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ABSTRACT

A stochastic model is proposed to predict the intramembranous process in periprosthetic healing in
the early post-operative period. The methodology was validated by a canine experimental model.
In this first part, the effects of each individual uncertain biochemical factor on the bone-implant
healing are examined, including the coefficient of osteoid synthesis, the coefficients of haptotactic
and chemotactic migration of osteoblastic population and the radius of the drill hole. A multi-phase
reactive model solved by an explicit finite difference scheme is combined with the polynomial chaos
expansion to solve the stochastic system. In the second part, combined biochemical factors are
considered to study a real configuration of clinical acts.
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1. Introduction

The primary fixation of an orthopedic implant greatly

affects its clinical longevity (Albrektsson et al. 1983;Hahn

et al. 1988). The periprostheic tissue healing is influenced

by a significant number of factors including the patients

clinical condition (Colnot et al. 2007), the mechano-

chemico-bio factors (Colnot et al. 2007) and the surgical

technique (Morshed et al. 2007). Low performance of

implant fixation is generally associated with a lowminer-

alization or a heterogeneous ossification of new-formed

tissue (Morshed et al. 2007; Schwarz et al. 2007) but

conditions favouring thehealingprocess in the early post-

operative period remain a clinical concern. The bone

structure can be represented at the mesoscopic scale by a

biphasic medium including a porous skeleton drained

by the bone marrow and the vascularization. The in-

tramembranous healing involves the osteoblast popula-

tion,which proliferates andmigrates in themarrow in the

presence of growth factors. The osteoblast cells promote

bone formation and mineralization by depositing new

bone tissue on the implant surface and surrounding bone

(Davies 2003). The growth factors regulate cell prolif-

eration and stimulate bone matrix formation (Conover

2000) in the presence of mechanical factors coming from

the implant design and joint loads (Babiker et al. 2013).

Early numerical models of a bone healing process were

based on pure mechanical approaches and focused on

themechanical behaviourwhile simplifying the biochem-

ical and time effects (Carter et al. 1988; Viceconti et

al. 2000). Numerical models have also been developed

to examine the biological and transient behaviours of

the cells and growth factors. Biomathematical models of

migration and differentiation have been proposed in skin

and fracture healing (Tranqui and Tracqui 2000; Puthu-

manapully et al. 2008). Mechano-bioregulatory models

that incorporated the angiogenesis and cell migration

effects have been mainly concerned with the modelling

of endochondral ossification processes (Geris et al. 2008).

Numerical predictions have rarely been correlated to in

vivo or ex vivo data, explicitly. The models initially pro-

posed by Ambard et al. (2004) and Ambard and Swider

(2006) combinedporomechanicswith computational cell

biology while considering the biological tissue as a mul-

tiphasic reactive medium in the case of intramembra-

nous healing. Themethodologywas supported by ex-vivo

data from canine implant models (Søballe et al. 1992;

Vestermark et al. 2004). Mechano-biochemical models

are affected by significant uncertainties from themechan-

ical and biochemical environments and their influence

becomes crucial given the high degree of non-linearities

in coupling effects between mechanical governing equa-

tions and chemico-biological reactive sources. Models

of uncertainty are generally based on either a paramet-

ric or a non-parametric description of the uncertainty.

For a non-parametric analysis, uncertainties in the sys-

tem are described using a universal model regardless



of their detailed nature, such as using the entropy op-

timization principle (Soize 2000) and random matrix

theory (Kessissoglou and Lucas 2009). For a parametric

description of uncertainty, random quantities are de-

scribed using various techniques, including the Monte

Carlo simulations (MCS) (Fishman 1995), perturbation

method (Adhikari and Manohar 1999), random factor

method (Gao and Kessissoglou 2007) and polynomial

chaos expansion method (PCE) (Ghanem and Spanos

1991). The influence of uncertainties can be observed

directly using MCS, which generate a large number of

samples to obtain statistics of the output. Compared with

MCS, the PCE can obtain the statistical characteristics

of the results with greatly reduced computational cost. It

has been successfully applied in a range of problems with

uncertainties involving acoustics (Faverjon and Ghanem

2006) and fluid flow in porous media (Rupert and Miller

2007). We hypothesize that the PCE could be of great

interest to identify the role of complex biochemical pa-

rameters involved in periprosthetic healing. This paper

investigates the effects of uncertain biochemical parame-

ters on the bone-implant healing process using the PCE

methodology. The model considers coupled equations to

take into account the osteoblast cells migration, growth

factors diffusion and bone deposit. Results from the nu-

merical model of the homogeneous healing of the bone

implant are compared to canine experiments from litera-

ture (Vestermark et al. 2004). The explicit finite difference

scheme is combined with the PCE to solve the stochastic

systemequations. Results are comparedwithMCS, show-

ing good agreement with significantly reduced computa-

tional cost. In the first part of the paper, the relevance

of the proposed methodology is established and the ef-

fects of the individual biochemical factors, corresponding

to the coefficients of osteoid synthesis, haptotactic and

chemotactic migrations on the solid fraction distribution

in the neo-formed tissue are reported. Uncertainty in

the drill hole radius on the bone-implant healing is also

examined, which depends on the surgical technique. In

the second part of the paper, the effects of these combined

factors on the periprosthetic healing in the early post-

operative period are examined.

2. Bone-implant healingmodel

2.1. Presentation of the tissue formation problem

Figure 1 shows a schematic diagram of the canine experi-

mental implant previously examined in vivo (Vestermark

et al. 2004). The studied experimental device is a stable

implant. The pistoning system is not in contact with the

tibia plateau. Therefore, nomechanical loading is applied

on the implant during the healing time course. Boundary

conditions and tissue formation showed a polar symme-

try with a variable level of calcification (or mineraliza-

tion) φs in the radial direction r. The peripheral domain

denoted by rs was the host trabecular bone. The inter-

mediate domain bounded by the implant radius ri and

the drill hole radius rd corresponded to the immediate

post-operative gap. The healing process is evaluated up

to 8 weeks post-operatively starting from the initial con-

tinuous distribution of the solid fraction φs
in(r) described

by Equation (1) involving the transition distance δd , and

properties at the implant surface φs
ri
and at the host bone

φs
rs
. The transition distance δd is a geometrical parameter

that allowed regulating the transition between the very

low initial structural fraction into the initial gap in the

vicinity of the implant and the existing structural fraction

of the host bone. Fluid flux, cell flux and growth factor

flux were nil at boundaries.

φs
in(r) =

1

2

(

φs
rs

+ φs
ri

)

+
1

π

(

φs
rs

− φs
ri

)

tan−1

[

1

δd

(

r − rd
)

]

(1)

The set of convective-diffusive-reactiveEquations (2)–

(4) were obtained assuming incompressible phases in

isothermal behaviour with no substrate strain (Ambard

and Swider 2006). The model outputs were the evolving

solid fraction φs (or the effective porosity φf = 1 − φs)

of neo-formed tissue, the relative fluid flow rate qf and

the species concentrations: Cc and CM for osteoblast

population and growth factor phase, respectively.

∂φs

∂t
= αsφf 2CcCM = −divqf (2)

∂
(

φf Cc
)

∂t
= divqc + αcφf Cc

(

N cc − φf Cc
)

(3)

∂
(

φf CM
)

∂t
= divqM (4)

with

qc = φf
(

DcgradCc − hcρsCcgradφs − χ cCcgradCM
)

qM = DMφf gradCM + CMqf

where αs, hc , χ c and αc are respectively the coefficients of

osteoid synthesis, haptotacticmigration, chemotacticmi-

gration and cell proliferation. qc and qM are respectively

the cell and the growth factors flow rates. Dc and DM

are respectively the coefficients of cell and growth factors

diffusion. N cc is the inhibition level of cell proliferation,

which is the maximum concentration of cell per volume

unit, and ρs is the density of solid phase. The active

migrations of osteoblast population involved chemotaxis

and haptotaxis processes, and neo-formation of tissue



Figure 1. Canine experimental model: (a) implant diagram; (b) implant parameterization; and histological results for reference: (c) GH,
(d) PH.

were taken into account by source terms. The coefficient

of osteoid synthesis αs shows that the solid matrix source

is proportional to the concentration of osteoblast cells Cc

and growth factorsCM (Linkhart et al. 1996). Haptotactic

flow is proportional to the solid fraction gradient and

chemotactic flow is proportional to the growth factors

gradient (Friedl et al. 1998).

Two main classes of results were distinguished by the

average level of solid fraction φs. The spatial–temporal

evolution of this fraction revealed the biological activity

of osteoblast population in term of migration, prolifer-

ation, and synthesis of extra-cellular matrix that corre-

sponded with the amount of calcified tissue per volume

element. Two typical healing patterns encountered in the

canine experiment were selected to support the compu-

tational developments. They were classified according

to the amount of the solid fraction and designated as

good healing (GH) when the average solid fraction was

in the range of that of the host bone and poor healing

(PH) for significantly lower values. Data associated with

GH and PH are listed in Table 1. The concentration of

growth factors in the host site is negligible compare to

the one induced by a significant bleeding followed by

the inflammation and therefore is fixed to 0. Common

parameters for both healing patterns are δd = 0.1mm,

N cc = 1000 cell/mm3, αc = 1.9 × 10−10mm3/cell.s,

Dc = 2.5 × 107mm2/s, DM = 4.8 × 10−6mm2/s, ρs =

2.57 × 10−6 kg/mm3, ri = 3.25mm, rd = 4.1mm, rs =

7mm.

2.2. Stochastic modelling for the periprosthetic

healing

Parameters were selected to include the most significant

uncertainties. The drill hole radius rd is dependent upon

the surgical technique and consequently conditions the

initial solid fraction φs
in (see Equation (1)). Three bio-

chemical factors were examined, namely the coefficient

of osteoid synthesis αs, and the coefficients of haptotactic

hc and chemotactic χ c migrations.

Using PCE, all biochemical factors, the initial solid

fraction and the output quantities corresponding to the

solid fractionφs, the porosityφf , the fluid flow qf , the cell

concentration Cc and the growth factor concentration

CM can be expanded in a set of mutually orthogonal base

polynomials9i, which are functions of an n-dimensional

random variable ξ = {ξ1, ξ2, . . . , ξn}, such as Y given by

Ghanem and Spanos (1991)

Y(ξ) =

∞
∑

i=0

Yi9i(ξ) (5)

where Yi are deterministic coefficients. Practically, the

summation is truncated to a limited number of base

polynomials N . Hence Y can be approximated by

Y(ξ) =

N
∑

i=0

Yi9i(ξ) (6)

The truncation N and the values of Yi for the input data

depend on the choice of variability of the model. The

truncation for the output is obtained from the conver-

gence of the solution. In Equation (6), the truncation N

corresponds to Nα , Nh, Nχ , Nφ0 for αs, hc , χ c and φs
in,

respectively, andNφ ,Nq,Nc ,NM for the output quantities

φs, φf , qf , Cc and CM , respectively.

The intrusive PCE method is used in this first part

of the paper as it is well adapted to a problem with one

random variable since it provides good accuracy and is

computationally fast, especially for non linear problems



Table 1. Parameters of the numerical model for the cases of PH and GH.

Parameter New-formed tissue r ∈ [ri , rd ] Host trabecular bone r ∈ [rd , rs]

PH GH PH GH

φs
in(%) 6 6 40 50

C
c
0 (cell.mm−3) 0 1064 1667 2000

C
M
0 (ng.mm−3) 0.2 0.2 0 0

αs (mm6 .cell−1 .ng−1 .s−1) 3.25 × 10−9 3.5 × 10−9 3.25 × 10−9 3.5 × 10−9

h
c (mm5 .kg−1 .s−1) 0.78 0.7 0.78 0.7

χ c (mm5 .ng−1 .s−1) 2 × 10−5 7 × 10−5 2 × 10−5 7 × 10−5

(Didier et al. 2013). The method consists in substitut-

ing PCE of the eight parameters above into the gov-

erning equations given by Equations (2)–(4) and into

the initial solid fraction of Equation (1). Then, multi-

plying these equations by a base polynomial and using

the Galerkin projection with the orthogonal relationship

(Xiu and Karniadakis 2002) results in the set of deter-

ministic equations for the one-dimensional radial ax-

isymmetric bone implant. To solve the partial differential

equations, the explicit finite difference scheme with vari-

able time steps and upwinding was utilized. In the PCE

framework, each single explicit finite difference equation

was transformed to a set of equations, whose size depends

on the PCE order.

3. Effect of the variability of individual factor in

the solid fraction

The effects of single uncertainties in four model parame-

ters on the solid fractionφs in neo-formed tissueswere in-

vestigated. It concerned three biochemical factors: the co-

efficient of osteoid synthesis αs, the coefficient of chemo-

tactic migration χ c , the coefficient of haptotactic mi-

gration hc and a parameter associated with the surgical

technique, namely the drill hole radius rd . The histo-

morphometry is reproduced from Ambard and Swider

(2006) and is used as a reference in the following results.

Good tissue healing was characterized by the maximum

value between 70 and 80% at the implant surface ri and at

the drill hole rd showing increased biological activities in

these zones. Poor tissue healing maintained a significant

consolidation at the drill hole (60%) but showed a fast

decay to the implant.

All random biochemical factors follow a uniform dis-

tribution within ranges given in Table 1 and are well

represented by the first order Legendre PCE (Nα = Nh =

Nχ = 1). The statisticalmoments of the solid fractiondis-

tribution,mean and variance, were obtained from the co-

efficients of PCE by E[φs] = φs
0 and σ 2[φs] =

∑Nφ

i=1 φs
i
2E[92

i ] respectively. Envelopes of the maximum

andminimumvalues ofφs were constructed from its PCE

representation using 50,000 samples.

3.1. Influence of coefficient of osteoid synthesis αs

Variability in αs was within the range [1, 5]×10−9mm6/

cell.ng.s. For a converged result, the number of base poly-

nomial was Nφ = 2 for φs. Figure 2(a) and (b) present

themean solid fraction and its variance for periprosthetic

healing withGH and PH, respectively. Similar tendencies

were obtained into the host bone (r ∈ [rd , rs]) in terms of

mean values and variance of φs whereas the synthesis of

osteoid tissue was more significant in the vicinity of the

implant (r ∈ [ri, rd]) for the case of GH.

3.2. Influence of coefficient of haptotactic migration

h
c

Coefficient of haptotacticmigration hc varied in the range

[4, 80] × 10−2 mm5/kg.s. Solid fraction was represented

accurately by PCE order Nφ = 2. Figure 3(a) and (b)

show the mean and variance of φs for the GH and PH.

Even if haptotaxis influenced the two groups of distribu-

tion patterns, themean value associatedwith the variance

in Figure 3(b) showed that the healing process was more

affected by the uncertain hc in the case of low-level min-

eralization. In both cases, the drill hole zone (r = rd) was

the location of significant disturbances.

3.3. Influence of coefficient of chemotactic

migration χ c

Variability in χ c was assumed to be within [1, 14.5] ×

10−5 mm5/ng.s. For converged results, the third order

Legendre PCE was chosen to represent the uncertain

solid fraction distribution. As previously, the GH and

PH were examined and corresponding results are pre-

sented in Figure 4(a) and (b), respectively. Two cases of

healing patterns showed a significant sensitivity to χ c in

the zone of neo-formed tissue (r ∈ [ri, rd]). Due to the

local concentration of growth factors, which drove the

chemotactic flux, the mean values at the implant radius

were impacted significantly. The chemotaxis showed a

significant influence on the inhomogeneity of φs espe-

cially in the case of low calcification where the variance

reached maximum values as shown in Figure 4(b).



Figure 2. Statistics of solid fraction distribution φs with random osteoid synthesis αs .

Figure 3. Statistics of solid fraction distribution φs with random haptotactic migration hc .



Figure 4. Statistics of solid fraction distribution φs with random chemotactic migration χ c .

3.4. Influence of the drill hole radius rd

The radius of the drill hole rd was 4.1± 0.3mm. Accord-

ing toEquation (1), uncertainty in rd resulted in a random

initial distribution of the solid fraction φs
in. Both φs

in and

φs were represented by the third order Legendre PCE

(Nφ0 = 3,Nφ = 3 ). The output measures are presented

in Figure 5(a) and (b). The two cases of healing processes

were affected by uncertainty of the drill hole radius. It

was found that magnitude of φs was particularly evolving

for the GH (Figure 5(a)) whereas that of the fraction of

PH remained low (Figure 5(b)). This was corroborated

by the variances showing significant fluctuations, which

also confirmed that the amount of calcified tissue in the

drill hole environment was particularly dependent on rd .

3.5. Discussion

As shown in Figure 2–5 for the cases of GH and PH

and individual parameters αs, χ c , hs and rd , results ob-

tained by using PCE were in excellent agreement with

MCS using 5000 samples with a saving in computational

cost between 45 and 85%. Ex-vivo histological data from

Ambard and Swider (2006) were added and compari-

son with predicted results was comforting considering

the complexity of the biological mechanisms involved.

Comparing Figure 2(a) and (b) showed that the osteoid

synthesis driven by αs had an impact at ri and at the drill-

hole rd for GH and only at rd for PH. In comparison,

the haptotactic coefficient hc showed less effect even if

it influenced the homogeneity of structural fraction into

the post-operative gap especially for GH (Figure 3(a)).

The chemotactic coefficient χ c played a significant role

in tissue formation with a peak at ri for both GH and PH

as shown in Figure 4(a) and (b). For PH,we noted that the

experimental results were close to the lower limit of the

PCE envelope PCE. Figure 5 showed that the variations of

rd had a significant impact on the tissue formation at the

drill hole and itmodified the homogeneity of neo-formed

tissue in the gap ri − rd especially for GH. The stochastic

modelling aims to show the variability of selected param-

eters of the theoretical model on the predicted response.

Direct effect and coupled effects are predicted. In that

sense, it constitutes an elegant and powerful approach. It

helps predicting the variety of response and while doing

this it helps to understand and interpret the complex

mechanisms involved into the perisprosthetic implant

healing.



Figure 5. Statistics of solid fraction distribution φs with random radius of drill hole rd .

4. Conclusions

PCE was demonstrated to be of great interest to explore

biological events involved in the early post-operative

healing of periprosthetic tissue. A stochastic formulation

was obtained from the combination of reactive equations

with PCE, and was applied to an experimental canine

implant. The output data was the distribution of the

structural (or calcified) fraction of neo-formed tissue that

reveals the quality of the primary fixation and condi-

tion of its long-term behaviour. The intramembranous

healing is complex and multifactorial. As a first step,

the most significant factors were individually examined,

including three biochemical factors and one parameter

related to the surgical technique. The analysis of mean

values, variances and envelopes provided new insights

for the interpretation. Compared withMCS, the stochas-

tic model was shown to provide accurate results with

significantly reduced computational cost.

The PCE was able to describe the significant non-

linearity provoked by the coupling effects in chemico-

biological reactive sources. As observed in clinics, the os-

teoid synthesis is important in the vicinity of the implant

because of the initial presence of cells, growth factors in

the blood clot and bioactive coating. This also drove the

chemotactic flux of cells towards the implant surface. The

PCE order for the output structural fraction for this case

was increased, showing greater nonlinear effects of un-

certain chemotactic coefficient. The model also predicts

a significant variance of structural fraction at the implant

surface, which highlighted the role of implant bioactive

coating observed in clinical results. The uncertain hap-

totactic coefficient had a lesser impact on the structural

fraction even if it tended to provoke a bone condensation

at the drill hole because of the porosity gradient in this

zone, after the surgery. This healing pattern is corrobo-

rated by clinical results.

Finally, PCE allowed prediction of the role of the un-

certain drill hole radius, which is a crucial issue in vivo.

As confirmed in previous experimental work and in hu-

man arthroplasty, the surgical technique is operator de-

pendent and it guides the quality of implant fixation.

PCE results showed that the drill hole radius strongly

influenced the homogeneity of the structural fraction

and played a significant role on the variance of neo-

formed bone in the drill hole zone. The PCE in gen-

eral allowed prediction of the mean value of the struc-

tural fraction as well as its minimum and maximum

values. The envelope results highlighted asymmetrical

distribution patterns of boundaries, which confirms that

the numericalmethod is able to depict the non-linear and

biophysical events shown in experimental and clinical

observations.



In conclusion, the PCE has been shown to be a pow-

erful numerical method to predict and interpret non-

linear phenomena involved in the biological responses

of biological tissue. The next step is to evaluate its ca-

pacity to explore the role of mechanical strain on the

tissue biophysical response and inparticular the influence

of loading cycles and micromotions on the immediate

post-operative periprosthetic healing, as well as its effec-

tiveness in taking into account simultaneous sources of

variability. This last issue is studied in the second part of

the paper.
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