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Abstract. We investigate the transient and stationary buoyant motion of the Rayleigh-Bénard instability
when the fluid layer is subjected to a vertical, steady magnetic field. For Rayleigh number, Ra, in the
range 103–106, and Hartmann number, Ha, between 0 and 100, we performed three-dimensional direct
numerical simulations. To predict the growth rate and the wavelength of the initial regime observed with
the numerical simulations, we developed the linear stability analysis beyond marginal stability for this
problem. We analyzed the pattern of the flow from linear to nonlinear regime. We observe the evolution of
steady state patterns depending on Ra/Ha2 and Ha. In addition, in the nonlinear regime, the averaged
kinetic energy is found to depend on Ra and to be independent of Ha in the studied range.

1 Introduction

The study of magnetoconvection is fundamental in astro-
physics, geophysics [1] and condensed matter physics (for
instance crystal growth [2]). It is also fundamental in in-
dustrial applications, as heat exchanger for nuclear fusion
reactors [3], nuclear safety studies [4] or induction heating
and stirring [5] in metallurgy. In this study, we focus on the
dynamics and pattern motion obtained by numerical sim-
ulation of magnetoconvection at low magnetic Reynolds
and Prandtl numbers.

When a non-magnetic electrical conducting liquid sus-
tains a constant magnetic field and a temperature gradi-
ent, it undergoes the action of the driving buoyancy force,
which is counterbalanced by the Lorentz force and the vis-
cous force. These forces are responsible of magnetohydro-
dynamic (MHD) instabilities, characterized by patterns
that govern heat transfer [6,7] and stirring efficiency. The
coupling between Navier-Stokes equation and the mag-
netic induction equation is determined by the value of
magnetic Reynolds number Rm = µ0σUL where µ0 is the
electromagnetic permeability of vacuum, σ is the electri-
cal conductivity of the fluid, and U and L are the charac-
teristic velocity and length of the magnetoconvection. The
magnetic Reynolds number is related to the hydrodynamic
Reynolds number Re by Rm = RePm, with Pm = µ0σν
the magnetic Prandtl number. In many cases, Pm ∼ 10−6
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and consequently Rm is much lower than unity, the mag-
netic field is weakly perturbed and the advection of the
magnetic field is negligible (O(Rm)). For incompressible
liquids, small height variation and under the Oberbeck-
Boussinesq approximation, three other non-dimensional
parameters control the flow dynamics: the Prandtl num-
ber Pr = ν/κ, the Hartmann number Ha = B0L

√

σ/ρν
and the Rayleigh number Ra = gβ∆TL3/νκ. Here, ν is
the kinematic viscosity, κ is the thermal diffusivity, g is the
acceleration of gravity, β is the thermal expansion coeffi-
cient, ∆T is a characteristic temperature difference, B0 is
the magnitude of the magnetic field and ρ is the reference
fluid density. Ra expresses the buoyancy to viscous force
ratio, and Ha2 is the Lorentz force to viscous force ratio.

Chandrasekhar [1, 8] has developped the linear sta-
bility theory for Rayleigh-Bénard magnetoconvection. He
found that the convection occurs for Ra > Rac, where Rac

the critical Rayleigh number. The marginal stability curve
Rac = f(Ha) is defined by a zero growth rate s = 0 of
the infinitely small perturbations. He established that for
a magnetic field aligned with gravity, Rac = f(Ha), for
which Rac ∼ π2Ha2 for large Ha values, experimentally
validated [9,10]. For horizontal magnetic fields, Rac is in-
dependent of Ha. We define the relative distance to the
threshold ǫ = (Ra−Rac)/Rac. One notes that for strictly
positive values of ǫ, the linear stability analysis has never
been carried out. Based on a nonlinear stability analysis
and for small values of Ha (Ha < 5), Busse and Clever [11]
showed that stable parallel rolls form for ǫ smaller than a
critical value. For larger values of ǫ, the rolls destabilize
by oscillatory convection. This result has been confirmed
by Direct Numerical Simulation (DNS), for Ha < 12 and



ǫ < 4 [12]. Spectral simulations have also been performed
to characterize chaotic structures for a large range of ǫ,
up to ∼ 500 [13]. Recently Basak et al. [14, 15] showed
that the energy was proportional to ǫ for small values of
ǫ < 1 and Ha < 10 using DNS in a square box. We did not
find numerical studies of pattern motion and of dynam-
ics for intermediate values of (Ha,Ra) and 0 < ǫ < 10
(Ha ∼ 50 and Ra ∼ 105). In particular, the transition
between the linear and nonlinear dynamics seems to have
never been investigated. On the other hand, systematic
experiments have been developed for this range of param-
eters by Yanagisawa et al. [16,17]. The pattern motion has
been characterized by ultrasonic velocimetry [18] in liquid
gallium with and without horizontal magnetic field. They
confirmed the structure in rolls, which is destabilized into
3D structures as Ra is increased. Moreover, in the phase
diagram (Ha,Ra) they identify five flow regimes for which
the patterns were characterized by their wave number. At
sufficiently large values of Ra and Ha, the different phases
characteristic of regime dynamics are separated by iso-
lines of τmag/τbuo = Ra/Ha2, where τmag = ρ/σB2

0 and
τbuo = κ/gβ∆Th.

In this paper, we studied by DNS the destabilization of
an electrically conducting fluid, subject to a magnetic field
and to a temperature gradient, both aligned with gravity.
Following the results from Chandrasekhar [1, 8], we focus
on the application of a vertical magnetic field to study
the effects of Ha on the marginal stability. A rectangular
Rayleigh-Bénard cell is considered with an aspect ratio of
10 and periodic boundary conditions perpendicular to the
vertical axis. This study was performed for Ha = 0, 9, 18
and 36, and for 104 < Ra < 1.5 · 105, with 0 < ǫ < 100.
In parallel, we realized the linear stability analysis for a
large range of (Ha,Ra) values and confronted the results
to DNS. The pattern motion in the nonlinear dynamics
regime has been identified by DNS. We found that the
transition between linear and nonlinear dynamics is deter-
mined at first order by the equilibrium between potential
and kinetic energies.

The paper is organized as follows. We first describe the
studied configuration in sect. 2. In sect. 3, we give a brief
description of the computational methods. In sect. 4, we
analyse and discuss the pattern motion regarding wave-
length selection.

2 Problem description

In many practical situations, confinement and boundaries
play a key role. This is particularly true for MHD flows
(see for example [19]). Considering infinite conditions al-
lows a generalization of the results. We consider an infi-
nite fluid layer of a conducting fluid, confined between
two rigid, horizontal plates, as sketched in fig. 1. The
fluid is subject to the action of a steady, vertical mag-
netic field, and to the action of gravity. The temperatures
are imposed at the walls, Tb

⋆ at the bottom and Tt
⋆ at

the top, so that ∆T ⋆ = Tb
⋆
− Tt

⋆ > 0. If this temper-
ature difference exceeds a critical value, buoyancy force
will become larger and the cavity will exhibit convection.

Fig. 1. Sketch of the configuration. The infinite horizontal
walls are assumed to have an infinite thermal conductivity.
The fluid is subjected to the action of gravity (buoyancy force)
and of the Lorentz force.

Under the Oberbeck-Boussinesq approximation, the non-
dimensional equations for the magnetoconvection are

∂u

∂t
+ (u · ∇)u = −∇p + △u −

Ra

Pr
Tez + Ha2j × B, (1)

∂T

∂t
+ (u · ∇)T =

1

Pr
△T + Γj2, (2)

∂B

∂t
=

1

Pm
△B + ∇× (u × B). (3)

We define the nabla operator in Cartesian coordinates
∇ ≡ (∂x, ∂y, ∂z) and the Laplace operator △ ≡ ∇2. Equa-
tions (1), (2), and (3), respectively, are the Navier-Stokes
equation, the heat transport equation (assuming incom-
pressibility), and the induction equation, deduced from
the Maxwell equations and generalized Ohm’s law. In this
paper, all ⋆ quantities are dimensional parameters. Hence,
the variables u, p, T and B represent the non-dimensional
velocity, pressure, temperature and magnetic field, and j

is the current density. The current density j can either be
computed using Ohm’s law or with Ampère’s law. Addi-
tionaly, conservation of mass, electric charge and Maxwell-
Thomson law read

∇ · u = ∇ · j = ∇ · B = 0. (4)

To non-dimensionalize the equations, we used the fol-
lowing characteristic parameters t0 = h2/ν, U = ν/h,
B0 and h1. The non-dimensional temperature is defined
by T = (T ⋆ − Tt

⋆)/∆T ⋆. The current density scale is
j0 = σUB0. The fluid is confined between two plates lo-
cated at z = 0 and z = 1. The additional non-dimensional
parameter Γ = j2

0/σ∆T ⋆ρcp, with cp the specific heat is
characteristic of the Joule dissipation into thermal energy.
It is generally negligible in steady fields and it is not com-
puted in the DNS nor in the LSA. Since Pr and Pm are
only depending on physical properties of the fluid, they
will be taken to be constant through the whole study.
We used Pr = 0.025 and Pm = 1.55 · 10−6, as were
used for liquid gallium [20]. Γ ≈ 10−13 can be neglected.
In the configuration that was used for the DNS, we had
t0 ≃ 1250 s, with h = 2 cm.

As stated by Chandrasekhar [1], a vertical magnetic
field modifies the critical value of the Rayleigh number

1 With U = ν/h, Rm ≡ Pm. We have checked that Rm
based on the actual velocity is also much smaller than one.



Table 1. Values of the parameters charateristics of the DNS and LSA for the ten studied cases. The critical Rayleigh Rac and
wave number kc are obtained from the marginal stability analysis; the growth rate s and the most unstable wave number kmax

are obtained by LSA; the final wave number k∞ characterizes the pattern structure, and is obtained by DNS in the steady state
regime.

ǫ 0.36 1.38 1.98 4.85 5.81 6.13 13.88 19.12 28.27 86.82

Ha 18 36 9 0 18 36 9 18 0 0

Ra 1 · 104 5 · 104 1 · 104 1 · 104 5 · 104 1.5 · 105 5 · 104 1.5 · 105 5 · 104 1.5 · 105

Rac 7455 2.1 · 104 3391 1708 7455 2.1 · 104 3391 7455 1708 1708

s 47.3 366 125 155 572 1220 633 1370 656 1440

kmax 4.55 5.23 3.78 3.50 4.42 5.32 4.28 4.91 4.08 4.67

kc 4.80 6.08 3.90 3.11 4.80 6.08 3.90 4.80 3.11 3.11

k∞ ≃ 3.8 ≃ 3.8 ≃ 4.0 ≃ 3.5 ≃ 2 ≃ 2.5 ≃ 2.4 ≃ 3.7 ≃ 2.0 ≃ 2.7

Rac beyond which convection appears. This threshold
value scales as Rac ∼ π2Ha2 in the limit of high Ha
numbers. Recall that the parameter ǫ = (Ra − Rac)/Rac

accounts for the distance to this threshold. We have inter-
est in understanding the relative effects of the characteris-
tic times τbuo and τmag. Therefore, we focus on the region
of the parameter plane (Ha,Ra) where those times re-
main of relatively close importance. We restrain ourselves
to the region where 0 < Ha < 100 and 0 < ǫ < 20. The
computed points by DNS are given in table 1 and repre-
sented in fig. 2. The blue lines represent iso-lines of τν/τbuo

and the orange lines represent the iso-lines of τmag/τbuo.
These lines can equivalently be understood as iso-lines of
Ra and Ra/Ha2. One can note that the 2 points ǫ = 0.36
and ǫ = 1.38, the 3 points ǫ = 1.98, ǫ = 5.81 and ǫ = 6.13,
and the 2 points ǫ = 13.88 and ǫ = 19.12, approximately
have the same ratio τmag/τbuo= 35, 130 and 500, respec-
tively. The analysis of the results for these 7 points will
allow to understand the effect of Ra/Ha2, of Ha at the
same Ra, and finally of Ra at the same Ha.

3 Numerical methods

Two complementary methods are used to solve the case.
We performed 3D DNS of the Rayleigh-Bénard instability
with a vertical constant magnetic field and the correspond-
ing Linear Stability Analysis (LSA). We first introduce the
DNS code Jadim, that allows complete numerical resolu-
tion of the flow. We then present the LSA, which will give
us the most unstable wave number kmax and the corre-
sponding eigenfrequency s. The linear stability should ac-
curately account for the transient growth of the stability.

3.1 Direct numerical simulations with Jadim

We solve this case using the finite volume code Jadim, in
a bi-periodic square box in x and y directions of side 10.
The mesh is chosen in order to respect the DNS criteria of
Grötzbach [21]. The grid is composed of Nx ×Ny ×Nz =
256 × 256 × 64 points. The finite volume code Jadim has
been already used in several different configurations. It
uses a third order Runge-Kutta scheme for temporal in-
tegration. The spatial derivatives are calculated with sec-
ond order accuracy. Incompressibility is achieved through

a projection method. The viscous terms are calculated us-
ing a semi-implicit Crank-Nicolson scheme. The descrip-
tion of the numerical methods used in the computations
can be found in Magnaudet et al. [22].

As long as the hypothesis of small magnetic Reynolds
number is assumed, the magnetic field perturbation is
O(Rm) compared to the other fields, and induction can be
neglected. In this case, Faraday’s law reduces to ∇×E = 0,
with E the electric field, and it allows to write the elec-
tric field as the gradient of a potential Φ. This is the so-
called quasi-static approximation. Therefore, Ohm’s law
reduces to:

j = −∇Φ + u × ez. (5)

Electric charge conservation ∇ · j = 0 is ensured by a
Poisson equation on the electric potential Φ:

△Φ = ∇ · (u × ez). (6)

This method is used in the DNS to compute the Lorentz
force. Equation (6) is solved using the PETSc library [23].
A first order scheme was used to compute the gradient
of Φ. As boundary conditions for the velocity, we con-
sider a no-slip condition. We assume infinite thermal con-
ductivity of the walls. This translates into a Dirichlet’s
condition for the temperature at the walls. In the same
way we assume walls as perfect electrical conductors. In
terms of electric potential, this amounts to saying that
the electric potential Φ is imposed at the walls. Without
loss of generality, we can assume that Φ = 0. Physically,
this corresponds to enclosing the liquid between highly
thermally and electrically conducting, and non-magnetic
plates (such as copper, see for example [16]). As Joule dis-
sipation is not significant for steady fields and relatively
low Ha numbers, this source term is not computed in the
DNS. For t < 0, the fluid is at rest at uniform temperature;
at t > 0 the temperature of the bottom is set to 1. The
non-dimensional fluid velocity field is initiated with ran-
dom values of magnitude 10−15. We compared the numer-
ical results obtained for 64×256×256 and 128×512×512
mesh grids at Ha = 36, Ra = 1.5 · 105 to verify the nu-
merical convergence. This case has been chosen because it
corresponds to the thinnest Hartmann layer in our study.
From this comparison we estimate that the velocity profile
is calculated with an error of 4%.



Fig. 2. DNS points displayed in the parameter space (Ha, Ra). The arrows show the three cases at Ha = 0. The marginal
stability curve is defined by ǫ = 0. All points located above this curve (ǫ > 0, white region) are unstable and will exhibit
convection. Iso-lines of τvis/τbuo are drawn in blue by and iso-lines of τmag/τbuo are drawn in orange.

3.2 Linear stability analysis

We follow here Chandrasekhar in establishing the alge-
braic linear system for the amplitudes of the perturbed
fields. The equilibrium solution of the system (3) is given
by (u, T,B) = (0, 1 − z, 1ez), and this solution is used
as the base state at t = 0. We linearly perturb this base
state. We call the vertical velocity perturbation w, the
temperature perturbation ϑ, and the vertical magnetic
field perturbation bz. Here, the current density is given by
Maxwell-Ampère’s law, j = 1

Pm
∇×b. Taking −∇×∇×(1)

ensures the elimination of the gradient terms and of the
complex terms. We then linearize (2) and the components
along the z-axis of −∇×∇× (1) and (3). Finally we have
the set of equations (7) to (9)

∂△w

∂t
= △2w +

Ra

Pr

(
∂2ϑ

∂x2
+

∂2ϑ

∂y2

)

+
Ha2

Pm

∂△bz

∂z
, (7)

∂ϑ

∂t
=

1

Pr
△ϑ + w, (8)

∂bz

∂t
=

1

Pm
△bz +

∂w

∂z
. (9)

Note that the Joule dissipation term does not appear any
more, since it is a second order term. However, this ap-
proach, compared to DNS, takes into account the time-
dependent perturbation of the magnetic field. The LSA
results have confirmed that it is negigible. Considering
disturbances as two-dimensional waves in the horizontal
plane of assigned wave numbers kx and ky in x- and y-
directions gives





w

ϑ

bz



 =





W (z)

Θ(z)

B(z)





︸ ︷︷ ︸

X(z)

exp(i(kxx + kyy) + st). (10)

Here, W (z), Θ(z) and B(z) are the initial amplitudes of
the disturbances, and s is growth rate of the disturbance.

Using the form given by eq. (10) in system (7), it is pos-
sible to write the equations in the form of an eigenvalue
problem

sL1X(z) = L2X(z), (11)

where:

L1 =






(D2 − k2) 0 0

0 1 0

0 0 1




 , (12)

L2 =










(D2 − k2)2 −
Ra

Pr
k2 Ha2

Pm
[D(D2 − k2)]

1
1

Pr
(D2 − k2) 0

D 0
1

Pm
(D2 − k2)










,

(13)

with D ≡ d
dz

and k2 = k2
x + k2

y. Each block L2,mn rep-
resents the action of the n-th variable on the m-th vari-
able. This system is solved with finite differences using
second order schemes. The details of calculation are given
in appendix A. Following the same boundary conditions
as for the DNS, we consider infinitely thermally and elec-
trically conducting walls. If the external media is a perfect
electrical conductor, the time-dependant perturbation of
the magnetic field inside it is instantly relaxed. Therefore
we can assume a homogeneous Dirichlet’s condition for
the perturbation of the magnetic field. The same condi-
tion goes for the temperature perturbation. The bound-
ary conditions, following the no-slip condition, the con-
tinuity equation, and the perfectly conducting walls, are
then

W = DW = Θ = B = 0 (14)

for z = 0, 1. Solving the system (11) gives the growth
rate (or eigenfrequency) s of the system and the most un-



Fig. 3. Comparison of vertical velocity profiles obtained with
DNS (solid line) and LSA (dots) in the linear regime. Both
curves are normalized by their value at z = 1/2.

stable wave number kmax, that corresponds to an eigen-
vector X(z) = (W (z), Θ(z),B(z)). The case s = 0 was
solved by Chandrasekhar [1] and gives the values of Rac

as a function of Ha. It corresponds to the solution of
ǫ = 0, represented by the boundary between the white
and grey regions in fig. 2. We observe a very good agree-
ment between the LSA results and Chandrasekhar’s pre-
dictions. We have extended this analysis to overcritical
values Ra > Rac, in order to assess the transient growth
of the instability. We have checked that the difference
in s between grids of size 256 and 512 was less than
1%.

4 Results and discussion

4.1 Short and large timescales behavior

In the DNS, the system is initiated with a uniform cold
temperature T = 0, and the fluid is at rest, with a small
random noise. The temperature at the bottom wall is im-
posed at T = 1. The high thermal conductivity of the
fluid (i.e. low Pr) allows the establishment of a linear
conducting profile in a few time steps. From then, buoy-
ant motion starts to rise in the quiescent liquid. During
those first instants, a profile of vertical velocity matches
the profile given by linear stability (i.e. eigenvector). This
is found to be valid for any profile taken at any random co-
ordinates (x, y). Figure 3 shows one profile obtained with
Jadim, compared with the linear stability, both normal-
ized by their value at z = 1/2. The agreement between the
two approaches is valid until the end of the linear regime.
Here we define the linear regime by the validity of the LSA
that corresponds to the instability growth.

Next, we consider the quantity

w⋆2(z⋆ = h/2) =
1

S

∫∫

S

w⋆2(z⋆ = h/2)dx⋆dy⋆, (15)

with w⋆ the velocity in SI units and S the surface of the
wall. This quantity represents the contribution of the ver-
tical component of velocity to kinetic energy, averaged in
the mid-plane. The evolution of this quantity is shown in
fig. 4 for both DNS and LSA. Here, w⋆ is scaled by the
characteristic buoyant velocity. We observe a phase where
the velocity grows as exp(st), where s is the LSA growth
rate of the instability. Its value depends both on Ra and
Ha, which will be later discussed. All the curves collapse

Fig. 4. Dynamic behavior by DNS and LSA for all the com-
puted points. We used the average value of the factor A to
normalize the curves. Inset: zoom on the transition between
the linear and nonlinear regime.

into one master curve during the exponential growth of
the instability, when plotted as a function of st. After this
exponential growth, nonlinear effects become significant
and the flow is reorganized until the stationary stage is
reached.

The simulations show that for ǫ = 1.38 and ǫ = 5.81
which correspond to the same Ra and different Ha, the
final values of w2(z = 1/2) are identical. Moreover, the
plateau value in the nonlinear regime is a function of Ra.
Based on this results, it is possible to estimate the final

value of w⋆2(z⋆ = h/2) by a simple energy balance be-
tween kinetic energy and potential energy. This condition
reads

w⋆2(z⋆ = h/2) = Agβh∆T ⋆, (16)

where A is a factor to be determined. This relation is
equivalent to W 2 ∼ Ra. We stress that this estimate does
not take into account the Lorentz and viscous forces. Con-
sequently, the DNS results show that all the curves can be
superimposed in the linear and nonlinear regimes, as seen
in fig. 4. The value of A using the DNS results is found to
be A = 0.10 ± 0.02 for all the simulations.

Around the transition between the linear and nonlinear
regimes (st ≈ 20 for our initial conditions), we do not
observe an exact overlap. The simulations display that
Ha contributes significantly to the amplitude of the yield
kinetic energy. In conclusion, the linear regime is governed
by (Ra,Ha), and the nonlinear regime by Ra.

In fig. 4, the timescale was obtained from s given by
LSA (eq. (11) and table 1). Based on LSA, a systematic
computation of s has been realised for 103 ≤ Ra ≤ 1.5·105

and 0 ≤ Ha ≤ 100 (fig. 5). We observe that s is a decreas-
ing function of Ha at constant Ra (damping effect of mag-
netic field), and an increasing function of Ra at constant
Ha. Moreover ǫ is not a self-similarity parameter and s is
not an univoque function of ǫ. For any value of (Ha,Ra)
in the variation range studied by LSA, it is now possible
to determine the s value from fig. 5 which fixes the scaling
in the linear regime. Our computed points in DNS appear
in red circles in this figure.



Fig. 5. Growth rate s vs. Ra for 0 ≤ Ha ≤ 100. The step of 5
in Ha is fixed for two adjacent isolines. The points computed
with DNS are represented by the red circles.

Fig. 6. Time and space averaged profiles of tangential velocity
in the steady state nonlinear regime, for the DNS referenced
in table 1. The curves are normalized to their maximum value
and the bar denotes averaging in (x, y)-directions.

In fig. 6, we show profiles of time and space averaged
velocity tangential to the Hartmann walls (orthogonal to
the magnetic field) for several points. Without magnetic
field (Ha = 0, Ra = 104 and ǫ = 4.85), the boundary layer
thickness is of order δ ≃ 0.14 (defined as the distance to
the wall corresponding to the maximum of the tangential
velocity). When a magnetic field is applied, Hartmann lay-
ers are likely to form and modify the velocity field. In the
case Ha = 9 and Ra = 104 (ǫ = 1.98), the turbulent mo-
tion is suppressed compared to the case where Ha = 0 and
the boundary layer is thicker, δ ≃ 0.19. Further increase of
Ha shows a thinning of the boundary layer thickness due
to the magnetic field effects. Thus, from Ha = 9, we find
that δ decreases with Ha accordingly to a general trend
in the Hartmann problem, coupled with thermal effects.

It is also noticeable that the points ǫ = 0.36 and ǫ = 5.81
at the same Ha = 18 have a same boundary layer thick-
ness: δ ≃ 0.14 ± 0.01. A same boundary layer thickness
is also measured for the points ǫ = 1.38 and ǫ = 6.13
(Ha = 36): δ ≃ 0.09 ± 0.01.

4.2 Patterns motion

In this section we discuss four characteristic cases which
are physically representative (ǫ = 0.36, 1.38, 5.81 and
6.13). DNS allows to determine the motion structures and
their evolutions in time for the four values of ǫ. The spatial
distribution of vertical velocity at z = 1/2 was analyzed by
Fourier transform and the velocity structures were char-
acterized by their wave vectors. In Supplementary Ma-
terial, motion pictures of the patterns are presented in
regard of the time evolutions of the kinetic energy, its
spectral density, and the 2D wave vector distribution in
the plane orthogonal to the magnetic field and the gravity
(see videos). The movies show that the structures in linear
and nonlinear regimes (st < 20 and st > 20, respectively)
are strongly different. Figure 7, extracted from movies,
presents three snapshots of W in the mid-plane, normal-
ized by the instantaneous amplitude for the four ǫ value.

Each row corresponds to one DNS and each column
to a snapshot in the linear regime, at the peak value of
the kinetic energy in the mid-plane, and in the nonlinear
steady state. They respectively correspond to the blue,
grey and white circles in fig. 4.

In the linear part of the fig. 4, the structures develop
into periodic and isotropic cells independent of time (first
column of fig. 7). The spectral analysis of the patterns
shows that the wave number kmax in DNS is very well
predicted by LSA in the early phase. For the four simu-
lated cases, kmax is lower but close to critical wave number
at the marginal stability kc. These results can be seen in
fig. 8 which shows, as an example, the energy spectral den-
sity at different times for ǫ = 0.36. The peak at t = 0.06
perfectly matches the kmax prediction of LSA. This result
is valid for all the computed points in table 1. The LSA at
supercritical values of ǫ improves the prediction of the lin-
ear behavior compared to the classic marginal theory [1].

In fig. 8 we found that kmax < kc in the linear phase.
However this result cannot be generalized for a large range
of (Ha,Ra). Figure 9 compares the variations of kmax

and kc for 0 ≤ Ha ≤ 40 and 104 ≤ Ra ≤ 1.5 105,
obtained by LSA. First we note that kc increases dras-
tically with Ha. Secondly, for Ha . 10, kmax increases
with Ra. However, for higher Ha values, kmax decreases,
then increases again with Ra. This means that kmax can
be smaller or larger than kc, depending on Ha and Ra.
Thirdly, for all values Ha, kmax seems to reach a plateau
value when Ra increases. This plateau value is larger than
kc at low Ha and smaller than kc at high Ha. This asymp-
totic value is weakly dependent on Ha. Hence the ef-
fect of the magnetic field does not seem to play a sig-
nificant role at values of Ra much larger than Rac. On
the other hand, close to Rac, as for the marginal stability
curve, Ha has a strong influence on the velocity structures.



Fig. 7. Snaphots of normalized vertical velocity for different times at z = 1/2 for ǫ = 0.36 (panels (a) to (c)), ǫ = 1.38
(panels (d) to (f)), ǫ = 5.81 (panels (g) to (i)), and ǫ = 6.13 (panels (j) to (l)), by DNS (red is positive and blue is negative).
The first column corresponds to a snapshot during the linear regime, the second one is taken during the transition between the
linear and nonlinear regime (the times are indicated in fig. 4), and the third one is characteristic of the steady state nonlinear
regime. The snapshots are extracted from the DNS movies.



Fig. 8. Energy spectral density for ǫ = 0.36 in the linear regime
(t = 0.06), at the maximum of the kinetic energy (t = 0.48)
and in the steady state nonlinear regime (t = 1.21). The wave
number values at the marginal stability kc and calculated by
the LSA kmax are given for comparison.

Fig. 9. Wave number kmax vs. Ha. Each colored curve corre-
sponds to a constant Ra.

This can be explained by considering that the character-
istic width of the rolls is determined by the product of the
characteristic time of cooling and the velocity close to the
upper wall. This velocity decreases with Ha due to the
Lorentz force.

After linear growth, a transition phase takes place,
where nonlinear effects come into play, before reaching
the stationary state. The structures evolve continuously
and we found that this evolution is not characterized by
a first order transition. For the four ǫ values, the wave
number characteristic of the velocity structure is closed to
kmax at the maximum kinetic energy (fig. 8). At this peak,

nonlinear effects become dominant and the wave number
decreases towards a steady value that we name k∞.

The steady state velocity patterns in nonlinear regime
are presented in the right column of fig. 7, and all the
structures are characterized by their 2D wave vector dis-
tribution in fig. 10. The blue circle corresponds to kc pre-
dicted by Chandrasekhar [1] and the red dashed circle is
kmax predicted by LSA. During the linear phase, the en-
ergy is concentrated on the circle of radius kmax (see videos
in Supplementary Material and the curve for t = 0.06
in fig. 8). In the case ǫ = 0.36 the small cells of the
linear regime merge into slightly larger rolls (fig. 7(b))
which persist in time. In the steady state the velocity
structure is frozen-like. In fig. 10(a), we see that most
of the energy is localized in one direction associated to a
lamellar structure. The wave number decreases down to
an asymptotic value k∞ ≃ 3.7, which remains close to
kmax = 4.55.

In the case ǫ = 1.38, the cells merge and form larger
roll-like structures. These tortuous structures remain sta-
ble and evolve very slowly. The norm of the wave vector
is lower than kmax, around a value k∞ ≃ 4.0. The main
difference in comparison with the case ǫ = 0.36 is that the
energy tends to be istropically distributed. These tortuous
structures seem to be related to spiral defect chaos (SDC)
observed by Morris et al. [24].

In case ǫ = 5.81, at the peak of transition (fig. 7(h)),
the cells tend to reorganize in tortuous rolls, but this
structure is only transient. It then degenerates in large
cells around k ≃ 2.5 before further reorganizing in par-
allel rolls in the stationary regime with a wave number
k∞ ≃ 2.0 (fig. 7(i)). These rolls display an oscillation
which seems to be linked to a secondary instability [11]. In
this case, the energy in Fourier space is mainly localised
in a unique direction as seen in fig. 10(c). The secondary
peak at k = 6.0 is characteristic of the smaller structures
of the rolls. In this case the dominant wave number in the
stationary regime departs significantly from LSA.

The behavior of the flow for ǫ = 6.13 during the tran-
sition is similar to the one for ǫ = 5.81. At the beginning
of the transition, the cells merge in rolls (as seen in the
DNS movies). Subsequently, these rolls transform in cell
patterns, which persist contrary to the previous case. This
steady state is similar to the case ǫ = 1.38 but with a dif-
ferent final wave number k∞ ≃ 2.5. The energy density
spreads towards smaller wavelength (see Supplementary
videos).

The analysis of these four typical cases (ǫ = 0.36, 1.38,
5.81 and 6.13) shows that the results seem to be coherent.
The two cases ǫ = 0.36 and ǫ = 1.38 correspond to the
same Ra/Ha2 ≈ 35. On the other hand, ǫ = 5.81 and
ǫ = 6.13 correspond to Ra/Ha2 ≈ 130. For isolines of
Ra/Ha2 close to the marginal stability curve, the patterns
in the steady state nonlinear regime are characterized by a
wave number lower but close to kmax (obtained from LSA).
For larger values of Ra/Ha2, the characteristic sizes of the
structures are larger and k∞ is smaller than kmax. In this
case the transition dynamics leading to the steady state
nonlinear regime is more complex and shows permanent
reorganization due to higher Ra.



Fig. 10. 2D normalized energy spectra of the vertical velocity W (z = 1/2), for ǫ = 0.36 ǫ = 1.38, ǫ = 5.81, and ǫ = 6.13
in the steady state nonlinear regime. The data are normalized by the total energy. The colors are in log-scale. These spectra
correspond to the snapshots of the third column in fig. 7. The marginal wave number kc (solid blue circle) and kmax (dashed
red circle) calculated by LSA are given for comparison.

Considering all the studied cases, the DNS seems to
display a structural transition between lamellar and tor-
tuous when Ha increases and ǫ < 10. Indeed, at Ha = 9
and 18 (ǫ = 1.98, ǫ = 0.36 and ǫ = 5.81), the patterns
are lamellar; at Ha = 36 (ǫ = 1.38 and ǫ = 6.13), the
patterns are tortuous lamellar. This tortuous structure
could be understood as a coupling effect of buoyancy force
and Lorentz force acting of the velocity field in the three
directions. The joint effect of these two forces is to cre-
ate a torque which bends the lamellar structures if Ha is
high enough. For ǫ > 10 (ǫ = 13.88 and ǫ = 19.12), the
structures become similar to thermoconvection without
magnetic effect. These two cases are far enough from the
marginal stability curve and the buoyancy force becomes
dominant.

5 Concluding remarks

In this paper, we studied the transient dynamics of a liquid
metal in magnetoconvection. We computed the velocity
patterns by DNS for various value of ǫ = (Ra−Rac)/Rac

corresponding to intermediate (Ha,Ra) values. The char-
acteristic lengths of the patterns were measured during
the transient dynamics: linear regime, nonlinear transi-
tion and steady regime. We have developed a LSA code,
in order to determine the growth rate and the wave num-
ber of the instability. We observe a very good agreement
between the DNS results in the linear regime and the LSA
predictions. From the DNS, the wave vectors characteris-
tic of the structures appear to be isotropic and the maxi-
mum of the energy density matches the value kmax of the
LSA. It is to note that the methods for computing the
Lorentz force differ in the two approaches. In the DNS we
used the quasi-static model and in the LSA we solved for
the perturbation of B. Both methods should agree in the
Pm = 0 limit. Here these approaches are consistent, ow-
ing to the smallness of Pm. We found that the dynamics is

self-similar except around the transition between the two
regimes where the total energy of the system yields a max-
imum. The time scaling in the linear regime is based on
the growth rate, and in the steady state nonlinear regime,
the energy scaling is given by Ra and is independent of
Ha at first order.

In the steady state nonlinear regime the patterns
present large differences with Ra and Ha. For cases neigh-
bouring the marginal stability (ǫ = 0) and with a same
Ra/Ha2 ratio, the wave number k∞ is lower, but very
close to kmax. For cases far away from the marginal stabil-
ity and at constant Ra/Ha2, the wave number k∞ < kmax.
Therefore, an increase in Ra/Ha2 generates a decrease in
k∞. Furthermore, the structure types are determined by
Ha in the steady state nonlinear regime. For Ha = 9 and
18, we observe a lamellar structure. Increasing to Ha = 36
shows that there is a structural transition: the rolls be-
come tortuous. This study will be extended to a large
range of ǫ values and to frequency effects when AC mag-
netic fields are applied.
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Appendix A. Finite differences schemes for

stability analysis

We give in this appendix the numerical schemes that were
used for the linear stability analysis. The operators in
equations (12) and (13) can be expressed with finite dif-
ferences, in order to solve the linear system (11).



Appendix A.1. Numerical schemes

Let us consider the vector x that either stands for W ,
Θ, or B and we discretize in the z-direction and for a
number of points Nz, the space step is ∆z = 1

Nz

. We
choose the following second order schemes to approximate
the derivatives:

x′
i =

xi+1 − xi−1

2∆z
, (A.1)

x′′
i =

xi+1 + xi−1 − 2xi

∆z2
, (A.2)

x′′′
i =

xi+2 − xi−2 − 2xi+1 + 2xi−1

2∆z3
, (A.3)

x
(4)
i =

xi+2 + xi−2 − 4xi+1 − 4xi−1 + 6xi

∆z4
. (A.4)

Let us express X and the operators L1 and L2 from
eq. (11) with finite differences

X = (W1, · · · ,WNz
, Θ1, · · · , ΘNz

,B1, · · · ,BNz
)T , (A.5)

Lk =






Lk,11 Lk,12 Lk,13

Lk,21 Lk,22 Lk,23

Lk,31 Lk,32 Lk,33




 , (A.6)

with k = 1 or 2. Each matrix Lk,ij is a Nz × Nz matrix.
As shown in the following paragraph, the matrices L1 and
L2 depend on Ra, Ha, Pr, Pm and k.

Appendix A.2. Expression of the matrices

We can note that the matrices L1,ij and L2,ij will be (n+
1)-diagonal where n is the order of derivation. Replacing
the terms in eqs. (1), (2) and (3) with the expressions
given by eqs. (A.1) to (A.4) reads

L1,11 =
1

∆z2















a11
11 a12

11 0 · · · 0

1 −2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 −2 1

0 · · · 0 aNz,Nz−1
11 aNz,Nz

11















, (A.7)

L1,22 = I, (A.8)

L1,33 = I, (A.9)

L1,ij,i 6=j = 0, (A.10)

where I is the identity matrix. The terms a11
11, a12

11,

aNz,Nz−1
11 and aNz,Nz

11 will be given by the boundary condi-
tions. Those matrices represent the terms on the left side
of the equations, and except for L1,11, there is no deriva-
tive term which implies the matrices to be diagonal. The
L2,ij matrices represent the coupling between the differ-

ent equations. Let b
(0)
ij , b

(−1)
ij , b

(−2)
ij , b

(+1)
ij , b

(+2)
ij be the

main, first lower, second lower, first upper and second up-
per diagonal terms of the matrix. The inner aspect of the
matrix is

L2,ij =









. . .
. . .

. . .
. . .

. . .

b
(−2)
ij b

(−1)
ij b

(0)
ij b

(+1)
ij b

(+2)
ij

. . .
. . .

. . .
. . .

. . .









. (A.11)

The other terms are all equal to zero. The two first and
the two last lines will be given by the boundary conditions.
We can first express the L2,11, L2,22, L2,33 matrices. The
L2,11 matrix is pentadiagonal and we have

b
(0)
11 =

6

∆z4
+ 4

k2

∆z2
+ k4, (A.12)

b
(+1)
11 = b

(−1)
11 = −

4

∆z4
−

2k2

∆z2
, (A.13)

b
(+2)
11 = b

(−2)
11 =

1

∆z4
. (A.14)

The L2,22 et L2,33 matrices are tridiagonal, hence b
(+2)
22 =

b
(−2)
22 = b

(+2)
33 = b

(−2)
33 = 0. We can express the other terms

as

b
(0)
22 = −

1

Pr

k2 + 2

∆z2
, (A.15)

b
(+1)
22 = b

(+1)
22 =

1

Pr

1

∆z2
, (A.16)

b
(0)
33 = −

1

Pm

k2 + 2

∆z2
, (A.17)

b
(+1)
33 = b

(+1)
33 =

1

Pm

1

∆z2
. (A.18)

The L2,13 and L2,31 are also pentadiagonal and tridiagonal
matrices and the diagonal terms can be expressed as

b
(0)
13 = 0, (A.19)

b
(+1)
13 = −b

(−1)
13 =

Ha2

Pm

(
1

∆z3
+

k2

2∆z

)

, (A.20)

b
(+2)
13 = b

(−2)
13 =

1

2∆z3
, (A.21)

b
(0)
31 = 0, (A.22)

b
(+1)
31 = −b

(−1)
31 =

1

2∆z
. (A.23)

Since the magnetic field and the temperature do not
influence each other, the L2,23 and L2,32 are empty. If
we took in consideration the Joule dissipation, the L2,32

would not be zero, but since the equations were linearised
and the Joule dissipation is a second order term, it does
not appear here. L2,12 and L2,21 are diagonal matrices and
are expressed as

L2,12 = −
Ra

Pr
k2

I, L2,21 = I. (A.24)
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