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Multidimensional scaling for the evaluation of a geostatistical
seismic elastic inversion methodology

Leonardo Azevedo1, Ruben Nunes2, Pedro Correia2, Amílcar Soares2,
Luis Guerreiro3, and Guenther Schwedersky Neto4

ABSTRACT

Due to the nature of seismic inversion problems, there are
multiple possible solutions that can equally fit the observed
seismic data while diverging from the real subsurface model.
Consequently, it is important to assess how inverse-impedance
models are converging toward the real subsurface model. For
this purpose, we evaluated a new methodology to combine the
multidimensional scaling (MDS) technique with an iterative
geostatistical elastic seismic inversion algorithm. The geostatis-
tical inversion algorithm inverted partial angle stacks directly for
acoustic and elastic impedance (AI and EI) models. It was based
on a genetic algorithm in which the model perturbation at each
iteration was performed recurring to stochastic sequential sim-
ulation. To assess the reliability and convergence of the inverted

models at each step, the simulated models can be projected
in a metric space computed by MDS. This projection allowed
distinguishing similar from variable models and assessing the
convergence of inverted models toward the real impedance ones.
The geostatistical inversion results of a synthetic data set, in
which the real AI and EI models are known, were plotted in this
metric space along with the known impedance models. We
applied the same principle to a real data set using a cross-
validation technique. These examples revealed that the MDS
is a valuable tool to evaluate the convergence of the inverse
methodology and the impedance model variability among each
iteration of the inversion process. Particularly for the geostatis-
tical inversion algorithm we evaluated, it retrieves reliable
impedance models while still producing a set of simulated mod-
els with considerable variability.

INTRODUCTION

Geophysical inverse problems aim to infer properties of the sub-
surface geology, such as acoustic and elastic impedance (AI and EI)
models, from a set of indirect geophysical measurements. Particu-
larly for seismic inversion problems, the retrieved inverse solution
is nonlinear, ill conditioned, and nonunique due to the intrinsic
limitations of the geophysical method: the limited bandwidth and
resolution of the seismic data, noise, measurement errors, and
physical assumptions about the involved forward models (Taran-
tola, 2005). The best-fit AI and EI models, retrieved at the end of
a seismic inverse process, are just one possibility among several
earth models that satisfy the observed seismic data. In other words,

if the match between the real and the synthetic seismic data, created
with the best AI/EI pair at the end of an elastic inversion process, is
poor, one can conclude that the correspondence between the real AI/
EI models with the inverted ones is also poor. However, the opposite
may not be true: A good match between observed and inverted
synthetic seismic data does not ensure that the real and inverted
AI and EI models are converging to each other; the inverse solution
is converging toward a local minimum instead of toward a global
minimum (Tarantola, 2005). Therefore, there is a variable degree
of uncertainty associated with any inverted subsurface AI and EI
models. This uncertainty needs to be assessed, not neglected, during
the interpretation of these inverse models (Bosch et al., 2010;
Tompkins et al., 2011).
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Seismic inverse problems may be developed following two main
different approaches: a deterministic, or optimization, one, and
by posing the inverse problem in a probabilistic basis. Within
the deterministic framework, the sparse-spike and model-based
methodologies are the most widespread inversion techniques
among the geophysical community (Russel, 1988; Bosch et al.,
2010). The uncertainty assessment of deterministic solutions is
limited because it is represented by a linearization problem around
least-squares inverse solutions. Under this linear assumption, deter-
ministic solutions lack the wide exploration of the uncertainty
space. On the other hand, probabilistic approaches ensure the propa-
gation of the uncertainty from the prior probability distributions,
estimated from experimental data (e.g., well-log data) to the distri-
butions of the model parameters space (Grana et al., 2012). In
probabilistic solutions, the uncertainty space is considerably more
explored when compared with deterministic ones because the
inverse solution is a probability density function on the model
parameters space. These methodologies overcome the linearity as-
sumptions of the deterministic solutions. However, the uncertainty
assessment depends greatly on the parameterization of the inverse
problem, e.g., assumptions about the prior distributions and the spa-
tial continuity pattern (Scales and Tenorio, 2001; Tarantola, 2005).
Geostatistical seismic inversion techniques may be divided in

two main methodologies: Bayesian linearized and based on sequen-
tial simulation algorithms (Doyen, 2007). Bayesian linearized
solutions allow the definition of the inverse problem in a well-
defined mathematical formulation by assuming a Gaussian distribu-
tion of the prior probability distributions of the variables to invert
and the linearization of the forward model operator. These assump-
tions enable an analytical solution for the inverted posterior distri-
butions, estimated as being Gaussian (Loertzer and Berkhout, 1992;
Buland and Omre, 2003; Tarantola, 2005). However, most times the
prior probability distributions of the properties to invert are not
close to Gaussian. In fact, in real data sets, they are most often mul-
timodal. The Gaussian assumption was later overcome by Grana
and Della Rosa (2010), who developed the mathematical formalism
for the Bayesian linearized inversion assuming Gaussian mixture
models to estimate the prior probability distributions. In their
approach, the posterior probability distribution is analytically ex-
pressed as Gaussian mixture models as well. Gaussian linearized
methods allow mathematically tractable solutions but lack the
real exploration of the uncertainty space because the posterior prob-
ability distributions are assumed to be Gaussian, or Gaussian
mixture.
Geostatistical inverse methodologies based on stochastic simula-

tion algorithms overcome the need for Gaussian assumption about
the prior probability distributions or the linearization of the forward
operator. Genetic algorithms (e.g., Mallick, 1995, 1999; Boschetti
et al., 1996; Soares et al., 2007) and simulated annealing (Sen and
Stoffa, 1991; Ma, 2002) fall within this class of inverse methodol-
ogies. Stochastic solutions are achieved by sampling the parameter
model space directly from the prior probability distribution. Be-
cause the assumptions within this framework are less strict when
compared with the Bayesian linearized assumptions, the uncertainty
space is considered to be more extensively sampled. On the other
hand, one loses the mathematical tractability of the inverse solution,
increasing the computational costs involved (Tarantola, 2005;
Bosch et al., 2010). Iterative stochastic seismic inversion method-
ologies (Bortoli et al., 1992; Haas and Dubrule, 1994; Soares et al.,

2007; González et al., 2008; Grana et al., 2012; Nunes et al., 2012)
solve the seismic inverse problem recurring to stochastic sequential
simulations and cosimulations algorithms (Deutsch and Journel,
1998) as the perturbation technique of the elastic models at each
iteration. Briefly, these inversion algorithms can be described by
the following sequence of steps: First, a set of equivalent earth mod-
els, the model parameter space, is simulated at each iteration using a
predefined stochastic sequential simulation algorithm based on
prior information, usually from available well-log data, available
secondary information (e.g., normally information about a back-
ground trend), and a spatial continuity pattern (e.g., variogram,
training image). Two different approaches can be considered con-
cerning the simulation of the impedance models: trace-by-trace
methods (Bortoli et al., 1992; Haas and Dubrule, 1994), where just
one trace is simulated at the time, and global inversion methods
(Soares et al., 2007), where the entire model is simulated and co-
simulated at each iteration. Then, for each simulated model, and for
every location on the simulation grid, synthetic seismic traces are
calculated by convolving an estimated wavelet with the reflection
coefficients computed from the impedance models. The resulting
synthetic trace is, afterward, compared with the corresponding re-
corded seismic trace in terms of correlation coefficient. In trace-by-
trace algorithms, the best impedance trace is retained as condition-
ing data and the simulation procedure continues until all the traces
are simulated. In the global inversion methodologies, the AI and EI
traces that ensure the highest correlation coefficient between the real
and the synthetic seismic from the entire simulation ensemble are
used as seed for the generation of impedance models for the next
iteration. One family of inverse algorithms is based on crossover
genetic algorithms. The iterative procedure stops when the global
correlation coefficient between the entire synthetic and real seismic
volumes is above a certain threshold.
In geostatistical seismic inverse solutions, it is of great impor-

tance to assess how the inverted models are representative of the
plausible model parameter space: if this space is being explored
widely, or if on the contrary all the inverted models are located
around a narrow region of this space. It is essential to ensure that
the inverted models are converging toward the real ones while the
inverted seismic converge toward the real one. For real data, one
does not know what the real earth’s impedance model is; therefore,
the convergence of the method may be assessed for example at the
location of existing wells not used to constraint the inversion
procedure.
Multidimensional scaling (MDS) (Cox and Cox, 1994) is a math-

ematical tool that enables the representation of the uncertainty
between different earth models based on the concept of distances
(Suzuki and Caers, 2008; Scheidt and Caers, 2009). By computing
the dissimilarity between the inverted and real earth models, which
refers to the notion of distance between models, one is able to evalu-
ate how good the uncertainty of the parameter model space is being
sampled (Caers, 2011). Similar models in terms of the spatial dis-
tribution of its internal properties will be plotted closer, or in a clus-
ter, in the MDS space, while on the other hand, models with larger
differences are plotted far away in the same metric space.
In this paper, we introduce a novel approach to combine the MDS

for assessing the performance of geostatistical seismic inversion
methodologies, in this case, the global elastic inversion (GEI)
(Nunes et al., 2012) in two complementary ways: in terms of how
well the retrieved inverse acoustic and elastic models converge
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toward the reality, while the mismatch between the real and the
inverted seismic data is being minimized, and how well the inverted
models explore the parameter model space. The proposed approach
was tested in two different examples: a 3D synthetic seismic data set
from where the real AI and EI models are known for the entire study
area and a real seismic data set from where the real AI and EI mod-
els are sparsely known at the well location. In the first example, the
MDS was used to project in the metric space the ensemble of si-
mulated acoustic and elastic models, derived from the geostatistical
iterative seismic inversion procedure and the real AI and EI models.
This allowed the comparison between the spatial location, at the
MDS referential, of inverted and real impedance models. By plot-
ting all the models in the MDS space, we could access how the
simulated models of AI and EI evolve while the inverse method
converges to the desired solution — the match between synthetic
seismograms and the real seismic. In addition, we assessed how the
parameter model space is being explored. If the sampling of the
plausible parameter model space, the space of all possible AI and
EI models given a prior distribution, is significant or if the simulated
models are all located around a particular location, for example,
around a local minimum. In the second example, we inverted a real
seismic data set composed by two partial angle stacks and five
wells. The geostatistical inversion procedure ran five times inde-
pendently. On each run, a different well was removed from the
conditioning data and the impedance models were compared at
the well location not used in that specific inversion run. Beside the
apparent spatial clusterization of the available wells, this cross-
validation technique ensures that the global prior probability distri-
butions for acoustic and elastic properties as estimated from the
well-log is fairly reproduced on each of the five runs. In addition,
by removing only one well at the time the local conditional distri-
butions built during the stochastic simulation of the impedance
models is not significantly changed, allowing the comparison of
the results between runs. The results of these two case studies show
a rapid convergence of the simulated earth models toward the real
solution at the end of six iterations. The convergence is achieved
without compromising the exploration of the model parameter
space, particularly for all the simulated pair of acoustic and elastic
models created during iteration one.

METHODOLOGY

Global elastic inversion

The GEI algorithm is an iterative geostatistical seismic inversion
methodology that allows the inversion of partial angle stacks
directly for AI and EI models. It is based on two main ideas:
the use of stochastic sequential simulation at each iteration as
the perturbation technique of the inverted elastic models and the use
of a genetic algorithm as a global optimizer to converge the simu-
lated models toward the solution. The local correlation coefficients
between each individual seismic trace from the real and the corre-
sponding inverted partial angle stack are used as the affinity
criterion to create the next generation of models. The objective
function, which determines when the iterative process stops, is
defined by the global correlation coefficient between the real and
the inverted seismic data for all angle stacks simultaneously.
As part of the geostatistical inversion methodology, we choose

the direct sequential simulation (DSS) (Soares, 2001) and the
co-DSS with joint probability distributions (Horta and Soares,

2010) as the simulation algorithms to generate AI and EI models,
respectively. The great advantage of DSS, when compared with
other traditional sequential simulation algorithms such as sequential
Gaussian simulation (Deutsch and Journel, 1998), is that it allows
the use of a prior distribution directly estimated from the well-log
data without the need of a Gaussian transform. The use of co-DSS
with joint probability distributions ensures the reproduction of the
joint probability distribution between the simulated AI and EI
models as estimated from the well-log data. In stochastic sequential
simulation, the reservoir grid is simulated following a predefined
random path that visits all the nodes of the simulation grid. Follow-
ing the predefined random path, and at each node of the simulation
grid, the local mean and variance are estimated by a simple kriging
estimate. Then, a value is drawn from the global distribution func-
tion (DSS and co-DSS) (Soares, 2001) or from the local conditional
probability distribution (co-DSS with joint probability distribu-
tions) (Horta and Soares, 2010). Different sequential simulation
runs, commonly designated as realizations, produce distinct models
because the random path changes on each run and consequently, the
conditioning data at every grid node change as well. Each realiza-
tion reproduces the experimental data (e.g., well-log data) at its
location, the prior probability distribution of the simulated property
and a spatial continuity pattern, estimated by a variogram in the
two-point geostatistics framework.
The GEI is performed at the seismic scale, with a typical vertical

cell size between 1 and 4 ms. Prior to the inversion, the impedance
data from well-logs, with high resolution, need to be upscaled into
the simulation grid scale, with lower resolution. The upscaling
method should be selected cautiously because it can dramatically
change the estimation of the prior probability distribution. A dis-
cussion about upscaling methodologies is outside the scope of this
work. In our examples, we chose an upscaling method that ensures
the reproduction of the first- and second-order statistics (mean and
variance) of the original well-log data. In the proposed methodol-
ogy, the spatial continuity pattern is imposed by a variogram model.
The horizontal and vertical ranges of the variogram are commonly
modeled from the available well-log data. However, many times the
number of available wells does not allow modeling reliable horizon-
tal ranges. In these situations, it is a common practice to estimate the
variogram horizontal extent directly from the seismic reflection
data, which will often result in an overestimation of the range value.
The GEI workflow can be summarized in the following steps:

1) Simulation of a set of Ns AI models for the entire simulation
grid using DSS, given the available AI well-log data. Each indi-
vidual simulated model reproduces the observed data at the well
location, the estimated prior distribution (Figure 1), and the spa-
tial continuity patterns as revealed by the variogram model
(Figure 2).

2) Cosimulation of a set of Ns EI models, given the available EI
data from well logs and the previous simulated AI models (used
as a collocated secondary variable in the simulation of EI) re-
curring to the co-DSS with the joint-distributions algorithm
(Horta and Soares, 2010). The secondary variable is used to en-
sure the reproduction of the joint probability distribution of AI
versus EI (Figure 3). All the simulated EI models reproduce the
observed data of EI at the well location, the spatial pattern
as revealed by the variogram model, and the joint probability
distribution between AI and EI as estimated from the hard
data.
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3) Calculation of Ns synthetic partial angle stacks from the Ns
simulated duplet of (AI, EI). The reflection coefficients are
computed following Fatti’s approximation (Fatti et al., 1994)
and are then convolved with an estimated wavelet for that
specific partial angle stack. The underlying assumptions on
the wavelet estimation are outside the scope of this work.

4) In a trace-by-trace basis, calculate the correlation coefficient be-
tween each synthetic trace from the various Ns synthetic angle
stacks with the correspondent trace from the observed real par-
tial angle stack. This step results in the calculation of Ns local
correlation cubes per angle.

5) The elastic traces that ensure the highest local correlation
coefficient between observed and synthetic seismic data are se-
lected to build the “best” AI and EI models. The corresponding

correlation coefficient is also stored in a best local correlation
volume. These best AI and EI models are then used as secon-
dary variables for the cosimulation process of the next iteration
along with the collocated local correlation coefficient cube. In
this way, the elastic traces associated with low correlation
coefficients will be able to change significantly in the next iter-
ation while the ones associated with higher correlation values
will only suffer small-scale variations. This procedure guaran-
tees the local and global convergence of the inverted seismic
toward the real one.

6) Generation of a new set of AI and EI models using the best
impedance model, along with the local correlation coefficients by
direct sequential cosimulation. Return to step 3 until the global
correlation coefficient between the real and synthetic seismic si-
multaneously for all the angle stacks is above a certain threshold.

MDS

MDS is a multivariate statistical technique based on the concept
of distances, which is able to reveal in few dimensions patterns
between a set of multidimensional models (Caers, 2011). Within
the proposed methodology, the MDS was applied to assess how
the simulated acoustic and elastic models produced by the GEI
evolve from iteration to iteration.
In a metric space, such as that created by the MDS, the relative

position between several simulated earth models is directly related
to how similar these models are in terms of their internal configu-
ration. Briefly, the MDS (the detailed mathematical description
about the method is presented in Appendix A) is a statistical meth-
odology for uncertainty assessment in stochastic frameworks. It
converts a dissimilarity matrix (D) into points, which can then
be plotted in a Cartesian space, the MDS space (Cox and Cox,
1994; Borg and Groenen, 1997; Caers, 2011). First, matrix D is
converted into matrixA by a scalar product. Then,A is decomposed
by eigenvector decomposition where only the first d principal com-
ponents, or eigenvectors, are retained (Scheidt and Caers, 2009;
Caers, 2011). In the MDS space, the distances between projected
points, where each point represents an earth model (e.g., AI mod-

els), are proportional to the similitude, in terms of
its internal properties, between different models.
In our examples, this allowed the assessment of
how the uncertainty of the solution model space
is being explored by the ensemble of all the si-
mulated models derived from the GEI. If the
models that comprise a simulation ensemble
are all very similar among themselves they will
be projected in a cluster in the new metric space
produced by the MDS (Figure 4). On the other
hand, if the models are very different among
the ensemble they will be projected with greater
distances among themselves and consequently
exploring a larger region of the uncertainty
model space (Figure 4). because the MDS space
only cares about the relative distances between
earth models, the coordinates of each point, that
correspond to a unique AI/EI model, itself is not
important. In fact, the MDS plot may suffer ro-
tation, translation and reflection, without any loss
of information (Caers, 2011).

Figure 1. AI and EI histograms calculated from (a and c) available
well-log data and (b and d) the inverse best-fit acoustic and elastic
models. The inverted models reproduce the original distribution as
estimated from the experimental data.

Figure 2. Comparison between the vertical variograms estimated from the available
(a and c) well-log data and the (b and d) best-fit inverse model of AI and EI.
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Particularly, for our examples we begin by calculating the matrix
D between each AI/EI model that belong to the simulation ensemble
created during the GEI (all realizations per iteration and the best
AI/EI model computed at the end of each iteration) using the
Euclidean distance:

di;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i;j¼1

ðxi − xjÞ2
vuut ; (1)

where xi and xj are a pair of earth model vectors with dimension
N and the simulation ensemble (X) is of size L × N, with
X ¼ ½x1x2 : : : xL�T . Then, we applied the classical MDS methodol-
ogy to the matrix D (Cox and Cox, 1994; Borg and Groenen, 1997;
Caers, 2011).

EXAMPLES

For the examples shown in this section, we
propose the combination of the MDS as a statis-
tical tool to evaluate how the GEI algorithm ex-
plores the parameter model space from iteration
to iteration and how the simulation ensemble
is evolving from iteration to iteration toward
the objective. This methodology was applied
to two different scenarios: a 3D synthetic seismic
data set, from where the real AI and EI models
are known, allowing the comparison between the
location of the inverse models created during the
iterative process and the location of the real
impedance models in the MDS space and to a
3D real seismic data set, where several GEI were
run using a cross-validation methodology. We
ran five different GEI, as many as the number
of available wells, and on each geostatistical
inversion run, a different well was removed from the conditioning
data. In all five runs, the assumptions about the spatial continuity
pattern were kept the same as estimated from the entire set of avail-
able wells. With this cross-validation scheme, we ensure that for all
the independent inversion runs, the spatial continuity pattern re-
mains fairly constant and the prior probability distributions are only
slightly changed. This allows a comparison between the results of
the five runs because the assumptions about the priors are similar.
At the end of each inversion process, we then plotted the observed
AI and EI models from the well-log data along with all the simu-
lated models of AI and EI, which were computed as part of the GEI
at the same well location. In this way, we were able to evaluate the
convergence of the GEI at each well location individually. We took
for granted all the intrinsic uncertainties related with the well-log
data acquisition and processing and assumed to be the real imped-
ance values of the subsurface geology.

Synthetic example

In this example, we used a synthetic 3D seismic reflection data
with four partial angle-stacks, mean angles of 5º, 15º, 25º, and 35º,
from where the real AI and EI models are known. This synthetic
data set was built based on a real deep-water turbidite field and has
a total size of 101 × 101 × 90 blocks in the i‐, j‐, and k-directions,
respectively. A log set of 31 wells with AI and EI well logs and the

wavelet used for the calculation of the synthetic seismic data, desig-
nated from now on as real seismic data, were also available.
We inverted the synthetic seismic data set using the GEI meth-

odology. The geostatistical inversion converged after six iterations,
simulating 32 pairs of AI/EI per iteration. It resulted in a total of 384
impedance models (192 AI and 192 EI modes). The global corre-
lation coefficient for all the partial angle stacks between the ob-
served and the inverted seismic reflection data computed from
the best pair of AI and EI models is greater than 0.75. The retrieved
best-fit models are visually similar with the real ones, and they
honor the marginal and joint distributions of AI and EI (Figures 1
and 3), estimated from the original well-log data, the spatial
continuity pattern as revealed by a variogram model (Figure 2),
and the data from the well set used as conditioning data (Figure 5).
Larger differences between the inverted and the real elastic models
are located in areas far from the well locations. These areas will

Figure 3. Joint distribution between AI versus EI estimated from (a) the available
well-log and (b) the best-fit inverse models.

Figure 4. MDS plot showing the difference of relative position
between similar models (filled circles) and considerably different
models (crosses). The distribution of the models in the uncertainty
space allows an estimation of how this space is being sampled; the
models represented by the crosses explore far more the uncertainty
space when compared with the models represented by the circles.
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preserve higher variability among the models simulated within the
same iteration, representing areas of higher uncertainty because
they are less constrained by the experimental data. Then, we calcu-
lated the Euclidean distances between each of the 192 acoustic/elas-
tic models, the best impedance model created at the end of each
iteration, and the real AI and EI models, respectively. The resulting
MDS plot for an individual impedance domain contains a total of
199 points, each representing one of the models referred above.
By plotting all the acoustic and elastic models in the MDS space

(Figure 6), it is easily recognizable that the parameter model space
is considerably well explored by all the models computed during the
inversion procedure. This space was created by retaining the first
three eigenvalues that explain about 75% variance of the original
model space. By plotting dimension two versus dimension three,
it is easily recognizable that the inversion algorithm is converging
toward the real AI and EI models from iteration to iteration. The
same behavior is observed in the space defined by the other dimen-
sions that belong to the reduced space. Figure 6 shows that, as
the iteration number increases, the gravity center
corresponding to the cloud of a particular itera-
tion moves toward the real impedance model
while the match between synthetic and real
seismic is also being improved. However, in
the MDS space, there is the possibility that a
particular simulated model, mainly from the first
iterations, achieves a shorter distance to the real
models when compared with the real impedance
model. Nevertheless, due to the nonunique solu-
tion nature of the seismic inverse problem, these
models cannot ensure a good correlation between
the corresponding synthetic and the real seismic.
Figure 6 also shows a slower convergence of the
elastic domain when compared with the acoustic
one. The convergence of EI to a local minimum
can be a possible explanation for the slowest
convergence of EI. However, it is worth noting
that the proposed methodology assures a joint
convergence of AI and EI instead of assuring

the individual best model of AI and EI. In fact, the convergence
of the GEI in terms of similitude between the real and the inverted
synthetic seismic is evaluated by minimizing the objective function,
the global correlation coefficient between the inverted synthetic
seismic and the real seismic (see the Methodology section).
All the simulated models of iteration 1 explore considerably well

the MDS space. Once an iteration is finished, the best impedance
model from that iteration approximates, in terms of distance, and
therefore in terms of similitude, toward the real impedance model.
The next set of simulated models will preferably occupy the space
around the best model from the previous iteration. This effect is
directly related with the GEI methodology because the best imped-
ance volume, computed at the end of the current iteration, is used as
a secondary variable in the geostatistical cosimulation process of the
next iteration.
The MDS is an efficient technique to evaluate the GEI in terms of

its convergence in the model parameters space. It allows the assess-
ment of how the inverted AI and EI models evolve from iteration to

Figure 5. Comparison between a vertical section of the (a and c) real elastic model and a (b and d) vertical section extracted from the inverse
best-fit model of (a and b) AI and (c and d) EI.

Figure 6. MDS plots for the synthetic example: (a) AI models and (b) EI models. True
models are represented by the red star, and the best models, computed at the end of each
iteration, are represented by the squares filled in black.
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iteration comparing to the location of the inverted model against the
real ones.

Real data example

In a field seismic data set, one does not know the real AIs and EIs
that produced the acquired seismic data. In fact, this reality is only
sparsely known at the well locations. Consequently, the retrieved
impedance models from any seismic inversion process cannot be
directly compared. For this reason and to assess the GEI conver-
gence with real seismic reflection data sets, we propose a cross-
validation technique to an onshore data set. The available data
are composed of two partial angle stacks, corresponding to mean
angles of 15º and 27.5º, over an area of 336 × 212 × 49 cells, in
the i‐, j‐, and k-directions, respectively, and five wells with AI
and EI well logs. A total of five GEI were run. Each run comprised
six iterations and 32 simulations per iteration. For all the GEI runs, a
different well, from the available five, was removed and not used
as conditioning data. This cross-validation techniques allowed the
comparison of the inverted models at the well location against the
observed AI and EI models from the well-log data. Beside the ap-
parent spatial clusterization of the well logs, we chose this cross-
validation technique because we want to guarantee that the global
parameters such as prior probability distributions and the spatial
variogram model remain fairly constant during the five independent
runs. If we retain at once from the conditioning data wells 3, 4, and
5, apparently located in a spatial cluster, the assumptions about
priors and the spatial continuity pattern would be considerably
different and therefore the results of the inversion would change
dramatically. In addition, wells 3, 4, and 5 are far enough when
compared with the horizontal variogram ranges used for the inver-
sion. The best five pairs of AI an EI model produced synthetic seis-
mic data sets with global correlation coefficient values between the
real and the inverted synthetic angle stacks of about 0.80. We then
calculated the Euclidean distances between each of the 192 acous-
tic/elastic models, the best impedance models created at the end of
each iteration, and the real AI and EI models, respectively. There-
fore, the MDS plot, for an individual impedance domain, contains a

total of 199 points, each representing one of the models referred
above at the location of the well removed from the conditioning
data for that particular seismic inversion.
Globally, we may say that at the well locations for AI and EI

models, the inversion method is converging toward the real AI and
EI well-log data (Figure 7). For all the examples, we retained only
the first three eigenvalues. This reduced space explains around 70%
of the variance of the original AI model space and around 65% of
the variance of the original EI model space. Figure 7 shows the di-
mensions where the convergence of the models is clearly observed.
Remember that each point in the MDS plot represents an impedance
model located at the well location not used as conditioning data of
the GEI. It is possible to observe that the plausible parameter model
space is considerably well explored from iteration to iteration. How-
ever, the convergence, shorter distances between inverted and the
real impedance models at the well location, is not equal for all
the available wells. Consistently for the acoustic and the elastic do-
main, well 1 and well 2 approximate worst toward the solution
when compared with the other three wells. This effect is summa-
rized in Figure 8. For all five GEI runs, we plotted the Euclidean
distance, calculated in the 3D reduced space, between the best
model at the end of each iteration and the observed AI model, nor-
malized by the greatest distance of all the best AI models. It is clear
that wells 1 and 2 converge far less than wells 3, 4, and 5 for the
elastic and the acoustic domains. Nevertheless, the results are con-
sistent with the ones obtained for the synthetic case: While the syn-
thetic seismic converges in terms of correlation coefficient toward
the real, the associated AI and EI models converge toward the
real ones.

DISCUSSION

From the interpretation of the MDS plots for both the examples
shown here (Figures 6 and 7), it is clear that the inverted models for
AI converge better and faster toward the real AI model when com-
pared with the inverted EI models. This directly refers to the degree
of uncertainty associated with each inverted property and to the

Figure 7. From left to right: MDS plots for all models produced by the GEI without using (a and b) well 1, (c and d) well 2, (e and f) well 3,
(g and h) well 4, and (i and j) well 5 as conditioning data: (a, c, e, g, and i) AI models and (b, d, f, h, and j) EI models. True models are
represented by the red star, and the best models, computed at the end of each iteration, are represented by the squares filled in black.
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approximation used in the calculation of the
reflection coefficient (Fatti et al., 1994). In fact,
the normal-incidence component of the seismic
reflection data, which directly relates with the
AI, is much easier to retrieve than the angle-
dependent one. For this reason, the inverted EI
models for the synthetic case (Figure 6b) explore
considerably more the uncertainty space when
compared with the AI models (Figure 6a). This
effect can also be visible for the real case study
but is harder to distinguish.
When comparing the distribution configura-

tion of the MDS space for the real data example
with the one from the synthetic example, it is
clear that we are exploring the uncertainty space
in a more comprehensive way from iteration to
iteration: The AI and EI models now appear more
scattered in the MDS plot. This effect is directly
related with the noisy nature of field seismic data
when compared with the noise-free synthetic ex-
ample. From iteration to iteration, the geostatis-

tical inversion algorithm struggles to find impedance models that
produce synthetic seismic accepted by the objective function. This
effect is particularly noticed at the end of iteration 1: The resulting
best AI and EI models produce synthetic seismic that have lower
local correlation coefficient values, when compared with the syn-
thetic example. Therefore, the simulation ensemble of iteration 1
has impedance models that are considerably different among them-
selves. This is a natural result of using the secondary variable in the
cosimulation associated with lower local correlation coefficients.
Also of interest are the differences in the distances between the

best-fit inverse models for all five wells in the real data example. For
wells 1 and 2, the Euclidean distance between the best AI/EI model
and the real one is always larger than for the rest of the wells. This
difference may be directly related with the geologic environment of
each well: Despite that all the wells were drilled in the same hydro-
carbon field, they are located in different fault blocks — wells 1
and 2 are located in the footwall block, and wells 3, 4, and 5 are
located in the hanging wall block (Figure 9). The differences in the

geologic setting can, for example, also be ad-
dressed in the AI versus porosity domain (Fig-
ure 10). Wells 3, 4, and 5 drill three distinct
facies in terms of its clay content. Figure 10
shows an increase of clay content from high to
low AI values, assuming a linear correlation be-
tween the values of gamma ray and the clay con-
tent. Well 1 penetrates only a sandy facies,
characterized by low gamma ray values and high
AI/EI values, and it lacks the shaly facies char-
acterized by lower AI/EI values. Well 2, which is
spatially located between well 1 and the rest of
the wells (Figure 9), samples the sandy and the
shaly facies but misses the transitional facies
between the higher and lower AI/EI values. Un-
fortunately, and due to the lack of the available
well-log data, it was not possible to calibrate a
rock physics model (e.g., stiff-sand model) to this
case study. We believe that a calibrated rock
physics model would give new insights to the

Figure 8. (a) Euclidean distance between the best AI models computed at the end of
each iteration and the observed AI model. (b) Euclidean distance between the best EI
models computed at the end of each iteration and the observed EI model.

Figure 9. Horizontal time slice from the real seismic volume ex-
tracted at the reservoir level and well locations. Notice that wells
4–6 are located on a different fault block when compared with
the location of wells 1 and 2. Dashed black lines represent both
fault directions.

Figure 10. Well-log data for all the available wells: AI versus porosity, color-coded by
gamma ray. It is possible to infer that from high to low impedance values, the clay con-
tent increases (assuming a linear relationship between gamma ray and clay content).
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discussion about the different convergence rates for the five avail-
able wells.

CONCLUSIONS

The MDS technique was successfully applied to assess how the
plausible parameter model space is being explored by a geostatis-
tical seismic inversion algorithm and how well the retrieved inverse-
impedance models are converging toward the real impedance
models.
MDS was computed over the entire ensemble of simulated AI

and EI models resulting from the GEI applied to a synthetic data
set. The results showed that the retrieved best-fit AI and EI models
are reliable because they both converged toward the global solution,
the real AI and EI models.
To assess the performance of the GEI with real seismic data sets,

we applied a cross-validation technique. We ran distinct geostatis-
tical inversions, and on each a different well, from the available five,
was removed from the conditioning set of data. We then evaluated
the inverted AI and EI models at the well location for the well not
used during that specific inversion run. Once again, the results of the
MDS plot showed a good convergence of the inverted earth models
toward the solution without reducing the exploration of the uncer-
tainty space. However, from the retrieved results, we may say that
the geologic context may influence the convergence performance of
the geostatistical inversion method.
We believe that the MDS technique may also be used to bench-

mark the convergence of different seismic inversion algorithms
(e.g., deterministic, linearized Bayesian). Using synthetic data sets
and plotting in the metric space the best-fit models, retrieved from
different inverse methodologies, against the real impedance models
we could access how well the convergence of the retrieved elastic
models is.
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APPENDIX A

MULTIDIMENSIONAL SCALING

Here, we recall the mathematical expressions for the MDS
following Borg and Groenen (1997) and Caers (2011).
Consider an ensemble of earth models, composed by a number L

of individual earth models, represented by a vector xi of dimension
N. Traditionally, L << N,

X ¼ ½x1x2 : : : xL�T: (A-1)

A metric space M, which by definition is only equipped with
distances, can be constructed computing a distance (e.g., a Euclid-
ian distance) between any xi earth model constructing the matrix D,
the dissimilarity matrix. Matrix D may be centered such that the

origin of the map is zero. This transformation may be done in a
scalar (equation A-2) or in a matrix (equation A-3) way:

bij ¼−
1

2

�
d2ij −

1

L

XL
k¼1

d2ik −
1

L

XL
l¼1

d2il −
1

L2

XL
k¼1

d2ij
XL
l¼1

d2kl

�
;

(A-2)

aij ¼ −
1

2
d2ij: (A-3)

Then, we can center the matrix by

B ¼ HDH; (A-4)

where H can be expressed by

H ¼ I −
1

L
11T; (A-5)

where 1 is a row of ones with size L and I is the identity matrix of
size L. B can be rewritten in such a form, defining a L × L matrix:

B ¼ ðHXÞðHXÞT: (A-6)

For most of the cases L << N, B is positive definite and can be
decomposed by eigenvalue decomposition as

B ¼ viλivTi (A-7)

where vi are the eigenvectors and λi are the eigenvalues. Choosing
the first d eigenvectors, which correspond to the d higher eigenval-
ues,Xd contains the location of the models in the MDS space for the
retained dimension:

Xd ¼ ½x1;dx2;d : : : xL;d�T: (A-8)
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