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The heating of particles in a dilute suspension, for instance by radiation, chemical
reactions or radioactivity, leads to local temperature fluctuations in the fluid due to the
non-uniformity of the disperse phase. In the presence of a gravity field, the fluid is
set in motion by the resulting buoyancy forces. When the particle density is different
than that of the fluid, the fluid motion alters the spatial distribution of the particles
and possibly strengthens their concentration inhomogeneities. This in turn causes
more intense local heating. Direct numerical simulations in the Boussinesq limit
show this feedback loop. Various regimes are identified depending on the particle
inertia. For very small particle inertia, the macroscopic behaviour of the system is
the result of many thermal plumes that are generated independently of each other.
For significant particle inertia, clusters of particles are observed and their dynamics
controls the flow. The emergence of very intermittent turbulent fluctuations shows
that the flow is influenced by the larger structures (turbulent convection) as well as
by the small-scale dynamics that affect particle segregation and thus the flow forcing.
Assuming thermal equilibrium between the particles and the fluid (i.e. infinitely
fast thermal relaxation of the particle), we investigate the evolution of statistical
observables with the change of the main control parameters (namely the particle
number density, the particle inertia and the domain size), and propose a scaling
argument for these trends. Concerning the energy density in the spectral space, it
is observed that the turbulent energy and temperature spectra follow a power law,
the exponent of which varies continuously with the Stokes number. Furthermore,
the study of the spectra of the temperature and momentum forcing (and thus of the
concentration/temperature and velocity/temperature correlations) gives strong support
to the proposed feedback loop mechanism. We then discuss the intermittency of the
flow, and analyse the effect of relaxing some of the simplifying assumptions, thus
assessing the relevance of the original studied configuration.
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1. Introduction
When a fluid is heated it is well known that the buoyancy forces can lead

to convective motions. What happens when the heat sources are particles in a
suspension? The vortical structures generated by the thermal convection can alter
the spatial distribution of the particles, which will in turn affect the flow. To study
this feedback loop mechanism Zamansky et al. (2014) considered the heating of
a dilute suspension by an external source. In particular, they showed that the local
temperature fluctuations in the fluid – due to the non-uniformity of the disperse phase
– can trigger and sustain turbulent convective motions, advecting in turn the heated
particles. According to their analysis, for very small particle inertia, the macroscopic
behaviour of the system is the result of thermal plumes predominantly generated
by single particles and independently of each other. However, particles of sufficient
inertia depart from fluid tracer trajectories and can concentrate in clusters away from
vorticity cores (Squires & Eaton 1991). Particle clustering therefore enhances the
inhomogeneity and local intensity of the heating, strengthening the coupling between
the transport of momentum, mass and temperature, and ultimately driving the thermal
forcing to generate turbulence. It follows that the non-dimensional particle inertia,
commonly referred to by the Stokes number, is a crucial parameter of the problem.
Unlike forced convection systems, here the time scale of the fluid motion is not
defined a priori, but depends on the thermal convection regime, which itself varies
with the particle inertia.

A vast literature exists on the various mechanisms which are simultaneously at play
in the model flow in the object. Concerning the so-called preferential concentration
leading to the formation of particle clusters in turbulent flows, two mechanisms
have been identified: the centrifugal effect and the sweep-stick mechanism. In the
centrifugal effect (Maxey 1987), inertial particles are ejected from turbulent eddies
and accumulate in low vorticity regions. This mechanism has been demonstrated
numerically (Squires & Eaton 1991) as well as experimentally (Fessler, Kulick &
Eaton 1994; Eaton & Fessler 1994; Wood, Hwang & Eaton 2005) and has been
shown to be relevant for weakly inertial particles. In the sweep-stick mechanisms
(Coleman & Vassilicos 2009) the particles tend to stick to zero-acceleration points
of the carrier flow. Numerical simulations (Goto & Vassilicos 2008) show that
highly inertial particles tend to cluster near low-acceleration points of the carrier
flow in agreement with the sweep-stick mechanism. In presence of gravity (Wang
& Maxey 1993) identified a preferential sweeping effect that increases the settling
velocity. Recently, Dejoan & Monchaux (2013) and Bec, Homann & Ray (2014b)
further discussed the influence of the Stokes number on the particle clustering in this
situation.

Essential for the flows considered in this study is the inter-phase coupling. Several
studies focused on the alteration of turbulent flows by the momentum two-way
coupling between phases of particle-laden flows (Boivin, Simonin & Squires 1998;
Elghobashi & Truesdell 1993; Ferrante & Elghobashi 2003; Ahmed & Elghobashi
2000; Druzhinin & Elghobashi 2001, 1999, 1998; Eaton 2009). It was found that
depending on the mass loading of the particles, their density and diameter, the
turbulent kinetic energy of the fluid can be attenuated or enhanced (Tanaka & Eaton
2008; Balachandar & Eaton 2010). Zonta, Marchioli & Soldati (2008) focused on heat
transfer in a particle-laden turbulent channel flow with both mechanical and thermal
coupling. They observed that, depending on the size of the particles, the heat flux
could be either increased or reduced when compared to an unladen system. Gotoh,
Yamada & Nishimura (2004) experimentally observed that the thermal convection



induced by a heated vertical wall could enhance the particle segregation. Oresta &
Prosperetti (2013) considered the settling of inertial particles in Rayleigh–Bénard flow,
and found that the settling generate large-scale downward fluid motions, resulting in
a significant increase in the velocity of the positively buoyant plumes.

The studies of Lakkaraju et al. (2011, 2013), Lakkaraju, Toschi & Lohse (2014)
and Oresta et al. (2009) focus on the modification of the Rayleigh–Bénard convection
by a disperse vapour bubble phase. Lakkaraju et al. (2011) in particular identified
two opposite effects: on the one hand, the latent heat of vapour tends to decrease the
temperature variance, which should reduce convection; on the other hand, the bubble
growth due to the heat absorption causes additional buoyancy effects and agitation
sources. The presence of the vapour bubbles was found to drastically reduce the
intermittency in both temperature and velocity fields (Lakkaraju et al. 2014).

In the above-mentioned studies the fluid flow is forced at large scales (by either
a temperature gradient or a pressure gradient), whereas, in the present paper, energy
is supplied to the system only via the particle heating, and the instantaneous source
terms that force the fluid field are essentially dependent on the full configuration of
the dispersed phase. As such, this flow presents similarities with the sedimentation
of a dilute suspension. For non-inertial particles Batchelor (1972) and Hinch (1977)
studied the settling velocity of the suspension and the induced fluid fluctuations by
considering the effect of the hydrodynamic interaction between particles on the bulk
motion. They showed a dominant effect of the particle number density and discussed
the effects of the domain size. Numerical simulations of Ladd (1997) in the point
particle limit showed the divergence of the energy density with increase of the domain
size due to the long-range interaction of the disturbances generated by the particles.
Brenner (1999) and Caflisch & Luke (1985) showed that this divergence issue can be
addressed by screening effect of the interactions. Bruneau et al. (1996) also studied
the large-scale convection induced by the settling of the particles. For more details on
this class of flows the reader is referred to Guazzelli & Hinch (2011) and references
therein.

The settling of particles of sufficient inertia leads to the formation of clusters
(Mizukami, Parthasarathy & Faeth 1992; Uhlmann & Doychev 2014; Capecelatro,
Desjardins & Fox 2014, 2015) whose interactions generate a turbulent behaviour of
the velocity fluctuations. Also of interest is the work of Aliseda et al. (2002) who
studied experimentally the settling of particles at very low volume fractions in a
fully developed turbulent flow. They considered the effect of both mean and local
particle concentration on the settling velocity to conclude that in addition to the
preferential sampling effect discussed above, the collective particle effects resulting
from hydrodynamic coupling should be taken into account to explain the enhancement
of the particle velocity.

The case of the rising gas bubbles in a liquid (Mudde 2005) also shares some
analogies with the forcing discussed in this paper. The work of the buoyancy forces
acting on the swarm of bubbles induces turbulent (or pseudo-turbulent) fluctuations
in the liquid. Lance & Bataille (1991) observed in their experiment a k−3 energy
spectrum at intermediate scales (where k is the wavenumber). Riboux, Risso &
Legendre (2010) considered a homogenous bubble swarm to investigate the influence
of the bubble volume fraction on the velocity fluctuations and the extension of the k−3

spectrum. In the aforementioned papers, no clusters of bubbles are observed. Open
questions remain, however, concerning the mechanism leading to the appearance of
non-homogeneity in the bubble distribution (Takagi, Ogasawara & Matsumoto 2008;
Martínez Mercado et al. 2010). Importantly though, the flow induced by raising



bubbles differs from the situation of interest here: the bubbles represent discrete
sources of buoyancy for the continuous phase, whereas here the buoyancy forcing
results from the particles heating the surrounding fluid. As a consequence, the
temperature mixing and the heat exchange between the particles and the fluid are
crucial.

When a scalar field, such as temperature, is advected by a turbulent flow,
intermittency in the mixing process leads to large regions of relative mild gradients
separated by very stiff fronts (Holzer & Siggia 1994; Overholt & Pope 1996; Celani
et al. 2000). Bec, Homann & Krstulovic (2014a) carried out a numerical study of
the simultaneous transport of a passive scalar and inertial particles in homogeneous
isotropic turbulence. They observed that, for a unit Stokes number, the particles tend
to cluster on the scalar fronts, and so they argued that, if the scalar is indeed the
fluid temperature, the disperse phase may participate crucially in the heat transport.
The studies of Bouche et al. (2013) and Alméras et al. (2015) considered the scalar
mixing induced by a bubble swarm. It is shown that the flow agitations induced
by bubbles produces an efficient mixing and a scaling relation with the bubble
volume fraction is proposed. Acrivos, Hinch & Jeffrey (1980) proposed an analytical
correlation for the steady-state heat transfer from a fixed configuration of heated
particles in a creeping flow condition as a function of the particle volume fraction
and Peclet number. Different regimes were derived depending on the relative value
of these two parameters, with a non-trivial transition from isolated particle heating to
bulk heating. The buoyancy forcing, however, was not considered by Acrivos et al.
(1980).

Gan et al. (2003) addressed the question of how thermal convection affects
the motion and interactions of settling particles using two-dimensional numerical
simulations with a particle–fluid density ratio very close to 1 and particles at a
constant temperature. The sedimentation rate of a single particle is altered by both
forced and free convection causing possibly boundary layer separation and vortex
shedding. They observed that the particle interactions, through their wake, are
influenced by thermal convection and that hot particles tend to aggregate. They
conclude that thermal effects are expected to have a dramatic influence on the
structure of a sedimenting suspension. Subsequently, Feng & Michaelides (2008) also
performed two-dimensional numerical simulations of non-isothermal particles fully
coupled to the fluid fields to study the sedimentation of particles hotter than the
carrier fluid. For both single particle and multi-particle systems, they observed an
alteration of the sedimentation essentially because of the modification of the Stokes
drag, consistent with the finding of Kotouc, Bouchet & Dusek (2009). They also
considered the sedimentation of a cluster of hot particles, and showed a decrease
of settling velocity, as well as a faster breakdown of the cluster due to thermal
plumes. Recently Frankel et al. (2016) explored the two-way coupling between forced
homogeneous turbulence and heated inertial particles, demonstrating large effects of
buoyant plumes shed by the heated clusters on both settling velocity and turbulent
kinetic energy. The work of Mercier et al. (2014) also considers the interplay between
thermal convection and heat exchange from a solid particle. They show experimentally
how natural convection enables to propel a single heated triangular wedge.

In this paper we propose to further study the flow introduced recently in Zamansky
et al. (2014). In this flow the only forcing mechanism results from the buoyancy
caused by the heat transfer from the heated particles. In such a situation, the
instantaneous forcing field depends on the configuration of the dispersed phase, which
is altered by the fluid motion. We explore the parameters space by direct numerical



simulations (DNS) of the carrier phase and Lagrangian tracking of the disperse
phase. The thermal forcing is simply modelled as a uniform heat flux received
by all the particles in the domain. We place our attention on the transition to the
clustering regime observed when the inertia of the particle is increased. Based on the
analogy with phase transitions and an extensive analysis of the particle clustering, we
address the scaling of the flow with the key dimensionless parameters. Moreover, we
investigate how the thermal forcing affects the properties of the turbulence. Indeed
the assumption of scale separation between production and dissipation mechanisms,
implicit in the classical picture of the turbulent cascade, is not necessarily fulfilled
here. We demonstrate the implication this has for the intermittency of the flow and
the energy spectrum. Finally, we discuss the relevance of this type of flow in practical
situations.

The reminder of the paper is organized as follows. In § 2 we define the parameters
relevant to this system, introduce simplifying assumptions and derive the governing
equations in non-dimensional form. In § 3 we describe the numerical method used in
the simulations. The results obtained in the infinitely fast thermal relaxation limit are
presented in § 4. In this section we present scaling arguments for some of the most
relevant statistical quantities, and analyse spectra and probability density functions
(p.d.f.) of velocity and temperature. In § 5 we present results obtained when some of
the simplifying assumptions are relaxed. Summary and final comments are made in
§ 6.

2. Formulation of the problem
2.1. Working assumptions and dimensional equations

We consider the equation for the evolution of the fluid velocity field u coupled
to the temperature field T through the Oberbeck–Boussinesq approximation in a
tri-dimensional periodic domain of linear size H. The fluid temperature variations
are proportional to density variations via the thermal expansion coefficient α:
ρ = ρ0(1 − α(T − T0)) in the low Mach number limit, where ρ0 and T0 are the
reference fluid density and temperature. The continuity equation and the momentum
equation are:

∇ · u = 0, (2.1)

Dtu = − 1

ρ0

∇p + ν∇2u+ + αg(T − T0)ez + f , (2.2)

with u the fluid velocity, Dt = ∂t + u · ∇ the material derivative, ν the kinematic
viscosity, p the pressure field, g the gravity (in the z direction) and f = F/ρ0 accounts
for the exchange of momentum with the disperse phase. The temperature equation is:

DtT = κ∇2T + q, (2.3)

with κ the thermal diffusivity and q = Q/ρ0cf , where Q is the thermal source term
per unit volume due to the heat exchanged with the disperse phase and cf is the fluid
heat capacity.

The evolution equations for the particle velocity, position and temperature are
written in the Lagrangian framework. We consider spherical particles much denser
than the fluid and much smaller than the minimum scale of the flow. Retaining



only the inertia, the Stokes drag and the gravitational force, the particle equations of
motion, in the point particle approximation, are:

dtxp = up, (2.4)

dtup = u(x = xp) − up

τp
+ g

(
1 − ρ0

ρp

)
ez, (2.5)

where xp is the particle position coordinate, up is the particle velocity, ρp is the
particle density and τp = ρpd2

p/ρ018ν is the particle relaxation time, with dp the
particle diameter. Considering the heat exchanged with the fluid and an external heat
source, the temperature equation for a particle reads:

dtTp = T(x = xp) − Tp

τth
+ Φp

mpcp
, (2.6)

where Tp is the particle temperature, mp is the mass of a particle, cp is the particle heat
capacity and τth = (3/2)(ν/κ)(cp/cf )τp is the thermal relaxation time. Φp is the external
heat flux received by one particle and will be assumed constant throughout the paper.
We consider small particle loading, such that particle collisions can be ignored.
Thermophoresis, i.e. the transport of suspended particles in response to gradients in
the fluid temperature, might also, in principle, play a role in the considered physical
scenario. However, thermophoresis is only expected to be significant for particles of
extremely low inertia, and outside of the range of parameters considered here. Its
investigation is beyond the scope of the present study.

Neglecting the short-range perturbations around the particle, the momentum and
thermal source terms F and Q in (2.2) and (2.3) are formally taken into account by
Dirac distributions of the velocity and temperature differences:

F(x) = −
Np∑
p

mp
u(x = xp) − up

τp
δ(x − xp), (2.7)

Q(x) = −
Np∑
p

mpcp
T(x = xp) − Tp

τth
δ(x − xp). (2.8)

In order to have a zero-mean forcing term in (2.2) and (2.3) the reference
temperature is defined as the mean fluid temperature T0 = T where the • denotes
spatial averaging. From (2.3), accounting for the homogeneity of the flow, the mean
temperature rate of change β is expressed as: β = dtT = q. Introducing the temperature
fluctuation around the spatially averaged fluid temperature θ = T − T and θp = Tp − T ,
(2.2), (2.3) and (2.11) become:

Dtu = − 1

ρ0

∇p + ν∇2u+ + αgθez + f , (2.9)

Dtθ = κ∇2θ + q′, (2.10)

dtθp = θ(x = xp) − θp

τth
+ Φp

mpcp
− β, (2.11)

with q′ = q − β. We will consider that the system is in a quasi-stationary state
assuming that the characteristic time scale of the heating, T0/β, is large compared to
the relevant time scale of the dynamics.



Using (2.6) and (2.8), one obtains the following relation between β and Φp:

β = 1

1 + χ

[
nΦp

ρ0cf
− χ〈dtθp〉p

]
, (2.12)

where χ =αvρpcp/ρ0cf with αv =nmp/ρp the volume fraction of the disperse phase and
n = Np/H3 the particle number density. In the second term on the right-hand side of
(2.12) we introduce the average over the set of particles 〈•〉p. This term represents the
increase of the thermal energy of the disperse phase relatively to the fluid phase. After
a transient time of the order of τth, this term vanishes in the statistically steady-state
system.

In appendix A the equations (2.1), (2.9) and (2.10) are derived from the
compressible Navier–Stokes equations assuming a small enough heat source term
along with the usual assumptions required in the Oberbeck–Boussinesq approximation
to be valid (Spiegel & Veronis 1960; Génieys & Massot 2001; Dumont et al. 2002;
Shirgaonkar & Lele 2006), namely a vanishingly small Mach number and a small
domain size in comparison to the length scale of the hydrostatic pressure variation
(H � Lρ = P0/ρ0g, P0 being a reference pressure).

As an example application Zamansky et al. (2014) considered the case of radiative
heating of a particle–fluid mixture. Considering a transparent fluid and assuming an
optically thin medium, the heat received by each particle is Φp = π/4d2

pΦ with Φ the
radiative heat flux density.

2.2. Fast thermal relaxation

We will mostly focus on the case of negligibly small particle thermal inertia (cp/cf → 0
or equivalently τth → 0). In this limit, particles are in thermal equilibrium with the
surrounding fluid and (2.11) is replaced by:

θp = θ(xp). (2.13)

With this assumption, the heat exchanged between the particles and the fluid is equal
to the energy flux received by the particles, and (2.12) simplifies to:

β = nΦp

ρ0cf
, (2.14)

and (2.8) becomes:

Q(x) =
Np∑
p

Φpδ(x − xp), (2.15)

and one can express q′ as:

q′(x) = β

[
1

n

Np∑
p

δ(x − xp) − 1

]
. (2.16)



2.3. Kinetic energy and thermal fluctuation budgets

From (2.9) the rate of change of the turbulent kinetic energy K = u2/2 is expressed
as:

dtK = −ε + αgθw + uifi, (2.17)

where ε =ν(∇u)2 =ν∂xjui∂xiuj is the rate of turbulent kinetic energy dissipation and the
last two terms on the right-hand side represent the production of K due to buoyancy
(and the rate of variation of the potential energy), with w the vertical component of
the velocity and the variation of K caused by the coupling with the dispersed phase.
Assuming stationarity and neglecting the momentum coupling between phases gives:

ε = αgθw. (2.18)

From (2.10) the temperature variance budget gives:

1
2
dtθ 2 = −εθ + θq′, (2.19)

where εθ = κ(∇θ)2 is the rate of dissipation of the temperature variance. The
production term θq′ can be re-expressed with (2.16), in the case of vanishing particle
thermal inertia, as:

θq′ = β

(
1

n

( Np∑
p

θδ(x − xp)

)
− θ

)
. (2.20)

The fluid temperature at the particle position θp is, in this case:

θp = θ(x = xp) =
∫

V
dx θδ(x = xp), (2.21)

with V the volume of the fluid domain. Then assuming the statistical stationarity in
(2.19), one obtains:

εθ = θq′ = β

(
1

Np

Np∑
p

θp

)
= β〈θp〉p, (2.22)

where θ = 0 has been used.

2.4. Characteristic scales and non-dimensional equations
In the present setting, the relevant scales of the dynamics are not imposed by the
forcing, but result from the inter-phase coupling. We estimate characteristic scales
of the fluid motion in response to the local heating as follows. We assume that at
those scales, conductive and convective heat transfer are balanced, i.e. a unit Rayleigh
number:

Ra∗ Pr = αθ∗ g�3
∗

ν2
= 1, (2.23)

and that inertia and viscous forces are also balanced i.e. a unit Reynolds number:

Re∗ = �∗u∗
ν

= 1, (2.24)

where θ∗, �∗, u∗ = �∗/t∗ and t∗ are the characteristic temperature, length, velocity and
time of the flow at small scales. The characteristic heating rate of the system β relates
the temperature scale to the time scale:

θ∗ = βt∗. (2.25)



Equations (2.23)–(2.25) give for the characteristic temporal and length scales:

t∗ = (αgβ)−2/5ν1/5, (2.26)

�∗ = (αgβ)−1/5ν3/5. (2.27)

As will be shown in § 4.3, the results of the simulations indicate that these scales are
indeed of the order of the dissipative scales of the flow.

The following set of non-dimensional parameters is then introduced:

(a) the Stokes number: St = τp/t∗,

(b) the non-dimensional particle number density: C = n�3
∗ (i.e. the average number of

particles in a volume �3
∗),

(c) the non-dimensional domain size: γ = H/�∗,

(d) the Froude number: Fr = (g(1 − ρ0/ρp)t2
∗/�∗)−1/2 (i.e. the ratio of the particle

gravitational acceleration and the buoyancy-induced fluid acceleration),

(e) the Prandtl number: Pr = ν/κ ,

( f ) the density ratio: ρp/ρ0,

(g) the specific heat capacity ratio cp/cf .

Note that the non-dimensional particle number density is chosen over the particle
volume fraction because the flow is influenced more by the distribution of the heat
sources than by their volume since we consider particles with a vanishingly small
diameter. However the following expression gives the volume fraction αv in terms of
the other non-dimensional parameters:

αv = 9
√

2π C St3/2

(
ρp

ρ0

)−3/2

. (2.28)

The (2.1), (2.4), (2.5), (2.9) (2.10) and (2.16) non-dimensionalized by t∗, �∗, u∗ and
θ∗ can be re-written, in the fast thermal relaxation limit, and neglecting the reactions
of the particles on the fluid momentum:

∇ · u = 0, (2.29)

Dtu = −∇p + ∇2u+ + θez, (2.30)

Dtθ = 1

Pr
∇2θ + q′. (2.31)

The thermal source term in (2.31) is:

q′ =
Np∑
p

(δ(x − xp)/C) − 1, (2.32)

where δ denotes the non-dimensional Dirac distribution.

dtxp = up (2.33)

dtup = u − up

St
+ ez

Fr2
. (2.34)

As seen from (2.30) the absence of non-dimensional parameters in the momentum
equation reflects the balance between inertia, buoyancy and viscous forces on



which are based the scales �∗ and t∗. On the other hand, the particles dynamics
is characterized by two non-dimensional parameters, St and Fr, which control the
overall dynamics of the system together with the particle number density. Finally γ

reflects the boundary conditions delimiting the domain size.

3. Computational approach
The numerical results presented in the paper are obtained by directly solving (2.29)–

(2.31), in a periodic box of size 2π, using a pseudo-spectral method based on the
P3DFFT library (Pekurovsky 2012). The 2/3 rule is used for the de-aliasing of the
nonlinear terms (Canuto et al. 1988). The time integration is done by the second-order
Adams–Bashford method.

We use Lagrangian tracking to obtain the evolution of the particle position, velocity
and temperature. The gas velocity and temperature at the particle position is estimated
from cubic spline interpolation (Yeung & Pope 1988). The time advancement for the
particle equations also uses the second-order Adams–Bashford algorithm, with the
same time step as the flow.

The source term, equation (2.32), is a set of Dirac distributions which needs
to be projected onto the mesh. A local particle concentration field is obtained by
regularization of the Dirac peaks. Following Maxey et al. (1997) we consider a
Gaussian shape regularization:

δ(x) → δσ (x) = A exp

(
− x2

σ 2

)
, (3.1)

with A a normalization parameters. In contrast to Maxey et al. (1997), the regular-
ization length, σ , is chosen independently of the mesh spacing Δ = H/N (N3 being
the mesh size). In our work, we set σ = k1�∗. The Gaussian kernel is truncated for
|x| > k2σ to have a numerically efficient computation. The normalization parameter A
is given by A−1 = ∫ ∫ ∫ +k2σ

−k2σ
exp(−x2/σ 2) dx. We have chosen k1 = σ/�∗ = 0.5 and

k2 = 3 by comparing with other projection schemes (Garg et al. 2007). Moreover it
was checked that, as long as �∗ > Δ > dp, the results are independent of the spatial
resolution. As will be shown in the following section, the �∗ scale is relevant to
describe the flow. It is legitimate to ask whether this scale appears in the dynamics
just because it was introduced artificially for the Dirac regularization. To address this
point we also performed simulations with σ ≈ η, where η is the viscous scale of the
flow estimated from the Kolmogorov relation. Both choices for σ lead to very similar
statistics. Indeed �∗ is commensurate with the smallest scale of the flow. Therefore
we avoid using the Kolmogorov scale because it is not known a priori. Moreover
Vié et al. (2016) performed numerical simulations of this flow for intermediate Stokes
numbers using an Eulerian moment method to solve the disperse phase. They obtained
statistics consistent with the Lagrangian particle tracking, which also validates our
procedure to compute the feedback from the particle phase.

3.1. Parameter values
Tables 1 and 2 give the parameters of the different simulations performed. In a
first set of simulations, we consider the effect of varying the Stokes number of the
particles neglecting their thermal inertia, direct feedback on the fluid momentum and
gravitational settling. As seen in table 1, different values of γ (at constant C) and



St γ C Fr
cp

cf
N Np MTWC

0.003 ∼ 29.36 48 0.19 ∞ 0 64 2.13 × 104 No
0.003 ∼ 29.36 83 0.19 ∞ 0 128 1.10 × 105 No
0.003 ∼ 29.36 190 0.19 ∞ 0 256 1.34 × 106 No
0.003 ∼ 29.36 330 0.19 ∞ 0 512 6.96 × 106 No
0.003 ∼ 29.36 570 0.19 ∞ 0 1024 36.24 × 106 No

0.003 ∼ 29.36 83 0.035 ∞ 0 128 2.00 × 104 No
0.003 ∼ 29.36 83 0.19 ∞ 0 128 1.10 × 105 No
0.003 ∼ 29.36 83 0.35 ∞ 0 128 2.00 × 105 No
0.003 ∼ 29.36 83 1.82 ∞ 0 128 1.036 × 106 No
0.003 ∼ 29.36 83 8.77 ∞ 0 128 5.00 × 106 No

TABLE 1. Parameters of the different simulations with zero particle thermal inertia and
settling velocity. N is the size of the mesh in each direction, Np is the number of particles.
St = 0.003 ∼ 29.36 refers to St = 0.003, 0.019, 0.074, 0.352, 1.064, 7.343 and 29.36, and
MTWC indicates if the momentum two-way coupling f is taken into account in (2.2).

St γ C Fr
cp

cf
N Np MTWC

0.003 ∼ 29.36 83 0.35 ∞ 4.18 128 2.00 × 105 No
0.003 ∼ 29.36a 83 0.35 ∞ 4.18 128 2.00 × 105 Yes

0.352 83 0.35 10 0 128 2.00 × 105 No
0.352 83 0.35 3.16 0 128 2.00 × 105 No
0.352 83 0.35 0.48 0 128 2.00 × 105 No
0.352 83 0.35 0.32 0 128 2.00 × 105 No
0.352 83 0.35 0.09 0 128 2.00 × 105 No

TABLE 2. Parameters of the different simulations for finite particle thermal inertia and
settling velocity. For details see the caption of table 1. Here 0.003 ∼ 29.36a refers to
St = 0.003, 0.019, 0.074, 0.352, 1.064, 4.26, 7.343, 12.69 and 29.36. Additionally for all
simulations ρp/ρ0 = 909.

different values of C (at constant γ ) are considered. The sets of simulations presented
in table 2 were carried out to analyse the influence of the particle thermal inertia,
momentum two-way coupling, as well as the effect of the particle settling. Note that
for all simulations presented in tables 1 and 2, we set Pr = 1. As seen in the tables,
the mesh resolution Δ/�∗ = γ /N ranges from 0.55 to 0.75 which is enough to resolve
the dissipative scale.

As in Zamansky et al. (2014), all the simulations are initialized with randomly
distributed particles and with zero velocity and temperature fluctuations for both fluid
and particles. After a transient state, the flow reaches a statistically steady state which
is our interest in this paper.

4. Results and discussion for particles with zero thermal inertia and zero settling
velocity
In order to reduce the parameter space and to focus on the bulk of the interplay

mechanisms, we first consider non-settling particles in thermal equilibrium with the
surrounding fluid (Fr−1 → 0 and cp/cf → 0, table 1). Although the settling velocity



is neglected, gravity is retained in the buoyancy forcing. This approximation bears
relevance to particles which are still inertial but possess limited fall speed, while
allowing a significantly simplified analysis. Moreover, as will be shown in § 5.2, the
cases with finite settling velocity with Fr > 1 quickly approximate the limit behaviour
at Fr = ∞. In the present section we are also assuming that the mass fraction of
the disperse phase is everywhere small, and so we neglect the interphase momentum
exchange in (2.9). In § 5.1 this assumption is relaxed along with considering a finite
value of cp/cf in order to assess the influence of these simplifications on the studied
flow.

4.1. Clustering transition
In figure 1 we present visualizations of the instantaneous particle concentration field
and fluid temperature fluctuations θ in a vertical plane for three levels of particle
inertia: St = 0.003, St = 0.352 and St = 7.343. In this figure the concentration is

normalized by the average particle concentration n and θ is normalized by θ 2
1/2

. It
is observed that for the smallest particle inertia, both fields are fairly homogeneous
with only small-scale patterns in the temperature field. At the intermediate Stokes
number, highly concentrated clusters of particles appear along with a more coherent
distribution the temperature field organized in sheet-like structures. It can be visually
checked that, for this Stokes number, the largest temperature fluctuations are highly
correlated with the high particle concentration spots. This is in agreement with the
conclusions drawn previously in Zamansky et al. (2014). For the high Stokes number,
the particles distribution becomes again much more homogeneous although very large
areas, commensurate with the size of the overall domain, depleted of particles subsist.
The temperature field also present large regions of positive and negative fluctuations
with typical mixing layer structures in between.

Figure 2 depicts the structure of the turbulent kinetic energy dissipation rate ε and
of the scalar dissipation rate εθ , for the same snapshots as in figure 1. Both quantities
are normalized by their respective mean values. The effect of the Stokes number on
the spatial organization of the turbulence dissipation rate is not very pronounced.
Filaments of intense dissipation are observed for the three particle inertia, although
for the two largest Stokes numbers the filaments appear to be more intense and
corrugated. The temperature dissipation rate is fairly homogeneous for the smallest
particle inertia. No structures are seen and only small deviations from the mean value
are observed. At St = 0.352 and St = 7.343 instead, the temperature dissipation rate
presents filaments of very high intensity (more than two decades larger than the
mean values, as will be confirmed in figure 18). By comparing with the temperature
fields in figure 1 we observe, as expected, that the filaments are found where the
temperature gradient is large.

We now investigate the effect of the Stokes number, the non-dimensional particle
number density, C and the non-dimensional box size, γ , on average quantities
characterizing the flow. In figures 3 and 4 we consider the mean turbulent kinetic
energy, mean dissipation rate of turbulent kinetic energy, fluid temperature variance
and mean rate of dissipation of the temperature fluctuations. It is important to note
that in these figures all the quantities are normalized by �∗, t∗ and θ∗. Those scales
being independent of St, C and γ , it is straightforward to discuss the effect of those
parameters.

First we focus in figure 3 on the effect of both Stokes number and mean particle
concentration. All quantities appear to peak around St = 1, independently of the
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FIGURE 1. Visualization in a x–z plane: (a,c,e) of the logarithm of the particle
concentration field (as computed by (3.1)) normalized by the mean concentration n/n, and

(b,d,f ) the fluid temperature fluctuations normalized by its standard deviation θ/θ 2
1/2

. For
γ = 570 and C = 0.19, at three Stokes numbers: St = 0.003 (a,b), St = 0.352 (c,d) and
St = 7.343 (e,f ).

concentration. For small Stokes numbers, the statistics are dependent on the overall

particle number density while, above St ≈ 0.1, this dependency vanishes in most
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FIGURE 2. Visualization in a x–z plane: (a,c,e) logarithm of the turbulent kinetic energy
dissipation rate normalized by its mean value log10(ε/ε) and (b,d,f ) logarithm of the
temperature fluctuation dissipation rate normalized by its mean value log10(εθ/εθ ). For
γ = 570 and C = 0.19, at three Stokes numbers: St = 0.003 (a,b), St = 0.352 (c,d) and
St = 7.343 (e,f ).

cases (the dependency of εθ on the concentration is attributed to the small number
of particles in the system for C = 0.035 and C = 0.19).

The influence of the mean particle concentration at low Stokes numbers reflects that
the mean inter-particle distance is an important length scale, and that the dynamics is
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FIGURE 3. (Colour online) Influence of Stokes number and the mean particle
concentration on the turbulent kinetic energy (a), the dissipation rate of turbulent kinetic
energy (b), the fluid temperature variance (c), and the mean dissipation rate of temperature
fluctuations (d) normalized respectively by u∗ = �∗/t∗, ε∗ = �2

∗t−3
∗ , θ∗ = βt∗ and εθ,∗ = θ 2

∗ t−1
∗ ,

in log–log scales. For γ = 83 and C = 0.035 (red triangles), 0.19 (black squares), 0.35
(blue circles), 1.82 (green squares), and 8.77 (purple stars).

essentially driven by the thermal plumes issued from individual particles. Conversely,
for high enough Stokes numbers, the dynamics is not governed by individual particle
effects but by particle clustering.

Figure 4 shows the effect of the Stokes number on the various statistics for five
non-dimensionalized box sizes, γ . We observe a maximum at a Stokes number
which shifts to higher values when γ is increased, but is in general of order 1. At
vanishingly small Stokes numbers, the averaged quantities are practically independent
of γ , except for the turbulent kinetic energy. When the Stokes number is increased,
the influence of γ is significant and indicates an increase in both velocity and
temperature fluctuations with the increasing domain size. This is consistent with the
picture of a cluster-dominated system, in which the clusters present wide range of
size along with regions depleted in particles of dimensions commensurate with the
large scales of the flow. Interestingly though, the domain size has no sizable effect
on the mean temperature dissipation rate. Since εθ is also roughly independent of the
particle concentration, for sufficiently large Stokes number (figure 3), it appears to
be only dependent on St when the particles organize in clusters. This has important
consequences for the model linking the temperature dissipation rate to the local
particle clustering, which we present in the next section.
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γ on the turbulent kinetic energy (a), the dissipation rate of turbulent kinetic energy (b),
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Although the usual definitions of turbulent scales rely on the concept of inertial
range, which is not necessarily the case here as discussed in § 4.3, to discuss the
turbulent nature of this flow, we provide estimation of the Reynolds number based

on the Taylor scale Rλ =
√

u′2λ/ν. Using the classical estimation of the Taylor scale,

λ =
√

15u′2ν/ε, with the characteristic velocity estimated from the turbulent kinetic

energy, u′2 ≈ 2/3K, one obtains the following relation for the Reynolds number based

on the Taylor scale: Rλ= (2/3)
√

15(K/u2
∗)(ε/ε∗)−1/2. Depending on the parameters, Rλ

ranges from 15 (γ = 83, C = 8.77, St = 0.003) to 250 (γ = 570, C = 0.19, St = 1.064)
as can be computed from figures 3 and 4. Similarly, the usual Stokes number based
on the Kolmogorov time scale, Stη = τp/τη, can be deduced from the value of ε/ε∗:
Stη = St(ε/ε∗)1/2.

4.2. Scaling
Similarly to Hinch (1988), Brenner (1999) and Aliseda et al. (2002), we consider both
thermal and momentum budgets on a volume of fluid containing a cluster of particles
in order to represent the active source of heat and buoyancy. Such volumes of fluid



are denoted below as ‘effective particles’. The thermal budget of such an effective

particle is written as:

ρ0cf Vc
d

dt
θc = Np,cΦp − ρ0cf Vc

θc

τθ,c
, (4.1)

where Vc is the characteristic volume of the cth cluster, Np,c is the number of actual
particles contained in it, θc is its characteristic temperature and τθ,c represents its
temperature mixing time. The left-hand side of (4.1) is the cluster thermal inertia
(recall that here we neglect the thermal inertia of the individual particles), the first
term on the right-hand side accounts for the heat source in it and the second term
represents the relaxation to thermal equilibrium with the bulk flow. Note that we
assume θ = 0. i.e. we take the characteristic bulk temperature to be equal to the
mean temperature, due to the relatively small particle volume fraction in the cluster.
Assuming stationarity, equation (4.1) simplifies to:

θc = β
Np,c

Vcn
τθ,c. (4.2)

The momentum balance for an effective particle reads:

ρ0Vc
d

dt
uc = ρ0Vcαgθc − ρ0Vc

uc

τc
, (4.3)

where uc is the velocity of the effective particle and τc is its momentum relaxation
time. Notice that the linearized state equation has been used to express the buoyancy
term: g(1 − ρ0/ρc) = αgθc. In case of stationarity one obtains:

uc = αgθcτc. (4.4)

4.2.1. Vanishing particle inertia
As seen in figure 1, the particle distribution is almost homogeneous for small Stokes

numbers. The absence of actual clusters implies: Np,c = 1 in (4.2), meaning that each
effective particle encompasses only one actual particle. According to (2.26) and
(2.27), the characteristic length and time scales of the convective cells around each
particle are given by �c = �∗ and τθ,c = t∗. In addition, we consider that Vc = �3

c = �3
∗.

Substituting in (4.2) one obtains:

〈θp〉p ∼ θp,0 = βt∗
�3∗n

= θ∗C−1. (4.5)

We introduce θp,0, which denotes the characteristics particle temperature in the small
Stokes number limit. Equation (4.5) is tested in figure 5(a). It is observed that for the
two smallest Stokes numbers (St = 0.0029 and 0.017), the mean particle temperature
follows well the relation (4.5) over all the range of particle concentrations considered.
Conversely, when the Stokes number is increased, the mean particle temperature
deviates significantly from (4.5): for large particle concentrations. It reaches a value
independent of concentration but dependent on the Stokes number (as also observed
in figure 3). At low concentrations, the particle mean temperature at large St appears
to approach asymptotically (4.5). This is a consequence of the small number of
particles: even when the Stokes number is not small, the particles in the system are
not numerous enough to form clusters and their individual dynamics dominates.

The scaling proposed here assumes no collective particle effects, and this is valid
either for vanishingly small particle inertia or small number of particles. To specify
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FIGURE 5. (Colour online) Evolution of statistical quantities with the non-dimensional

mean particle concentration C = n�3
∗ for different Stokes numbers, and γ = 83. Plots are in
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with the curve 0.2 C−4/5 (dashed lines); (e) the fluid kinetic energy and comparison with
the curve 4 C−2/5 (dashed lines); ( f ) mean particle vertical velocity and comparison with
the curve 0.07 C−4/5 (dashed lines).

this limit, let us introduce the following time scale from (4.5):

t0 = t∗C−1 ∼ 〈θp〉p

β
. (4.6)



This time scale is related to the characteristic heating rate of the particles in the
absence of collective effects. The vanishing particle inertia limit corresponds to:

τp

t0

= St · C = St0 → 0. (4.7)

We notice that a necessary condition to describe the particle temperature from (4.5)
is the absence of large fluctuations in the particle temperature. This will be confirmed
later in figure 18 where the p.d.f. of the particle temperature is shown. From this
figure we see that at small Stokes number the particles temperature presents nearly
Gaussian fluctuations.

We now develop further this argument to propose a power-law dependency on C for
other statistical quantities of interest. From the thermal balance equation in the bulk
of the fluid, equation (2.22), one obtains the scaling for the mean thermal dissipation
rate:

εθ ∼ εθ,0 = βθ∗C−1. (4.8)

Assuming that the Bolgiano scale, LB = ε5/4ε
−3/4
θ (αg)−3/2 (typically used in turbulent

thermal convection), is of the order of the dissipative scale LB = �∗, that is to say there
is no inertial range (Lohse & Xia 2009), one gets the following scaling for the mean
dissipation rate:

ε ∼ ε0 = �2
∗t−3

∗ C−3/5. (4.9)

The validity of the relation (4.9) along with assumption LB = �∗ for St � 1 is assessed
in figures 5(b,c). Very good agreement is clearly observed.

From the Bolgiano–Obukhov scaling argument for the temperature, (θ(x + r)− θ(x))2

= ε
4/5
θ (αg)−2/5r2/5 (Bolgiano 1959; Obukhov 1959; Lohse & Xia 2009), we obtain the

estimation of the fluid temperature variance, assuming that the integral length scale
of the temperature fluctuation is proportional to �∗ (as shown in figure 5b):

θ 2 ∼ θ 2
0 = θ 2

∗ C−4/5. (4.10)

Moreover we observe that the variance of the particle temperature is proportional to
the fluid temperature variance (not shown). Similarly the Bolgiano–Obukhov scaling

for the velocity, (u(x + r) − u(x))2 = ε
2/5
θ (αg)4/5r6/5, gives an estimate of the velocity

variance:

K ∼ K0 = u2
∗C−2/5. (4.11)

Finally, the mean vertical particle velocity is estimated from the momentum budget
for an effective particle. In (4.4) the relaxation time scale is estimated via an eddy
viscosity assumption: τc = �c/u′ = �cK−1/2. Then with the previous relations we get:

〈wp〉p ∼ u∗C−4/5. (4.12)

Figures 5(d–f ), compare relations (4.10), (4.11) and (4.12) with the numerical
simulations. Again, a very good agreement is observed for the smaller Stokes number.
The deviation observed at St = 0.017 for large particle concentration is interpreted in
view of (4.7): when the particle concentration becomes large, we expect a departure
from the individual particle limit. We also note that the proportionality in (4.5)–(4.12),
as determined by a linear fit, are of order 1 for all the cases (see caption of figure 5).
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4.2.2. Cluster-driven dynamics for intermediate particle inertia
When the Stokes number increases, the particle distribution becomes non-

homogeneous. The resulting clusters present a wide range of scales, as illustrated in
figure 1. More qualitatively, we provide in figure 6 the radial distribution function
(Sundaram & Collins 1997) for the various Stokes numbers and for γ = 570 and
C = 0.19. The radial distribution function is defined as the ratio of the number of
particle pairs at a given separation r to the expected number of particle pairs for
uniformly distributed particles. For vanishingly small Stokes number there is no sign
of clustering, while we observe a maximum clustering for St = 0.35. At the largest
Stokes numbers there is only large-scale clustering. One can clearly see that at small
distances the radial distribution function presents power laws whose exponent is
very dependent on the St number. Figure 7 shows the correlation dimension defined
as D = 3 + a, a being the exponent of the power law obtained by fitting the pair
correlation function at small distances (r/�∗ < 4). The correlation dimension is plotted
against the Stokes number for the various values of γ and C considered in the paper.
We observe that the small-scale clustering is independent of C and is only weakly
dependent of γ .

As a consequence of the particle clustering, in (4.2) and (4.4) the parameters
describing the effective particle, such as Vc, Np,c, θc, uc are a priori random variables.
The model equation (4.2) is re-expressed as:

θc = β
nc

n
τθ,c, (4.13)

where we introduce nc = Np,c/Vc the number density of actual particles within an
effective particle. In this regime the effective particles correspond to particle clusters,
which we shall now characterize.

As proposed by Monchaux, Bourgoin & Cartellier (2010), we detect particle clusters
using the Voronoï tessellation of the particle positions. As shown by Zamansky et al.
(2014), the p.d.f. of the Voronoï cell volumes present very large tails for intermediate
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particle inertia. We use the connectivity of the Voronoï tessellation to form sets

of particles that define individual clusters (details of the algorithm are given in

appendix B). Once the clusters are identified, it is possible to compute their statistical

features. In figure 8 we present the p.d.f. of the number of particles per cluster. This

p.d.f. exhibits power-law behaviour over a few decades, with a slope depending on

the Stokes number but independent of concentration or box size. Clusters with a very

large number of particles are observed. For example, at Stokes St = 1.064, the largest

cluster includes almost 10 % of the particles of the system.



In figure 9 we consider the joint probability of Np,c and Vc in order to estimate
the particle concentration in clusters nc = Np,c/Vc, which is an unknown in (4.13).
The cluster volume is estimated as the sum of the volume of the Voronoï cells of
the particles belonging to the cluster. The particle number and cluster volumes are
normalized by the total number of particles and the total domain volume, respectively.
In this figure we present the plot for γ = 83 and C = 8.77 and for St = 0.074,
0.352, 1.064 and 7.343. We observe that the cluster volumes and the numbers of
particles per cluster are highly and linearly correlated. Moreover, we observe that
the correlation between the cluster volume and its number of particles is much
more pronounced for large clusters. As a consequence, one can conclude that the
particle concentration in large clusters is almost deterministic, and neglecting the

small fluctuations one can write: 〈log(Vc/H3)| log(Np,c/Np)〉 ∼ log(Ṽc(Np,c/Np)/H3),

where Ṽc(Np,c/Np) denotes for the characteristic volume of clusters with Np,c particles
inside. Moreover, from the linear behaviour of the conditional average, we have:

log(Ṽc(Np,c/Np)/H3) = A log(Np,c/Np) + B. This relation transforms to:

nc

n
=
(

Ṽc(Np,c)

H3

)(1−A)/A

e−B/A. (4.14)

The coefficients A and B in (4.14) are a priori dependent on the parameters of the
flows (St, γ and C). They are estimated by linear fitting for the various DNS. We find
that A = 1 with a precision of at least ±10−4 for every case considered in table 1. As
a consequence, for sufficiently large clusters, the particle concentration in the clusters
is independent (on average) of the cluster size, and (4.14) reduces to:

nc

n
= e−B. (4.15)

The particle concentration in large clusters, as obtained from the measure of the B
coefficient through (4.15), is given for the various parameters considered by the DNS
in figure 10. From this figure we observe that the particle concentration in clusters
presents a peak around St = 0.35, where it is approximately ten times the mean
concentration. Remarkably nc is almost independent of both γ and C (the reduced
values observed for C = 0.035 are likely due to the small number of particles in
the domain). Therefore, assuming that τθ,c in model (4.13) is not dependent of the
particle concentration, the characteristic temperature of large clusters is essentially
a function of the Stokes number only. And since the large clusters gather most
of the particles (as seen in figures 8 and 9) we estimate as well that the mean
particle temperature presents a behaviour similar to nc. As a consequence, the mean
temperature dissipation rate, which is linearly related to the mean particle temperature
through (2.22), should also depend only on the Stokes number. This is in agreement
with the trends in figures 3 and 4 which showed, for intermediate particle inertia,
almost no dependency of temperature dissipation rate on C and γ . Therefore in
this regime the dynamics of the flow appears to be governed by the formation of
self-similar clusters, the features of which are mostly dictated by the particle Stokes
number. Similarly, we can conclude that the other statistical quantities of the flow
become independent of the mean particle concentration when the dynamics of the
flow leads to the formation of self-similar clusters of particles.

As discussed above, we observe evidence of a clustering transition with increasing
the Stokes number. Based on this observation, we now discuss the dependency on the
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FIGURE 9. (Colour online) Colour map for the logarithm of the joint probability density
function of the logarithm of the number of particles per cluster Np,c and the cluster
volumes Vc for four Stokes numbers, St = 0.074 (a), 0.352 (b), 1.064 (c) and 7.343 (d)
at γ = 83 and C = 8.77. The number of particles is normalized by the total number of
particles in the system, and the cluster volume is normalized by the total volume. The
solid line is the conditional average of the cluster volumes with the number of particles
per cluster: 〈log10(Vc/H3)| log10(Np,c/Np)〉 and black dashed lines is the conditional average
plus or minus the conditional standard deviation, with the standard deviation defined
as follows: (〈log10(Vc/H3)| log10(Np,c/Np)

2〉 − 〈log10(Vc/H3)| log10(Np,c/Np)〉2)1/2. The grey
dashed lines corresponds to the bisectrix log10(Vc/H3) = log10(Np,c/Np).

Stokes number at intermediate particle inertia. By analogy with the continuous phase
transitions, we expect that the order parameters, for instance the cluster concentration
nc or the particle mean temperature, are continuous across the transition, while their
first derivatives against the control parameter (here the Stokes number) present singular
behaviour at the transition. This leads us to assume the following functional shape,
reminiscent of systems close to a critical point, for various macroscopic quantities

such as K, ε, θ 2 and εθ denoted generically by χ :

χ − χ0

χ0

= Dχ(γ )(St0 − St0,crit)
dχ , (4.16)

with St0 = St · C as already defined in (4.7) and St0,crit the critical Stokes number above
which the clustering transition occurs. χ0 is the characteristic scale of χ before the
transition, i.e. in the small particle inertia limit, as given by (4.5)–(4.12). The value
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FIGURE 10. (Colour online) Mean particle concentration in large clusters as a function
of the Stokes number. (a) For γ = 83 and C = 0.035 (red triangles), 0.19 (black squares),
0.35 (blue circles), 1.82 (green squares), 8.77 (purple stars); (b) for C = 0.19 and γ = 48
(red triangles), 83 (black squares), 190 (blue circles), 330 (green squares) and 570 (purple
stars).

of the exponent dχ and the expression of Dχ(γ ), which account for the box size effect,
are dependent on the quantity χ considered. A priori St0,crit, Dχ and dχ are unknown.

The exponent dχ is determined as follows. For St0  St0,crit, (but maintaining a
particle inertia small enough to observe clusters) equation (4.16) approximatively
reduces to:

χ

χ∗
≈ χ0

χ∗
D(γ )Cdχ Stdχ , (4.17)

where χ∗ is given by the appropriate combination of �∗, t∗ and θ∗. Substituting by the
expression for χ0 obtained in one of (4.5)-(4.12): χ0/χ∗ = AχC−aχ , one gets:

χ

χ∗
≈ AχD(γ ) Cdχ −aχ Stdχ . (4.18)

From figure 3 we concluded that the dependency on the concentration vanished for
sufficiently large Stokes number. This implies that dχ = aχ in (4.16). Namely, we

obtain for K, ε, θ 2 and εθ respectively: dK = 2/5, dε = 3/5, dθ2 = 4/5 and dεθ
= 1.

Notably, this means that εθ − εθ,0 increases linearly with St0 − St0,crit. This is consistent
with a maximum segregation argument. According to the resonant eddies assumption
of Yoshimoto & Goto (2007), the particles are efficiently segregated by the fluid
structures having a characteristic time commensurate with the relaxation time of
the particle. In the meantime, the particles, being a heat source, impose the time
scale of the temperature forcing through their clustering, which evolves on a time
scale commensurate with the particle response time. This illustrates the feedback
loop mechanism. Note that in § 4.3.1 we study the concentration/temperature and
velocity/temperature correlations which also give support to the proposed feedback
loop mechanism.

For the critical Stokes number St0,crit we propose the estimate St0,crit = 0.0035 ±
0.001 obtained from a fit of the DNS. The value of St0,crit does not seem to depend
strongly on the non-dimensional parameters, but further studies are required to
determine precisely the value of the threshold as well as its dependence on the
non-dimensional parameters.
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FIGURE 11. (Colour online) Plot of (χ −χ0)/(χ0Dχ (γ )) versus St0 − St0,crit in logarithmic

scales and comparison with the power law y = xdχ . With χ denoting the turbulent kinetic
energy (a), the mean dissipation rate of turbulent kinetic energy (b), the fluid temperature
variance (c) and the mean dissipation rate of temperature fluctuations (d). Open symbols
for γ = 83 and C = 0.035 (red triangles), 0.19 (black squares), 0.35 (blue circles), 1.82
(green squares), 8.77 (purple stars); filled symbols for C = 0.19 and γ = 48 (red triangles),
83 (black squares), 190 (blue circles), 330 (green squares) and 570 (purple stars).

We assume that Dχ(γ ) is a power law of γ : Dχ(γ ) ∼ γ bχ . In the next section we
discuss the dependency of the flow statistics on the box size for large inertia particles,

and as a first estimate we use this value of bχ . Accordingly, one has for K, θ 2, ε, εθ

respectively: bK = 4/3, bθ2 = 2/3, bε = 1 bεθ
= 0.

In figure 11 we test the scaling relation (4.16). In this figure (χ − χ0)/(χ0γ
bχ )

is plotted versus St0 − St0,crit in logarithm scales for χ = K, ε, θ 2 and εθ with χ0

from (4.5)–(4.11) and bχ given by (4.20)–(4.21). As shown in this figure, for small
enough values of St0 −St0,crit the various quantities present power-law behaviour with a
slope in very good agreement with the predicted slope. A confirmation of the critical
behaviour of this flow at the clustering transition can be seen in the fact that this
scaling law appears to be consistent for all the observables. Moreover, the different
curves present a reasonable overlap, justifying the scaling with γ .

4.2.3. Large particle inertia
In this section we propose a scaling law for the statistics of the flow in the case of

large particle inertia. We stress that when the particle inertia becomes large, several



of the assumptions made at the beginning of § 4 are not strictly valid anymore. First,
the particle thermal inertia may not be negligible, and therefore the particle may not
be in the thermal equilibrium with the surrounding fluid. Secondly, the particle mass
loading becomes important and the momentum two-way coupling with the fluid could
become significant. Indeed, in § 5.1 it will be shown that for St > O(1) the statistics
of the flows are altered when both such effects are accounted for in the simulations.
Nevertheless, in this subsection we still remain under those simplifying hypotheses.
This scaling is then interpreted as an upper bound for the dependency on γ .

When the particle inertia is very large, the particle concentration is nearly
homogeneous, as in the vanishing inertia limit (figure 1). The statistics, however,
are now almost independent of the mean particle concentration (figure 3). When the
particle time scale is larger than the characteristic time tH of the buoyancy forcing at
the scale of the domain H:

tH =
(

H
αgβ

)1/3

, (4.19)

the particles present uncorrelated ballistic motions. As a consequence, both buoyancy
forcing and forcing of the fluid temperature fluctuations take place at the scale of the
box. Therefore we have the following estimates: Lint ∼ H and tint ∼ tH where Lint =
K3/2/ε and tint =K/ε are the integral length and time scales. Manipulating the previous
relations yields an expression for the characteristic turbulent dissipation rate:

εH = αgβ H, (4.20)

as well as for the characteristic velocity scale:

uH = (αgβ)1/3H2/3. (4.21)

Similarly, we estimate the characteristic temperature as:

θH = βtH. (4.22)

The temperature dissipation rate remains set by a balance between the local heat
released by the particles and the diffusion process:

εθ,H = εθ,∗ = β2t∗. (4.23)

In terms of the characteristic scales �∗, t∗ and θ∗, introduced in equations (2.25)–
(2.27), these relations read: tH = t∗γ 1/3, εH = ε∗ γ , θH = θ∗ γ 1/3 and uH = u∗ γ 2/3 with
ε∗ = �2

∗t−3
∗ , u∗ = �∗t−1

∗ .
The previous relations are tested in figure 12, in which the turbulent kinetic energy,

the mean turbulence dissipation rate and the fluid temperature variance are normalized
by the characteristic scale introduced in (4.20)–(4.22). These quantities are plotted as
a function of the Stokes number based on the time scale tH (4.19):

StH = τp

tH
= St γ −1/3. (4.24)

We observe a good collapse of the curves for the various values of γ when the particle
inertia becomes large. From this figure it appears that the large inertia limit is reached
for StH > 1, and all quantities peak between StH = 0.1 and 1. Also important is that

K, ε and θ
2

peak for StH = O(1). This is in contrast with the mean temperature
dissipation rate which is almost independent of γ and which presents a peak at St =
O(1) regardless of the value of γ , as seen in figure 4.

We point out that even for StH < 1 the collapse of the various curves presented in
figure 12 is reasonable (although not perfect). This is the reason why we used these
power laws with γ in the previous paragraph.
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4.3. Spectral analysis
We present the spectral density of the fluid temperature fluctuations, the turbulent
kinetic energy and the particle concentration field in figure 13 for γ = 570 and
C = 0.19, which are representative of all domain sizes and concentrations. We
consider here the three-dimensional spectra obtained by integration of the Fourier
coefficient regardless of the angular dependence. For the temperature fluctuations it
reads: Eθ (k) = ∫

|k|=k θ(k)θ∗(k) dk, with θ∗(k) the complex conjugate of θ(k). Also

note that here the • operator stands for the temporal average. In figure 13 the spectra
are normalized by the scale introduced in (2.26)–(2.27) and the wavelength k is
normalized by k∗ = 2π/�∗. A clear power law is present up to wavelengths smaller
than 0.1k∗ regardless of the Stokes number. For higher wavenumbers, an exponential
decay characteristic of the dissipative region is observed. The Stokes number has a
dramatic effect on the temperature spectra: at very small particle inertia, the power-law
exponent is positive, indicating that the structures of the fields are dominated by
the small scales. With increasing Stokes number, the power-law exponent at small
wavenumber decreases, going through zero at approximately St = 0.074, and reaching
an asymptotic value for the largest particle inertia. The decrease of the power-law
exponent with St is consistent with the temperature snapshot in figure 1, where we
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FIGURE 13. Temperature (a), velocity (b) and particle concentration (c) spectra, for the
various Stokes numbers (St = 0.003, 0.019, 0.074, 0.352, 1.064, 7.343 and 29.36, from
light grey to black respectively) at γ = 570, C = 0.19. Comparison with the power law
obtained by fit of the DNS in dashed lines. Insert: exponent of the power law as a function
of the Stokes number.

observe that larger structures develop in the temperature field when the Stokes number
rises. The evolution of the power-law exponent with the Stokes number is reported
in the insert of figure 13. For very small values of the Stokes number, the exponent



of the temperature spectra remains constant at approximately +1/3. For St above the
threshold, clusters are formed, and then, when the Stokes number is further increased,
the clustering of the system is reinforced. This gradual evolution of the particle
clustering cause the smooth evolution the spectra exponent, which decreases down to
the ‘Obukhov–Corrsin’ value of −5/3 obtained for passive scalar fluctuations forced
at large scale in isotropic turbulence (Obukhov 1949; Corrsin 1951). The continuous
evolution of the power-law exponent suggests that it may take non-rational values at
intermediate Stokes number. The anomalous values of the exponent are associated
with the forcing imposed by the particle clusters, which are seen to have a fractal
geometry (as seen in figures 6, 7 and 8). The spectra slope becomes sensitive to the
Stokes number from St = 0.019 at C = 0.19 which gives an estimate of St0 = 0.0036
consistently with the value proposed for St0,crit in § 4.2.2.

Concerning the turbulent velocity spectra, a somewhat similar behaviour is observed,
with a continuous decrease of the power-law exponent from approximately −1 at
small Stokes numbers to approximately −5/3 at large Stokes numbers. The important
difference is that the exponent in this case is negative for the entire St range, which

implies that the integral K = ∫ kmax

kmin
Eu(k) dk does not converge when increasing the size

of the domain (see figure 4). On the other hand, the positive power-law exponent,
at small Stokes number, for the temperature spectra implies the convergence of

the integral θ 2 = ∫ kmax

kmin
Eθ (k) dk consistent with the independency of the temperature

variance on γ (see figure 4) at vanishingly small Stokes number.
The spectral density of the particle concentration field characterizes the scale of

the concentration fluctuations which is closely related to the particle clustering. As
expected, at small Stokes numbers we observe a k2 power law corresponding to
a random homogenous particle distribution. For intermediate Stokes number, one
observe an almost flat spectrum, indicating that the particle concentration fluctuates
at all scales. At large Stokes numbers, most of the concentration fluctuations take
place at very large scales while the smallest scales of the concentration fields become
randomly distributed (as shown by the k2 slope). This evolution of the concentration
spectra with St appears to be consistent with the findings of the § 4.2.2.

4.3.1. Budget of thermal and kinetic energy
We consider the temperature fluctuations and turbulent kinetic energy budget in

spectral space in order to analyse in more detail the original forcing and to provide
arguments that the particle clustering imposes the forcing of the flow. Multiplying the
Fourier transform of (2.10) by θ∗(k) and taking the average, one obtains the scale by
scale temperature budget:

dt
1
2
|θ |2(k) = Re[θ∗(k)q′(k)] + Re[θ∗(k)Nθ (k)] − κk2|θ(k)|2, (4.25)

where Re[x] denotes the real part of x and |θ(k)|2 = θ∗(k)θ(k). The first term on
the right-hand side is the averaged source of temperature variance, Pθ (k), which is
related to the temperature–concentration correlation. The second term represents the
inter-scale transfers due to the nonlinear terms, Nθ (k) being the Fourier transform
of the convective term. The last term is the spectral dissipation of the temperature
fluctuations, Dθ (k). The forcing Pθ (k) and dissipation Dθ (k) spectra are obtained
integrating over the sphere |k| = k and are plotted in figure 14. The forcing spectra
presents a power law for low wavenumbers (see fitting dashed lines). The exponent
of the forcing power law displays a continuous evolution with the Stokes number,
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FIGURE 14. Temperature forcing (a) and temperature dissipation (b) spectra defined in
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the power law obtained by fit of the DNS in dashed lines. Insert: exponent of the power
law as a function of the Stokes number.

as shown in the inset of figure 14. At small Stokes numbers (St = 0.003 to 0.074)
the temperature forcing is weak at small wavenumbers and the power law has a
positive slope, similar to the dissipation spectra. For intermediate Stokes number
(St = 0.352 and 1.064) we observe a broadband temperature forcing with a roughly
constant magnitude over the scales. As apparent, the temperature fluctuations present
significant correlation with the particle concentration fields at all scales, indicating
that the particle clustering is responsible for the temperature fluctuation. When the
Stokes number becomes large (St = 7.343 and 29.36) the temperature forcing is more
complex: at small wavenumbers there is a sharp power-law decay of the forcing
spectra, while at high wavenumber the slope is positive and similar to that found
for small Stokes number. The two slopes suggest that, in this regime, different
mechanisms are at play depending on the wavenumber: at small scales the particle
distribution is homogeneous, and we observe a behaviour similar to the small Stokes
cases; at large scales instead the particles have a non-homogeneous distribution,
similar to the intermediate Stokes cases. Note that the small bump in the temperature
spectra observed in figure 13 for the two largest Stokes number occurs at the scales
of the cross-over between the two power laws. Also, we mention that this scale
is dependent on the particle mean number density but is not shown for brevity. It
appears therefore that at large Stokes number the forcing operates essentially at
small wavenumbers, and a clear scale separation appears between the forcing and
dissipation mechanisms. This is consistent with the classical −5/3 exponent for the
temperature fluctuation spectra observes in figure 13.

Similarly, the spectral turbulent kinetic energy budget reads:

dt
1
2
|u(k)|2 = Re[u∗

i (k)αgθ(k)δi3] + Re[u∗
i (k)Ni(k)] − νk2|u(k)|2. (4.26)

The first term on the right-hand side of (4.26) is the velocity–temperature correlation
and gives the buoyancy forcing of the kinetic energy in spectral space P(k), while the
last term represents the dissipation D(k). In figure 15 both terms, integrated over the
shells |k| = k, are plotted against the wavenumber for the different considered Stokes
numbers. From this figure, it is visible that the correlation between vertical velocity



102

103

104

101

100

10–1

10–2

10–3 10010–110–2

102

103

104

101

100

10–1

10–2

10–3 10010–110–2

(a) (b)

 –0.5

 –1.0

 –1.5

 –2.0

 –3.0

 –2.5

10010–110–210–3 102101

St

FIGURE 15. Forcing (a) and dissipation (b) spectra of the turbulent kinetic energy as
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with the power law obtained by fit of the DNS in dashed lines. Insert: exponent of the
power law as a function of the Stokes number.

and temperature fluctuations is significant, as expected for buoyancy-dominated flows.
For small Stokes numbers the forcing is somewhat larger than the dissipation at small
wavenumbers, causing turbulent energy fluctuations at large scales as seen in figure 13,
as well as a small energy flux towards the small scales. When the Stokes number
increases the forcing becomes even more dominant at small wavenumbers, leading
to the separation of forcing and dissipative scales. The evolution of the power-law
exponent is depicted in the insert of figure 15. We observed that for the largest Stokes
number the exponent takes a value close to −7/3 as in the case of turbulent thermal
convection forced by a uniform mean temperature gradient (Borue & Orszag 1997).

The fluxes of thermal energy and turbulent kinetic energy towards smaller
scales are plotted in figure 16. These are defined as Fθ (k) = ∫∞

k Tθ (k′) dk′ and

F(k) = ∫∞
k T (k′) dk′, respectively, with Tθ and T the nonlinear transfer terms for

the temperature and the kinetic energy. For statistically stationary flow one has
Tθ =Dθ −Pθ and T =D −P . The flux of thermal energy across scales is practically
negligible at small Stokes numbers, because both Dθ and Pθ are small as seen in
figure 14. Increasing the particle inertia, results in an increase of temperature flux
because the production term becomes important at large scales. At large Stokes
numbers there is an almost constant thermal flux over approximately a decade, due
to the scale separation observed previously between production and dissipation.

Regarding the flux of turbulent kinetic energy, at small Stokes numbers only a
very small energy flux is observed, since the production and dissipation are almost
in balance at all scales. In such instance the flow should not be referred as turbulent
in the classical sense. For intermediate Stokes numbers, the energy flux is more
substantial, and is stronger at the intermediate scales than at the large scales. This
is in contrast with classical turbulent flows forced at the large scales, and is due to
the fact that here the forcing acts at all scales. For large Stokes numbers, a constant
energy flux is observed over the intermediate wavenumbers. This is similar to classic
buoyancy-driven turbulent flows, with imposed temperature gradient at large scales,
which causes a separation of scales between production and dissipation.
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4.3.2. Anisotropy
To study the inherent anisotropy of the present flows we consider the angular

dependence of the spectral density. Considering the spherical coordinates k, φ, ω
defined as k = |k|, sin φ = kz/k and cos ω = kx/k⊥ with k2

⊥ = k2
x + k2

y , we investigate

the directional temperature spectra Eθ (k, φ) = A
∫ 2π

0
|θ |(k, φ, ω) dω. In this definition

the coefficient A = 2(cos φ)−1 is introduced to normalize the domain of integration.
The directional temperature spectra at φ = 0, φ = π/5, φ = π/3 and φ = π/2 and

the global spectrum are plotted in figure 17 for three Stokes numbers (St = 0.003,
0.352 and 7.343). Both spectra are close to each other over almost the whole range
of wavenumbers regardless of the Stokes number, indicating that the structures of the
temperature field are very close to isotropy.

Similarly, in figure 17 we plot the directional and global spectra of the turbulent
kinetic energy. For St = 7.343 and St = 0.352 a slight anisotropy of the structures is
observed at small and intermediate wavenumbers. For φ = 0 we observe an energy
excess compared to the global spectrum, and energy deficit for φ = π/2, indicating
the presence of large, vertically aligned structures. This result is consistent with the
fact that, as described in the previous section, at large Stokes numbers the forcing
takes place essentially at large scales, allowing isotropy to be restored at small scales.
This result is also consistent with finding of Biferale et al. (2003) that turbulent
thermal convection driven by a constant temperature gradient is not distinguishable
from other anisotropic large-scale forced flows. It should be noted that the return to
isotropy at small scales of fully developed turbulence is not always observed and in
fact, the anisotropy imposed by the large scales has been shown to persist at small
scales, in von Kármán flows at high Reynolds number (Ouellette et al. 2006). At
small Stokes numbers the anisotropy of the flow structures is more pronounced and
persists up to the smallest scales of the flow. This is likely due to the anisotropic
forcing operating at all scales, and to the lack of an effective energy cascade restoring
isotropy. Although the spectra present some angular dependence, the deviation stay
rather small so that the integration over the entire shell k = |k| to obtain the global
spectra is meaningful.
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FIGURE 17. The anisotropic spectra of the temperature fluctuations (a,c,e) and of the
turbulent kinetic energy (b,d,f ) for St = 0.003 (a,b), 0.352 (c,d) and 7.343 (e,f ) at γ = 570,
C = 0.19, for four values of φ: φ = π/2, φ = π/3, φ = π/5 and φ = 0, from light grey
to black respectively. Comparison with the global spectra in grey dashed lines.

4.4. Probability density functions
In order to study the fluctuations of the flow, we consider the p.d.f. of some key
quantities. The p.d.f. of fluid and particles temperature are given in figure 18. First,
we remark that the distributions for both particle temperature and fluid temperature
are very close, which is in part a consequence of the assumption of vanishing particle
specific heat. At small Stokes number, the temperature p.d.f. deviates somewhat from
the Gaussian distribution. Indeed, for vanishing particle inertia, the flow is dominated
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by the dynamics of individual particles (see § 4.2.1), and as a consequence, the
ensemble of discrete hot spots leads to positive fluctuations occurring more frequently
than in a normal (Gaussian) process. However, note that with increasing mean particle
concentration the temperature fluctuations return to the normal distribution (not shown
for brevity). Accordingly, the deviation from normality is interpreted as an effect of
the finite number of particles.

For the largest Stokes number, the temperature distribution is closer to Gaussian
irrespective of the concentration. This is a consequence of the absence of correlations
between the heat sources provided by the ballistic-like motion of the particles with
large inertia. For intermediate Stokes numbers, the p.d.f. are strongly skewed, with
an exponential tail for the positive values. Similarly, Chillá et al. (1993) observed
in a Rayleigh–Bénard flow a transition for the temperature p.d.f. from Gaussian
to exponential for Rayleigh number Ra > 107. In our flow this is likely caused by
the particle clustering leading to the formation of high temperature regions. This is
confirmed by figure 1 where we observe very localized regions of intense positive
temperature fluctuations that are well correlated with the high concentration regions.

Figure 18 also presents the p.d.f. of the temperature dissipation rate εθ . For small
Stokes numbers, the fluctuations of εθ remain rather small reflecting the fact that
the temperature gradient fields are relatively ‘smooth’, as seen in figure 2. When the
Stokes number is increased, extreme fluctuations of εθ develop and an increasingly
stretched tail of the p.d.f. is observed. This is consistent with the very intense scalar
dissipation rate organized on thin and long line, also visible in figure 2. Those lines
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FIGURE 19. (Colour online) Evolution with the Stokes number of the variance of
the horizontal (continuous lines) and vertical (dashed lines) velocity components both
normalized by the mean turbulent kinetic energy K. For γ = 83 and C = 0.035 (red
triangles), 0.19 (black squares), 0.35 (blue circles), 1.82 (green squares), 8.77 (purple
stars).

have a thickness of the order of the dissipative length scale and length of the order
of the integral scale. The very large values of εθ observed at large Stokes numbers
imply that a significant part of the scalar dissipation occurs in those very concentrated
regions, which is the manifestation of the small-scale intermittency. Finally, for the
largest Stokes number the fluctuations of the temperature dissipation rate are reduced,
as the strongly inertial particles are less preferentially concentrated and temperature
field is smoothed out by the large-scale mixing.

Before focusing on the velocity p.d.f., we present in figure 19 the evolution of the
variance of both horizontal and vertical velocity components with the Stokes number
for the various mean particle concentration. In this plot both velocity components are
normalized by the turbulent kinetic energy K. It is observed that the vertical velocity
has a greater variance than the horizontal component. Basically we note that the
ratio between the components is approximately 3, although the difference is slightly
more pronounced at small Stokes numbers. Furthermore, we observe only a small
dependence of this ratio on the average particle concentration. Moreover, we note
that the effect of γ is very small (not shown).

The p.d.f. of the fluid velocity is given in figure 20. We consider both horizontal and
vertical velocity components normalized by their standard deviation. We observe that,
although the highest anisotropy of the turbulent structures is seen at low St (figures 17
and 19), the p.d.f. of horizontal and vertical velocities are actually both very close to
the normal distribution. This suggests that at low St the anisotropy of the velocity
vector components is mainly due to their difference in variance. On the other hand,
for larger St, only the vertical component remains close to the normal distribution
whereas the horizontal component present much larger fluctuations. This indicates that
the large-scale anisotropy of the structure depicted in figure 17, produces large-scale
intermittency in addition to the difference between the horizontal and vertical velocity
variances.

Figure 20 also reports the comparison between the p.d.f. of the dissipation, ε, and
of the production of the turbulent kinetic energy, αgθw, both normalized by the mean
dissipation. We observe that when the Stokes number is increased the dissipation p.d.f.
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FIGURE 20. (a) P.d.f. of the fluid velocity: horizontal component (continuous lines) and
vertical component (dotted line). For the different Stokes numbers (St = 0.003, 0.019,
0.074, 0.352, 1.064, 7.343 and 29.36) each shifted upward by two decades respectively.
(b) P.d.f. of the dissipation (continuous lines) and of the production (dotted line), for the
different Stokes numbers each shifted upward by two decades respectively. With γ = 570
and C = 0.19. Comparison with the Gaussian distribution in grey dashed lines.

develop very stretched tails. Similarly to the temperature dissipation rate, the very

large fluctuations of ε are connected with the intermittent nature of the dissipation

process at large Stokes number, as seen in the snapshots of the figure 2. Regarding

the production term, the occurrence of very large fluctuations increases up to a Stokes

number of order St = O(1), and then the tails become narrower when the Stokes

number is further increased. This reflects the nature of the forcing, due to both the

discrete particle effect and the very strong correlation between the high temperature

region and the large raising velocity. When the Stokes number is high enough to

have very important clustering, this correlation is reinforced, and the forcing is mainly

operated by the few largest clusters. The particles of greater inertia can instead escape

from the regions of high temperature leading to a more spatially homogeneous forcing.

Also we remark that the production term, although positive on average, also takes

large negative values, corresponding to reverse transfer of turbulent kinetic energy into

potential energy.

5. Relaxation of assumptions

In § 4 a number of simplifying assumptions have been made, in order to isolate

the particle–turbulence coupling mechanism. In this paragraph we relax some of these

assumptions, to test the relevance of the identified dynamics over a broader range of

cases of practical interest.



5.1. Effect of finite particle thermal capacity and momentum two-way coupling
In the previous sections the transfer of momentum from the particle phase to the fluid
phase has been neglected, an assumption which is typically made for systems of very
small particles and for limited number density. Likewise, the particles have been so far
considered in thermal equilibrium with the surrounding fluid by assuming zero thermal
inertia (cp = 0). This is also a reasonable assumption when extremely small particles
are considered. In this section we investigate the effects of the finite thermal inertia of
the particles along with the momentum feedback from the particles to the fluid. For
constant particle number density, both effects are promoted when the Stokes number
is increased, as seen from (2.28).

In order to discuss the influence of the two aforementioned effects, we consider
therefore two additional cases. In the first one we fix the solid-to-fluid specific heat
ratio as cp/cf = 4.18 but we disregard the effect of the particle momentum feedback
on the fluid phase. In the second case we keep the finite particle thermal inertia to
cp/cf = 4.18 and in addition we set full momentum and heat transfer coupling. For
both cases the parameters are C = 0.35, γ = 80, ρp/ρ0 = 909 and Pr = 1, and the same
range of Stokes numbers as in the previous sections is considered (from St = 0.003 to
St = 29.36) as summarized in table 2. These parameters correspond to a mass fraction
ranging from αm = 7.5 × 10−5 to αm = 9.88 × 10−1. These two sets of simulations are
then compared to the simplified case considered in the previous section. In all these
cases we impose the same value of β, nevertheless it should be noted that when cp is
finite, the energy injected in the system increase substantially with the mass fraction
as seen from (2.12) since most of the energy input is required to heat the dispersed
phase. The total energy input scales as β(1 + χ). As apparent from the definition of
St, for St = 29.36 the particle diameter is dp/�∗ =√18Stρ0/ρp ≈ 0.76 which make the
assumption dp � �∗ somehow questionable. However, even the most inertial particles
would still be fairly small compared to the energy containing structures, and therefore
size effects are not expected to qualitatively change our findings. Also note that for
the more realistic case (i.e. finite particle thermal inertia and momentum two-way
coupling) we considered two more intermediate values for the Stokes number: St =
4.26 and St = 12.69.

Figure 21 shows the evolution of the turbulent kinetic energy, the variance of the
fluid temperature and the energy and temperature dissipation rate with the Stokes
number, for the three cases discussed above (with and without particle thermal
inertia and with and without momentum two-way coupling). As expected, at small
Stokes numbers, these statistical quantities are identical in the three cases since the
mass fraction is vanishingly small. At larger Stokes number, when only the finite
thermal inertia of the particles is accounted for, the temperature field appears more
homogeneous as is visible from the decrease of both temperature variance and mean
temperature dissipation rate presented in figure 21. Indeed, due to the finite thermal
inertia of the particles, the instantaneous total inter-phase heat exchange presents
temporal fluctuations, whereas neglecting the thermal inertia of the particles results
in a constant heat release in the fluid, as seen in (2.14). And since for large particle
thermal inertia the particle temperature could be considered as quasi-constant, the
inter-phase heat transfer is promoted when the particles are in regions where the fluid
is cold, and is decreased in hot regions. This effect tends to smooth the temperature
fields. When the Stokes number is of order 1, as previously observed, the particles
present a very intense clustering and the residence time of particles in the large
clusters is much longer than their thermal relaxation time. As a consequence, the
particles can relax towards thermal equilibrium and the mechanical behaviour of the
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FIGURE 21. (Colour online) Evolution with the Stokes number of the turbulent kinetic
energy (a), the dissipation rate of turbulent kinetic energy (b), the fluid temperature
variance (c), and the mean dissipation rate of temperature fluctuations (d) normalized
respectively by u∗ = �∗/t∗, ε∗ = �2

∗t−3
∗ , θ∗ = βt∗ and εθ,∗ = θ 2

∗ t−1
∗ . At γ = 83 and C = 0.35

and for (i) cp/cf = 0 without momentum two-way coupling (red triangles); (ii) cp/cf = 4.18
without momentum two-way coupling (blue circles) and (iii) cp/cf = 4.18 with momentum
two-way coupling (black squares).

system is only slightly affected by the thermal inertia of the particles, as is visible
from the plot of the turbulent kinetic energy and turbulent dissipation rate.

In contrast, the attenuation of the turbulent kinetic energy and turbulent dissipation
rate is more pronounced at St = O(1) when accounting for the momentum two-way
coupling. This is explained by the fact that the large inertia of the clusters tends
to drag the fluid. For larger Stokes number (St > 1), that is to say for large mass
fractions, the case with momentum two-way coupling presents a sudden increase of
both K and ε. This second peak is attributed to the forcing in the fluid momentum
equation operated by the particle feedback. At that Stokes number the mass fraction
becomes important and the ballistic motion of the particles causes the fluid to be
dragged by the particles, providing an efficient source of turbulent agitations as well
as temperature mixing. We would like to draw attention to the fact that in order to
assess the influence of relaxing the assumptions explored here, quantities in figure 21
are normalized by �∗, t∗ and θ∗, which imply implicitly that β is kept fix between all
of the explored cases. However, as stated above, a more meaningful comparison could
be to consider a constant total energy input, i.e. β(1 + χ) = cst.
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FIGURE 22. Snapshots in a x − z plane: (a) of the logarithm of the particle concentration
field (as computed by (3.1)) normalized by the mean concentration n/n, and (b) the fluid

temperature fluctuations normalized by its standard deviation θ/θ 2
1/2

. For γ = 80 and C =
0.35, St = 0.352 and Fr = 0.09.

Finally, we remark that when the mass fraction is small enough to neglect the inter-
phase momentum two-way coupling, one can also neglect the finite thermal inertia
of the particle. Of course this conclusion only holds for not too high solid-to-fluid
specific heat ratio.

5.2. Effect of the finite particle Froude number
Gravity has so far been considered previously only as a source of buoyancy, without
directly affecting the particles, i.e. Fr = ∞ in (2.34). We here consider cases for
various Froude numbers (Fr = 0.09, 0.32, 0.48, 3.16, 10 and ∞), keeping all other
parameters constant. In particular, we impose γ = 80, St = 0.3, C = 0.35 Pr = 1 and
ρp/ρ0 = 909, cp/cf = 0. The parameters of this set of simulations are given in table 2.

Snapshots of the particle local concentration and fluid temperature corresponding
to Fr = 0.09 are presented in figure 22. It is observed that for this small Froude
number, the particles are organized in very long vertical streaks. It is to note that
similar patterns have been observed experimentally in sedimentation of both positively
and negatively buoyant particles (Weiland, Fessas & Ramarao 1984; Davis & Acrivos
1985). This peculiar particle distribution significantly departs from the 1/Fr = 0 case
in figures 1. The elongated particle streaks are associated with elongated plumes of
high temperature fluid.

Figure 23 shows the evolution of the mean vertical particle velocity with the Froude
number. The particle velocity decreases linearly with 1/Fr2, and it is negative for
Fr < 0.7. On the other hand, for Fr > 1 the (positive) mean vertical particle velocity
is independent of the Froude number, confirming that the limit Fr → ∞ considered
previously is meaningful. The fact that the transition between falling and rising
particles occurs at a Froude number of order 1 further corroborates the relevance of
the characteristic scales introduced in (2.25)–(2.27). We remark that, in the regime
in which particles settle (Fr < 0.7), their fall speed is somewhat smaller than the
Stokesian settling velocity, uτ = τpg. This is explained by the fact that particles
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cluster and create hot plumes of upward moving fluid, a phenomenon also observed
in settling of hot particles through forced turbulence (Frankel et al. 2016).

In figure 23 the particle temperature versus the Froude number is also plotted. Note
that, since cp = 0 for this set of simulations, this corresponds to the fluid temperature
at the particle positions (θp = θ(xp)). Similarly to the mean settling velocity, the
particle temperature is not strongly influenced by the Froude number when Fr > 1.
For small Froude numbers the particle temperature decreases dramatically, due to the
enhanced mixing introduced by the particle settling, but on average it remains higher
than the fluid temperature (〈θ〉p > 0). The local excess of temperature at the particle
location leads to the upward, buoyancy-driven motions mentioned above, which hinder
the particle settling. The small peak observed in the particle temperature around
Fr ≈ 1 can be attributed to the fact that at this regime the mean vertical velocity of
the particles is almost zero, leading to higher residence time of the particles in the
plumes. In a recent study of DNS of hydrodynamically forced turbulence laden with
heated inertial particles (Frankel et al. 2016), it was shown that the buoyant plume
shed by the clusters breaks down the preferential sweeping mechanism by which
particle settle faster as they favour the downward side of turbulent eddies (Wang &
Maxey 1993).

For the small Froude number cases in which very elongated structures appear, the
present domain size in vertical direction may not be sufficient to prevent biases due
to the periodic boundary conditions. Further studies of these relevant regimes are
warranted.

6. Summary and final comments
We performed direct numerical simulations of a suspension of solid particles

subject to external heating. Despite the absence of any other energy sources, we
observe a rich dynamics of the flow driven by the buoyancy forces generated by the
heat transfer from the particles to the fluid. By making simplifying assumptions, we
isolate and characterize the feedback loop mechanism between particle clustering and
thermal convection first identified by Zamansky et al. (2014). Considering a small
mass fraction of non-settling particles in thermal equilibrium with the surrounding
fluid, the main control parameters of the flow are: the particle Stokes number, the



mean non-dimensional particle concentration and the non-dimensional domain size.

We remark that the flow scales (which ultimately define the key parameters) are not

imposed a priori, but result from the system dynamics equilibrium. According to

their values, several regimes are identified. For small Stokes numbers, the particle

inertia as well as the domain size have no effect on the dynamics of the flow. On

the other hand, the statistics is dependent on concentration, indicating that the mean

inter-particle distance is a relevant scale for vanishing particle inertia.

When the Stokes number increases, we observed a transition to cluster driven

regime: the particles organize themselves in clusters with a broad size distribution

but uniform concentration within them. The flow becomes independent of the mean

concentration, but display non-trivial dependency on both Stokes number and domain

size.

The unique properties of the considered flow stem from the forcing mechanism,

which latter depends ultimately on the full configuration of the particles. For small

particle inertia, the temperature field is mainly forced at the high wavenumbers,

and forcing and dissipation are in balanced over the entire spectrum. At large

Stokes numbers the forcing of the temperature fluctuations is the strongest at low

wavenumbers: a clear scale separation between production and dissipation emerges,

and the flow is similar to buoyancy-driven flows with temperature differences imposed

at large scales. For the intermediate Stokes numbers the velocity and temperature

fields are strongly intermittent, due to self-similar particle clusters that extend

the forcing over a broad range of scales. This leads to a continuous evolution

of the power spectra slopes with the Stokes number, reflecting a transition from

a small-scale-dominated dynamics (at small Stokes number) to a structure more

reminiscent of classical forced turbulence (at large Stokes number). For the various

regimes, depending on the particle inertia, scaling arguments are proposed for the key

statistical observables, which agree well with the simulation results.

We also consider the relaxation of some of the simplifying assumptions. When the

mass fraction becomes important, the particle thermal inertia does have a limited effect

on the consider range of parameters, while the impact of the momentum two-way

coupling between particles and fluid can be substantial. Finally, we define the limit

of validity of non-settling particle assumptions.
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Appendix A. Derivation of the Boussinesq equations with a heat source per
volume unit

In this appendix the Boussinesq equation is derived from the compressible Navier–

Stokes system. We discuss the conditions of validity of the Boussinesq approximation

in presence of a source term in the energy equation. Our derivation is similar to

previous work concerning the derivation of the Boussinesq approximation (Spiegel

& Veronis 1960; Génieys & Massot 2001; Dumont et al. 2002; Shirgaonkar & Lele

2006), but accounts for the unsteadiness of the reference state caused by a thermal

source term.



A.1. Reference state
Let f represent any one of the state variables, density (ρ), temperature (T) or pressure
(P). We consider the following decomposition:

f (x, t) = fref + f ′
0(t)︸ ︷︷ ︸

f0(t)

+f ′
s (x3, t)

︸ ︷︷ ︸
fs(x3,t)

+f ′(x, t), (A 1)

where fref is a reference value at a given space–time location (x3,ref , tref ), f ′
0(t) expresses

the deviation around fref at a given time due to the heating, f ′
s (x3, t) represents the

vertical variation from the (time-dependent) reference state f0(t)= fref + f ′
0(t) due to the

stratification and f ′(x, t) is the motion-induced fluctuations around fs(x3, t) = f0(t) +
f ′
s (x3, t). Similarly to Spiegel & Veronis (1960), we introduce a stratification length

scale Lf and a heating time scale τf :

Lf (x3, t) =
∣∣∣∣ 1

f0

∂x3
fs

∣∣∣∣−1

, τf (t) =
∣∣∣∣ 1

f0

dtf0

∣∣∣∣−1

. (A 2a,b)

In the following, we only consider the constant volume case, i.e. ρ ′
0(t) = 0,

therefore for an ideal gas we have: τT = τP. We assume that the size of the
system H = max(|x3 − x3,ref |) is much smaller than the scale of variations due to the
stratification: H � L = min(LT, LP, Lρ). Therefore one approximates the hydrostatic
pressure variation as:

P′
s(x3, t) =

∫ x3

x3,ref

ρs(z, t)g dz = −ρ0(t)g(x3 − x3,ref ) + O(ρ0gεLH), (A 3)

where εL is at most εL ≈ H/L.

A.2. Equations
Consider the continuity, momentum and temperature (internal energy) equations:

∂tρ + ∂xjρuj = 0, (A 4)

∂tρui + ∂xjρujui = −∂xiP + ∂xjσij − ρgδi3, (A 5)

∂tρcvT + ∂xjρujcvT = −P∂xjuj + σij∂xiuj + ∂xjλ∂xjT + Q, (A 6)

where σij =μ[(∂xjui + ∂xiuj)− (2/3)∂xk ukδij] with μ the dynamic viscosity, g is the norm
of the constant gravity acceleration pointing in the −x3 direction and Q is the thermal
source term (with spatio-temporal variations). The thermal conductivity λ and specific
heat at constant volume cv are assumed to be constant.

A.3. Non-dimensionalization
We introduce the following non-dimensional variables. The non-dimensional density
ρ+ = ρ/ρ0 and density fluctuation ρ ′+ = (ρ − ρ0)/ρ0, the temperature fluctuation



θ+ = (T − T0)/T0, the pressure P+ = P/P0, the source term Q+ = Q/Q0 with the
characteristic source term Q0 = ρ0cvdtT0 = ρ0cvT0/τT and its fluctuation Q′+ = Q+ − 1.
Velocity, length and time are non-dimensionalized as: u+ = u/uref , x+ = (x − xref )/H
and t+ = t/tref = t uref /H, where uref is the characteristic scale of convective motion,
assumed to be constant in time. μ is normalized by the value of the dynamic
viscosity at T = T0: μ0 = μ(T0). Note that the scales introduced here differ from the
characteristic sales introduced in § 2.4.

The mass conservation is expressed by:

∂x+
j
u+

j = − 1

ρ+ Dt+ρ+, (A 7)

where Dt = ∂t + uj∂xj . Note that the reference density is not influenced by the heating
since we consider a constant volume system. Equation (A 5) becomes:

ρ+Dt+u+
i = − P0

ρ0u2
ref

∂x+
i
P+ + 1

Re0

∂x+
j
σ+

ij − 1

Fr2
0

ρ+δi3, (A 8)

where the Reynolds number Re0 =ρ0Huref /μ0 and the Froude number Fr0 =
√

u2
ref /gH

have been introduced. The pressure field P+ is decomposed as:

P+ = P − Ps

ρ0u2
ref

ρ0u2
ref

P0

+ Ps − P0

P0

+ 1. (A 9)

The non-dimensional dynamic pressure is: p+ = (P − Ps)/ρ0u2
ref . Using the hydrostatic

pressure variation P′
s = Ps − P0 (A 3), one can express the pressure gradient as ∂x+

i
P+ =

(ρ0u2
ref /P0)∂x+

i
p+ + (ρ0gH/P0)δi3 + O(H/L). Inserting into (A 8) one obtains:

ρ+Dt+u+
i = −∂x+

i
p+ + 1

Re0

∂x+
j
σ+

ij − 1

Fr2
0

ρ ′+δi3. (A 10)

The temperature equation (A 6) reads:

ρ+Dt+θ+ = −(γ − 1) P+∂x+
j
u+

j + γ (γ − 1)Ma2
0

Re0

σ+
ij ∂x+

j
u+

i ,

+ γ

Re0Pr
∂x+

j
∂x+

j
θ+ + 1

τ+
T

[Q+ − ρ+(θ+ + 1)], (A 11)

where the Prandtl number Pr = μcp/λ and the Mach number Ma0 = uref /a0 have been
introduced. a0 is the sound velocity at reference state. The ideal gas relation P0/ρ0 =
rT0 = a2

0/γ where r = cp − cv is the gas constant and γ = cp/cv have been used to
obtain the Mach number. Using (A 9) the first term on the right-hand side of (A 11)
is expressed: P+∂x+

j
u+

j =[γ Ma2
0 p+ − (γ Ma2

0/Fr2
0)x

+
3 + 1]∂x+

j
u+

j , which gives in (A 11):

ρ+Dt+θ+ = γ (γ − 1)Ma2
0

Re0

σ+
ij ∂x+

j
u+

i − γ (γ − 1)Ma2
0 p+∂x+

j
u+

j

+ γ (γ − 1)Ma2
0

x+
3

Fr2
0

∂x+
j
u+

j − (γ − 1)∂x+
j
u+

j

+ γ

Re0Pr
∂x+

j
∂x+

j
θ+ + 1

τ+
T

[Q+ − ρ+(θ+ + 1)]. (A 12)



A.4. Order of magnitude
In the following we consider that the characteristic convective velocity is much smaller
than the velocity of sound such that Ma2

0 � 1. Note also that we assume Ma2
0/Re0 � 1

(no rarefied gas effects). The ideal gas state equation can be expressed as:

(1 + θ+)(1 + ρ ′+) = 1 + γ Ma2
0

(
p+ + x+

3

Fr2
0

)
, (A 13)

where the pressure decomposition (A 9) has been used. Assuming that both p+ and
x+

3 /Fr2
0 are at most of order 1 (Génieys & Massot 2001) we have, to order Ma2:

(1 + θ+)(1 + ρ ′+) = 1 + O(Ma2
0). (A 14)

Note that inserting the previous approximation into (A 12) simplifies its last term to
Q′+/τ+

T . If the temperature fluctuations are mainly set by the non-stationary heating,
and we can approximate its characteristic value as θ+ = O(1/τ+

T ), therefore in the low
heating case (τ+

T  1) both θ+ and ρ ′+ are small. To first order, expression (A 14) can
be linearized around the reference state (P0, T0, ρ0):

ρ ′+ = −θ+ + O(1/τ+
T , Ma2

0). (A 15)

With these approximations, we obtain from (A 7), (A 10) and (A 12) the Oberbeck–
Boussinesq approximation:

∇ · u+ = 0 + O(log(1/τ+
T ), log Ma2

0), (A 16)

Dt+u+ = −∇p+ + 1

Re0

∇2u+ + 1

Fr2
0

θ+ez + O
(

1/τ+
T , Ma2

0,
H
L

)
, (A 17)

Dt+θ+ = 1

Re0Pr
∇2θ+ + 1

τ+
T

Q′+ + O
(

1/τ+
T , Ma2

0,
H
L

)
. (A 18)

Note that, as emphasized by Shirgaonkar & Lele (2006), if the acceleration Dt+u+ or
the rate of temperature variation Dt+θ+ become large (of the order of τ+

T ), it becomes
necessary to take into account the discarded terms θ+Dt+u+ or θ+Dt+θ+. Equations
(A 16)–(A 18) read in dimensional form:

∇ · u = 0, (A 19)

Dtu = − 1

ρ0

∇p + ν∇2u+ + gα0θez, (A 20)

Dtθ = κ∇2θ + Q′

ρ0cv

, (A 21)

where ν = μ/ρ0 is the kinematic viscosity, κ = λ/ρ0cp is the thermal diffusivity, θ =
T − T0, α0 is the coefficient of thermal expansion at constant pressure, for an ideal
gas α0 = 1/T0 and Q′ = Q − ρ0cvdtT0. For time interval t � T0/dtT0 the temperature
can be considered as quasi-stationary.

Appendix B. Detection of clusters
Like many authors (Monchaux et al. 2010; Garcia-Villalba, Kidanemariam &

Uhlmann 2012; Monchaux, Bourgoin & Cartellier 2012; Tagawa et al. 2012, 2013;
Dejoan & Monchaux 2013; Nicolai, Jacob & Piva 2013; Nilsen, Andersson & Zhao
2013; Uhlmann & Doychev 2014), we base our analysis of the particle clustering



on Voronoï tessellation of the particle positions. Each of the elementary cells of the

Voronoï tessellation is attributed to a particle. The volume of the cell gives a measure

of the local particle concentration. We can therefore detect particles sitting in high

concentration areas. One has to define the threshold above which the concentration

is high. To this end, following Monchaux et al. (2010, 2012), we compare the

probability density function of the logarithm of the Voronoï cell volume, P(v),

obtained from the set of particles to be analysed with the semi-analytic distribution

corresponding to a random homogeneous particle distribution Pr(v) (Ferenc & Néda

2007). The two curves present two intersections at vc and vv: P(vc) = Pr(vc) and

P(vv) = Pr(vv) with vc < vv. vc is then used as the threshold defining the maximum

volume to consider that the given particle is in a high concentration region. We

consider that a particle belongs to a cluster if the volume of its cell is smaller

than the threshold and if the volume of each of its direct neighbours cells are also

smaller than the threshold. The second condition is introduced to avoid spurious

effects with the cluster edges. The clusters can now be detected making use of the

connectivity of the Voronoï tessellation: if two particles are in a cluster and if they

are neighbours then they belong to the same cluster. Propagating this rule from

neighbour to neighbour, we form the sets of particles defining the clusters in a way

similar to the ‘depth-first search’ algorithm (Even 2012). To avoid having too many

small clusters, we discard the sets with fewer than four particles.
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