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Introduction 

One–Dimensional models have been used to simulate 

pulse waves propagation in the spinal cavity and the 

interactions between CSF, blood and the spinal cord. 

Some adopted compliant coaxial configurations but 

neglected the fluid's viscosity [1, 2] while others took 

into account CSF viscosity but simplified the cavity as 

one equivalent distensible tube [3]. Previous studies in 

the inviscid coaxial configuration have shown that the 

confinement reduces the wave propagation speed of the 

compliant part by a factor equal to the square root of 

the area parameter, i.e. the ratio of the tubes cross-

sectional areas, when the dura is considered rigid. 

 

Methods 

 

 
Figure 1: Schematic configuration of the 1D model. 

 

Here we use one-dimensional modelling of the spinal 

compartment in the coaxial configuration (as seen in 

Figure 1) while considering CSF as a viscous fluid. For 

the spinal cord (SC), the governing equations are: 
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And for the dura: 
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The variables (𝐴, 𝑈, 𝑃)  are respectively the cross-

section, the average velocity and the pressure. The 

subscript c stands for the spinal cord variables and the 

subscript s for the subarachnoid space (SAS) variables. 

The wall shear stresses  are shown in Figure 1. 

 

Results 

Using linear relationships between the transmural 

pressures and the cross-sections and a steady 

approximation for the wall shear stresses, we can 

obtain all the variables time-space evolutions in the SC 

and SAS. For example the Figure 2 shows the wall 

shear stresses time evolution for a realistic spinal canal 

geometric configuration and flow rate cranial 

excitation. 

 

 

 
Figure 2: Wall shear stress time evolution at the 

middle of the spinal canal. 

 

Discussion 

Concomitant to the area parameter, the viscous shear 

stresses developed at the different walls are involved in 

the dynamics of the system. They impact the coupled 

wave velocity and therefore the coupled distensibility 

as well as the wave attenuation due to the interaction 

between the contents of the spinal cavity. The addition 

of the viscous nature of the fluids induces a viscous 

attenuation whose effect depends also on the area 

parameter and the Womersley number. 

Although our modelling is nonlinear and the coupled 

system of equations is solved numerically we also 

consider the linear case and obtain a pressure damped 

wave equation similar to the so called telegrapher’s 

equation. The pressure damping coefficient expression 

shows analytically how the area ratio and the shear 

stresses developed at the different walls are coupled. 
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