8, 18, 27] 

𝑔𝑟𝑜𝑢𝑝𝐶3 = [7, 17, 26] 

𝑔𝑟𝑜𝑢𝑝𝐶4 = [6, 16, 25] 

𝑔𝑟𝑜𝑢𝑝𝐶5 = [5, 15, 24] 

𝑔𝑟𝑜𝑢𝑝𝐶6 = [4, 14, 23] 

𝑔𝑟𝑜𝑢𝑝𝐶7 = [3, 13, 22] 

𝑔𝑟𝑜𝑢𝑝𝐶8 = [21] 

𝑔𝑟𝑜𝑢𝑝𝐶9 = [2, 12] 

𝑔𝑟𝑜𝑢𝑝𝐶10 = [20] 

𝑔𝑟𝑜𝑢𝑝𝐶11 = [1, 11] 

𝑔𝑟𝑜𝑢𝑝𝐶12 = [0, 10] 

Table 8: Groups of representative centroids. 

 

The number of groups was reduced from 18 to 12 and the centroids are represented in Figure 36.  

This gives the representative trajectory. 
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Figure 36: Representative Trajectory. 

 

3.2.3.3 Representative Trajectory Algorithm 

Algorithm 2 describes the procedure that joins the previous two phases to obtain the clusters 

representative trajectories. The input parameters are triangles vertices and a distance threshold. The 

algorithm iterates for each vertex in the Delaunay Triangulation. The first step (line 2) finds the vertices 

in the Delaunay Triangulation that are connect to the vertex being processed. Then, the distance between 

the current vertex and the connected vertices is evaluated (Line 4) to select those that are closer than 

the given threshold. Next, it is calculated the centroid of the current and selected vertices, and the result 

is stored into a temporary array (Line 8). Finally, line 11 to 17 simplify the representative trajectory, by 

checking each pre-calculated centroid to find if there are other candidates for centroids nearby, using 

also the initial distance threshold. If so, the centroid is merged, i.e., it is computed a new centroid. 

 

Algorithm 2 Trajectory Representative 

Input: 𝑣𝑇𝑟𝑖: 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠  𝑑𝑡ℎ𝑣: neighbors 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   

Output: 𝐶𝑇: set of representative centroids   

1:  for 𝒆𝒂𝒄𝒉 𝑣𝑒𝑟𝑡𝑖𝑐𝑒 𝑣 ∈ 𝑣𝑇𝑟𝑖 do 

       /*  Positions Connectivity Extraction */ 

2:     𝑣𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑠𝑒𝑎𝑟𝑐ℎ𝐹𝑜𝑟𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝐹𝑟𝑜𝑚𝐷𝑇(𝑣); 

3:     for 𝒆𝒂𝒄𝒉 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒 ∈ 𝑣𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 do 

       /* Neighbour Closeness: the connected vertice distance to the current vertice 𝑣 */ 

4:        if (𝑑𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 ≤  𝑑𝑡ℎ𝑣)  then 

5:           𝑎𝑠𝑠𝑖𝑔𝑛 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒 𝑡𝑜 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦𝐿𝑖𝑠𝑡 

6:        end if 

7:     end for 

8:     𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦𝐿𝑖𝑠𝑡); 

9:  𝑎𝑠𝑠𝑖𝑔𝑛 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑡𝑜 𝐶𝑇; 



48 

 

 

 

3.3 Implementation 

 To demonstrate all the components working together it was built a web application to support user’s 

interaction. This application allows the user to search for trajectories which share the same origin and 

destination regions, as well as to define the input parameters for the algorithms. This section presents 

the components and the technologies used to implement this application. 

 

 The web application, allows the user to set the parameters required to generate the clustering and 

representative trajectories.  In fact, users submit a query with specific attributes: (i) for the search 

trajectory step: origin and destination regions and circle radius, (ii) for the clustering step: user 

establishes a threshold for the line segments similarity, and (iii) for the representative trajectory step: a 

threshold for the distance between neighbors. 

 

3.3.1 Technical Specifications 

The system development is based on Java language, but to create a bridge between the end-user and 

the system, it was necessary to use several technologies that are divided into three categories: the back-

end business logic integration, data visualization and front-end user interaction.  

 

 

Figure 37: Logical Architecture component diagram. 

10: end for 

        /* Centroid assignment */ 

11: for  𝒆𝒂𝒄𝒉  𝑝𝑎𝑖𝑟 𝑜𝑓 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ∈ 𝐶𝑇 do 

12:    𝑐ℎ𝑒𝑐𝑘 𝑓𝑜𝑟 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 

13:     if (𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠𝑑𝑖𝑠𝑡 ≤  𝑑𝑡ℎ𝑣) do 

14:        mergeCentroids(); 

15         𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑡𝑜 𝐶𝑇; 

16:     end if 

17: end for  
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Figure 37, shows the back-end global logical architecture and components interaction. The diagram 

consists of a client-side and server-side nodes. Starting with the server-side, the execution environment 

is based on the open-source application server GlassFish, supporting the Enterprise JavaBeans. It 

integrates the LarsWebApp web application archive (WAR) and the datasets files. The WAR file 

contains all the business logic classes and the remaining web resources for the web application. The 

business logic abstraction is required, to link the core with the other components.  Therefore, our back-

end is implemented by using Enterprise JavaBeans (EJB) to encapsulate the business logic (core).  

 

3.3.2 Data Visualization 

Data visualization is the means to present the trajectories and clusters on an interactive web map 

using the World Geodetic System (datum WSG84).  

The options considered to implement the spatial data visualization tool were: ArcGIS10, 

OpenStreetMap, Foursquare, Google Maps, Yahoo! and Bing Maps. ArcGIS uses a web map powered 

by ESRI 11 and it is not an open-source solution. Bing and Yahoo! maps use the HERE 12map platform 

developed by Nokia, and Google Maps have their own API13 for geocoding and routing. Foursquare 

integrates an open-source web map application named MapBox14 which allows designing (with TileMill 

studio) maps and customizations. OpenStreetMap15 is a collaborative project developed by a voluntary 

community which contributes the growth of roads mapping and is fully open-source.   

Finally, our choice was an interactive map library called Leaflet16, which is an open-source 

JavaScript library for user interaction providing several features such as map customization, mobile 

support and the ability to integrate different layers. Apart from the described functionalities, the Leaflet 

community has developed several interesting plugins which can be used freely. This library gained 

importance due to its versatility in the manipulation of vector layers to present complex spatial data and 

due to GeoJSON17 integration. The latter, is an extension of JSON and is gaining importance in the 

context of web mapping. 

 

                                                      
10 arcgis.com 
11 esri.com 
12 developer.here.com/ 
13 developers.google.com/maps/ 
14 mapbox.com 
15 openstreetmap.org 
16 leafletjs.com 
17 geojson.org 
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Figure 38: GeoJSON output example structure. 

 

The GeoJSON format enables to generate a variety of geometrics types, e.g., points, line string, 

polygons, etc. Figure 38, shows a collection of positions belonging to a trajectory. In this work, the 

GeoJSON files are used to define the trajectories of the moving objects (trucks) using the line string 

geometry type, as well as the trajectory identification and length. By default, the Coordinate Reference 

System (CRS) supported by GeoJSON is the WGS84 datum. However, it is possible to define other 

different CRS, by adding a crs object containing a “name” member referencing the CRS in a specific 

format.  

Finally, we use Leaflet along with MapBox plugin. The MapBox is used for displaying layers and 

controls, and Leaflet for map interaction and data import. 

 

3.3.3 Interface (Front-End) 

This section presents the front-end web interface developed using JavaServer Faces (JSF) and the 

user interface components implemented using PrimeFaces18. This application allows end users to 

generate trajectory clusters, representative trajectories and to filter inputs. The interface also gives the 

possibility to enter the desired input values for the different phases of the recommendation. Figure 39 

depicts the user interface.  

 

                                                      
18 Source: PrimeFaces.org 
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Figure 39: Web Application general structure. 

 

The layout structure is defined by three main containers (highlighted in figure 39): the map in the 

center is supported by Leaflet and contains the two markers, a red marker denoting an origin and a blue 

marker denoting a destination. The position of the markers can be changed interactively by dragging 

the marker and the corresponding coordinates in the input text area in the left are updated automatically. 

Each trajectory cluster has distinct colors. By default, the representative trajectory of each cluster is 

displayed in black.  

 The left side container holds the input values: the number of trajectories and thresholds distances for 

cluster analysis and representative trajectory computation, the radius of the circles centered at the origin 

and destination for the trajectories filtering step and the other two parameters are distance thresholds 

for clustering and representative trajectory steps. The origin and destination inputs are obtained by map 

interaction. The combo box allows to choose the desired dataset. The filtering options are mainly based 

mainly on the Representative Trajectories which can be ranked accordingly to the following options: 

(i) the Representative Trajectory with the highest number of source trajectories, (ii) the Representative 

Trajectory with the highest number of moving objects sharing the same route, (iii) the quickest 

trajectory and (iv) the shortest trajectory.  

 The two tables in the bottom show detailed information about the trajectories. The table in the left, 

presents information about the Representative Trajectories: identification, number of trajectories, 

moving objects and representative trajectory averages (length, duration and velocity), i.e., the average 

values of all trajectories in a cluster. The table in the right presents information about the source 

trajectories: identification, length, velocity and duration and the related representative trajectory (RT) 

identification.   
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4. Chapter 

Results 

This chapter presents an evaluation of the method developed in this work under different 

scenarios. Three test cases are presented using the Trucks dataset. These tests are meant to evaluate 

the accuracy and the performance of the following steps: trajectories filtering, clustering and 

representative trajectories creation. It is important to note that the input parameters for the three different 

steps and the number of trajectories selected have great importance in the performance of the system. 

 

 

4.1 Accuracy tests 

There are specific input parameters for each test case. The weights used to compute the total distance 

(Formula 24) were (𝑤∥ = 1, 𝑤𝜃 = 1, 𝑤⊥ = 1). 

 

4.1.1 Test case one 

The input parameters for test case 1 are presented in Table 9. Figure 40 depicts the four trajectories 

𝑇 = {𝑇2, 𝑇36, 𝑇37, 𝑇42} that have traversed the origin (circle in blue) and destination (circle in red), 

selected in the search phase (filtering step). 
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Table 9: Input parameters of test case 1. 

 

Trajectory 𝑇36 is an interesting case because the distance traveled by the moving object is much 

higher than for the other ones. Yet it remains an alternative route and so it is also presented. 

 

 
Figure 40: Test case 1 trajectories. 

Nº of Trajectories: 50 

Search radius: 100 meters 

Clustering distance threshold: 300 meters 

RT neighbors distance threshold: 30 meters 
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Figure 41: Test case 1, trajectories cluster and corresponding representative trajectory (black). 

 

Two distinct clusters were found in the clustering step: 𝐶1 = {𝑇2, 𝑇37, 𝑇42} and 𝐶2 = {𝑇36} .  

Figure 41 shows the trajectories in 𝐶1 and 𝐶2, where 𝑇36 is in yellow, 𝑇2 is in red, 𝑇37 is in green, and 

𝑇42 is in blue. The representative trajectory of cluster 𝐶1 is in black. As it can be seen, the representative 

trajectory is a good approximation of the three trajectories in cluster 𝐶1.The representation of 𝐶2 is 

omitted because it contains a single trajectory. 

 

4.1.2 Test case two 

In this test case, the number of trajectories is increased to 200, two different clustering distance 

thresholds are used and the origin and destination positions have changed, as described in table 10. The 

filtering search step returns the 22 trajectories depicted in Figure 42 (1). Thus the initial set is: 

𝑇 = {𝑇2, 𝑇36, 𝑇37, 𝑇43, 𝑇54, 𝑇59, 𝑇64, 𝑇68, 𝑇70, 𝑇77, 𝑇84, 𝑇88, 𝑇90, 𝑇92, 𝑇98, 𝑇146, 𝑇152, 𝑇157, 𝑇165, 𝑇177, 𝑇191, 𝑇192}. 

The first distance threshold for the clustering step was 300 meters and the second one was 200 meters.  
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(1) 

 

 
 (2) 

Figure 42: Test case 2 trajectories.  
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The first scenario, using a distance threshold equal to 300 meters returned six clusters:  

𝐶1 = {𝑇2}; 

𝐶2 = {𝑇36, 𝑇43, 𝑇64, 𝑇68, 𝑇70, 𝑇84, 𝑇88, 𝑇90, 𝑇92, 𝑇98, 𝑇146, 𝑇152, 𝑇157, 𝑇165, 𝑇177, 𝑇191, 𝑇192}; 

𝐶3 = {𝑇37}; 

𝐶4 = {𝑇54}; 

𝐶5 = {𝑇59}; 

𝐶6 = {𝑇77}. 

 

The second scenario, using a distance threshold equal to 200 meters resulted in eleven clusters: 

𝐶1 = {𝑇2}; 

𝐶2 = {𝑇36, 𝑇43, 𝑇70}; 

𝐶3 = {𝑇37}; 

𝐶4 = {𝑇54}; 

𝐶5 = {𝑇59}; 

𝐶6 = {𝑇64, 𝑇68}; 

 

𝐶7 = {𝑇77}; 

𝐶8 = {𝑇84, 𝑇88, 𝑇192}; 

𝐶9 = {𝑇90, 𝑇92, 𝑇146, 𝑇157, 𝑇165, 𝑇177}; 

𝐶10 = {𝑇98}; 

𝐶11 = {𝑇152, 𝑇191}. 

 

The second scenario has more clusters as expected because the distance threshold is more restrictive. 

However, from a visually analysis of Figure 42 (2), the five clusters identified in the second scenario 

seem to belong to the same route (the trajectories in green). So, the decision was to create representative 

trajectories from the first scenario. Figure 43 presents a zoom of the map and shows the trajectories and 

the representative trajectory for clusters𝐶1 and 𝐶2. 

 

Nº of Trajectories: 200 

Search radius: 100 meters 

Clustering distance threshold: 300 and 200 meters 

RT neighbors distance threshold: 30 meters 

Table 10: Input parameters of test case 2. 
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Figure 43: White representative trajectory illustrated on the Greece map roads. 

 

The trajectories belonging to 𝐶2 are in blue and the representative trajectory is in white. The 

trajectory in 𝐶1 is in red. 

 

4.1.3 Test case three 

The third test case uses the same parameters of test case number two but the number of trajectories 

is increased to 500 (Table 11). The filtering step found 52 trajectories. Figure 44 (1) shows the 52 

trajectories and (2) shows a zoom of the map. 

 

 

(1) 
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 (2) 

Figure 44: Test case 3: sub-trajectories (1) Cluster 2 zoomed (yellow). 

 

The cluster found in the clustering step are similar to those obtained in test case two: 

𝐶1 = {𝑇2}; 

𝐶2 = {𝑇36, 𝑇43, 𝑇64, 𝑇68, 𝑇70, 𝑇84, 𝑇88, 𝑇90, 𝑇92, 𝑇98, 

𝑇146, 𝑇152, 𝑇157, 𝑇165, 𝑇177, 𝑇191, 𝑇192, 𝑇226, 𝑇248, 

𝑇251,𝑇252, 𝑇264, 𝑇319, 𝑇388, 𝑇401, 𝑇412, 𝑇420, 𝑇440, 𝑇448, 

𝑇452, 𝑇456, 𝑇463, 𝑇466, 𝑇482, 𝑇495}; 

𝐶3 = {𝑇37}; 

𝐶4 = {𝑇54}; 

𝐶5 = {𝑇59}; 

𝐶6 = {𝑇77}; 

𝐶7 = {𝑇201}; 

𝐶8 = {𝑇247}; 

𝐶9 = {𝑇318}; 

𝐶10 = {𝑇384}; 

𝐶11 = {𝑇395}; 

𝐶12 = {𝑇414}; 

 

𝐶13 = {𝑇438}; 

𝐶14 = {𝑇449}; 

𝐶15 = {𝑇455}; 

𝐶16 = {𝑇465}; 

𝐶17 = {𝑇497}. 

 

  

Most trajectories between the origin and the destination belong to cluster 𝐶2 and this could be a good 

candidate to be the best trajectory for recommendation. 

  

Nº of Trajectories: 500 

Search radius: 100 meters 

Clustering distance threshold: 300 meters 

RT neighbors distance threshold: 30 meters 

Table 11: Input parameters of test case 3. 
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4.1.4 Test case with modified parallel weight 

This test case uses the same input parameters defined for test case number two, but the parallel 

distance weight (𝑤∥) in Formula 24 was set to 0.5. This change has a significant impact on the clustering 

step. The following clusters were obtained:    

 

𝐶1 = {𝑇2}; 

𝐶2 = {𝑇36, 𝑇64, 𝑇68, 𝑇70, 𝑇84, 𝑇92, 𝑇146, , 𝑇165, 𝑇191}; 

𝐶3 = {𝑇37, 𝑇43, 𝑇88, 𝑇90, 𝑇98, 𝑇152, 𝑇157, 𝑇177, 𝑇192}; 

𝐶4 = {𝑇54}; 

 

𝐶5 = {𝑇59}; 

𝐶6 = {𝑇77}. 

 

The cluster 𝐶2 obtained in test case number two was divided into two distinct clusters denoted  𝐶2 and 𝐶3 

in this test case. This test case shows that decreasing the weight of the parallel distance increases the 

similarity between the line segments in a cluster, but it can be harder to obtain clusters of trajectories 

related to the same route. 

 

 

Figure 45: Cluster 𝐶2 is decomposed in two clusters. 

 

Figure 45, shows cluster 𝐶2 divided into two groups with similar sub-trajectories (blue and orange). 

A visual analysis of Figure 45 shows that the clustering step algorithm could generate accurate clusters 

between sub-trajectories sharing the same routes.  
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4.2 Performance tests 

  The performance measure used in this section is the elapsed time required to answer to a user query. 

This is an important measure because it is expected to use the methods studied in this work in the context 

of interactive applications.  

The tests were executed in the following environment: Windows 8 64 bit Operating System (OS), 

Intel Dual Core i7 processor with a base frequency of 2GHz and 4 MB of cache. Memory of 6 GB with 

a Column Access Strobe (CAS) latency of 9 clock cycles. Finally, the data is stored and accessed from 

an mSATA 128 GB with an average sequential read speed of 477MB/s and write speed of 294 MB/s. 

The following figures are related to the different test cases, described in the preceding sections: 

 

 

 

The filtering step to select the trajectories from an origin towards a destination is an iterative process 

and depends on the numbers of trajectories, i.e., execution time is proportional to the number of 

trajectory samples, as shown in Figure 46. The times are in seconds.  
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Figure 46: Trajectories Filtering Step execution times. 
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The clustering step, depicted in figure 47, has a short execution time than the previous step because 

it must deal with significantly less trajectories. The complexity of this step is closely related to the 

number of samples and trajectories to be processed, and the execution time is exponential. 

 

 This last step consists in creating the Representative Trajectory and is divided into 3 steps: Positions 

Connectivity Extraction, Centroid Position Representation and Centroid Assignment. The results 

presented in this section are organized as follows:  

 Delaunay Triangulation Construction: measures the execution time for the computations of 

the triangulations. 

 Representative Trajectory Calculation: includes the 3 steps to compute Representative 

Trajectories. 

 Representative Trajectory Conversion: execution time to convert the coordinates from UTM 

to WGS84 reference system.  

 

  Figure 48, shows that the execution times for the Delaunay Triangulation are relatively small and 

linear. The execution times of the other two steps are more important than the construction of the 

triangulation, but they are logarithmic.  
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Figure 47: Clustering step execution time. 
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Figure 49: Sum of all steps times depending on the trajectories number. 

 

 Finally, Figure 49 presents the overall performance, i.e., the sum of all steps execution times, 

according to the number of trajectories. It was considered only one cluster in all tests. The overall 

execution times are 1.014 seconds for test case 1, 1.702 seconds for test case two and 2.554 seconds for 

test case 3.  

The execution times are also dependent on the input parameters. For instance, changing the distance 

threshold to select the neighbors in the construction of the Representative Trajectories to 50 meters, the 

Representative Trajectory Conversion time is 0.471 seconds instead of 0.601 seconds and the 

Representative Trajectory Calculation time is 0.559 seconds instead of 0.686 seconds.  
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64 

 

  



65 

 

5. Chapter 

Conclusion 

This chapter presents the main issues studied in this work and presents guidelines for future works 

regarding moving objects recommendation.  

 

 

5.1 Discussion 

Two main issues were identified during the development of this work. Such limitations are in the 

process of obtaining clusters and representative trajectories.  

The first issue concerns the evaluation of the distance function between line segments in the 

clustering step. The measures are not accurate when comparing vertical line segments and thus the 

algorithm tends to generate inadequate clusters. According to (Lee, Han et al. 2007) if two line segments 

are adjacent, then the parallel distance should be zero, but this may not be the case for the distance 

measures used in this work. The second issue concerns the Delaunay Triangulation because of the 

Poly2Tri java library used to calculate the triangulation network, does not support self-intersecting 

trajectories.  

 

I  

Figure 50: Self-intersecting trajectory. 

 

Figure 50 depicts an example of a trajectory with an intersection (circle in red). In addition, the output 

generated in the Centroid Assignment step (Section 3.2.3.2.2), i.e., the centroids belonging to the 

representative trajectory, are not always generated in the correct order. 
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5.2 Contribution 

In this dissertation, we propose a solution for trajectories clustering and recommendation, which are 

accessible through a web-based application. This application allows to discover the alternative routes 

to go from a given origin to a destination. For that purpose, it is necessary to create clusters of similar 

trajectories and to create a representative trajectory for each cluster. Ideally, each representative 

trajectory should correspond to a possible route between an origin and a destination. Then, it is possible 

to derive features for each possible route (cluster) using data about the trajectories in each cluster, and 

to recommend routes using several different criteria. The system has four main parts: 

 The trajectory filtering step is used to search for trajectories sharing an origin and a 

destination regions. 

 The clustering step groups similar trajectories using three measures (parallel, angular and 

perpendicular distances) to compute the distance between the line segments defining the 

moving objects trajectories. 

 The representative trajectory step, is responsible to create a representative trajectory for each 

cluster. This step is based on a Delaunay Triangulation.   

 The recommendation step, is basically a filter to suggest one of the representative trajectories 

according users options.  

The solution presented in this work is not restricted to networked moving objects such as cars 

moving in a roads network, and it is expected that it is also able to deal with other types of trajectories, 

such as bicycles, boats or hiking, known as footpaths.    

  These features have been deployed through a web application. 

 

5.3 Future work 

 The study presented in this dissertation is an exploratory work and there are several issues that need 

to be studied in the future. Data mining analysis applied to trajectories is challenging, particularly if 

real datasets are used rather than synthetic datasets.  

Real datasets, such as GPS log files typically have approximation errors and outliers that make it 

more difficult to delimit and analyze moving objects trajectories. Performance is also an important issue 

when dealing with large trajectory datasets:  

 The use distributed systems to divide and submit tasks to different machines. Several 

approaches are possible, for instance: (i) design a solution from scratch using Java RMI19 

(Remote Method Invocation), or (ii) use the open-source Apache Hadoop20 framework to 

enable the processing of large datasets across clusters of computers.   

                                                      
19 Source: docs.oracle.com/javase/7/docs/technotes/guides/rmi 
20 hadoop.apache.org 
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 The use of spatial databases rather than CSV files to store the geometric objects could 

improve substantially the performance because it would be possible to use a spatial index 

(i.e., R-Tree), to speed up query operations. For example, PostgreSQL21 is a well-known open 

source database system, which uses the spatial PostGIS extension to add support for 

geometry data types and other advanced functions.  

  There also are several developments that can be implemented to improve the work presented in this 

dissertation. First, the performance of the filtering step to search for trajectories crossing an origin and 

a destination regions should be improved, because this step has the worst processing time. Second, the 

recommendation of trajectories in this work is quite simple and it would be interesting to extend this 

work to use contextual information, e.g., weather data road types, etc., or to use collaborative filtering 

techniques to be able to perform personalized recommendations.  

 

  

                                                      
21 postgresql.org 
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