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ABSTRACT
This work proposes to examine the variability of the bone tissue healing process in the early period
after the implantation surgery. The first part took into account the effect of variability of individual
biochemical factors on the solid phase fraction, which is an indicator of the quality of the primary
fixation and condition of its long-term behaviour. The next issue, addressed in this second part, is the
effect of cumulative sources of uncertainties on the same problem of a canine implant. This paper
is concerned with the ability to increase the number of random parameters to assess the coupled
influence of those variabilities on the tissue healing. To avoid an excessive increase in the complexity
of the numerical modelling and further, to maintain efficiency in computational cost, a collocation-
based polynomial chaos expansion approach is implemented. A progressive set of simulations with
an increasing number of sources of uncertainty is performed. This information is helpful for future
implant design and decision process for the implantation surgical act.
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1. Introduction

The fixation of an orthopaedic implant to the surround-
ing bone greatly affects its clinical longevity (Hahn et al.
1988; Swider et al. 2011). The implant fixation quality
is determined by the bone healing process in the early
period after the implantation surgery (Morshed et al.
2007; Schwarz et al. 2007).

Several numerical models for tissue evolution predic-
tion are available in the literature and were discussed
in the first part of this study. In the model used herein,
the bone tissue was modelled as a multiphasic porous
medium and coupled with computational cell biology
(Ambard&Swider 2006; Ambard et al. 2009; Guérin et al.
2009). Numerical results from the coupled biochemical-
mechanical model were validated by experimental results
from a canine implant (Søballe et al. 1992; Vestermark et
al. 2004).

The healing process of a bone implant is affected
by significant uncertainties from the mechanical and
biochemical environments (Vayron et al. 2011;Miramini
et al. 2015). The influence of system uncertainties can be
observed directly using Monte Carlo simulations (MCS)
(Fishman 1996), which require a large number of sim-
ulations and high computational cost to obtain accurate
results.

The first part of this study focussed on the influence
of individual uncertainties on the healing process. A bio-
chemical model was combined with an intrusive stochas-
tic method, the Galerkin projection polynomial chaos
expansion (PCE). Uncertainty propagation during this
process was predicted at a low computational cost.

For the bone-implant healing problem considered in
this work, coupling in the influence of uncertain param-
eters requires prediction of the effect of an increasing
number of simultaneous sources of variability on the
biochemical phenomena of healing, while keeping again
the simulation cost affordable. This is the focus of this
second article.

Due to its computational efficiency, the PCE method
has been widely applied in many disciplines for uncer-
tainty quantification problems. The computational effi-
ciency of PCE was compared with numerical cubature
scheme, Karhunen-Loeve moment equationmethod and
MCS for a groundwater flow with uncertain conductiv-
ity in porous medium (Rupert & Miller 2007). It was
found that all these methods suffered from the curse
of dimensionality as the system size and the number of
uncertainty increased and that PCE outperformed other
methods when the appropriate truncated number of base
polynomials were identified to quantify the uncertainties.
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For the solution of the PCE coefficients, the PCEmethod
can be divided into intrusive and non-intrusive tech-
niques (Huang et al. 2007;Oladyshkin&Nowak 2012). In
the intrusive PCEmethod, the PCE coefficients are solved
by the stochastic Galerkin projection (Ghanem& Spanos
1991), which requires access to the system equations and
results in more complex system equations. This accurate
method was used in the first part of the paper to examine
the effect of individual biochemical uncertainties on the
bone-implant healing process.

In the non-intrusive PCE method, the system equa-
tions are treated as a black box and the calculation of
PCE coefficients is based on a set of deterministic simula-
tions, which is more amenable in terms of computational
cost for large-scale models and in terms of modelling
complexity for iterative methods. To calculate the PCE
coefficients, two non-intrusive approaches can be used:
the spectral projectionmethod and the collocation-based
method (Eldred 2009). The spectral projection method
projects the output results into the base polynomials us-
ing an orthogonality property and multidimensional in-
tegral, which involves random sampling, quadrature,
Strouds cubature formula (Stroud 1957), or sparse grid
approaches (Xiu & Hesthaven 2005). The collocation-
based method uses a linear regression algorithm that
approximates the PCE coefficients to match the output
results from the deterministic model at a set of collo-
cation points using the least square algorithm (Huang
et al. 2007), which is more straightforward to imple-
ment than the spectral projection. The collocation-based
PCE method was combined with Karhunen-Loeve ex-
pansion to analyse the flow in porous media with an
uncertain hydraulic conductivity field (Li &Zhang 2007).
This method was applied to estimate internal and bio-
logically effective doses of toxic chemicals for the hu-
man body and to predict the pollutant concentrations
in the atmosphere (Isukapalli et al. 1998), and showed
higher computational efficiency compared with standard
and modified MC simulations. To examine the forces
and moments of intervertebral discs in the human spine,
the collocation-based PCE was shown to be more accu-
rate than the spectral projection method (Karajan et al.
2014).

This paper investigates the combined effects of ran-
dom biochemical parameters on the bone-implant heal-
ing process using the non-intrusive collocation-based
PCE. The model takes into account the osteoblast cells
migration, growth factors diffusion and bone deposit.
Since the collocation-basedmethod introduces additional
approximations (least-square at the collocation points),
its validation is performed with comparison to MCS in
terms of accuracy and computational cost. Its perfor-
mances are exemplified on the case of a canine implant,

and insight on the healing process with respect to the
sources of uncertainty are discussed.

2. A biochemical model with combined random
factors

This model aims to reproduce a canine experimental
implant study described in Part 1 of this work. A hole
is drilled in the host bone to receive the implant, with
the gap to allow the healing. The problem is considered
as 1D axisymmetric and the quantity of interest is the
solid bone fraction φs once the transient regime is sta-
bilised (after 56 days). No micromotion is considered
herein.

2.1. Deterministic model as a black box

The healing process with tissue formation is modelled
as a transient convective-diffusive-reactive problem in
porous media (Ambard & Swider 2006). Its parabolic
nature allows derivation of finite difference approxima-
tion schemes, see Yang et al. (2014) and the first part of
this paper, in terms of a 4-field problem involving the
bone solid fraction φs, the concentration of osteoblast
cells Cc , the concentration of growth factors CM , and
the relative fluid flow rate −q f (Darcy velocity). The
formal expression of the evolution problem requires
x = f (x, div grad x, q f ) where the state vector is
x=[

φs (1 − φs)Cc (1 − φs)CM]T, closed with a fluid con-
servation equation in the case of incompressibility, that
reads−φs = div q f . The function f is not detailed herein
and the interested reader is suggested to refer to Ambard
and Swider (2006). Despite the macroscopic nature of
the model, the coupling of the four fields in function f
induces a potentially large number of phenomenological
parameters. The main uncertainties have been identified
as the coefficient of osteoid synthesis αs, the coefficient of
haptotactic migration hc , the coefficient of chemotactic
migration χ c , and the drill hole radius rd (Ambard &
Swider 2006).

The ranges of these uncertain parameters are listed in
Table 1. The only available information on the values
of the parameters are the bounds of their interval of
variation in Ambard and Swider (2006). Therefore, in
the following analyses, these parameters are assumed to
follow uniform distributions. Depending on the study
case, some inputs will be considered as random and some
others as deterministic whose values are chosen by the
measurements given in Ambard and Swider (2006).

Using a stochastic analysis, these uncertain parameters
are considered as inputs of themodel. It is now of interest
to quantify the effect of coupled uncertainties, to provide
further insight into the healing process and to be used



Figure 1. Influence of uncertain coefficients of haptotactic and chemotactic migrations hc and χ c . (a) Good healing and (b) poor healing.

Figure 2. Influence of uncertain coefficients of osteoid synthesis αs and drill hole radius rd . (a) Good healing and (b) poor healing.

as a tool during the decision process of the implantation
surgical act.

2.2. Non-intrusive PCE

The stochastic method used here is the stochastic re-
sponse surfacemethodusing collocation-basedPCE (Huang

et al. 2007). The output is expanded in a PCE by Ghanem
and Spanos (1991)

φs(r, ξ) ≈
Nφ∑
i=0

φs
i (r)�i(ξ) (1)



Figure 3. Influence of uncertain coefficients of osteoid synthesis αs , haptotactic migration hc and chemotactic migration χ c . (a) Good
healing and (b) poor healing.

Table 1. Parameters that may encounter variability.

Parameter Range

αs / mm6 cell−1 ng−1 s−1 [1, 5] × 10−9

hc / mm5 s−1 kg−1 [0.04, 0.8]
χ c / mm5 s−1ng−1 [1, 14.5] × 10−5

rd / mm [3.8, 4.4]

inwhich the number of unknownpolynomial coefficients
is equal to Nφ + 1 = (n + p)!/n!/p! with p the PCE
order and n the number of random variables of inputs
ξ = (ξ1, ξ2 . . . ξn). The random inputs follow the uni-
form probability law and the base polynomials �i de-
fined in Equation (1) are mutually orthogonal Legendre
polynomials. The collocation-based method outputs are
calculated at a set of collocation points (ξ 0, ξ 1 . . . ξNξ

)

in the parameter space from the deterministic model.
The number of collocation points should be greater than
the number of unknown PCE coefficients, and they are
chosen as the roots of a higher p + 1 order polynomial
to capture the points from the region of high probability.
The unknown PCE coefficients are then determined as
the least square solution arising from the minimization
of the norm of the residual in Equation (1):

min
φs
i (r)

Nξ∑
k=0

⎡
⎣φs(r, ξ k) −

Nφ∑
i=0

φs
i (r)�i(ξ k)

⎤
⎦
2

(2)

to solve a linear system of equations.

3. Numerical results

Two typical healing patterns encountered in the ani-
mal models (herein, a canine experiment) were selected
to support the computational developments. They were
classified according to the amount of solid fraction dis-
tribution φs and designated as good healing (GH) when
the average solid fraction was in the range of that of the
host bone andpoor healing (PH) for significant lower val-
ues. Ex-vivo histological data from Ambard and Swider
(2006) were included and compared with the numerical
results obtained from the present model.

It was shown previously in the first part of the paper
that the coefficient of osteoid synthesis αs had an impact
at both the implant surface ri and drill hole rd for GH,
but only at the drill hole radius rd for PH. In comparison,
the haptotactic coefficient hc showed less effect even if it
influenced the homogeneity of the solid fraction into the
post-operative gap, especially for GH. The chemotactic
coefficient χ c played a significant role in tissue formation
with a peak at the implant radius ri for both GH and PH.
For PH, the experimental results were observed to be
close to the lower limit of the PCE envelope. Variations
of the drill hole radius rd had a significant impact on
the tissue formation at the drill hole and it modified the
homogeneity of neo-formed tissue in the gap ri − rd ,
especially for GH.

Combined uncertainties in the various relevant bio-
chemical factors and the drill hole radius on the im-



Figure 4. Influence of uncertain coefficients of drill hole radius rd , chemotactic and haptotactic migrations hc and χ c . (a) Good healing
and (b) poor healing.

Figure 5. Influence of uncertain coefficients of osteoid synthesis αs , chemotactic migration χ c and drill hole radius rd . (a) Good healing
and (b) poor healing.

plant healing process are now examined. The selected
combinations were those that brought (i) a good pre-
diction of experimental data and (ii) relevant clues to
progress in the interpretation of clinical results. Each

input follows a uniform distribution within the range
shown in Table 1 (Ambard & Swider 2006), and are
identical to the values in part 1 of the paper. The input
parameters are well represented by the 1st order Leg-



endre PCE. In all cases, converged stochastic numerical
results are obtained using PCE of third order (p = 3),
corresponding to 16 collocation points for two uncertain
parameters and 64 collocation points for three uncertain
parameters in Equation (2). Compared with the 50000
Monte Carlo computations of the deterministic model,
the collocation-based PCE computations provide signif-
icantly reduced computational cost with an equivalent
accuracy. For each case of uncertainty, results are pre-
sented in terms of the mean and variance of the solid
fraction distribution φs. Upper and lower envelopes of φs

are constructed by taking the maximum and minimum
values of 50000 Legendre polynomial samples ξ for the
solid fraction.

3.1. Combined uncertainties involving two
parameters

3.1.1. Activemigration: haptotactic and chemotactic
coefficients hc and χ c

Figure 1 showed the combined influences of activemigra-
tion parameters hc and χ c . Comparison with the part 1 of
the paper for individual parameters confirmed the major
role played by χ c even if a smoother variance evolution
provided by hc was detected into the post-operative gap
(ri, rd).

3.1.2. Healing capability and surgical technique:
coefficient of osteoid synthesis αs and drill hole radius
rd

Figure 2 shows average trends when using combined
uncertainties αs and rd that are similar to those that can
be obtained with individual uncertainties (see Part 1 of
this paper) while their variances are more accentuated.

3.2. Combined uncertainties involving three
parameters

The combinations of three parameters were then investi-
gated. The role of active migrations (χ c , hc)when associ-
ated with uncertainties in bone tissue formation (αs) or
surgical technique (rd) are examined as follows.

3.2.1. Osteoid synthesis and activemigrations: αs, χ c

and hc

The gap region between the implant and drill hole (r ∈
[ri, rd]) is still observed to be the location of significant
disturbances as shown in Figure 3. The coefficient of
osteoid synthesis αs adds more disturbances to the host
bone (r ∈ [rd , rs], where rs is the limit of the region of
influence for the healing process) in terms ofmean values
and variance of solid fraction φs. Compared with previ-
ous results for combined uncertainty in the haptotactic

and chemotactic migrations (χ c , hc), Figure 1 does not
show strong differences in terms of shape for the radial
evolution of φs when uncertainty in the osteoid synthesis
is included.

3.2.2. Activemigrations and surgical technique: rd ,
χ c and hc

Compared to results shown in Figure 1, the combination
of active migrations with the uncertainties on the drill
hole (Figure 4) did not induce fundamental differences
in the tissue healing distribution pattern. The obtained
variance smoothing was associated with a small increase
of the solid fraction envelope size.

3.2.3. Osteoid synthesis, activemigration and
surgical technique: αs, χ c and rd

When the combination of (αs, rd) described by the re-
sponses in Figure 2 was associated with uncertainties in
χ c , the mean values and envelope results are significantly
modified in magnitude, and particularly in shape for the
PH case. As shown in Figure 5, maximal variances were
obtained and the heterogeneity of the solid fraction vari-
ance was intensified in the full region of interest (ri, rd).
Finally, the envelope of solutions in Figure 5(b) was able
to encompass both cases GH and PH.

4. Discussion and conclusions

Clinically, the main issue is the primary fixation and
consistent healing between the surface of the implant and
the host tissue is generally a good indicator for long-term
survival of the arthroplasty. The amount of structural (or
mineralized) fraction into the neo-formed tissue is the
result of combined and complex biochemical events. The
influence of the variability of the various parameters is
therefore significant and not trivial to estimate.

The numerical methodology proposed in this work
can be used to examine the effects of biochemical fac-
tors in the periprosthetic healing. Results obtained by
using collocation-based PCEwere in excellent agreement
with MCS and offered a drastic reduction of compu-
tational time. Furthermore, PCE can predict the mean
value, envelopes and variance. Small differences between
the PCE and MCS results were attributed to the non-
linear uncertainty from the drill hole radius rd , which
is independent of the PCE order and corresponds to
a limitation of collocation-based PCE (Isukapalli et al.
1998). These small discrepancies do not appear in the use
of the intrusive PCEmethoddescribed in part 1.However
the intrusive method based on Galerkin projection PCE
is more computationally expensive than the collocation-
based PCEmethod for the case of several random inputs.



Homogeneity of the healing process was conditioned
by haptotaxis migration that emphasised adhesion gradi-
ents at the drill hole in opposition to chemotaxis migra-
tion conditioned by the attraction of growth factors on
the implant surface. These effects were well corroborated
by the combined uncertainty analyses that highlight the
leading role of chemo attractants.

When uncertainty of the drill–hole radius was com-
bined with that of osteoid synthesis, the numerical model
confirmed that the drill–hole zone was the site of signifi-
cant effects and to a lesser extent, the implant surface was
affected.

The numerical methodology allowed triple uncertain-
ties to be evaluated simultaneously and revealed that the
combination of active migrations to osteoid synthesis
or drill–hole radius did not provide more significant
information excepting the increase of variances.

The combination of chemotactic migration with os-
teoid synthesis and drill–hole radius was shown to play
a major role in variation in the healing process. This
combination was able to encompass the healing patterns
previously defined (GH, PH) in a unified approach. In a
clinical setting, the envelope of solutions in Figure 5(b)
was conditioned by the surgical technique (rd parameter)
which influenced the primary fixation and the biochem-
ical potential of the site (blood clot, autologous growth
factors, pre-osteoblasts population), and the role of im-
plant bioactive coating.

The approach adopted here applied to the case of
canine implant provides insights on the healing implant
for several sources of uncertainty. The objective quan-
tification of biological events and the prediction of their
variability contributed to a better understanding of the
source of diversity observed in vivo.

This information is helpful for future implant design
and decision process for the implantation surgical act.
The methodology proposed in this study might provide
predictive tools to improve the oteogenic properties of
bioactive coatings (chemical composition, thickness) in
conjunction with autologous or additive proteins (oseo-
conduction, oseoinduction). It also can assist in the adap-
tation of the surgical technique in case of primary fixation
(drill–hole, coatings, and modified transport properties)
or implant revision. In this last case, the geometric and
structural regularity of the host site might be altered
as far as the biochemical responsiveness and transport
properties.
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