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Collapse of a neutrally buoyant suspension
column: from Newtonian to apparent

non-Newtonian flow regimes

A. Bougouin1,†, L. Lacaze1 and T. Bonometti1

1Institut de Mécanique des Fluides de Toulouse (IMFT) - Université de Toulouse, CNRS-INPT-UPS,
Toulouse, France

Experiments on the collapse of non-colloidal and neutrally buoyant particles suspended
in a Newtonian fluid column are presented, in which the initial volume fraction of
the suspension φ, the viscosity of the interstitial fluid µf , the diameter of the particles
d and the mixing protocol, i.e. the initial preparation of the suspension, are varied.
The temporal evolution of the slumping current highlights two main regimes: (i) an
inertial-dominated regime followed by (ii) a viscous-dominated regime. The inertial
regime is characterized by a constant-speed slumping which is shown to scale as in
the case of a classical inertial dam-break. The viscous-dominated regime is observed
as a decreasing-speed phase of the front evolution. Lubrication models for Newtonian
and power-law fluids describe most of situations encountered in this regime, which
strongly depends on the suspension parameters. The temporal evolution of the
propagating front is used to extract the rheological parameters of the fluid models. At
the early stages of the viscous-dominated regime, a constant effective shear viscosity,
referred to as an apparent Newtonian viscous regime, is found to depend only on φ
and µf for each mixing protocol. The obtained values are shown to be well fitted
by the Krieger–Dougherty model whose parameters involved, say a critical volume
fraction φm and the exponent of divergence, depend on the mixing protocol, i.e. the
microscale interaction between particles. On a longer time scale which depends on φ,
the front evolution is shown to slightly deviate from the apparent Newtonian model.
In this apparent non-Newtonian viscous regime, the power-law model, indicating both
shear-thinning and shear-thickening behaviours, is shown to be more appropriate to
describe the front evolution. The present experiments indicate that the mixing protocol
plays a crucial role in the selection of a shear-thinning or shear-thickening type of
collapse, while the particle diameter d and volume fraction φ play a significant role
in the shear-thickening case. In all cases, the normalized effective consistency of the
power-law fluid model is found to be a unique function of φ. Finally, an apparent
viscoplastic regime, characterized by a finite length spreading reached at finite time,
is observed at high φ. This regime is mostly observed for volume fractions larger
than φm and up to a volume fraction φM close to the random close packing fraction
at which the initial column remains undeformed on opening the gate.
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1. Introduction

The unsteady dynamics of a free-surface system driven only by gravity force is
encountered in many geophysical applications, such as avalanches, debris flows, lava
flows, mudflows, etc. In order to predict the dynamics of these natural flows, several
simple configurations have been extensively studied using laboratory experiments,
numerical simulations and theoretical descriptions. One of these configurations is the
slumping on a horizontal (or inclined) plane of a fluid initially at rest in a reservoir
(see figure 1) like a Newtonian fluid (Hoult 1972; Huppert 1982; Stansby, Chegini &
Barnes 1998), a non-Newtonian fluid (Piau & Debiane 2005; Matson & Hogg 2007;
Balmforth et al. 2007) or even a granular material (Lajeunesse, Monnier & Homsy
2005; Lube et al. 2005).

This configuration can be somewhat related to the case of a gravity current, or even
a turbidity current, where the gravity-driven flow is induced by a difference of density
between the current and the surrounding fluid (Benjamin 1968; Hoult 1972; Huppert
& Simpson 1980; Huppert 1982; Rottman & Simpson 1983; Meiburg & Kneller
2010). Whatever the influence of the surrounding fluid is, it is now admitted that the
dynamics of such gravity-driven flows are characterized by different regimes, most of
which are well predicted by shallow layer/lubrication models. In particular, self-similar
solutions can be found depending on the dominant forces in the considered regime.
It should be noted that this description disregards the vertical flow which is only
dominant at the initial stages of the slumping depending on the initial height of the
reservoir.

First, a so-called inertial slumping phase is dominated by inertial effects during
which the front velocity remains constant. This regime is similar to the case of a
semi-infinite reservoir dam-break problem for which a theoretical prediction of the
front evolution was proposed by Ritter (1892). In this case, dissipation induced by
both the boundary layer close to the solid bottom and the bulk turbulence is neglected.
The obtained height profile and front position are respectively

h=
1

9g

(
2
√

gH −
x
t

)2
, xf = 2

√
gHt, (1.1a,b)

where H is the initial height of the column and g is the gravitational acceleration.
Many studies show that this law is hardly reached due to bottom shear dissipation,
which becomes significant in regions where the depth of the current becomes small,
particularly close to the front (see Dressler 1952; Hogg & Woods 2001; Hogg &
Pritchard 2004, for instance). In this case, the front velocity is shown to remain
constant but with a smaller value than Ritter’s prediction. For instance, laboratory
experiments (Dressler 1954; Leal, Ferreira & Cardoso 2006; Roche et al. 2008) and
numerical simulations (Bonometti, Balachandar & Magnaudet 2008) predict a front
velocity that lies in the interval [

√
gH, 2

√
gH], probably depending on the bottom

boundary condition. A second inertial regime can be obtained for gravity currents
when considering the finite size of the initial reservoir (Hoult 1972; Huppert &
Simpson 1980). However, in the case of a dam-break flow, i.e. when the surrounding
fluid does not influence the dynamics, the front velocity obtained by Ritter (1892)
has been shown to be unaffected by the initial finite length (Hogg 2006).

The final regime is a viscous regime, which is characterized by a balance between
gravity and viscous forces. In this case, the solution depends on the rheology of the
considered fluid. A self-similar solution can be explicitly derived from lubrication
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FIGURE 1. (a) Sketch of the experimental apparatus. (b) Snapshots of the slumping
current for µf = 0.049 Pa s, φ= 51.3 %, particles TS140 and protocol I, at different times.

theory in the case of a power-law fluid, for which the shear stress can be written as
τ = Kγ̇ m, where γ̇ is the shear rate and K and m are the consistency and the index
of the fluid respectively (Gratton, Minotti & Mahajan 1999; Piau & Debiane 2005;
Di Federico, Malavasi & Cintoli 2006). In particular, the front position is found to
be of the form xf ∼ tm/(2m+3), as will be recalled in §§ 4 and 5. It can be noted that
the Newtonian viscous regime is found for m= 1, with xf ∼ t1/5 (Huppert 1982). In
order to account for the presence of a yield stress observed in some complex fluids,
the case of Herschel–Bulkley has also been considered in a few studies (Matson &
Hogg 2007; Balmforth et al. 2007). However, in this case, the yield stress makes the
derivation of a general solution for the evolution of the front position and the height
profile more difficult.

In many geophysical applications, the flowing material is a complex combination of
different phases which are either fluid or solid. Depending on the considered system,
the behaviour of this complex material can then highlight non-Newtonian features
such as the ones mentioned above. As often used to highlight the behaviour of such
complex materials, the most simple situation of a multiphase system is probably a
non-colloidal and neutrally buoyant solid suspension in a Newtonian fluid.

A well-known feature of a neutrally buoyant suspension is the increase of the shear
effective viscosity of the material with the volume fraction of the solid phase φ, as
explicitly derived by Einstein (1906) and Batchelor & Green (1972) in the case of
a relatively small φ. This evolution of the effective viscosity can be attributed to
the small-scale interactions between the two phases, which can actually lead to non-
Newtonian behaviour due to the local distribution of the particles in the suspension
(Batchelor & Green 1972). These asymptotic models for the effective viscosity at
small φ were accurate up to a volume fraction of the order of 10 % (Stickel & Powell
2005). Only semi-empirical or phenomenological models have been proposed so far to
predict the effective viscosity at larger volume fractions. For instance, the Krieger–
Dougherty model (Krieger & Dougherty 1959) is one of the most popular and is
defined as

µeff =µf

(
1−

φ

φm

)−αφm

, (1.2)

where φm denotes a maximum volume fraction of the solid phase above which
the suspension should be jammed. It can be noted that α = 2.5 is consistent with
Einstein’s model at small φ. However, even if this value of α can be found in the
literature (Ovarlez, Bertrand & Rodts 2006; Huang & Bonn 2007), a value of αφm= 2
is more widely used to describe experimental results (Ovarlez et al. 2006; Mueller,
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Llewellin & Mader 2010; Boyer, Guazzelli & Pouliquen 2011; Ancey, Andreini &
Epely-Chauvin 2013a; Dbouk, Lobry & Lemaire 2013; Espín & Kumar 2014a,b). The
physical origin of this exponent is therefore still not clear. Moreover, the jamming
fraction φm is still under debate in the scientific community, and its value strongly
depends on the experimental protocol even when similar materials are used.

The reason for this discrepancy in the evaluation of φm is often attributed to the
small-range interactions between solid particles (Gallier et al. 2014; Mari et al. 2014).
For instance, the solid friction between solid materials, local roughness or air bubbles
trapped at the surface of the particles could influence these small-range interactions.
However, even if difficult to define, the jamming fraction is usually found in a range
of volume fraction φm ∼ 60± 8 % (Krieger & Dougherty 1959; Nsom 2000; Ovarlez
et al. 2006; Huang & Bonn 2007; Bonnoit et al. 2010; Mueller et al. 2010; Boyer
et al. 2011; Dbouk et al. 2013; Mari et al. 2014).

Beyond the φ dependence of the effective viscosity, neutrally buoyant suspensions
have been shown to highlight non-Newtonian behaviour such as shear-thickening/-
thinning, yield stress, normal stress differences, etc. in many configurations (Gadala-
Maria & Acrivos 1980; Leighton & Acrivos 1987; Lyon & Leal 1998; Snabre
& Pouligny 2008; Fall et al. 2009, 2010; Ancey et al. 2013a; Andreini, Ancey &
Epely-Chauvin 2013; Espín & Kumar 2014a). Even if the origin of these mechanisms
is not always obvious, it is clear that migration processes of the solid phase can play
a significant role in the apparent behaviour of the suspension at the scale of the
considered system, as the material becomes heterogeneous. Migration is generally
attributed to a velocity gradient within the suspension or collisions at high volume
fraction leading to a particle flux from high to low shear rates (Lhuillier 2009). In fact,
any force applied to the particles that induces a modification of the local volume
fraction can lead to this migration, inducing apparent non-Newtonian behaviour
(Huang et al. 2005; Ovarlez et al. 2006; Fall et al. 2009; Andreini et al. 2013). The
role of the migration of particles within the suspension would then be to modify the
local volume fraction, the apparent fluid becoming non-homogeneous and highlighting
an apparent non-Newtonian behaviour at the scale of the studied system.

Beyond this migration process or local heterogeneities, apparent non-Newtonian
behaviour could be also discussed in terms of a transition based on the local dynamics
of the particles within the suspension (Bagnold 1954; Fall et al. 2010; Trulsson,
Andreotti & Claudin 2012). For a given volume fraction φ, this transition delimits
a viscous Newtonian regime, characterized by a constant effective viscosity, from a
Bagnold type regime, for which the shear stress to shear rate relationship becomes
quadratic, depending on the relative influence of the viscous dissipation at the scale
of the particle and its inertia (Fall et al. 2010). This transition is usually found to be
a function of the local shear rate γ̇ and the volume fraction φ through the Bagnold
number Ba (Bagnold 1954). This dimensionless number is defined as Ba = f (φ)Rep,
where f (φ) is a φ-dependent function equal to f (φ)= [(0.74/φ)1/3 − 1]−1/2 (Bagnold
1954), even if other expressions can be also found in the literature (Fall et al. 2010;
Trulsson et al. 2012), and Rep = ρd2γ̇ /µf is the particle Reynolds number. However,
the transition from viscous to particle-inertial regimes is still unclear and the Bagnold
number can be found in the range Ba ∼ 10−2–103 in the literature, and some of
these observations are still debated (Hunt et al. 2002). In any case, the microscale
dynamics, i.e. the dynamics at the scale of the particle, plays a significant role in the
dynamics of neutrally buoyant suspensions, which could therefore strongly alter the
dynamics of unsteady flows.

In the present study, the dam-break of a neutrally buoyant suspension over a
horizontal bottom in a rectangular geometry is considered. Gravity-driven flows of a
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non-colloidal and neutrally buoyant suspension have been investigated in some studies
(see Nsom 2000; Ward et al. 2009; Bonnoit et al. 2010; Ancey et al. 2013a; Ancey,
Andreini & Epely-Chauvin 2013b; Andreini et al. 2013, for instance). Nevertheless,
the study of the suspension flow on an inclined plane, with specific attention paid to
the steady state, is more often considered and, to the best of our knowledge, only
one article has considered the unsteady dynamics of slumping on a horizontal plane
(Nsom 2000). Here, the focus is made on the description of the flow dynamics and
the extraction of rheological behaviour, either Newtonian or non-Newtonian, at the
scale of the current through the time evolution of the front position. It should be
noted that a similar procedure was used by Castruccio, Rust & Sparks (2010) in
the case of suspensions of cubic crystals in various viscous liquids. In view of the
previous studies on the dynamics of a slumping fluid and the rheology of a neutrally
buoyant suspension, the key questions to be addressed in the following paper are as
follows. (i) Are the different regimes observed in previous studies for the case of a
single-phase Newtonian fluid slumping over a horizontal bottom still observed in the
case of a neutrally buoyant suspension? (ii) Are the models of effective shear viscosity
pertinent according to the self-similar viscous solution of a slumping current? (iii)
How do apparent non-Newtonian behaviours manifest themselves on the dynamics of
the current?

This paper is organized as follows. In § 2, we present the experimental set-up. Then,
we show results obtained in the constant-speed inertial regime (§ 3) and in the viscous
Newtonian regime (§ 4). Finally, in § 5, we present some apparent non-Newtonian
behaviours (shear-thinning, shear-thickening, yielding) observed in our experiments on
a longer time scale in the viscous-dominated regime.

2. Experimental set-up
2.1. Dam-break apparatus

In this study, experiments are conducted in a horizontal transparent channel of
rectangular cross-section. The channel is 2 m long, 0.35 m high and 0.20 m wide
along the streamwise x, vertical y and spanwise z coordinates respectively (see
figure 1a). On one side of the channel, x= 0, a finite volume reservoir is delimited
by a sluice gate positioned at x = L = 10 cm. In this study, the initial height of
fluid H in the reservoir is set constant, H = 10 cm. The aspect ratio of the initial
column is then a = H/L = 1. At time t = 0, the manual sluice gate is removed in
approximately 0.1 s and the fluid is released. The height profile h(x, t) is extracted
from image analysis using a classical shadowgraphy method. For this purpose, the
2D flow in the (x, y) plane is recorded using two sCMOS Lavision 2560× 2160 pixel
cameras and a backlight source on the opposite side of the channel. The acquisition
rate of the cameras is varied from 10 Hz to 200 Hz depending on the time scale
of the slumping dynamics. The obtained resolution is approximately 500 µm pix−1,
allowing heights down to 1 mm to be captured. The extraction process is performed
using a Matlab routine.

2.2. Neutrally buoyant suspension
For all experiments, a mixture of water and Ucon oil 75H90000 (a viscous Newtonian
fluid soluble in water) is used as the Newtonian interstitial fluid of viscosity µf and
density ρ. The relative concentration of Ucon oil and water is characterized by
the mass fraction cm = mo/(mo + mw), with mo and mw the mass of oil and water
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respectively. The mass fraction cm is varied from 0 % (pure water) to 73.2 %, which
corresponds to a variation of viscosity in the range µf = [10−3, 10] Pa s. Sodium
chloride (NaCl) is added to the fluid mixture to match the suspended particle density.
The density of the interstitial fluid is measured by a DMA 35 Anton Paar electronic
densimeter with an accuracy of ±0.5 kg m−3. Finally, the viscosity is measured using
a cone-plate geometry in a Haake Mars III rheometer with an accuracy of less than
5 %.

The particles used are monodisperse spherical polystyrene beads manufactured
by Microbeads AS. Particles of diameter d = 41.8 ± 0.9 µm, d = 80.7 ± 7.3 µm,
d = 141.8 ± 3.1 µm and d = 228 ± 7 µm, referred to as TS40, TS80, TS140
and TS250 respectively in the following, are used. In order to measure particle mean
densities and dispersion, a sample of particles is poured into a tank filled with linearly
density stratified salty water. The initial concentration of particles is lower than 0.5 %
during the slow settling of the particles in the stratified fluid to prevent any collective
effects. Once the particles are at rest, their mean height level in the tank gives the
mean density while their vertical spreading indicates the dispersion in density. The
obtained mean density is double-checked using several samples of fluid of constant
density, whose density ranges from 1045 kg m−3 to 1065 kg m−3 with a difference
of 1 kg m−3. After several hours, the sample with particles remaining in the bulk,
not settling or creaming, indicates the density of particles. The obtained densities are
1050 kg m−3, 1060 kg m−3, 1060 kg m−3 and 1063 kg m−3 for TS40, TS80, TS140
and TS250 respectively, with a dispersion of ±2 kg m−3. The overall error in density
matching between the particles and the interstitial fluid can only be attributed to the
particle density dispersion and is therefore of the order of ±2 kg m−3. It should be
noted that to confirm the results discussed in the following, several experiments were
performed with density mismatch from −10 kg m−3 to +10 kg m−3, i.e. well above
the density uncertainty, to exclude any density effects from the physical analysis (not
shown here). The volume fraction φ of the suspension is the same as the measured
mass fraction φweight as the suspension is density matched. The volume fraction φ
is then simply obtained from the mass of dry particles mp and the total mass mt as
φ = φweight =mp/mt.

Two different procedures are used to prepare the suspension, which will be referred
to in the following as protocol I and protocol II. In protocol I, particles are mixed
with the interstitial fluid, while in protocol II, Triton X-100 is added to the solution
to prevent particle aggregation from air entrainment trapped at the particle surface. The
concentration of Triton X-100 varies with the total apparent surface of solid particles
in the suspension, i.e. the critical micelle concentration (CMC), which depends on
the size and volume fraction of particles. Here, 0.5 mL of Triton X-100 is used for
an equivalent solid surface of 90 m2. In both protocols, the suspension is stirred for
several hours (up to 24 h). It should be noted that, as for uncertainties in density
mismatch, several experiments have been performed with different concentrations of
Triton X-100 to exclude any misinterpretation due to any influence of this solvent (not
shown here).

An example of a typical suspension slumping in the channel is shown at
three different times in figure 1(b). See also movies 1 and 2 available online at
https://doi.org/10.1017/jfm.2017.471. The different regimes observed in the dynamics
of such a current are discussed in the following.

2.3. Dimensionless parameters
Different dimensionless numbers can be defined for this configuration. In this section,
we discuss the order of magnitude of these different numbers to anticipate their
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relative influence on the dynamics. Beyond the initial length scales, which are
H = 10 cm and L = 10 cm for the height and horizontal length respectively, the
characteristic height h and length l of the current during a typical experiment are
also used and are estimated to be of the order of h∼ H/10= 1 cm and l∼ 1 m in
our experiments. The aspect ratio of the current thus satisfies h/l∼ 0.1.

At the scale of the current, the Reynolds number Re= ρUh/µ, with U =
√

gh the
velocity scale, is in the range Re=[10−1,103

] in our study. The dynamic viscosity µ is
chosen as µ=µf for Newtonian single-phase currents and µ=µeff for the suspension
currents. The value of µeff can be estimated from available data in the literature or a
posteriori in the present study. This large Reynolds number range allows us to study
inertial and viscous macroscopic dynamics, at least for small to moderate µf and φ.
The Bond number, based on the initial height H, and defined as Bo=ρgH2/σ , with σ
the surface tension, is found to be Bo∼ 103

� 1, which suggests that capillarity effects
are negligible on the initial column. It should be noted that to confirm that capillarity
does not influence the dynamics of the current in the viscous-dominated regime, the
capillarity number which compares viscous effects with surface tension at the front
scale Ca=Uvµ/σ , with Uv = ρgh2/µ, can be estimated as Ca∼ 10, i.e. larger than 1.

At the scale of the particle, the Peclet number Pe= 6πµa3γ̇ /kT is found to satisfy
Pe� 1, leading to no influence of Brownian motion. Moreover, the particle Reynolds
number Rep = ρd2γ̇ /µf is found to be in the range of Rep = [10−3, 1]. According to
Stickel & Powell (2005), Rep cannot be neglected and could play a significant role
in the transition from viscous to particle-inertia regimes according to the Bagnold
transition mentioned in § 1. This transition is usually defined as a function of f (φ)Rep,
where different functions f (φ) are found in the literature. It should be noted that
f (φ) = λ1/2

= [(0.74/φ)1/3 − 1]−1/2 leads to the well-known Bagnold number Ba =
λ1/2Rep. In our case, the Bagnold number is in the range of Ba= [10−3, 10], which
suggests a possible transition between these regimes.

3. Inertial slumping regime and transition
The collapse of a Newtonian fluid column can exhibit an inertial constant-speed

slumping phase at the first stages of the propagation, at least when the fluid viscosity
is small enough. Here, we define the inertial dimensionless variables as

hI
=

h
H
, xI

=
x− L

H
, tI

=

√
gH
H

t. (3.1a−c)

Figure 2 shows the front position xI
f as a function of tI for φ = 0 and µf =

[10−3, 10−2, 10−1, 1] Pa s (a) and for µf = 10−3 Pa s and φ ∈ [0, 0.548] (b). It
should be noted that figure 2(a) corresponds to the Newtonian single-phase fluids.
It can be observed that the single-phase fluids (a) and suspensions (b) highlight a
similar trend. In particular, the constant-velocity phase corresponding to the inertial
slumping regime is obtained in both configurations after an acceleration phase which
ends at around tI

≈ 2. It should be noted that this acceleration phase corresponds
to a conversion from the initial potential energy to the horizontal kinetic energy,
involving vertical acceleration, as mentioned in § 1. The acceleration phase is not
discussed in the following. It should be noted also that the inertial slumping regime
is observed in our set of experiments only for Re & 1. Otherwise, the currents
evolve from the acceleration towards the viscous-dominated regime. In the inertial
slumping regime, i.e. tI > 2, the obtained constant front velocity is in accordance with
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FIGURE 2. Evolution of the front position xI
f as a function of time tI in inertial

dimensionless form (3.1) for Newtonian single-phase fluids with various values of µf (a)
and suspensions with various values of φ (b). The suspensions are composed of particles
TS140 and µf = 10−3 Pa s using protocol I. The solid line (——) is Ritter’s solution
(xI

f = 2tI) and the dashed line (- - -) is the best fit (xI
f = 1.5tI).

Ritter’s prediction, 2
√

gH (see (1.1)), i.e. xI
f = 2tI in dimensionless form (solid line

in figure 2). As shown in figure 2, Ritter’s solution slightly overestimates the front
velocity obtained in the experiments, and a better approximation is shown here to be
1.5
√

gH, i.e. xI
f = 1.5tI (dashed line in figure 2). As discussed in § 1, this difference

between the theoretical prediction and the experiments is in agreement with results
obtained in the literature (Dressler 1954; Leal et al. 2006; Roche et al. 2008), in
which the discrepancy was attributed to the basal drag close to the bottom plane that
is not taken into account in the theoretical prediction. In particular, the dissipation is
usually found to be dominant close to the front. In order to estimate the length on
which most of the dissipation occurs, Hogg & Pritchard (2004) showed that friction
is significant when ξ = xf − x. (CDg2Ht4)1/3, where CD is the drag coefficient and H
is the initial height. The drag coefficient can be defined as CD = 0.025Re−0.2

H , where
the Reynolds number is defined as ReH = ρ

√
gH3/µ (Hager 1988). In our case, this

estimation gives that ξ is approximately 15 % of the length xf on the time scale of
the constant-speed inertial regime.

After the slumping phase, the front velocity decreases. This indicates the transition
from the inertial regime towards a viscous-dominated regime. We define the transition
time τt as the time at which the front position deviates from the best fit solution xI

f =

1.5tI (dashed line on the figure 2), suggesting the end of the inertial slumping regime.
From figure 2(a), one can therefore extract a transition time referred to as τ

f
t

which only depends on µf at φ = 0. This transition time τ f
t is shown as a function

of µf in figure 3(a). It should be noted that for µf > 1 Pa s, no inertial slumping
is observed and the dynamics of the front is only controlled by viscous effects
after the acceleration phase. The transition time τ

f
t thus falls down to zero in this

case. The evolution of the transition time τ f
t as a function of the viscosity µf can

be estimated by equalizing the spreading laws obtained in both the inertial and
viscous regimes (Amy et al. 2005). In the inertial regime, the front position was
found to follow the law xf = 1.5(gH)1/2t, while the front position can be defined as
xf = ηn(ρg(HL)3t/3µf )

1/5 in the viscous regime, from the self-similar solution recalled
in § 1. Considering that these solutions merge at τ f

t , this leads to τ f
t = 0.227µ−1/4

f . (It
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FIGURE 3. (a) The transition time τ
f
t as a function of the viscosity µf for Newtonian

single-phase currents (φ = 0). The solid line (——) corresponds to the theoretical
prediction (see text) with a slight offset, i.e. τ f

t = 0.227µ−1/4
f − 0.1. (b) The transition time

τ s
t as a function of the volume fraction φ for suspension currents with µf = 0.001 Pa s.

The solid line (——) represents the best linear fit, τ s
t =−1.7φ + 1.19. (c) The effective

viscosity µeff as a function of the volume fraction φ. The crosses correspond to µeff =

((τ s
t + 0.1)/0.227)−4, with τ s

t corresponding to the experimental estimation (squares in
figure 3b), while the solid line is µeff = β(1 − φ/φm)

−αφm with φm ∼ 76 %, α ∼ 5.3 and
β = 0.96× 10−3 Pa s.

should be noted that the constants obtained from fitting analysis in this section are
dimensional. Their dimension is not reported for the sake of simplicity as it can be
easily obtained.) As shown in figure 3, this solution is in very good agreement with
the experimental data, accounting for a slight offset such as τ f

t = 0.227µ−1/4
f − 0.1

(see the solid line in figure 3a).
From figure 2(b), a transition time τ s

t can be obtained as a function of φ at
µf = 10−3 Pa s. In figure 3(b), τ s

t is plotted as a function of φ, and it is shown
to decrease linearly with φ, as τ s

t = −1.7φ + 1.19 (solid line in figure 3b). One
can then define the effective viscosity of the suspension µeff as the fluid viscosity
that allows the two transition times τ f

t and τ
f
t to be balanced. In other words, µeff

is such that τ f
t = τ

s
t , i.e. 0.227µ−1/4

eff − 0.1 = τ s
t . The obtained results for µeff are

plotted as a function of φ in figure 3(c). In this figure, the symbols correspond to
µeff = ((τ

s
t + 0.1)/0.227)−4, where the actual measure of τ s

t is used, while the solid
line is the solution of 0.227µ−1/4

eff − 0.1 = −1.7φ + 1.19. The obtained scaling is in
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good agreement with the data and the associated effective viscosity resembles the
Krieger–Dougherty model (1.2), as it can be rewritten as µeff = β(1 − φ/φm)

−αφm ,
with φm∼ 76 %, α∼ 5.3 and β = 0.96× 10−3 Pa s (solid line in figure 3c). Given the
gross estimation of µeff , through the determination of transition times, the obtained
values are surprisingly of the expected order of magnitude. In particular, it should
be noted that the value of β = 0.96 × 10−3 Pa s, which results from measurements
and scaling law fittings, should represent the fluid viscosity at φ= 0 for this solution.
Indeed, this is in good agreement with the interstitial fluid used for the suspension
case, i.e. water with a viscosity of 10−3 Pa s.

4. Apparent Newtonian viscous regime
In this section, we focus on the viscous regime. After the transition τt mentioned in

the previous section, the dynamics of the front then evolves towards a viscous regime.
As long as the suspension can be considered as a viscous Newtonian fluid, the

effective viscosity µeff is the pertinent parameter that controls the dynamics of the
current in the viscous regime. This assumption is in accordance with the previously
obtained effective viscosity from the transition time scales.

In the viscous regime, a more accurate estimation of this effective viscosity can
be expected. For this purpose, the self-similar solution for a viscous Newtonian fluid
(i.e. m= 1) and given by Huppert (1982) is detailed here. In particular, the evolution
of the front position and the height profile is obtained as a self-similar solution
using lubrication theory, far from the initial condition, and will be referred to in the
following as x(s)f and h(s). The solution for a two-dimensional planar collapse in the
viscous regime reads

x(s)f (t)= ηn

(
ρgA3

3µeff
t
)1/5

, (4.1)

h(s)(x, t)= η2/3
n

(
3A2µeff

ρg

)1/5

t−1/5f (x/x(s)f ), (4.2)

where ηn ∼ 1.411 is a constant, A = HL is the area of the slumping material and
f (x/x(s)f )= (3/10)1/3(1− (x/x(s)f )

2)1/3 for a horizontal channel.
In order to estimate µeff from the experimental measurement of the front position

xf in the viscous regime, we therefore define Xf = (xf /ηn)
5, which should be a linear

function of t according to (4.1). Then, the effective viscosity is simply determined
from the front position as

µeff =
ρgA3

3

(
dXf

dt

)−1

. (4.3)

It should be noted that this definition allows us to overcome the problem of time
offsets.

The evolution of µeff obtained from (4.3) together with the corresponding front
position xf is plotted as a function of time t for µf = 10−3 Pa s and φ = 52.7 %
(TS140) in figure 4(a). The viscous regime is reached when µeff becomes constant,
i.e. for t> 20 s in this case. For t< 20 s, the quantity µeff is not an effective viscosity
as it is not constant, and thus model (4.3) is not valid. However, the variation of
this quantity gives some qualitative trends in the transient regime prior to the viscous
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FIGURE 4. (Colour online) (a) The temporal evolution of the front xf and the effective
viscosity µeff for a suspension composed of particles TS140 and µf = 0.001 Pa s at φ =
52.7 %. The dashed line (red online) is the viscous asymptotic solution (4.1). The inset is
a zoom at the early stages. (b) The temporal evolution of the effective viscosity µeff for
various suspensions composed of particles TS140 and µf = 0.001 Pa s (black data) and
µf = 0.049 Pa s (grey data).

regime. In particular, the front position evolves as xf ∼ tζ with ζ > 0, and therefore
dXf /dt ∼ t5ζ−1 and µeff ∼ t1−5ζ from (4.3). It should be noted that from this simple
scaling, the viscous regime corresponds to ζ = 1/5, i.e. µeff is constant. At the early
stages, µeff is shown to decrease as a function of time (see the inset of figure 4a),
i.e. ζ > 1/5, in accordance with the acceleration and the inertial slumping regime. As
t increases, µeff is shown to suddenly increase, which implies ζ < 1/5. In particular,
one obtains ζ ∼ 0.12, which corresponds to a front velocity decreasing faster than
during the viscous regime. It should be noted that this regime is neither described by
the different self-similar solutions nor reported in the literature. The height profile of
the slumping current evolves from the inertial profile towards the viscous self-similar
profile, inducing a strong deceleration of the front. This transient adaptation regime
is also observed as an overshoot in the front position evolution in figure 5(a). This
behaviour is also observed for φ = 0 (not shown here), and is therefore not linked to
the presence of particles.

The evolution of µeff as a function of time for TS140 suspended particles and
different values of µf and φ is shown in figure 4(b). Here, the black data and grey
data correspond to µf = 0.001 Pa s and µf = 0.049 Pa s respectively. The trend of
µeff is similar to the previous description for µf = 0.001 Pa s. For larger µf (µf =

0.049 Pa s here), the viscous regime is rapidly reached, leaving only a very brief, or
even non-existent, inertial regime. The dashed lines in figure 4(b) show the obtained
values of µeff when a plateau is reached. The obtained value µeff can then be used
to support the model used to describe the front evolution as a function of time (4.1)
(grey dashed line (red online) in figure 4a).

Following relations (4.1) and (4.2), we can define the following viscous dimension-
less variables:

hV
=

h
H
, xV

=
x
L
, tV

=
ρgH3

3µeff L2
t, (4.4a−c)
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FIGURE 5. (a) The temporal evolution of the front position in viscous dimensionless form
(4.4) for the same set of experiments as used in figure 4(b). (b) The shape function f
as a function of (xV/xV

f ) for µf = 0.049 Pa s and φ = 51.3 % (crosses) and φ = 55.2 %
(triangles). The dashed lines in (a) and (b) are the self-similar solutions x(s)Vf = ηn(tV)1/5

and f (x/xf )= (3/10)1/3(1− (x/xf )
2)1/3 respectively.

to obtain the self-similar solution for the dimensionless front position and height
profile

x(s)Vf = ηn(tV)1/5, h(s)V = η2/3
n (tV)−1/5f (xV/x(s)Vf ). (4.5a,b)

Figure 5(a) shows the dimensionless front position xV
f obtained from the

experimental data as a function of the dimensionless time tV for the same set of
experiments as used in figure 4(b). As tV increases, the suspension current evolves
towards the apparent Newtonian viscous regime, for which the front position xV

f is
nicely described by the asymptotic solution (4.5) represented by the dashed line in
figure 5(a). Figure 5(b) shows the shape function f as a function of (xV/xV

f ) for
µf = 0.049 Pa s and φ = 51.3 % (crosses) and φ = 55.2 % (triangles). The symbols
correspond to experimental data for which the shape function is determined as
f = hVxVη−5/3

n , while the dashed line corresponds to the self-similar solution. The
depth profiles shown here are in excellent agreement with the self-similar profile
(4.5) at least for 0.5 6 xV/xV

f 6 1.
From the previous analysis, it has been shown that the effective viscosity of the

suspension can be determined from the dynamics of the front position (figure 4a). It
is thus possible to access the rheology of the suspension as a function of µf and φ for
all suspensions used in the present study, as long as they enter an apparent Newtonian
viscous regime. In figure 6, the relative viscosity µeff /µf of the suspensions is plotted
as a function of φ for all experiments. In this figure, dark (respectively grey) symbols
correspond to experimental protocol I (respectively II). Uncertainties are shown with
the error bars on these symbols, which are discussed in the Appendix. Empty symbols
represent measurements performed with a Haake Mars III rheometer using a serrated
parallel-plate geometry.

Only suspensions composed of particles TS40 and TS140 and prepared with
protocol I have been used for rheometer measurements. In this case, the viscosity
is obtained as the ratio of a measured shear stress to the shear rate imposed by
the rheometer device. A ramp of increasing shear rate from 0.01 s−1 to 100 s−1 is
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FIGURE 6. The relative viscosity µeff /µf as a function of the volume fraction of particles
φ. The black circles and grey stars represent the relative viscosity of suspensions using
protocols I and II respectively. For comparison, the triangles represent the relative viscosity
of suspensions obtained using the serrated parallel-plate rheometer for protocol I. The solid
lines represent the Krieger–Dougherty model (1.2) with φm = 57.0 ± 1.0 % and αφm = 2
(black) and φm = 58.0± 0.5 % and α = 2.5, i.e. αφm ∼ 1.45± 0.01 (grey).

covered, with a gap between the two serrated plates of 2 mm, i.e. large compared with
the particle size. For a volume fraction φ . 35 %, the viscosity is well characterized.
Above this volume fraction, the determination of the suspension rheology was more
difficult and was not found to be reliable.

In figure 6, we can first notice that the effective viscosity increases with φ in all
cases and is well fitted by a Krieger–Dougherty model (1.2) (see solid lines). For
protocol I, the best approximation is found for αφm = 2, in which case one obtains
φm = 57.0 ± 1.0 % (black line). For protocol II, α = 2.5 is found to be a better
exponent to fit the experimental data. In this case, one finds φm = 58.0± 0.5 % (grey
line). As observed in figure 6, all of the data are well defined by these two solutions,
which correspond to the range of φm and α found in the literature (see Ovarlez
et al. 2006; Huang & Bonn 2007; Mueller et al. 2010; Boyer et al. 2011; Dbouk
et al. 2013; Mari et al. 2014, for instance), whatever the protocol used to make the
suspension and the method used to extract the effective viscosity. Nevertheless, the
set of data presented in figure 6 allows us to clearly distinguish the two protocols.
In particular, the obtained effective viscosity is slightly larger for protocol I than for
protocol II. This result clearly highlights the influence of the short-range interaction
at the microscopic scale between the particles (Gallier et al. 2014; Mari et al. 2014).
Here, the presence of air bubbles trapped at the surfaces of the particles in protocol
I is probably the reason for a change in the short-range interaction, which leads to
an increase in dissipation when the suspension is sheared.

5. Apparent non-Newtonian viscous regime
5.1. Shear-thinning versus shear-thickening

The previous section focused on the viscous regime considering that the suspension
behaves as an idealized Newtonian fluid, for which the effective viscosity only varies
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FIGURE 7. The temporal evolution of the front position in viscous dimensionless form
(4.4). The dashed line is the viscous self-similar solution (4.5).

with φ. It allowed us to extract the pertinent viscous scale, i.e. the effective viscosity,
which controls the dynamics of the current in this regime. However, a slow evolution
of µeff with time is often observed for dense suspensions, typically φ > 35 % for
protocol I and φ > 55 % for protocol II, which appears as a deviation of the front
evolution from the apparent Newtonian viscous solution (see figure 7). We can
first notice that this deviation can be clearly distinguished for the two protocols.
Even if the front position is shown to deviate from the Newtonian solution in both
cases, the evolution associated with protocol I is observed to slow down, while it
accelerates for protocol II. Moreover, the time scale on which the deviation occurs
depends on φ for protocols I and II, but also on d for protocol II. This evolution
is here discussed in the light of shear-thinning and shear-thickening rheology, as
often mentioned in the literature dealing with suspensions. In particular, we will
show in the following that the two behaviours can be associated with shear-thinning
(respectively shear-thickening) for protocol I (respectively protocol II) on a long time
scale.

In order to characterize this apparent non-Newtonian behaviour, the more general
power-law model is detailed here. In particular, the shear stress τ is now expressed
as a function of the shear rate γ̇ as τ =Keff γ̇

m, with Keff and m the consistency and
the index of the apparent fluid respectively. In the frame of lubrication theory, the
self-similar solution for a Newtonian viscous model, shown in the previous section,
can be extended to a power-law type fluid (Gratton et al. 1999; Piau & Debiane 2005;
Di Federico et al. 2006), with the front position and height profile written as

x(s)f (t)= ηn

[
m

2m+ 1

(
ρg
Keff

)1/m

A(m+2)/mt

]m/(2m+3)

, (5.1)

h(s)(x, t)= η(1+m)/(2+m)
n

[
2m+ 1

m

(
Keff

ρg

)1/m A(m+1)/m

t

]m/(2m+3)

f (x/xf ), (5.2)

where ηn = [
∫ 1

0 f (x/xf )d(x/xf )]
−(2+m)/(3+2m) is a constant that depends on m and the

shape function f (x/xf ) = [(m/(2m + 3))m((m + 2)/(m + 1))(1 − (x/xf )
m+1)]1/(m+2) is
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FIGURE 8. The evolution of the front position xN
f for protocol I (a) and the variable XN

f =

(xN
f /ηn)

(2m+3)/m for protocol II (b) as a function of time tN in dimensionless form (5.3).
The dashed lines (- - -) represent the self-similar solution (5.4) with m= 0.8 (i.e. x(s)Nf ∼

1.39(tN)0.17) (a) and XN
f = tN (b).

obtained analytically. It should be noted that for m = 1, we recover the Newtonian
solution (4.1)–(4.2).

Defining the following new dimensionless variables:

hN
=

h
H
, xN

=
x
L
, tN

=
m

2m+ 1

(
ρg
Keff

)1/m H(m+2)/m

L(m+1)/m
t, (5.3a−c)

the self-similar solution for the dimensionless front position and height profile reads

x(s)Nf = ηn(tN)m/(2m+3), h(s)N = η(1+m)/(2+m)
n (tN)−m/(2m+3)f (xN/x(s)Nf ). (5.4a,b)

In order to obtain Keff and m from the front evolution in the experiments,
a procedure similar to the one used to extract µeff in § 4 is used. Here, Xf =

(xf /ηn)
(2m+3)/m, and the derivative procedure explained previously, which now leads

to Keff , therefore necessitates that we know m. However, model (5.1) is valid only
for constant dXf /dt. The value of m is therefore found to satisfy this condition. The
value of Keff is then obtained with the procedure used to evaluate µeff with the
viscous Newtonian model in § 4. The evolution of the front position is shown in
figure 8 for protocol I (figure 8a) and protocol II (figure 8b), with the appropriate
scalings obtained from the obtained rheological parameters (see figure 9 discussed
in the following). It can first be noted that this new rheological model allows the
dimensionless front evolution to be collapsed on a longer time scale than that using
the Newtonian model as in the previous section. We now discuss protocols I and II
independently, as they highlight significant differences in the rheological parameters.

For protocol I, figure 8(a) shows the evolution of the dimensionless front position
xN

f as a function of the dimensionless time tN for φ = 53.4 % (TS140) and µf =

0.001 Pa s (stars), φ = 38.6 % (TS140) and µf = 0.049 Pa s (circles), φ = 45.0 %
(TS40) and µf = 0.049 Pa s (diamonds), φ = 48.9 % (TS40) and µf = 0.049 Pa s
(squares) and φ = 52.0 % (TS40) and µf = 0.049 Pa s (triangles). The dashed line
corresponds to the self-similar solution (5.4). It is shown to be in very good agreement
with the experimental data. From these results, no clear trend is found for the index
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FIGURE 9. (a) The index m as a function of the volume fraction φ for protocol I
(black data) and protocol II (grey data). Only particles TS40 are considered here. (b)
The index m as a function of the diameter of particles d for protocol II and φ =
56.6 %. The viscosity of the interstitial fluid is between 0.001 Pa s (black grey) and
0.015 Pa s (light grey). (c) The normalized consistency Kr as a function of the volume
fraction φ for various viscosities of the interstitial fluid (i.e. µf = [0.001, 0.049] Pa s) and
particles TS40 (circles), TS140 (diamonds) and TS250 (squares). The dashed line is the
Krieger–Dougherty model with φm = 58.0± 1.0 % and αφm = 1.8± 0.1.

m for particles TS40 (black symbols in figure 9a) and other sizes (not shown here).
The index of the suspension is therefore considered as constant, m = 0.8 ± 0.1, and
suggests a shear-thinning behaviour, at least for φ > 35 %, on a long time scale for
protocol I. Moreover, the consistency Keff clearly increases with the volume fraction
φ and is independent of the size of the particles and the interstitial fluid (figure 9c).
One can note that the dimensionless consistency Kr=Keff γ̇

m−1/µf , with γ̇ =
√

g/h the
shear rate, exhibits a trend that is similar to the one obtained for the relative viscosity
µeff /µf as a function of the volume fraction (see § 4). In particular, the evolution of
Kr with φ is surprisingly well fitted by a Krieger–Dougherty type model similar to
(1.2). The obtained parameters are φm = 58.0± 1.0 % and αφm = 1.8± 0.1 (red solid
line in figure 9c).

The case of protocol II, where Triton X-100 was incorporated into the mixture,
is shown in figure 8(b), where the evolution of XN

f = (x
N
f /ηn)

(2m+3)/m is plotted as a
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function of tN for µf = [0.001, 0.009] Pa s and various values of φ obtained from
the experimental data (symbols) and the model (5.4) (dashed line). A very good
agreement between experiments and the self-similar theory is observed. Here, the
variation of m is more pronounced and is found to lie in the interval m∈ [1.5, 2] and
to increase with φ for particles TS40 (grey circles in figure 9a). It should be noted
that m= 2 would correspond to an inertial Bagnold regime for which the shear stress
is a quadratic function of the shear rate. For the other sizes (not shown here), the
variation of m is in the interval m ∈ [1, 1.5] and no clear trends are observed with
respect to φ. Only a shear-thickening behaviour is therefore observed for φ > 55 %
and protocol II. In this case, once the slumping suspension reaches the viscous regime,
the velocity deviates slightly from the viscous scaling and the current progresses faster
than expected for the effective viscosity of the suspension. Shear-thickening of the
suspension flow is observed for all particle sizes and viscosities µf of the interstitial
fluid but is more clearly quantified for TS40 and µf = 10−3 Pa s. Figure 9(b) shows
clearly the influence of the particle size d on m, which decreases with increasing
diameter, unlike protocol I where m is found to be constant. The shades of grey
from dark (µf = 0.001 Pa s) to light (µf = 0.015 Pa s) grey do not show a significant
influence of the interstitial fluid on m compared with the influence of d, at least in this
range of parameters. Moreover, the normalized consistency Kr is in good agreement
with a Krieger–Dougherty type model with the same parameters (φm = 58.0 ± 1.0 %
and αφm = 1.8± 0.1) obtained with a shear-thinning behaviour, i.e. with protocol I.

In this section, we have highlighted the most significant difference of the slumping
dynamics for protocols I and II. This difference is only observed when the viscous
dissipation controls the flow. Even if not explicitly proved here, the shear-thinning
and shear-thickening behaviours observed here can be explained as follows. The
short-range interactions in protocol I are probably controlled by air bubble interactions.
Such interactions induce a more significant resistance at small shear rate while
it breaks at high shear rate. This therefore explains the shear-thinning behaviour as
observed in foam dynamics (Cohen-Addad, Hohler & Pitois 2013). On the other hand,
in protocol II, such short-range interaction disappears. The observed shear-thickening
trend is consistent with some observations on neutrally buoyant suspensions found
in the literature (see Fall et al. 2010, for instance). The shear-thickening behaviour
observed here could be attributed to two processes, particle inertia and particle
migration. First, it should be noted that when φ → φm, the obtained value of m
approaches 2 at least for small enough particles TS40 (figure 9a), which is in
accordance with a Bagnold regime, dominated by the inertia of the particles, as
observed by Fall et al. (2010). The transition from the apparent Newtonian fluid
to the apparent shear-thickening fluid could therefore be defined in terms of the
Bagnold number. Using the definition presented in § 2.3, the transition is observed for
Ba∼ 10−1, which actually lies in the large range obtained in the literature (Bagnold
1954; Fall et al. 2010; Trulsson et al. 2012). Second, the decrease of m with d in the
shear-thickening regime (figure 9b) could be a signature of particle migration, which
strongly depends on the particle size. In such a scenario, particle migration, which
would separate particles from the bottom wall, leads to a strong heterogeneity of φ
in the suspension and the possible emergence of a thin layer close to the bottom
plane which lubricates the suspension current.

However, suitable local measurements are needed to confirm this scenario. This
question is therefore postponed to a future work. To finish with, when the exponent
m is selected, the dimensionless consistency Kr is found to collapse onto a single φ
curve for all of the experiments performed in the present study, including all protocols,
φ, µf and d.
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FIGURE 10. (a) The temporal evolution of the height profile for a suspension current
for φ = 59.9 % (TS250, µf = 0.001 Pa s, protocol II). The profiles correspond to time
t= 0.12–0.76 s in steps of 0.04 s. The inset represents the front position xf as a function
of time. The dashed line is the runout length xstop of the viscoplastic suspension. (b) The
evolution of the spreading length (xstop − L) as a function of the volume fraction φ for
protocol I (black) and protocol II (grey) and particles TS40 (circles), TS140 (diamonds)
and TS250 (squares). The dashed lines are φm= 57 % and φm= 58 %, used in the Krieger–
Dougherty model in § 4 for protocols I and II respectively. The solid line is the best fit,
xstop − L=−0.0617φ + 3.787, and the two dotted lines are the extreme fits.

5.2. Viscoplastic behaviour
In the previous sections, a singularity of the effective viscosity, or consistency, has
been observed at φ = φm. Even if the specific value of φm depends on the protocol,
it is below the maximum packing that can be obtained for a granular material.
Experiments can therefore be performed above φm. Figure 10 shows the height profile
as a function of time for a volume fraction φ= 59.9 % (with µf = 0.001 Pa s, particle
size TS250 and protocol II). The time evolution of the front position xf is shown
in the inset of figure 10. It can be noted that the front reaches a plateau at a finite
time, i.e. the current stops, after a short viscous phase. It should be noted that this
behaviour is obtained whatever the particle size (TS40, TS140 and TS250), interstitial
fluid viscosity (µf = 0.001 Pa s and µf = 0.049 Pa s) and protocol (protocol I and
protocol II).

As in the case of a granular collapse, a maximum spreading length can therefore be
extracted in this case. In the granular case, the initial aspect ratio of the column has
been shown to be the parameter that mostly influences the spreading length. In the
present case, we are interested in the impact of the volume fraction φ. Figure 10(b)
shows the evolution of the spreading length (xstop− L) as a function of φ for protocol
I (dark symbols) and protocol II (grey symbols). It should be noted that for protocol
I, viscoplastic behaviours are observed for φ < φm (dashed vertical black line), in
accordance with the shear-thinning behaviour highlighted in the previous section with
this protocol. For protocol II, the flow only stops when φ > φm (dashed vertical grey
line). In any case, (xstop − L) is shown to decrease with φ with a roughly linear
trend (solid line in figure 10b). An extrapolation of this linear trend at xstop − L= 0,
i.e. the initial column remains undeformed, allows us to extract a volume fraction φM
in the range [0.609, 0.627] above which no flow can occur, i.e. the initial column
remains static. It can be noted that φM is close to the maximum packing fraction.
This observation is discussed in the following in terms of an apparent plasticity of
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the suspension, even if a viscoplastic regime would remain striking in this experiment
for two reasons. First, no homogeneous flow is expected to occur above the maximum
volume fraction φm (Fall et al. 2009; Boyer et al. 2011; Trulsson et al. 2012). Second,
only a normal stress in the granular phase can lead to a Coulomb type yield stress in
this system.

In the case of a neutrally buoyant suspension, the granular pressure is expected to
vanish, and therefore no yield stress should be observed, unlike the case of turbidity
currents (Hallworth & Huppert 1998). However, due to the very high constraint
imposed by the initial sharp geometry, the volume fraction φm, which is close to
a loose volume fraction, is probably not sufficient to maintain the column. In this
case, the suspension can locally expand to allow a local flow close to the sharp
interface. This local expansion imposes a restoring force acting on the granular phase
to conserve the initial volume, described as the surface tension by Fall et al. (2009)
and Andreini et al. (2013). This force then plays the role of the normal stress which
then leads to a yield stress in the granular material. The order of this surface tension
imposed pressure can be estimated as 2σ/d (Fall et al. 2009; Andreini et al. 2013),
where σ is the interfacial tension. For a suspension composed of particles of diameter
d=40 µm or d=250 µm in water, the order is found to be 500–3000 Pa close to the
hydrostatic pressure ρgH∼ 1000 Pa, which is the initial driving force. The suspension
can thus highlight an apparent viscoplastic behaviour up to a volume fraction φM,
above which the packing allows the initial sharp interface to be maintained. Andreini
et al. (2013) observed a similar trend, explained as a stick–slip of the suspension on
the bottom wall due to a balance between the hydrostatic pressure and the capillarity
pressure. In this case, the sudden stop of the suspension flow is also attributed to
surface tension. It should be noted that stick–slip is observed here, but on a time scale
that is very long, around 20 minutes, compared with the collapse time scale ∼1 s.
We thus disregard the stick–slip phase and attribute this observation to an apparent
plasticity of the suspension even if the mechanism is probably similar. Nevertheless,
this scenario deserves a dedicated experimental study to quantify more precisely the
influence of surface tension on the suspension and justify it as the only mechanism
at the origin of these observations. It should be noted, for instance, that a stick–slip
behaviour similar to the one described here has also been observed in another system
without a free surface (Kulkarni, Metzger & Morris 2010).

6. Conclusion

The collapse of non-colloidal and neutrally buoyant particles suspended in a
Newtonian fluid column has been investigated. The dynamics of the current was
characterized by varying the initial volume fraction of the suspension φ, the viscosity
of the interstitial fluid µf , the diameter of the particles d and the mixing protocol,
i.e. the initial preparation of the suspension. The temporal evolution of the slumping
highlighted two main regimes: (i) an inertial-dominated regime followed by (ii)
a viscous-dominated regime, which can be described by shallow layer/lubrication
models.

The inertial regime was only found for sufficiently high Reynolds number (typically
Re & 1), based on the effective viscosity µeff of the suspension. This regime is
characterized by a constant-speed slumping which is shown to scale as in the case
of a classical inertial dam-break. In particular, the inertial slumping regime shows
that the dimensionless front velocity scales as dxI

f /dtI
∼ 1.5

√
gH. Moreover, analysis

of the transition time from this inertial slumping regime to the following viscous
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regime allows one to extract a first estimation of an effective viscosity µeff of the
suspension as a function of φ as µeff ∼ β(1 − φ/φm)

−αφm , with φm ∼ 76 %, α ∼ 5.3
and β ∼ 0.96× 10−3 Pa s, i.e. close to the Krieger–Dougherty model (1.2).

The viscous-dominated regime is observed as a decreasing-speed phase of the front
evolution. This regime is more complex and highlights behaviour depending on the
suspension parameters mentioned above. Lubrication models allow one to identify
most of the situations when both Newtonian fluid and generalized power-law fluid
– where the shear stress τ is written as a function of the shear rate γ̇ such as
τ =µeff γ̇ and τ =Keff γ̇

m respectively – are considered. This macroscopic description
of the slumping flow allows one to describe the unsteady dynamics of the suspension
flow as apparent Newtonian and apparent non-Newtonian fluids regardless of the
smaller-scale dynamics of the particles. The temporal evolution of the propagating
front was then used to extract the rheological parameters of the fluid models.

First, an apparent Newtonian fluid is shown to be pertinent to describe the dynamics
of the front at the early stages of the viscous-dominated regime. The obtained values
of the effective viscosity µeff are shown to be in good agreement with measurements
performed with a serrated parallel-plate rheometer as well as the Krieger–Dougherty
model, i.e. µeff /µf ∼ (1−φ/φm)

−αφm . However, the parameters involved in the viscosity
models seem to depend on the mixing protocol and two cases were distinguished: (i)
protocol I for which φm∼ 57.0± 1.0 %, αφm= 2 and (ii) protocol II with φm∼ 58.0±
0.5 %, αφm= 1.45± 0.01 (i.e. α= 2.5). This observed difference was attributed to the
local microscale interaction between particles which can strongly differ between the
two protocols.

On a longer time scale that depends on φ, the front evolution is shown to slightly
deviate from the apparent Newtonian model. In this case, the power-law model,
indicating both shear-thinning (m < 1) and shear-thickening (m > 1) behaviours,
is shown to be more appropriate to describe the front evolution. The present
experiments indicate that the mixing protocol plays a crucial role in the selection of
a shear-thinning or shear-thickening type of collapse, while the particle diameter d
and volume fraction φ play a significant role in m only in the shear-thickening case,
and m is found in the interval m ∈ [1, 2]. More surprisingly, once the exponent m is
selected, it is found that the consistency parameter Keff γ̇

(m−1)/µf , with γ̇ =
√

g/h the
shear rate and h the typical height of the current, only depends on φ and on neither
the mixing protocol nor d.

Finally, an apparent viscoplastic regime, characterized by a finite length spreading
reached at finite time, is observed at high φ. This regime is mostly observed for
volume fractions between φm and φM ∈ [0.609, 0.627] close to the random close
packing fraction. The appearance of an apparent yield stress in this experiment has
been explained as a local granular expansion which induces a surface tension pressure,
leading to a Coulomb type yield stress in the suspension. Above φM, the initial sharp
interface can be maintained by the granular packing on opening the gate.

Acknowledgements

We are grateful to the Agence Française pour la Biodiversité which has supported
this work. We thank M. J. Mercier and D. Anne-Archard for their help in the
experimental protocol. Moreover, we thank the reviewers for their constructive remarks
which helped to significantly improve this paper, in particular for having drawn our
attention to the scaling τ f

t ∼µ
−1/4
f .

https://doi.org/10.1017/jfm.2017.471
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


10010–1 101

101

100

10–1

FIGURE 11. Viscosity measurements from the slumping model as a function of the
viscosity obtained from rheometer measurements in the case of a viscous single-phase
fluid.

Supplementary movies

Supplementary movies are available at https://doi.org/10.1017/jfm.2017.471.

Appendix. Uncertainties in the effective viscosity measurement

The viscosity measured here suffers from uncertainties due to a possible sidewall
effect, model assumptions, temperature variation, etc. In order to quantify their
influences on our results, we compared the viscosity obtained with a classical
rheometer and our experimental model in the case of a single-phase fluid, i.e. φ = 0,
for which rheometer measurements are known to be robust. The results are shown in
figure 11. We plot here µR (viscosity obtained with the rheometer) as a function of
µM (found from the slumping model). The solid line shows µM = µR. We actually
find an offset which can be fitted as µM = 1.3µR (dashed line), corresponding to an
overestimation of 30 % on the viscosity.

It is worth noticing that in the range of parameters, time scales and length scales
considered here, a time-independent viscosity (even if overestimated) was found from
the model and allowed us to capture the time evolution of the front position during the
entire viscous regime (see figure 4). This means that the influence of the undesired
effects does not significantly evolve throughout an experimental run, and it is thus
reasonable to assume that the possible time variation of such effects is negligible here.

In addition, as the suspension fluid highlights a similar dynamics to a viscous fluid
in most of the runs, except when non-Newtonian behaviours show up, the influence of
possible undesired effects on the viscosity is assumed to be similar for single fluids
and suspensions. A key point here is the fact that the overestimation of the viscosity
observed in figure 11 is roughly constant (systematically 30 % larger than the ‘true’
viscosity) and independent of µ in the range of parameters considered here. This is
the reason why we refer to this overestimation as a bias on the experimental results
rather than an error. Thus, assuming that the possible influence of the walls (or other
undesired effects) here leads to a bias on the obtained viscosity, the ratio µeff /µf

(figure 6), which is nothing but the ratio of viscosity for a given φ to the viscosity for
φ = 0 (both obtained using the same procedure), should therefore remove this bias.
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Nevertheless, in order to illustrate the possible influence of these undesired effects
on the obtained quantitative results, we also report this bias as an error on the obtained
viscosity by adding error bars around the mean value of the extracted viscosity in
figures 6 and 9(c). In the latter, the errors were considered to be similar to those for
a Newtonian viscous single-phase fluid. These error bars then probably overestimate
the undesired effects. They are shown to be as small as the dispersion results (see
figure 6 for instance) and therefore do not significantly affect the fitting parameters
of the rheological models obtained for the large range of parameters considered here.
It should be noted that the influence of these uncertainties has also been accounted
for in the parameters of the obtained rheological models.
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