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Gradient Span Analysis Method:
Application to the Multipoint
Aerodynamic Shape
Optimization of
a Turbine Cascade
This paper presents the application of the gradient span analysis (GSA) method to the
multipoint optimization of the two-dimensional LS89 turbine distributor. The cost func-
tion (total pressure loss) and the constraint (mass flow rate) are computed from the reso-
lution of the Reynolds-averaged Navier–Stokes equations. The penalty method is used to
replace the constrained optimization problem with an unconstrained problem. The opti-
mization process is steered by a gradient-based quasi-Newton algorithm. The gradient of
the cost function with respect to design variables is obtained with the discrete adjoint
method, which ensures an efficient computation time independent of the number of design
variables. The GSA method gives a minimal set of operating conditions to insert into the
weighted sum model to solve the multipoint optimization problem. The weights associated
to these conditions are computed with the utopia point method. The single-point optimiza-
tion at the nominal condition and the multipoint optimization over a wide range of condi-
tions of the LS89 blade are compared. The comparison shows the strong advantages of
the multipoint optimization with the GSA method and utopia-point weighting over the
traditional single-point optimization. [DOI: 10.1115/1.4030016]

1 Introduction

Numerical shape optimization in aerodynamics is a design pro-
cess of geometric shapes following a given criteria of aerodynamic
performance, with both geometric and aerodynamic constraints.
This technique was intensively studied for a long time in the scien-
tific community. Among many other optimization methods,
gradient-based local algorithms are of particular interest if associ-
ated with a method that cheaply computes the gradient of the cost
function with respect to design variables. The adjoint method [1,2]
is one of them, the time cost to compute the gradient being inde-
pendent of the number of design variables. A gradient-based local
algorithm together with the adjoint method can therefore handle a
large number of design variables, needed to generate sophisticated
industrial configurations. This global framework of shape optimi-
zation with adjoint method is widely used in turbomachinery
[3–8], ranging from two-dimensional single-point cascade optimi-
zation to three-dimensional multipoint multistage optimization,
and from steady to unsteady flows.

A turbomachine operates over a continuous range of aerody-
namic conditions. Its performance may seriously deteriorate at
off-design conditions, if it was designed at a specific operating
condition, or even accounting for many operating conditions [9].
The weighted sum model is used to obtain a design optimized not
only for one but also for several conditions. Hence, the key point
is the selection of the appropriate conditions, and the choice of the
associated weights [10].

This paper investigates the shape optimization of the well-
known two-dimensional LS89 distributor turbine blade [11], with
a local gradient-based algorithm, a cost function given by the

weighted sum model, and gradients computed with the discrete
adjoint method. The newly introduced GSA method [12], already
validated on external aerodynamic optimization cases [13,14], is
used to select both the values and the number of operating condi-
tions to use for the scalar cost function. The weights are given by
the utopia point method [15].

The paper is organized as follows. The test case is presented in
Sec. 2, while Sec. 3 details the design objectives. Numerical meth-
ods, and in particular the GSA method, are introduced in Sec. 4.
Section 5 is dedicated to numerical results.

2 LS89 Test Case

The test case is the LS89 blade of a highly loaded transonic tur-
bine distributor. This blade was designed by the Von Karman
Institute in the early 1990s, and a lot of experimental studies were
carried out for very different physical conditions [11]. Figure 1
shows the multiblock structured grid of 140,330 nodes used to
perform the numerical experiments. The mesh is split into 35
blocks for parallel computing on 16 cores. The geometrical
parameters of the LS89 blade are given by the chord
c¼ 67.647 mm, the pitch g=c ¼ 0:850, the leading edge radius
rLE=c ¼ 0:061, and the trailing edge radius rTE=c ¼ 0:0105. The
leading edge is at ðx; zÞ ¼ ð0; 0Þ. The inlet plane @X1 is located at
x¼�46.0 mm, and the outlet plane @X2 at x¼ 100.0 mm.

A turbine nozzle guide vane converts pressure energy into
kinetic energy, and guides the flow to the turbine rotor. The flow
acceleration is generated by the static pressure ratio P
¼ Ps2

=Ps1
< 1;Ps1

and Ps2
being the static pressures on the inlet

and outlet boundaries respectively. The static pressure ratio P
characterizes the air flow. The condition MUR235 [11] was
chosen as the nominal condition, which corresponds to
Pnom ¼ 0:583. On the inlet boundary, the total temperature is set
to 413.3 K, the total pressure to 182,704.1 Pa, and the axial flow
angle to 0.0 deg. The blade surface is supposed to be an adiabatic

1Corresponding author.
Contributed by the Heat Transfer Division of ASME for publication in the

JOURNAL OF TURBOMACHINERY. Manuscript received October 1, 2014; final manuscript
received March 3, 2015; published online March 24, 2015. Assoc. Editor: Graham
Pullan.



smooth wall. The lower and upper sides of the mesh are periodic
boundary conditions. The Reynolds number Re1 is 264,170, and
the Mach number M1 is 0.15. This nominal condition corresponds
to an isentropic Mach number M2;is ¼ 0:927, and generates a tran-
sonic flow. A shock wave is located on the upper surface of the
blade, while a large turbulent wake escapes from the trailing edge.

3 Design Objectives

This section describes the design objectives. First, the single-
point optimization problem is introduced, and different quantities
are defined for a specific operating condition. Then, follows the
multipoint optimization problem.

3.1 Design Objective of the Single-Point Optimization
Problem. The goal is to minimize the total pressure loss tpl(a)
defined in the below equation at the nominal condition Pnom by
modifying the design variables a

tplðaÞ ¼ 1� Pt2ðaÞ
Pt1

(1)

where Pt2ðaÞ is the averaged total pressure given by

Pt2ðaÞ ¼
1

j@X2j

ðð
X2@X2

PtðX; aÞdS (2)

A constraint on the outlet mass flow rate QðaÞ defined in Eq. (3) is
added to avoid a potential entropy decrease due to a mass flow
rate reduction

QðaÞ ¼
ðð

X2@X2

qðX; aÞUðX; aÞ � n2ðXÞdS (3)

where q is the density, U is the velocity vector, and n2 is the nor-
mal vector to the surface @X2.

The constrained optimization problem is handled with the pen-
alty method. Then, the weighted cost function Js(a) of the single-
point optimization problem is given by

JsðaÞ ¼
tplðaÞ
tplða0Þ

þ r
QðaÞ
Qða0Þ

� 1

� �2

(4)

in which tplða0Þ and Qða0Þ represent the total pressure loss and
the outlet mass flow rate of the initial blade, respectively, and r is
the penalty coefficient. The goal of the optimization is to reduce
the shock intensity and the wake width in order to minimize the
total pressure loss.

3.2 Design Objective of the Multipoint Optimization
Problem. As explained in Sec. 1, the aerodynamic design of a tur-
bine cascade is intrinsically multipoint. The goal is to minimize
the total pressure loss not only at the nominal condition Pnom but
also on a continuous range of operating conditions around Pnom.
In practice, this range is defined by m conditions fPkgm

k¼1. This
kind of optimization is classically tackled with the weighted sum
model in the literature [6,16–19]. The overall function to mini-
mize is given by

JmðaÞ ¼
Xm

k¼1

xkJsða;PkÞ (5)

that is

JmðaÞ ¼
Xm

k¼1

xk
tplða;PkÞ
tplða0;PkÞ

þ r
Qða;PkÞ
Qða0;PkÞ

� 1

� �2
" #

(6)

where the xk are some weighting coefficients. The two key points
of this multipoint approach are the sampling of appropriate oper-
ating conditions (number and location) and the choice of the asso-
ciated weights [10]. We shall say a few words about the way we
choose the weights in the next paragraph. The operating condi-
tions are selected with the GSA method, see Sec. 4.4.

The method chosen in this paper to compute the weights is
based on the utopia point method. The aim is to force the algo-
rithm to target the Pareto front. If one of the functions, say
Jsða;P1Þ, could be reduced significantly, then the algorithm
would decrease this function, and eventually increase the others,
because the descent direction taken to reduce Jsða;P1Þ would be
the steepest one. Hence, the idea is to perform a single-point opti-
mization at each of the m conditions, and then choose weights
xk ¼ j1=Dtplkj, Dtplk being the variation of total pressure loss at
each condition Pk. In other words, Dtplk is considered as the max-
imum gain that can be obtained at condition Pk. This method to
compute the weights is expensive, and ideally we would like to be
able to estimate the potential gains Dtplk a priori, as done in wing
optimization [13] for drag gains.

4 Numerical Methods

This section presents the numerical methods. The optimizations
rely on a full adjoint process.

4.1 Parametrization. A parametric and differentiated
computer-aided design (CAD) engine is used to build the paramet-
ric model of the surface SðaÞ of the blade. This in-house code is
based on the nonuniform rational basis splines, and the parameters
are meaningful to designers (e.g., thickness, curvature, leading
edge radius). We shall give more details in Sec. 5.1. Besides, it
provides smooth surfaces, and enables to create localized defor-
mations. An analytical reverse mode computes functional gradient
dS/da.

Fig. 1 Multiblock structured grid of the LS89 test case



4.2 Grid Update. A grid deformation approach is used to
update the grid when the CAD model is updated by new design
parameters. Subtraction of the initial surface to the updated sur-
face provides a surface deformation field that has to be propagated
into the volume grid. The method used relies on an algebraic inte-
gral formulation [20]. It is analytically differentiated to provide a
reverse mode for the computation of the surface grid sensitivity,
from the adjoint volume mesh sensitivity.

4.3 Flow and Adjoint Solvers. Numerical computations
were performed with the ELSA ONERA software [21,22]. This code
manages both the flow analysis and the flow sensitivity aspects. It
solves the 3D compressible Reynolds-averaged Navier–Stokes
equations using a cell-centered finite-volume method on struc-
tured grids, and the associated discrete adjoint equations. The tur-
bulence model chosen is the one-equation Spalart–Allmaras [23]
model. The spatial convective fluxes of the mean flow are discre-
tized with the upwind Roe scheme [24] and the Harten’s entropic
correction. A monotone upstream-centered schemes for conserva-
tion laws scheme [25] associated with a Van Albada limiter [26]
provides second-order accuracy. The spatial convective fluxes of
the turbulent flow are discretized with the first-order upwind Roe
scheme. Spatial diffusive fluxes are approximated with a second-
order central scheme. The turbulent equations are solved sepa-
rately from the mean flow equations at each time step with the
same time-marching method. The backward Euler implicit
scheme drives the time integration. The resulting linear systems
are solved with the scalar lower-upper symmetric successive over-
relaxation (LU-SSOR) method [27]. A standard nonlinear multi-
grid algorithm [28] combined with local time stepping accelerates
the convergence to steady-state solutions.

All of the methods previously described in the flow solver are
differentiated by hand. During the differentiation, turbulent eddy
viscosity and thermal conductivity are assumed constant [29,30],
and a thin shear-layer assumption is made for viscous fluxes. The
method to solve the discrete adjoint equation, Akþ b ¼ 0, is a
preconditioned first-degree iterative method, similar to an approx-
imate Newton method [31], given in the following equation:

~A kðlþ1Þ � kðlÞ
� �

¼ �AkðlÞ � b (7)

where k denotes the discrete adjoint vector, and the matrix ~A is an
approximation of the Jacobian matrix A associated with the flow
equations, and the vector b. The approximation matrix ~A comes
from the linearization of Roe scheme for the convective flux, and
from the linearization of the diffusive flux neglecting the spatial
cross derivatives. The resulting linear systems are solved with a
few steps of a block LU-SSOR algorithm at each iteration of the
iterative method.

4.4 GSA Method. Facing a continuous range of operating
conditions, a finite number of them must be selected in order to be
able to actually achieve the optimization. These chosen operating
conditions must be able to control the performance of the system
over the whole range, but must also be limited in number to make
the problem computationally tractable.

In this context, what must absolutely be avoided is to find, at
the end of the optimization process, an operating condition that
has not been selected and at which the performance can be
improved without degrading the others. This phenomenon is
known as the local maximum behavior [17]. As shown in Ref.
[16], it occurs when the gradient of the cost function with respect
to the design variables at this operating condition is not linearly
dependent on the gradients at the operating conditions initially
included in the multipoint optimization problem.

The purpose of the GSA algorithm is to sample the operating
condition range—with the smallest possible number of
conditions—to set up a multipoint optimization problem so that

the local maximum behavior is avoided. It relies on the detection
of linear dependencies between the gradients in the range of oper-
ating conditions, using a modified Gram–Schmidt algorithm.

From a physical point of view, it is related to the observation
that the physics modeled by the equations of fluid dynamics at
two different operating conditions can be very similar, or even
more, that the sensitivity of the cost function at these two operat-
ing conditions can be similar. So, for a given perturbation of the
design variables, the cost functions can increase or decrease
simultaneously.

In a preprocessing step, a relatively fine sampling of the operat-
ing conditions is performed, say with M conditions. The gradients
of the objective function with respect to the design variables are
computed at these M conditions, with the initial shape. On this ini-
tial set, the linear dependencies of the gradients are computed,
and a minimal set of m<M linearly independent conditions is
selected by Algorithm 1.

Algorithm 1 Gradient Span Analysis Algorithm (GSA)

puðvÞ ¼
hv; ui
hu; ui u

indexes f1;…;Mg
for j ¼ 1! M do

cm  0
for n 2 indexes do

qj  raJsða;PjÞ
for i ¼ 1! j� 1 do qj  qj � pqi

ðqjÞ end for

qj  
qj

jjqjjj
; d  0

for i ¼ 1! M do

v raJsða;PiÞ
for k ¼ 1! j do v v� pqk

ðvÞ end for

if jjvjj < ejjraJsða;PiÞjj then d  d þ 1 end if

end for

if d > cm then qm  qj; cm  d; nm  n end if

end for

qj  qm; indexes indexesnfnmg
if cm¼M then END end if

end for

The approach gives the minimal number of sampling points to
control the continuous range of operating conditions [12]. The set
of conditions is only valid for the initial shape, and the process
should—in theory—be performed for each intermediary shape, or
at least for several shapes during the optimization, as in Ref. [17].
In practice, this is only done once, at the setup stage, to preserve
the overall computation time. The GSA method requires to com-
pute M flows and gradient solutions, but this number is much
smaller than the number of function evaluations needed during the
optimization iterations. The GSA algorithm may be performed
again at the end of the optimization process to see if the set of
conditions is still valid for the final shape. If not, it is easy to
restart an optimization process with modified conditions.

From a large number M of operating conditions, the GSA algo-
rithm extracts m<M linearly independent conditions. Note that
algorithm 1 depends on a tolerance �. This tolerance has to be
carefully chosen, as explained in Ref. [14, Sec. 7.5.2]. If the toler-
ance � is much higher than the error level observed on the gradient
computations, the estimated number m may be much lower than
the exact gradient span dimension. Some descent directions may
be missed. On the other hand, if the tolerance � is lower than the
error level, the number m may be overestimated, and may lead to
m¼M (very expensive in terms of central processing unit (CPU)
cost), i.e., all gradients are seen independent because of the error
level. A tolerance e ¼ 0:1 gives a good compromise in our case.

The GSA procedure shows that large dimensional parametric
optimization problems can be solved with a crude sampling of the
parameter range [13,14], whereas the gradients were supposed



implicitly linearly independent in Ref. [16], leading to much more
refined samplings. Besides, authors in Ref. [16] suggest to use a
number of operating conditions close to the number of design var-
iables, which is extremely costly for sophisticated shapes.

To summarize, the GSA algorithm gives a minimal set of m
well-chosen conditions which are used to set up the cost function
of Eq. (6). In this paper, the weights are computed with the utopia
point method [15]. If the weights were computed differently, the
m conditions selected by GSA would still be able to control the
cost function on the whole range of conditions, as shown in Ref.
[12]. Moreover, if the cost function were using these m conditions
plus some others, it would be fine too. As shown in Ref. [12], the
optimality condition on a set of m well-chosen conditions implies
the optimality of derived problems with modified weights built
with the same former m conditions and any additional one taken
from the space of operating conditions.

5 Numerical Results

The computational fluid dynamics code was previously vali-
dated in Ref. [32] for the LS89 case.

In the following, the penalty coefficient r is set to 100. This is
in line with what is done by other authors: r¼ 50 in Ref. [4], r
between 50 and 500 in Ref. [6].

5.1 Parametrization. The LS89 blade geometry was parame-
trized with a CAD model, shown in Fig. 2 on a profile, using 56
parameters. The parametrization controls both lower and upper
surfaces. Therefore, it controls the acceleration region, the throat

section, and the diffusion section. Six points fPiðX;ZÞg6
i¼1 are

chosen along the chord, and nine parameters are associated with
each of these six points (except the last one, which only has five
parameters). Those nine parameters correspond to the position X
along the chord, the position Z on the camber line, the thickness
Tcp of the blade at this point, the tangent angles Ua and La, and the
tangent modulus UlS, UrS, LlS, and LrS. The last six are the angle
of attack, the chord, the pitch, the leading edge radius, and two
coordinates dx and dz needed by the CAD model to locate the air-
foil. The trailing edge is not included in the CAD model (also fro-
zen in Ref. [4]) because the CAD model comes from wing
parametrization, and cannot handle round trailing edges.

The CAD model chosen for the blade optimization retains a
subset of 25 design variables, a, taken from the previous model.
The other 31 remaining parameters are fixed to the values
obtained from the LS89 geometry. The latter include the last six
parameters enumerated above, the parameters associated with P1

and P2, and all the X-positions and thicknesses. The parameters
associated with P1 and P2 control the shape of the leading edge,
and since these parameters are very sensitive to small variations,
they are frozen to avoid geometric discontinuities (note that the
leading edge is frozen in Ref. [4] too). The thicknesses are frozen
to satisfy possible structural constraints. The design variables of
the initial blade are denoted by a0.

5.2 Gradient Validation With Finite Differences. The gra-
dient of the cost function given by the discrete adjoint method is
compared with the one obtained by a second-order finite differ-
ence scheme. The number of iterations is set to 2500 for the flow
solver, which is enough to decrease the ‘2-residual of the fluid
density by four orders of magnitude. The number of iterations for
the resolution of the adjoint equation (7) is 800. Figure 3 shows
the error for every design variable. The design variables #1, #8,
and #15 have the highest errors, 14.19%, 9.72%, and 12.41%,
respectively. These three variables handle the local camber at dif-
ferent positions, respectively, at around 25%, 50%, and 80% of
the chord. The average error is 1.65%, and this is sufficient to
show the interest of the GSA method.

The approximations of frozen turbulence and thin shear-layer,
made in the differentiation for the discrete adjoint method, are at
the origin of these defects. The framework was validated for the
2D Euler equations, for which the difference between adjoint and
finite differences vanishes [13]. When the eddy viscosity is fixed
in the direct solver, the errors are reduced.

5.3 Selected Conditions. The interval [0.7,1.1] of isentropic
Mach numbers M2;is is uniformly sampled with M¼ 21 points.
This gives 21 static pressure ratios Pk in [0.476,0.732], which
includes the nominal point Pnom ¼ 0:583. The algorithm GSA
computes the gradient of Js(a) with respect to a for the 21 condi-
tions Pk. It outputs m¼ 5 conditions, shown in Table 1, with the
corresponding isentropic Mach numbers. The points obtained to
sample the interval [0.476,0.732] are very similar to the Cheby-
shev points of the second kind, used for polynomial interpolation
of smooth functions [33]. It reflects the fact that the physics
changes continuously with the parameter P: the total pressure
loss and its gradient are smooth functions of P, and hence a small
number of Chebyshev-like points is needed to control their
variations. Three points are located in the half of the interval cor-
responding to the lowest pressure ratio.

The GSA algorithm gives an optimal set of conditions, but it is
not unique. Five other conditions could have formed another
optimal set, as seen in Sec. 4.4.

5.4 Single-Point Optimization. This section presents the
results of the single-point optimization obtained with the
L-BFGS-B algorithm [34].

The convergence is reached after 20 iterations of the optimiza-
tion process, and for a total CPU cost of 144,000 s. Figure 4 shows
the evolution of the total pressure loss and the normalized mass
flow rate Q(a)/Q(a0). The process could have probably been
stopped around 10 cycles since no more decrease is gained after-
ward. Table 2 synthesizes the results. The total pressure loss is
reduced by 0.63%. The decrease in mass flow rate is much smaller

Fig. 2 CAD model parameters
Fig. 3 Error on the gradient computed by the discrete adjoint
method



than the maximum acceptable fluctuation 60.5% defined in Ref.
[6]. Figure 5 shows the initial blade geometry and the difference
Dz of z-coordinates to subtract to the initial blade geometry to get
the final one. Major differences are located in the shock wave
region.

The interesting point is to see how the new shape behaves on
the range of operating conditions, knowing that it has only been
designed taking into account one operating condition. Pressure
ratios are sampled uniformly with 21 points in the interval [0.476,
0.732] to draw the polar curve. Figure 6 shows the normalized
total pressure loss tpl=tplða0Þ, and the normalized mass flow rate
Q/Q(a0), with respect to the static pressure ratio P, for the initial
LS89 shape and the optimized shape. The vertical line locates the
nominal condition. Table 3 gives the results obtained at the five
conditions that are used for the next multipoint optimization. The
total pressure loss decreases for large pressure ratios, but increases
for small ones, and the mass flow rate varies a lot. This is what
designers call a poor design: the new shape is optimal for the
nominal condition, but the performance gets worse at some off-
design conditions. A way to obtain better designs is given by the
multipoint optimization.

5.5 Multipoint Optimization. This section presents the
results of the multipoint optimization.

A single-point optimization at each of the five conditions given
by the GSA method in Sec. 5.3 was performed to evaluate the
total pressure loss Dtplk at each condition. The weights have been
set to xk ¼ j1=Dtplkj as explained in Sec. 3.2. Table 4 gives the

variations of total pressure loss for the five single-point optimiza-
tions, and the associated weights.

The cost of one iteration of the multipoint optimization process
is much higher than the cost of one iteration of the single-point
optimization. One iteration of the multipoint optimization corre-
sponds to five iterations of the single-point optimization process,
since the evaluation of the multipoint cost function requires five
single-point cost function evaluations. On top of that, the cost of
the computation of the weights has to be added.

Figure 7 shows the evolution of the total pressure loss at the
five conditions given by the GSA algorithm, and shows that all
curves decrease. Figure 8 shows the evolution of the mass flow
rate, and shows that all constraints are reasonably respected. In
Figs. 7 and 8, the quantities are normalized by their respective ini-
tial values.

Table 1 Static pressure ratios selected by GSA, and corre-
sponding isentropic Mach numbers

P1 P2 P3 P4 P5

P 0.732 0.680 0.562 0.524 0.476
M2;is 0.70 0.78 0.96 1.02 1.10

Fig. 4 Evolution of the total pressure loss (square symbol),
and correlative evolution of the normalized mass flow rate
(circle symbol)

Table 2 Total pressure loss and normalized mass flow rate for
initial and optimal blades, for the single-point optimization at
the nominal condition

Total pressure loss Normalized mass flow rate

Initial 0.09674 1.0
Optimal 0.09613 0.9996
Variation (%) �0.6306 �0.0400

Fig. 5 Initial blade geometry in a (x, z) plane, and difference Dz
of z-coordinates between final and initial shapes (frozen trailing
edges not shown)

Fig. 6 Normalized mass flow rate and total pressure loss with
respect to the pressure ratio P for initial and optimized shapes

Table 3 Variations of total pressure loss and mass flow rate at
different conditions

P Dtpl (%) DQ (%)

P1 0.732 �1.0126 �0.7076
P2 0.680 �0.8990 �0.4934
Pnom 0.583 �0.6306 �0.0426
P3 0.562 �0.3543 þ0.0516
P4 0.524 þ1.3258 þ0.6168
P5 0.476 þ2.4136 þ1.2382



Figure 9 compares the initial and the optimized shapes. As in
Fig. 5, the first 25% of the suction side remains unchanged due to
the parametrization. In our case, both curves in Figs. 5 and 9 have
a minimum near x¼ 22, and a maximum near x¼ 34. The main
difference for the suction side is located near x¼ 29, where there
is an inflection point in Fig. 5 and a completely different pattern
in Fig. 9. The curves are quite different for the pressure side,
except that the maximum are both located at x¼ 31.

Using again 21 points uniformly sampled in the interval [0.476,
0.732] of pressure ratios, Fig. 10 compares the normalized total
pressure loss and the normalized mass flow rate between both
shapes over the whole range of operating conditions. Table 5 syn-
thesizes the results, while Fig. 11 shows the differences of total
pressure losses between the initial shape and the optimized shapes
of the single-point and multipoint optimizations.

Table 4 Variations of total pressure loss for the five single-
point optimizations, and associated weights for the multipoint
optimization

P1 P2 P3 P4 P5

Dtpl (%) �1.038 �0.977 �0.384 �1.026 �2.744
1/|Dtpl| 96.33 102.3 260.3 97.46 36.44

Fig. 7 Evolution of the total pressure loss at the five
conditions

Fig. 8 Evolution of the mass flow rate at the five conditions

Fig. 9 Initial blade geometry in a (x, z) plane, and difference Dz
of z-coordinates between final and initial shapes (frozen trailing
edges not shown)

Fig. 10 Normalized mass flow rate and total pressure loss with
respect to the pressure ratio P for initial and optimized shapes

Table 5 Variations of total pressure loss and mass flow rate at
different conditions

P Dtpl (%) DQ (%)

P1 0.732 �0.2648 �0.2732
P2 0.680 �0.2271 �0.2101
Pnom 0.583 �0.2024 �0.0716
P3 0.562 �0.1678 �0.0255
P4 0.524 �0.9039 þ0.0400
P5 0.476 �0.4197 þ0.1749

Fig. 11 Differences of total pressure losses between initial
and optimized shapes, with respect to the pressure ratio P



As opposed to Fig. 6, Fig. 10 shows that the mass flow rate fluc-
tuations are kept under 0.3%. Figure 11 shows that the total pres-
sure loss decreases this time at all the operating conditions for the
optimized shape obtained by the multipoint optimization, even if
the gains are lesser than those of the single-point optimized shape
for high pressure ratios. Moreover, note that the single-point curve
shows a slight local dip at the nominal condition, which is charac-
teristic of single-point optimizations. It is not observed for the
multipoint optimization.

At the initial setup phase, the GSA automatically gave three
conditions for low pressure ratios and two for high ones. The GSA
applied on the final optimized shape also gives five conditions,
which means that the multipoint optimization has not missed any
potential performance improvement on the optimal shape.

6 Conclusions

The performance of a system optimized at a nominal condition
often significantly deteriorates when the system operates at other
operating conditions. Consequently, when the system operates
over a range of operating conditions, the designer should control
its performance over this range during the design phase, and not a
posteriori. The weighted sum method is typically used to perform
multi-objective optimizations. Hence, the range of operating con-
ditions has to be discretized, and a preprocessing step needs to
select the conditions to include in the weighted sum. The recent
GSA method is used to automate the selection of the operating
conditions. It guarantees a minimal sample number and therefore
a minimal cost, and relies on mathematical theorems. The method
also ensures that no performance gain opportunities are missed,
i.e., that adding any other operating condition to the weighted sum
would not lead to a performance improvement without a degrada-
tion at another operating condition.

The methodology is applied to the redesign of the LS89 blade
over a wide range of pressure ratios. Our function of interest is the
total pressure loss, and the penalty method is used to include the
constraint on the mass flow rate into an unconstrained problem
formulation. The gradient of the cost function with respect to
design variables is computed with the discrete adjoint method,
whose computation time does not depend on the number of design
variables.

Although the variations of total pressure losses during all the
performed optimizations are quite modest, it is clear that the
single-point optimization increases the performance at the nomi-
nal condition and for higher pressure ratios, but decreases it dra-
matically at lower pressure ratios. The GSA method only gives
five operating conditions to build the multipoint optimization
problem. The multipoint optimization performs best at all condi-
tions, and the deformations of the final shape are less marked than
those resulting from the single-point optimization. These results
shows the interests of the combined GSA and utopia point method
applied to turbomachinery design.

Future works are under consideration to improve the present
methodology (parametrization, gradient accuracy, and so on). The
method is cost-efficient since the adjoint method is used both to
setup the optimization problem and to solve it. Therefore, the sim-
ple LS89 demonstration opens the perspective of more interesting
industrial configurations such as multistage turbomachinery or
counter rotative open rotors, with hundreds of design parameters
and multiple operating condition ranges.
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Nomenclature

cm ¼ dimension of the gradient space computed by GSA
i; j; k; n; d ¼ indices

Jm ¼ multipoint cost function
Js ¼ single-point cost function
m ¼ number of vectors in the gradient space given by

GSA
M ¼ size of the initial sampling of the condition range

M1 ¼ Mach number at the inlet plane
M2;is ¼ isentropic Mach number at the outlet plane

Psi
¼ static pressure at section i

Pti ¼ averaged total pressure at section i
Q ¼ mass flow rate
qj ¼ jeme vector of an orthonormal basis

Re ¼ Reynolds number
tpl ¼ total pressure loss

u, v ¼ gradient vectors
x, y, z ¼ Cartesian coordinates

a ¼ vector of design variables
e ¼ threshold for GSA
k ¼ adjoint variables

Pk ¼ static pressure ratio at condition k
r ¼ penalty coefficient

xk ¼ weights in the multipoint cost function
@X1 ¼ inlet plane
@X2 ¼ outlet plane
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