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Abstract. In this paper we study periodically time-varying convolu-
tional codes by means of input-state-output representations. Using these
representations we investigate under which conditions a given time-inva-
riant convolutional code can be transformed into an equivalent periodic
time-varying one. The relation between these two classes of convolutional
codes is studied for period 2. We illustrate the ideas presented in this
paper by constructing a periodic time-varying convolutional code from a
time-invariant one. The resulting periodic code has larger free distance
than any time-invariant convolutional code with equivalent parameters.
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1 Introduction

Convolutional codes [10] are an important type of error correcting codes that can
be represented as a time-invariant discrete linear system over a finite field [20].
They are used to achieve reliable data transfer, for instance, in mobile commu-
nications, digital video and satellite communications [10, 23].

Since the sixties it has been widely known that convolutional codes and linear
systems defined over a finite field are essentially the same objects [20]. More re-
cently, there has been a new and increased interest in this connection and many
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advances have been derived from using the system theoretical framework when
dealing with convolutional codes, see [12, 17]. Most of the large body of literature
on convolutional codes and on the relation of these codes with linear systems
has been devoted to the “time-invariant” case.

In this work we aim at studying time-varying convolutional codes from a sys-
tem theoretical point of view. These codes have attracted much attention after
Costello conjectured in [5] that nonsystematic time-varying convolutional codes
can attain can larger free distance than the nonsystematic time-invariant ones.
Since then, several researchers have investigated such codes [3, 15, 16, 18]. More-
over, in combination with wavelets [6] time-varying convolutional codes yield
unique trellis structures that resulted in fast and low computational complexity
decoding algorithms. However, little is known on the relation of time-varying con-
volutional codes and time-varying linear systems and very few general construc-
tions of time-varying convolutional codes with designed distances are known.

Here we deal with periodically time-varying convolutional codes (for short, pe-
riodic codes) using input-state-output representations, and investigate some of
their special properties and structures. In particular, we associate periodic codes
with suitably defined time-invariant convolutional codes. This allows us to derive
constructions of (periodic) input-state-output representations for periodic codes
from the better understood time-invariant class.

2 Preliminaries

In the sequel we shall follow the system theory notation and consider column
vectors rather than row vectors.

2.1 Time-invariant convolutional codes

A time-invariant convolutional code is a set of finite support sequences, called
codewords, obtained as the image of a polynomial shift operator (the encoder)
acting on finite support sequences that correspond to the original information.
More precisely this can be defined as follows.

Definition 1. Let F be a finite field and n, k be positive integers with k < n. A
time-invariant convolutional code C of rate k/n is a set of finite support sequences
described as

C =
{
v : v(`) =

(
G
(
σ−1

)
u
)
(`); ` ∈ N0, u ∈

[(
Fk
)N0
]
FS

}
where G(z) ∈ Fn×k[z] is a full column rank n × k polynomial matrix over F,
called the encoder, u taking values in Fk is the information sequence and v is
the codeword. Moreover, σ−1 denotes the shift

(
σ−1u

)
(`) = u(` − 1), and the

subindex FS affecting a set of sequences indicates that only its finite support
elements are considered.



The encoders of a code C are not unique; however they only differ by right multi-
plication by unimodular matrices over F[z]. An encoder matrix G is called basic
if it has a polynomial right inverse; from now on we shall only consider basic
encoders, and refer to them simply as encoders. The encoder G is called minimal
if the sum of its column degrees attains the minimal possible value.

We define the degree δ of a convolutional code as the sum of the column degrees
of one, and hence any, minimal encoder. Note that the list of column degrees
(also known as Forney indices) of a minimal encoder is unique up to a permu-
tation. The maximum of the Forney indices is called the memory of a code, and
is denoted by m. A code C of rate k/n, degree δ and memory m is said to be an
(n, k, δ) code or an (n, k, δ,m) code if the memory is to be specified.

2.2 Periodically time-varying convolutional codes

In this work we consider convolutional codes C with P -periodic encoders, i.e.:

C =
{
v : v(P`+ t) =

(
Gt
(
σ−1

)
u
)
(P`+ t); t = 0, . . . , P − 1;

` ∈ N0, u ∈
[(
Fk
)N0
]
FS

}
,

(1)

where each Gt(z) is an n× k time-invariant (basic) encoder. Such codes will be
called P-periodic.

Inspired by the ideas developed in [13] and [1] for the case of behaviors, consid-
ering the linear map

Lp : (Fn)
N0 →

(
FPn

)N0

defined by

(Lpv)(`) =


v(P`)

v(P`+ 1)
...

v(P`+ P − 1)

 , P ∈ N

we associate with C a time-invariant convolutional code CL, the lifted version of
C, defined as

CL =
{
ṽ ∈

(
FPn

)N0
: ṽ = Lpv, v ∈ C

}
.

Note that, since (
Gt
(
σ−1

)
u
)
(P`+ t) =

( (
σtGt

(
σ−1

))
u
)
(P`),

the equation in (1) can also be written as(
ΩP,n (σ) v

)
(P`) =

(
G
(
σ, σ−1

)
u
)
(P`), ` ∈ N0,



where for r ∈ N

ΩP,r (σ) =


Ir
σIr

...
σP−1Ir


is a polynomial matrix operator in the shift σ and

G
(
σ, σ−1

)
=


G0
(
σ−1

)
σG1

(
σ−1

)
...

σP−1GP−1
(
σ−1

)


is a polynomial matrix operator in the shifts σ and σ−1.

Moreover, it is possible to show that the matrix G can be decomposed as

G
(
σ, σ−1

)
= GL

(
σ−P

)
ΩP,k (σ)

where
GL
(
σ−1

)
=
[
GL0

(
σ−1

)
| GL1

(
σ−1

)
| · · · | GLP−1

(
σ−1

)]
and the blocks GLj

(
σ−1

)
have size Pn× k, j = 0, . . . , P − 1.

Thus, the lifted code can be represented as

CL =
{
ṽ : ṽ(`) = (GL

(
σ−1

)
ũ)(`), ` ∈ N0, ũ ∈

[(
FkP

)N0
]
FS

}
,

where ṽ = LP v and ũ = LPu.

2.3 Distance properties

In recent years great effort has been dedicated to developing constructions of
non-binary convolutional codes having good distance [2, 9, 14]. However, in con-
trast to block codes, the theoretical tools for the construction of convolutional
codes with good designed distance have not been fully exploited. In fact, most
convolutional codes used in practice have been found by systematic computer
search and their distance properties must be also computed by full search.

One of our objectives will be the construction of convolutional codes with a large
free distance, which is defined as follows.

Definition 2. The free distance of a convolutional code C is given by

dfree(C) = min

{ ∞∑
`=0

wt
(
v(`)

)
: v ∈ C \ {0}

}
,

where wt denotes the Hamming weight, that is, wt(v(`)) corresponds to the num-
ber of nonzero components of v(`).



Rosenthal and Smarandache [21] showed that the free distance of a time-invariant
(n, k, δ) convolutional code is upper bounded by

dfree(C) ≤ (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1.

This bound is called the generalized Singleton bound. It is well-known [21] that
over sufficiently large finite fields, there always exist convolutional codes that
achieve this bound for any given set of parameters (n, k, δ).

However, in this paper we will consider instead the Griesmer bound defined in
the next theorem. This bound is always less than or equal to the generalized Sin-
gleton bound, and can be considerably lower for codes over small fields, whereas
it coincides with the Singleton for codes over sufficiently large finite fields.

Theorem 1. [7, 10, 19] Let (n, k, δ,m) be a 4-tuple of nonnegative integers such

that k < n, consider q ∈ N and N̂ =

{
N if km = δ
N0 if km > δ

. Let further

GBq(n, k, δ,m) = max

d′ :

k(m+i)−δ−1∑
j=0

⌈
d′

qj

⌉
≤ n(m+ i), ∀i ∈ N̂

 .

Then, every (n, k, δ,m)-convolutional code C over the field Fq is such that
dfree(C) ≤ GBq(n, k, δ,m).

GBq(n, k, δ,m) is known as the Griesmer bound.

3 State space realizations

A state space system{
x(`+ 1) = Ax(`) +Bu(`)

v(`) = Cx(`) +Du(`)
, l ∈ N0,

denoted by (A,B,C,D), where A ∈ Fδ×δ, B ∈ Fδ×k, C ∈ Fn×δ and D ∈ Fn×k, is
said to be a state space realization of the time-invariant (n, k, δ) convolutional
code C if C is the set of finite support output sequences v corresponding to finite
support input sequences u and zero inicial conditions, i.e., x(0) = 0.

Remark 1. This definition implicitly assumes that (A,B,C,D) is a minimal re-
alization of C, i.e., that A has the minimal possible dimension. This implies that
A is nilpotent, (A,B) is controllable and (A,C) is observable, i.e., the polyno-

mial matrices
[
z−1I −A | B

]
and

[
z−1I −A

C

]
have, respectively, right and left

polynomial inverses (in z−1).



State space realizations for convolutional codes can be obtained as minimal state
space realizations of minimal encoders.

The next proposition, adapted from [8, Proposition 2.3], provides a state space
realization for a given (not necessarily minimal) encoder.

Proposition 1. Let G ∈ Fn×k[z] be a polynomial matrix with rank k and column

degrees ν1, . . . , νk. Consider δ̄ =
∑k
i=1 νi. Let G have columns gi =

∑νi
`=0 g`,iz

`,
i = 1, . . . , k where g`,i ∈ Fn. For i = 1, . . . , k define the matrices

Ai =


0 · · · · · · 0

1
...

. . .
...

1 0

 ∈ Fνi×νi , Bi =


1
0
...
0

 ∈ Fνi , Ci =
[
g1,i · · · gνi,i

]
∈ Fn×νi .

Then a state space realization of G is given by the matrix quadruple (A,B,C,D) ∈
Fδ̄×δ̄ × Fδ̄×k × Fn×δ̄ × Fn×k where

A =

A1

. . .

Ak

 , B =

B1

. . .

Bk

 , C =
[
C1 · · · Ck

]
, D =

[
g0,1 · · · g0,k

]
= G(0).

In the case where νi = 0 the ith block is missing and in B a zero column occurs.

In this realization (A,B) is controllable, and if G is a minimal encoder, (A,C)
is observable.

4 Constructing periodically time-varying convolutional
codes

In comparison to the literature on time-invariant convolutional codes, there ex-
ist few algebraic constructions of time-varying convolutional codes with good
properties [11, 22]. Here we present a new technique to build time-varying con-
volutional codes from time-invariant ones. In particular, in this section we focus
on constructing 2-periodic codes with optimal free distance. We illustrate our
approach by means of an example of a 2-periodic (3, 2, 2, 1) code having larger
distance than any (3, 2, 2, 1) time-invariant convolutional code.

We first investigate the problem of finding periodic state space representations of
periodic convolutional codes. As shown in Section 2.2, using a lifting technique
one can transform a time-varying periodic linear system into an equivalent time-
invariant one. Following [1], we study the relationship between the periodic state
space representations of a given code and the time-invariant state space represen-
tations of its lifted version. For the sake of simplicity we assume that the period



is P = 2. However, whereas in [1] only single-input/single-output systems were
considered, here we deal with codes of general rate k/n that are closely related
to multi-input/multi-output (MIMO) systems.

Assume that Σ(·) = (A(·), B(·), C(·), D(·)) is a δ-dimensional state space repre-
sentation of a code C, as present below:{

x(`+ 1) = A(`)x(`) +B(`)u(`)

v(`) = C(`)x(`) +D(`)u(`)
, l ∈ N0 (2)

where (A(·), B(·), C(·), D(·)) ∈ Fδ×δ×Fδ×k×Fn×δ×Fn×k are periodic functions
with period 2. Letting

w(`) = x(2`)

uL(`) =

[
u(2`)

u(2`+ 1)

]
vL(`) =

[
v(2`)

v(2`+ 1)

]
we obtain the following time-invariant δ-dimensional state space representation
ΣL = (E,F,H, J) for the lifted code CL:{

w(`+ 1) = Ew(`) + FuL(`)

vL(`) = Hw(`) + JuL(`)
, (3)

with
E = A(1)A(0) F =

[
A(1)B(0) B(1)

]
H =

[
C(0)

C(1)A(0)

]
J =

[
D(0) 0

C(1)B(0) D(1)

]
.

The representation ΣL = (E,F,H, J) of CL is said to be induced by the rep-
resentation Σ(·) = (A(·), B(·), C(·), D(·)) of C, or equivalently, Σ(·) is said to
induce ΣL. Moreover, a time-invariant representation ΣL = (E,F,H, J) of CL
is called induced whenever it is induced by some periodic representation Σ(·) of
C.

The following proposition is a generalization of [1, Proposition 3.1] (with identical
proof) and characterizes induced representations.

Proposition 2. Let C be a 2-periodic code and CL the lifted code associated to
C. Then a δ-dimensional state space representation ΣL = (E,F,H, J) of CL,
with

E ∈ Fδ×δ F =
[
F1 F2

]
∈ Fδ×2k

H =

[
H1

H2

]
∈ F2n×δ J =

[
J11 J12

J21 J22

]
∈ F2n×2k.



is induced if and only if

rankM =

[
E F1

H2 J21

]
≤ δ.

Moreover, in this case, decomposing the matrix M as

M =

[
N1

N2

] [
Q1 Q2

]
,

the 2-periodic δ-dimensional state space representation of C that induces ΣL is
Σ(·) = (A(·), B(·), C(·), D(·)), where

A(0) = Q1 A(1) = N1 B(0) = Q2 B(1) = F2

C(0) = H1 C(1) = N2 D(0) = J11 D(1) = J22.

Hence, Proposition 2 characterizes the state space realizations of time-invariant
convolutional codes from which (2-periodic) time-varying codes can be con-
structed. In this way one can use the large body of literature and constructions
for the time-invariant case in order to build time-varying convolutional codes
with good properties. In the next section we illustrate this with an example.

4.1 2-periodic (3, 2, 2, 1) convolutional code with free distance 4

It is know from the literature that (3, 2, 2, 1) time-invariant convolutional codes
have at most free distance 3, whereas the Griesmer bound for this kind of codes
is 4. In this section we construct a 2-periodic (3, 2, 2, 1) convolutional code with
free distance 4 based on the construction of a time-invariant code whose state
space realization is induced by a 2-periodic realization. This shows that time-
varying convolutional codes can attain larger free distance than time-invariant
ones.

Example 1. Consider the (6, 4, 2, 1) time-invariant convolutional code, CL, over
F2 with generator matrix G = G1z +G0, where

G0 =


1 1 0 0
0 1 0 0
1 0 0 0
1 0 1 0
1 1 1 1
0 1 1 0

 and G1 =


0 0 1 1
0 0 0 1
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 .

As

[
G0

G1

]
is an encoder of a (12, 3) block code of free distance 4, we conclude

that the free distance of CL is at most 4. Moreover, it can be computed via a
program that the free distance of CL is indeed 4. Since the column degrees of G



are ν1 = 0, ν2 = 0, ν3 = 1, ν4 = 1, by Proposition 1, a state space realization of
G is given by (E,F,H, J) ∈ F2×2 × F2×4 × F6×2 × F6×4 where

E =

[
0 0
0 0

]
, F =

[
0 0 1 0
0 0 0 1

]
, H =


1 1
0 1
0 1
0 0
0 0
0 0

 , J = G0. (4)

Now, the matrix M defined in Proposition 2 is:

M =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 1
0 0 0 1

 .
Since rankM = 2 ≤ δ, by this proposition we conclude that realization (4)
is induced by a 2-periodic (3, 2, 2, 1) convolutional code, with realization Σ(·) =

(A(·), B(·), C(·), D(·)) where

A(0) =

[
0 0
0 0

]
A(1) =

[
0 0
0 0

]
B(0) =

[
1 0
0 1

]
B(1) =

[
1 0
0 1

]

C(0) =

1 1
0 1
0 1

 C(1) =

1 0
1 1
0 1

 D(0) =

1 1
0 1
1 0

 D(1) =

1 0
1 1
1 0

 .
This 2-periodic code can also be described as in (1) with P = 2, and Gt(z) =

C(t)
(
z−1I −A(t)

)−1
B(t) +D(t), for t = 0, 1, which yields

G0(z) =

1 1
0 1
0 1

 z +

1 1
0 1
1 0

 and G1(z) =

1 0
1 1
0 1

 z +

1 0
1 1
1 0

 .
This example is equivalent to the one presented by Palazzo in [18].

5 Conclusions

In this paper we have studied the relation between time-invariant and time-
varying convolutional codes by means of input-state-output representations. Us-
ing a well known lifting technique we have shown how it is possible to transform
a given periodically time-varying convolutional code into a time-invariant one.
Moreover, we have provided conditions, in terms of input-state-output represen-
tations, to transform a time-invariant convolutional code into a time-varying one.
Using these ideas, we have illustrated how to construct a 2-periodic (3, 2, 2, 1)



convolutional code with optimal free distance from a (3, 2, 2, 1) time-invariant
one. This showed that time-varying convolutional codes can attain larger free
distance than time-invariant ones. Constructions of periodic convolutional codes
of higher periods and with other parameters are currently under investigation.
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