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Vortex-induced vibrations of a cylinder in
planar shear flow

Simon Gsell1, Rémi Bourguet1,† and Marianna Braza1

1Institut de Mécanique des Fluides de Toulouse, UMR 5502 CNRS-INPT-UPS,
Allée du Professeur Camille Soula, 31400 Toulouse, France

The system composed of a circular cylinder, either fixed or elastically mounted, and
immersed in a current linearly sheared in the cross-flow direction, is investigated via
numerical simulations. The impact of the shear and associated symmetry breaking are
explored over wide ranges of values of the shear parameter (non-dimensional inflow
velocity gradient, β ∈ [0, 0.4]) and reduced velocity (inverse of the non-dimensional
natural frequency of the oscillator, U∗ ∈ [2, 14]), at Reynolds number Re = 100; β,
U∗ and Re are based on the inflow velocity at the centre of the body and on its
diameter. In the absence of large-amplitude vibrations and in the fixed body case, three
successive regimes are identified. Two unsteady flow regimes develop for β ∈ [0, 0.2]
(regime L) and β ∈ [0.2, 0.3] (regime H). They differ by the relative influence of the
shear, which is found to be limited in regime L. In contrast, the shear leads to a major
reconfiguration of the wake (e.g. asymmetric pattern, lower vortex shedding frequency,
synchronized oscillation of the saddle point) and a substantial alteration of the fluid
forcing in regime H. A steady flow regime (S), characterized by a triangular wake
pattern, is uncovered for β > 0.3. Free vibrations of large amplitudes arise in a region
of the parameter space that encompasses the entire range of β and a range of U∗ that
widens as β increases; therefore vibrations appear beyond the limit of steady flow in
the fixed body case (β = 0.3). Three distinct regimes of the flow–structure system
are encountered in this region. In all regimes, body motion and flow unsteadiness are
synchronized (lock-in condition). For β ∈ [0, 0.2], in regime VL, the system behaviour
remains close to that observed in uniform current. The main impact of the shear
concerns the amplification of the in-line response and the transition from figure-eight
to ellipsoidal orbits. For β ∈ [0.2, 0.4], the system exhibits two well-defined regimes:
VH1 and VH2 in the lower and higher ranges of U∗, respectively. Even if the wake
patterns, close to the asymmetric pattern observed in regime H, are comparable in
both regimes, the properties of the vibrations and fluid forces clearly depart. The
responses differ by their spectral contents, i.e. sinusoidal versus multi-harmonic, and
their amplitudes are much larger in regime VH1, where the in-line responses reach 2
diameters (0.03 diameters in uniform flow) and the cross-flow responses 1.3 diameters.
Aperiodic, intermittent oscillations are found to occur in the transition region between
regimes VH1 and VH2; it appears that wake–body synchronization persists in this case.
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1. Introduction

When a bluff body is immersed in a cross-current, an unsteady wake with vortex
shedding can develop. If the body is flexible or flexibly mounted, the fluctuating forces
associated with wake unsteadiness may lead to vibrations of the body. These structural
responses, referred to as vortex-induced vibrations (VIV), involve a mechanism of
synchronization, or lock-in, between body motion and vortex formation. VIV are a
typical problem of fluid–structure interaction with a number of practical implications
in engineering applications; they have been the object of many research works, as
collected in Bearman (1984), Sarpkaya (2004), Williamson & Govardhan (2004) and
Païdoussis, Price & de Langre (2010).

VIV have been extensively studied through the canonical problem of a rigid
circular cylinder immersed in uniform flow and free to oscillate in the cross-flow
direction, i.e. the direction normal to the oncoming flow (Feng 1968; Hover, Techet
& Triantafyllou 1998; Khalak & Williamson 1999; Govardhan & Williamson 2000;
Blackburn, Govardhan & Williamson 2001; Shiels, Leonard & Roshko 2001; Leontini,
Thompson & Hourigan 2006). Significant body oscillations occur over a well-defined
range of values of the reduced velocity, defined as the inverse of the oscillator natural
frequency non-dimensionalized by the inflow velocity and body diameter. In this range,
called the lock-in range, the body oscillation frequency is equal to the vortex shedding
frequency. The lock-in frequency (i.e. frequency of the flow–structure system within
the lock-in range) can significantly depart from the oscillator natural frequency, but
also from the vortex shedding frequency in the fixed body case (Strouhal frequency).
The oscillation amplitude generally exhibits a bell-shaped evolution as a function
of the reduced velocity. Peak amplitudes of the order of one body diameter can
be observed, depending on the structural properties (e.g. structure/fluid mass ratio,
structural damping; Khalak & Williamson (1997)) and Reynolds number (Re), based
on the inflow velocity and body diameter (Govardhan & Williamson 2006). When
the body is also free to oscillate in the in-line direction (i.e. the direction parallel
to the oncoming flow), VIV naturally arise in this direction (Jauvtis & Williamson
2004; Dahl et al. 2010; Navrose & Mittal 2013; Cagney & Balabani 2014). The
cross-flow response of the oscillator may be substantially altered by the addition of
the in-line degree of freedom, and in-line vibrations with amplitudes up to half a
diameter may be observed. However, at low Reynolds number, the in-line oscillation
amplitude remains small, typically one or two orders of magnitude lower than the
cross-flow response amplitude for Re < 200 (Prasanth & Mittal 2008). The frequency
ratio between the in-line and cross-flow vibrations is generally equal to 2, as expected
due to the symmetry of the system.

Real physical systems where VIV are encountered are usually less symmetric than
a circular cylinder immersed in a uniform current and their behaviour may thus differ
from that noted in this canonical configuration. Previous studies have emphasized the
impact of breaking the system symmetry, for example by forcing the circular body to
rotate about its axis (Bourguet & Lo Jacono 2014), by placing it close to a side wall
(Zhao & Cheng 2011) or by considering a non-circular cross-section (Nemes et al.

2012). Typical effects of such symmetry breaking are the emergence of asymmetric
wake patterns, the appearance of a time-averaged cross-flow force and the change of
frequency ratio between the in-line and cross-flow forces and body oscillations. In the
present work, the axial symmetry of the body geometry is preserved but the cross-flow
symmetry of the flow–structure system is broken by immersing the circular cylinder
in linear planar shear flow, i.e. a flow linearly sheared in the cross-flow direction.



The case of a fixed circular cylinder placed in planar shear flow has been addressed
experimentally (Kiya, Tamura & Arie 1980; Kwon, Sung & Hyun 1992; Sumner &
Akosile 2003; Cao et al. 2007) and numerically (Jordan & Fromm 1972; Tamura,
Kiya & Arie 1980; Yoshino & Hayashi 1984; Chew, Luo & Cheng 1997; Lei, Cheng
& Kavanagh 2000; Kang 2006; Cao et al. 2010). These prior studies, which mainly
focused on linear shear, quantified the evolution of the vortex shedding frequency
and time-averaged fluid forces as functions of the shear parameter (β), defined as the
inflow velocity gradient normalized by the cylinder diameter and the oncoming flow
velocity at the centre of the body. A time-averaged cross-flow force, oriented from the
high velocity side of the body to the low velocity side and whose magnitude tends to
increase with β, was observed in previous works. In the in-line direction, the positive
time-averaged force was usually found to decrease as the shear parameter is increased.
Some contradictory results were however reported in comparable Reynolds number
ranges, for example an increase of the time-averaged in-line force with the shear
parameter (Tamura et al. 1980), and no clear trend was identified concerning the effect
of the shear on the vortex shedding frequency. The suppression of vortex shedding
beyond a critical value of the shear parameter, observed by Kiya et al. (1980) and
Tamura et al. (1980), but also by Cheng, Whyte & Lou (2007) in the case of a
square cylinder, for Re < 200, was generally not reported in other works. In sheared
current, the Reynolds number is defined based on the inflow velocity at the centre
of the body. Due to experimental constraints and to avoid numerical issues related
to the linear increase of the inflow velocity far from the body, the dimension of the
flow domain was often restrained in the cross-flow direction, leading to large values
of the blockage ratio (i.e. ratio between the body diameter and the width of the test
section or computational domain). Kang (2006) suggested that the influence of the
blockage ratio may justify the above mentioned discrepancies. The different regimes of
the unconfined flow past a fixed circular cylinder still need to be clarified, especially
for large values of the shear parameter.

The problem of a flexibly mounted circular cylinder immersed in planar shear
flow has received much less attention than the fixed body case. Through numerical
simulations, Singh & Chatterjee (2014), Tu et al. (2014) and Zhang et al. (2014)
studied the impact of the shear on VIV. They reported that the structural response
amplitudes tend to increase with the shear parameter. They also noted a switch
from figure-eight-shaped trajectories of the body to ellipsoidal orbits, when β is
increased, in relation with the alteration of the in-line/cross-flow response frequency
ratio induced by the symmetry breaking. Shear parameters up to 0.4 were studied
by Singh & Chatterjee (2014) and Zhang et al. (2014), for a single value of the
reduced velocity. Tu et al. (2014) considered different values of the reduced velocity
but a maximum shear parameter equal to 0.1. Previous works thus provide a partial
vision of the flow–structure system behaviour in the shear parameter-reduced velocity
domain. In particular, a wide interval of reduced velocities remains to be explored
for β > 0.1, i.e. in the range of moderate to high values of the shear parameter.

In the present study, the case of a circular cylinder, either fixed or elastically
mounted, and immersed in linear planar shear flow is examined on the basis of
numerical simulation results, at Reynolds number 100. In order to shed light on the
successive regimes of the flow (fixed body case) and flow–structure system (elastically
mounted body case), a range of shear parameter values up to 0.4 is considered, in
a large flow domain avoiding any blockage effects. In the elastically mounted body
case, the cylinder is free to oscillate in the in-line and cross-flow directions and a
range of reduced velocities, encompassing the lock-in range in the absence of shear,
is investigated.
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FIGURE 1. Sketch of the physical configuration.

The paper is organized as follows. The physical model and the numerical method
are described in § 2. The flow in the fixed body case is studied in § 3. The behaviour
of the flow–structure system in the elastically mounted body case is analysed in § 4.
The principal findings of the present work are summarized in § 5.

2. Physical model and numerical method

The physical configuration and its modelling are described in § 2.1. The numerical
method employed and its validation are presented in § 2.2.

2.1. Physical system

A sketch of the physical configuration is presented in figure 1. A circular cylinder
of diameter D is immersed in linear planar shear flow. The body axis is aligned
with the z axis. The problem is studied in two dimensions, in the (x, y) plane,
and the oncoming flow is parallel to the x axis. The coordinates x and y are
non-dimensionalized by D. The dimensional oncoming flow velocity is given by
U

∞ = {u∞, 0}T = {u0(1 + βy), 0}T, where u0 is the free-stream velocity at the centre
of the cylinder and β is the non-dimensional shear parameter, β = (du∞/dy)/u0. The
Reynolds number based on u0 and D, Re = ρf u0D/µ, where ρf and µ are the fluid
density and dynamic viscosity, is set to 100. The two-dimensional incompressible
Navier–Stokes equations are employed to predict the flow dynamics.

In the elastically mounted body case, the cylinder is free to oscillate in the in-line
(x axis) and cross-flow (y axis) directions. The origin of the (x, y) frame coincides
with the position of the body axis when the oscillator is at rest in quiescent fluid.
The oscillator is characterized by the body mass per unit length ρc and the structural
stiffnesses and damping ratios in both directions, ki and ξi, where the subscript i
designates the x or y direction. All the physical quantities are non-dimensionalized
by D, u0 and ρf . The non-dimensional mass is defined as m = ρc/ρf D

2; it is set to 2.
The non-dimensional cylinder displacement, velocity and acceleration in the i direction
are denoted by ζi, ζ̇i and ζ̈i. The force coefficient in the i direction is defined as
Ci = 2Fi/ρf Du2

0, where Fi denotes the sectional fluid force in the i direction. The body
dynamics in the i direction is governed by a forced, second-order oscillator equation:

ζ̈i +
4πξi

U∗
i

ζ̇i +
(

2π

U∗
i

)2

ζi =
Ci

2m
. (2.1)
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FIGURE 2. (Colour online) Schematic view of the mapping approach.

The reduced velocity in the i direction is defined as U∗
i = 1/fnat,i, where fnat,i is the

non-dimensional natural frequency in vacuum, fnat,i = D/2πu0

√
ki/ρc. In the following,

the structural stiffnesses are the same in both directions and the reduced velocity and
natural frequency of the oscillator are referred to as U∗ = U∗

x = U∗
y and fnat = fnat,x =

fnat,y. The damping ratio is set equal to zero in both directions to allow maximum
amplitude oscillations (ξi = 0).

The behaviour of the flow–structure system is explored in the (β, U∗) parameter
space. The shear parameter ranges from 0 to 0.4 and the reduced velocity from 2 to
14. The same range of β is considered in the fixed body case.

2.2. Numerical method

A general mapping approach for moving bodies in non-uniform flow, that avoids
domain deformation and keeps uniform free-stream conditions is introduced. The
mapping is decomposed in three steps, as depicted in figure 2. At step 1, the system
is described in the laboratory frame (x, y). The cylinder axis is located at {ζx, ζy}T

(x,y)

and is moving with velocity {ζ̇x, ζ̇y}T
(x,y). The (xc, yc) frame, attached to the body axis

and in translation with respect to the (x, y) frame, is indicated in the sketch. The
flow is governed by the two-dimensional incompressible Navier–Stokes equations,

∇ · V = 0, (2.2a)
∂V

∂t
+ (V · ∇)V = −∇P +

1

Re
∇2

V , (2.2b)

where t is the non-dimensional time and V and P denote the non-dimensional velocity
and pressure fields. Far from the body, the non-dimensional free-stream velocity V

∞

is given by the shear flow condition. A no-slip condition is imposed at the body
surface; therefore, the non-dimensional velocity of the fluid at the surface, V

b, is
equal to the body velocity. A change of the flow variables is considered at step 2.
The new velocity field V u is associated with a uniform far-field condition V

∞
u

and a



non-uniform condition at the body surface V
b

u
. At step 3, the system is described in

the body frame (xc, yc). This frame change is accompanied by a new change of the
flow variables. In the resulting formulation, the system is seen as a stationary cylinder
immersed in a uniform but time-dependent flow. A new set of boundary conditions,
V

∞
c

and V
b

c
, is obtained.

The time and space derivatives in the laboratory and body frames verify

∂

∂t
=

∂

∂tc

− ζ̇x

∂

∂xc

− ζ̇y

∂

∂yc

, (2.3a)

∂

∂x
=

∂

∂xc

, (2.3b)

∂

∂y
=

∂

∂yc

. (2.3c)

The transformed Navier–Stokes equations, obtained by substituting variables x, y, t, V

and P by xc, yc, tc, V c and Pc in the flow equations (2.2), can be expressed as follows:

∇ · V c = 0, (2.4a)
∂V c

∂tc

+ (V c · ∇)V c = −∇Pc +
1

Re
∇2

V c + S. (2.4b)

The source term S takes into account the frame motion and the shear of the oncoming
flow. The x and y components of S are given by

Sx = −ζ̈x − β(yc + ζy)
∂Vcx

∂xc

− β(Vcy + ζ̇y), (2.5a)

Sy = −ζ̈y − β(yc + ζy)
∂Vcy

∂xc

, (2.5b)

where Vcx and Vcy are the x and y components of V c. In the fixed body case, the same
formulation is employed, with ζi = ζ̇i = ζ̈i = 0.

Equations (2.4) are solved numerically. The computations are performed with
the finite-volume code Numeca Fine/Open (www.numeca.com) which employs a
preconditioned multigrid method (Liu, Zheng & Sung 1998). Viscous and inviscid
fluxes, as well as the source term S are computed via second-order schemes. A
second-order time integration is performed using a dual-time stepping method with a
Runge–Kutta scheme. At each time step, the structural dynamics equations (2.1) are
solved implicitly following the same pseudo-time integration scheme as for the fluid
equations.

The flow is discretized on a non-structured grid in a rectangular computational
domain. The cylinder is located at (xc, yc) = (0, 0). The domain extends from
xc = −Lx/2 to xc = Lx/2 in the in-line direction and from yc = −Ly/2 to yc = Ly/2
in the cross-flow direction. An unsteady far-field condition based on the Riemann
invariants is used at the external boundaries of the domain and is updated at each
inner iteration, according to the velocity of the frame attached to the body. A
non-uniform Dirichlet condition is used at the body surface. All the computations are
initialized with a fixed body immersed in uniform flow.

A convergence study has been carried out in the fixed and elastically mounted body
cases in order to set the numerical parameters. As an important effect of the blockage



β Case Lx Ly 1t ni ζ ′
x ζ ′

y fy

0.15 1 40 20 0.1 50 0.06 0.41 0.158
0.15 2 60 40 0.1 50 0.23 0.48 0.120

0.15 3 80 60 0.05 100 0.20 0.44 0.118

0.4 1 40 20 0.1 50 0.46 0.51 0.123
0.4 2 60 40 0.1 50 0.45 0.51 0.123

0.4 3 80 60 0.05 100 0.43 0.51 0.123

TABLE 1. Influence of the domain size, time step and number of inner iterations on the
body responses, for U∗ = 6.

ratio was reported in the literature (Kang 2006), particular attention was paid to the
size of the computational domain. Some convergence results obtained in the elastically
mounted body case have been selected and are presented in table 1. The root-mean-
square (r.m.s.) values of the body displacement fluctuations and the dominant cross-
flow oscillation frequencies fy, obtained for three sets of numerical parameters, are
compared for (β, U∗) = (0.15, 6) and (β, U∗) = (0.4, 6), i.e. for an intermediate value
of the shear parameter and for the largest value studied in this work, at a reduced
velocity where the cylinder exhibits large-amplitude vibrations, as shown in § 4.1. In
this table and in the following, the symbol ′ designates the r.m.s. value of the variable
fluctuation about its time-averaged value. Three grids are considered. All grids present
the same resolution and only differ by the size of the computational domain. The
grid resolution has been the object of a separate convergence study. Different time
steps 1t and numbers of inner iterations ni are considered in this table. For β = 0.15,
significant discrepancies are noted between cases 1 and 2, while the results obtained in
cases 2 and 3 are comparable. For β = 0.4, the responses show very low sensitivity to
the numerical parameters, and the results obtained in the three cases are similar. The
proximity of the responses in cases 2 and 3, for β = 0.15 and β = 0.4, illustrates the
convergence of the results with respect to the numerical parameters. The numerical
parameters of case 2 were selected in this study. The corresponding grid is composed
of 65 × 103 cells. Complementary results on blockage effect and validation of the
present simulation approach in the uniform flow case are presented in appendices A
and B.

The analyses reported in this paper are based on time series of more than 50 cycles
of the system, collected after convergence of the time-averaged and r.m.s. values of
the fluid force coefficients.

3. Fixed cylinder

The flow around the fixed cylinder immersed in sheared current is investigated over
a range of β in this section. The evolution of the fluid forces as functions of the
shear parameter is examined in § 3.1. Different flow regimes are identified. They are
analysed in § 3.2.

3.1. Fluid forces

The time-averaged fluid force coefficients are plotted as functions of β in figure 3(a).
In this plot and in the following, designates the time-averaged value. In the in-line
direction, the time-averaged force globally decreases as the shear parameter is increased.
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FIGURE 3. (Colour online) Fluid force statistics in the fixed body case: (a) time-averaged
values of the fluid force coefficients and (b) r.m.s. values of the fluid force coefficient
fluctuations as functions of β, in both directions. Coloured symbols in (a) represent the
values of Cx obtained in the elastically mounted body case, in selected points of the (β,
U∗) parameter space indicated in figure 8(c).

Three branches can be identified. In the first branch (β ∈ [0, 0.2]), Cx slowly
decreases as a function of β. A similar trend was observed by Lei et al. (2000),
Kang (2006) and Cao et al. (2010) in the same range of β, at comparable Reynolds
numbers. As the shear parameter is increased above 0.2, Cx reaches the second branch
(β ∈ [0.2, 0.3]), with substantially lower values than in the first branch. In this second
branch, Cx remains close to constant as a function of β. Cx is also constant in the
third branch, which corresponds to the range β ∈ [0.3, 0.4]. A negative time-averaged
force is noted in the cross-flow direction. The three branches are less clearly defined
but still visible in the evolution of Cy. In the first branch, Cy linearly decreases as a
function of β; this evolution is consistent with the data reported in previous works.
At higher shear (second and third branches), Cy is close to constant. The r.m.s. values
of the force coefficient fluctuations are plotted in figure 3(b). In the first branch, the
force fluctuations tend to increase with the shear. Distinct trends are noted during the
transition between the first and second branches: C′

y abruptly drops while C′
x slightly

increases. In the second branch, the force fluctuations increase as functions of β in
both directions. Residual oscillations can be noted up to β = 0.33 approximately, but
the force fluctuations tend to vanish in the third branch.

The first two branches identified in figure 3 are called branches L and H, in
reference to the low and high values of β. The third branch, where the constant
fluid forcing suggests a steady flow behaviour, is called branch S. The branches are
indicated in figure 3(a).

The spectral contents of the fluctuating fluid forces are examined in figure 4, which
represents, for each direction, the power spectral density (PSD) of the force coefficient
as a function of β. Unless otherwise stated, the spectral analyses reported in this paper
are based on the Fourier transform of the entire time series collected after convergence.
When the oncoming flow is uniform (β =0), the fluid forces are dominated by a single
frequency (i.e. sinusoidal) and the in-line force fluctuations occur at twice the cross-
flow force frequency, as expected due to the cross-flow symmetry of the configuration.
For β > 0, the symmetry is broken and a spectral component emerges, at the cross-
flow force frequency, in the spectrum of Cx; the relative contribution of this new
component increases as a function of β and it becomes predominant close to β = 0.1.

The three branches identified above on the basis of the force statistics are associated
with distinct frequency contents. The force frequencies slightly decrease as functions
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FIGURE 4. (Colour online) Fluid force spectral content in the fixed body case: power
spectral density of the fluid force coefficient as a function of β, in the (a) in-line and
(b) cross-flow directions. For each β, the power spectral density is normalized by the
magnitude of its largest peak. The colour levels range from 0 (white) to 1 (black).
Coloured symbols in (a) represent the dominant frequency of the in-line force obtained
in the elastically mounted body case, in selected points of the (β, U∗) parameter space
indicated in figure 8(c).

of β on branch L. After a non-monotonic behaviour around β = 0.2, they reach a
plateau in the H-branch region, where they are found to be much lower than in the
L-branch region. On branch H, other harmonics appear in the force spectra. In the
cross-flow direction, their amplitudes are limited and Cy remains close to harmonic.
The relative contribution of each harmonic to Cx spectrum varies as a function of β

and the resulting signal is generally not harmonic. For β > 0.3, in the S-branch region,
the force fluctuations tend to disappear and the PSD are not computed.

The data reported in figures 3 and 4 reveal non-monotonic evolutions of the fluid
forces in the region of transition between branches L and H. In this region, the flow
solution appears to switch from one branch to the other. This behaviour may indicate
an overlap of branches L and H. It is recalled that, in the present work, all the
simulations are initialized with a fixed cylinder immersed in uniform flow. Additional
simulations with different initial conditions have shown that hysteresis effects may be
encountered in the L–H transition region.

The analysis of the fluid forces suggests that the flow undergoes three successive
regimes within the range of β under study. These regimes are investigated in the
following.

3.2. Flow regimes

A schematic view of the evolution of the cross-flow force dominant frequency ( fCy
) as

a function of β is presented in figure 5(a). The three regions of the parameter space
associated with the branches identified in § 3.1 (L, H and S) are indicated in this plot.
A typical value of β is selected in each region in order to describe the main properties
of the corresponding flow regime.

The flow regime associated with branch L (β ∈ [0, 0.2]), referred to as regime
L in the following, is examined in figure 5(b), for β = 0.1. Time series of the
cross-flow force coefficient and spanwise vorticity (ωz) at (x, y) = (10, 0) are plotted
over a period of Cy (1/fCy

, where, as mentioned above, fCy
denotes the dominant

frequency of Cy). Both quantities are close to sinusoidal and oscillate at the same
frequency. Instantaneous vorticity fields at four selected instants are presented below
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FIGURE 5. (Colour online) Analysis of the three flow regimes identified in the fixed body
case: (a) schematic view of the cross-flow force dominant frequency as a function of β;
(b,c,d) selected time series of the cross-flow force coefficient (solid) and spanwise vorticity
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dashed lines in the time series), for (b) β = 0.1, (c) β = 0.25 and (d) β = 0.4. The black
triangle in the snapshots indicates the monitor point where the vorticity is sampled.



the time series. Vorticity contours are centred on the background vorticity induced
by the oncoming shear (ωz = −β). It can be noted that the shear slightly alters the
antisymmetric nature of the wake pattern, as also reported in previous works (Kang
2006; Cao et al. 2010); in particular, the negative (blue) vortices are convected faster
than the positive (orange) ones. However, the alternating vortex shedding pattern
remains globally comparable to the vortex street developing in uniform flow and the
shedding frequency, equal to fCy

, is close to that observed for β = 0.
The second region emphasized in figure 5(a) corresponds to the range β ∈ [0.2, 0.3].

The associated flow regime, called regime H, is depicted in figure 5(c), for β = 0.25.
The dominant frequency of Cy, which is substantially lower than in the first region, is
used to define the time interval over which the time series are plotted. Other harmonic
contributions appear in this region, as previously noted in the forces spectra (figure 4).
The structure of the wake differs from the pattern observed in regime L. The typical
length scales of the shear layers and wake vortices are larger in the present regime.
Moreover, the wake does not exhibit a vortex street pattern: the positive (orange)
vortices, as the vortex shed in snapshot 1, are not convected downstream; instead, they
remain close to the body and rapidly dissipate. The vortex shedding frequency can be
established based of the shedding of the negative (blue) vortices. It coincides with fCy

,
which is also the dominant frequency of ωz. The lower harmonic component identified
in figure 4(b) implies that two consecutive shedding periods are not exactly identical.
However, the impact of the low harmonic component on the flow appears to be limited
and no significant alteration of the wake pattern is noted from one period of shedding
to the other.

The third region (regime S) identified in figure 5(a) corresponds to the range
β ∈ [0.3, 0.4]. In this region, the fluid force fluctuations vanish and the wake exhibits
a steady triangular pattern, as illustrated in figure 5(d), for β = 0.4. This triangular
pattern is comparable to that reported by Cheng et al. (2007) in the case of a square
cylinder, but it was not previously observed for a circular cylinder. The flow structure
presents some similarities with the steady wake observed past a rotating circular
cylinder, a configuration that also involves different flow velocities on the upper
(y > 0) and lower (y < 0) parts of the cylinder (e.g. Mittal & Kumar 2003; Rao
et al. 2015). The residual oscillations of the fluid forces that persist around β = 0.33
(figure 3b) are not associated with vortex shedding but with a smooth, low-amplitude
undulation of the triangular wake pattern, which completely disappears once the shear
parameter is further increased.

A joint visualization of an instantaneous vorticity field and instantaneous streamlines
is presented in figure 6(a–c), for three selected values of β, one for each flow regime.
The streamlines reveal the presence of a saddle point in the flow, at a variable distance
from the body. The analytical solution of the inviscid flow around a circular cylinder
placed in sheared current predicts the existence of a saddle point located at (x, y) =
(0, yinv

s ), where yinv
s < 0 and |yinv

s | decreases as a function of β (Batchelor 2000). The
position of the saddle point in the inviscid solution is indicated by a diamond symbol
in the plots. The time-averaged values of the saddle point coordinates (xs, ys) and
the r.m.s. values of their fluctuations are plotted in figure 6(d,e). The saddle point
issued from the present viscous simulation is shifted downstream; its time-averaged
in-line position tends to zero as the shear increases. The time-averaged cross-flow
position of the saddle point is close to the position predicted by the inviscid solution
(grey dashed line in figure 6d). Overall, the saddle point gets closer to the body as
β increases. In regime H (figure 6b), the positive vortices appear to be trapped in
the saddle point region. It can be noted that in regime S (figure 6c), the lower corner
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FIGURE 6. (Colour online) Behaviour of the saddle point in the vicinity of the
body: (a–c) instantaneous streamlines and iso-contours of the spanwise vorticity (ωz ∈
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of the steady triangular wake pattern coincides with the position of the saddle point.
Large-amplitude oscillations of the saddle point position are observed in regime H

(figure 6e), where the saddle point is in close proximity to the recently shed vortices;



these oscillations occur at the vortex shedding frequency. In the two other regimes, the
saddle point does not oscillate: in regime L, the saddle point is far from the unsteady
wake; in regime S, the wake is steady.

To summarize, the flow past the fixed cylinder exhibits three distinct regimes in
the range β ∈ [0, 0.4]. In regime L, for β ∈ [0, 0.2], the flow dynamics, including
the vortex shedding frequency (typical frequency, fL = 0.16) and the wake pattern,
remain close to those observed in uniform current. The main impact of the shear in
this first regime concerns the shift of the in-line/cross-flow force frequency ratio and
the appearance of a negative time-averaged force in the cross-flow direction. A second
unsteady flow regime is uncovered for β ∈ [0.2, 0.3]. This regime (H) is associated
with a major reduction of the vortex shedding frequency (typical frequency, fH =0.075)
and a reconfiguration of the wake which exhibits a pronounced asymmetry compared
to the vortex street developing in regime L. The forces are substantially altered by the
shear, in particular, Cx significantly decreases. The flow unsteadiness is synchronized
with an oscillation of the saddle point appearing close to the body, a phenomenon that
is not observed in the other regimes. For β ∈ [0.3, 0.4], in regime S, the flow is found
to be steady and the wake is characterized by a triangular pattern whose lower corner
is the (stationary) saddle point.

The impact of the shear on the flow–structure system behaviour, once the body is
free to oscillate, is studied in the next section.

4. Elastically mounted cylinder

This section focuses on the case where the cylinder, immersed in a sheared current,
is elastically mounted and free to vibrate in both directions. The behaviour of the
flow–structure system is analysed over the same range of β as in the fixed body case
addressed in the previous section. An overview of the structural responses is presented
in § 4.1. The different flow–structure interaction regimes are examined in § 4.2.

4.1. Structural responses

The time-averaged displacements of the body as functions of β and U∗ are plotted in
figure 7. By considering the time-averaged form of the structure dynamics (2.1), the
time-averaged displacements can be expressed as ζi = CiU

∗2/8π
2m. Estimates of ζi,

based on this expression and the values of Ci in the fixed body case, are indicated
by dashed lines in figure 7. Even if the global trends are reasonably predicted, it
appears that the values of ζx and ζy cannot be accurately estimated on the basis of the
fixed body case results. Substantial deviations are observed: the negative time-averaged
cross-flow force noted in the fixed body case could suggest that ζy remains negative,
which is not always the case (β = 0.4 in figure 7b).

The maximum amplitudes of body oscillations, ζ m
x and ζ m

y , defined as the average of
the highest 10 % of the displacement fluctuation amplitudes (Hover et al. 1998), are
plotted as functions of β and U∗ in figure 8(a,b). These plots emphasize the impact
of the shear on the oscillatory responses. In each direction, the peak amplitude of
the response tends to increase with β. The amplification is particularly pronounced in
the in-line direction where the response reaches 2 body diameters for β = 0.4, versus
0.03 diameters in uniform current. A maximum amplitude of 1.3 diameters is noted
in the cross-flow direction. A typical amplitude of response can be defined as A =
√

ζ m
x

2 + ζ m
y

2. A is the maximum displacement that the body can possibly exhibit with

amplitudes ζ m
x and ζ m

y . Iso-contours of A in the (β, U∗) parameter space are plotted
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FIGURE 7. Time-averaged displacements of the body: (a) ζx and (b) ζy as functions of
U∗, over a range of β. For each value of β, a dashed line indicates the displacement
associated with the time-averaged force in the fixed body case.

in figure 8(c). The region of large-amplitude vibrations, defined as the region of the
parameter space where A > 0.15, is indicated in this figure. Large-amplitude vibrations
occur over the entire range of β investigated, even beyond β =0.3 where a steady flow
was observed in the fixed body case (§ 3). At low shear, for β < 0.2 approximately,
large-amplitude vibrations develop on a relatively narrow range of U∗ comparable to
that noted in uniform flow. This range rapidly widens around β = 0.2. For β > 0.2,
large-amplitude vibrations occur up to the maximum reduced velocity considered in
this study (U∗ = 14).

The different regimes of the flow–structure system are explored in the following.

4.2. Flow–structure interaction regimes

Three regimes of the flow–structure system are encountered outside the region of large-
amplitude vibrations. Regarding the flow dynamics, these regimes are similar to those
previously described in the fixed body case in § 3 (regimes L, H and S), i.e. the flow
and fluid forcing features identified in the absence of body motion are not altered by
the low-amplitude oscillations. The areas of the parameter space associated with these
regimes are indicated in figure 8(c).
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To illustrate the persistence of regimes L, H and S in the elastically mounted
body case, in the absence of large-amplitude vibrations, the time-averaged value
of the in-line force coefficient and its dominant frequency, in selected points of the
parameter space (coloured symbols in figure 8c), are reported in figures 3(a) and 4(a).
The results obtained in the fixed and elastically mounted body cases are very close.
The slight differences can be attributed to the fact that, in the elastically mounted
body case, the existence of a negative time-averaged force in the cross-flow direction
induces a shift of the cylinder cross-flow position and thus, a slight modification of
the effective Reynolds number and shear parameter seen by the body.

Within the region of large-amplitude vibrations, three other regimes of the flow–
structure system are uncovered. These regimes can be clearly identified on the basis
of the structural response frequency. The cross-flow response frequency ratio, defined
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as f ∗
y = fy/fnat with fy the dominant frequency of ζy (based on the Fourier transform

of the entire time series), is plotted as a function of β and U∗ in figure 9; only the
points located in the region of large-amplitude vibrations (figure 8c) are considered in
this plot.

In the low-shear region (β < 0.2), the impact of the shear on the response frequency
is limited and the frequencies collapse; the corresponding branch is called VL (i.e.
vibratory, low shear). On this branch, the response frequency, close to fL (a typical
frequency of regime L, fL = 0.16) at low reduced velocities, deviates from this
frequency and gets closer to the oscillator natural frequency ( f ∗

y ≈ 1) as U∗ is
increased.

In the high-shear region (β > 0.2), the response frequency generally departs from fL,
fH (a typical frequency of regime H, fH = 0.075) and fnat. Two distinct branches appear
as functions of the reduced velocity: a low-frequency branch and a high-frequency
branch; these branches are referred to as VH1 and VH2 (vibratory, high shear, 1 and 2).
At low reduced velocities (branch VH1), the influence of β on the response frequency
is small. In contrast, the value of the shear parameter is found to have a significant
effect on fy close to the transition between branches VH1 and VH2 and in branch VH2.

The regimes occurring in the large-amplitude vibration region are named after
the three branches identified above, i.e. VL, VH1 and VH2. The regions of the
parameter space associated with these regimes are indicated in figure 10(a), which
represents iso-contours of f ∗

y . As previously noted (figure 9), each regime exhibits a
distinct trend of the oscillation frequency: in regime VL, f ∗

y increases as a function
of U∗; in regime VH1, f ∗

y remains close to constant; in regime VH2, f ∗
y is larger

than in the other regimes, and increases (respectively decreases) as a function of U∗

(respectively β). Regimes VL, VH1 and VH2 are characterized by specific properties
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FIGURE 10. (Colour online) Flow–structure interaction regimes: iso-contours of (a) f ∗
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(b) ζ m
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y, in the (β, U∗) parameter space. In each plot, the map
of the flow–structure interaction regimes is overlaid on the iso-contours. A plain black
line delimitates the large-amplitude vibration region. A striped area indicates the region
of irregular responses studied in § 4.2.3. Blue symbols denote the points examined in
figures 12, 14 and 15.

of the structural responses and fluid forces. To illustrate this aspect, iso-contours of
the maximum response amplitudes and r.m.s. values of the fluid force coefficient
fluctuations are represented in the (β, U∗) parameter space in figure 10(b–e).



In regime VL, the body cross-flow response and the fluid forces are almost unaltered
compared to the uniform current case, relative to the large variations observed at
higher shear rates; the in-line oscillation is however substantially amplified.

In both directions, body responses and fluid forces are significantly amplified during
the VL–VH1 transition. The peak amplitudes of the body responses and fluid forces
are encountered in regime VH1. The structural response amplitudes rapidly decrease
during the VH1–VH2 transition. However, the responses are still significant in regime
VH2 since the cross-flow oscillation amplitude remains larger than 0.3 diameters. In
regime VH2, the force fluctuations are small in comparison with regimes VL and VH1.
Their amplitudes, close to constant, are comparable to and even lower than in the fixed
body case, in spite of the vibrations.

The time-averaged in-line force (not plotted here) is generally amplified within the
region of large-amplitude vibrations. This explains why the actual time-averaged in-
line displacement is usually larger than the estimate based on Cx in the fixed body
case (figure 7a). The amplification of Cx is particularly pronounced in regime VH1

where it can reach three times the fixed body case value.
The regimes associated with large-amplitude responses of the body are further

investigated hereafter.

4.2.1. Low shear: regime VL

The low-shear part (β < 0.2) of the large-amplitude vibration area is characterized
by regime VL (figure 10). The maximum amplitudes of the cylinder oscillations in
this region are plotted as functions of the reduced velocity, for selected values of
β, in figure 11. As previously mentioned, the influence of the shear on the response
amplitudes differs in each direction: the cross-flow response is hardly impacted, while
the in-line response amplitude significantly increases as a function of β. For β > 0, the
peak amplitudes are observed at the same reduced velocity in both directions (U∗ = 5).
The response amplitude exhibits a typical bell-shaped evolution as a function of U∗ in
the cross-flow direction; a much sharper evolution can be noted in the in-line direction.

Additional simulation results obtained in the case where the cylinder is restrained
to move in the in-line direction suggest that the above mentioned enhancement of
the in-line response for β > 0 is closely connected to the existence of cross-flow
displacement of the body. When the cylinder oscillates in the cross-flow direction
in sheared current, it is exposed to a continuous variation of the oncoming flow
velocity, which may contribute to the alteration of the in-line response, compared to
the uniform-flow case.

The cylinder displacements are generally periodic in this region of the parameter
space; the cross-flow responses are close to sinusoidal (frequency fy) and the in-line
responses may involve two harmonic components, 2fy and fy. The trajectories of the
cylinder in the peak amplitude region are shown in figure 11(a). In uniform flow
(β = 0), the in-line oscillation occurs at twice the cross-flow response frequency (2fy)
and the body exhibits a figure-eight trajectory, with clockwise motion in the lower
loop and counter-clockwise motion in the upper loop. As β increases, the upper loop
of the orbit tends to disappear, resulting in a clockwise, raindrop-shaped trajectory
for β = 0.05. For β = 0.1, the body exhibits a clockwise ellipsoidal trajectory. The
transition from figure-eight to ellipsoidal orbits as the shear is increased is related to
the emergence and amplification of a spectral component at the cross-flow response
frequency ( fy), in the spectrum of ζx, i.e. a switch from 2 to 1 in the ratio of
the in-line and cross-flow response dominant frequencies. This phenomenon was also
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FIGURE 11. Body oscillation amplitudes in the low-shear region: maximum (a) in-line and
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reported in previous works under comparable symmetry breaking (e.g. Tu et al. 2014).
The ellipsoidal trajectories would be counter-clockwise for β < 0.

Some aspects of regime VL are illustrated in figure 12, for (β, U∗) = (0.1, 6).
Selected time series of the body displacements and spanwise vorticity in the wake,
at (x, y) = (10, 0), are presented in figure 12(a). The vorticity signal appears to be
synchronized with body motion, which is, as mentioned above, mainly sinusoidal
in the cross-flow direction and composed of two harmonics in the in-line direction.
This is confirmed in figure 12(b,c) which represents the frequency spectra of the
cross-flow displacement and spanwise vorticity: the peak frequency of ωz coincides
with the dominant frequency of ζy ( fy, indicated by a vertical dashed line in the plot).
The condition of lock-in is thus established. The flow pattern downstream of the
vibrating cylinder is visualized in figure 12(d). The wake is characterized by a vortex
street whose antisymmetrical pattern is slightly perturbed by the shear, a perturbation
comparable to that observed in regime L (figure 5b). The saddle point, located at
ys ≈ −10, remains far from the body wake and does not significantly oscillate.
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A systematic analysis shows that the above observations, concerning the response
frequency content, the lock-in condition and the global shape of the wake pattern, can
be extended to the entire region of the (β, U∗) parameter space where regime VL is
found to occur.

4.2.2. High shear: regimes VH1 and VH2

Two regimes of the flow–structure system are encountered in the high-shear part
(β > 0.2) of the large-amplitude vibration region: a low-frequency ratio regime in the
lower range of U∗, VH1, and a high-frequency ratio regime in the higher range of
U∗, VH2 (figure 10). The maximum amplitudes of the cylinder oscillations in this part
of the parameter space are plotted as functions of the reduced velocity in figure 13.
Regimes VH1 and VH2 are indicated in this figure. The largest amplitudes of vibration,
as previously noted, 2 and 1.3 diameters in the in-line and cross-flow directions, are
observed under regime VH1, close to the transition region with regime VH2, where
the amplitudes are found to rapidly decrease. The U∗ range associated with regime
VH1 tends to widen as a function of β, as also illustrated in figure 10.



The cylinder trajectories for β = 0.3 and U∗ ∈ {6, 9, 12} are represented in
figure 13(a). The dominant frequencies of the responses are generally the same
in the in-line and cross-flow directions and the body exhibits clockwise ellipsoidal
orbits. The periodicity of the trajectories varies from one point to the other. For
U∗ = 6 (regime VH1), the in-line and cross-flow responses are periodic and essentially
sinusoidal; the resulting orbit is periodic. For U∗ = 12 (regime VH2), the responses
are also periodic but contain subharmonic components of non-negligible magnitudes,
in particular at fx/4 and fy/4 ( fx and fy are the dominant frequencies); the resulting
trajectory is periodic but its period spans over four loops of body motion. A selected
loop is represented in black in figure 13(a), while the other loops appear in grey.
For U∗ = 9, close to the transition between regimes VH1 and VH2, the cylinder
responses and the associated orbit are found to be aperiodic. A typical loop of the
trajectory is plotted in black. Aperiodic oscillations appear to be a generic feature
of the VH1–VH2 transition. The region of the parameter space where such irregular
responses are encountered is indicated by a striped area in figure 10. The behaviour
of the flow–structure system in this region is more specifically analysed in § 4.2.3.

Additional properties of regime VH1 are examined in figure 14, for (β, U∗) =
(0.3, 6). As for regime VL in figure 12, selected time series of the body displacements
and spanwise vorticity, are presented in figure 14(a). Contrary to the in-line and
cross-flow oscillations of the cylinder which are mainly sinusoidal (ζy spectrum is
plotted in figure 14b), the vorticity signal, still periodic, exhibits higher harmonic
contributions, as shown in the spectrum in figure 14(c). The dominant frequency of
ωz coincides with the body motion frequency: the present vibrations also develop
under the lock-in condition. The flow structure is depicted at four selected instants
in figure 14(d). As expected from the results obtained at high shear in the fixed
cylinder case (figure 6b), the saddle point is close to the body. The wake pattern is
greatly altered by the shear in comparison with regime VL; it resembles the patterns
previously described in regime H (figure 5c). In particular, the positive (orange)
vortices are trapped in the saddle point region until they completely dissipate. Up to
three positive vortices are found to coexist close to the saddle point. This phenomenon
is illustrated in snapshot 3 of figure 14(d), where the positive vortices are labelled
in their order of appearance. The negative (blue) vortices are convected downstream;
their shedding period matches the dominant frequency of ωz and the body response
frequency. As in regime H, the position of the saddle point is found to oscillate; its
oscillation is synchronized with vortex shedding (and body motion through lock-in).

A typical case of regime VH2, (β, U∗) = (0.3, 12), is considered in figure 15.
Selected time series of the body displacements and spanwise vorticity, are presented
in figure 15(a). As mentioned in the description of the cylinder trajectory (figure 13a),
the structural oscillations are periodic but not sinusoidal. This is illustrated by the
spectrum of the cross-flow displacement, plotted in figure 15(b). In this spectrum, the
fundamental frequency is equal to fy/4, where fy is the dominant frequency. Similar
features are noted in the spectrum of ζx. In figure 15(a), the time series are plotted
over a time interval equal to the period of the response spectra, i.e. 4/fx =4/fy. As also
observed in regimes VL and VH1, the vorticity signal is periodic and synchronized
with body motion; it contains different harmonic contributions but its dominant
frequency is equal to the dominant vibration frequency (figure 15c). The lock-in
condition is established and the wake structure (figure 15d) appears to be globally
comparable to that previously described in regime VH1, including the well-defined
shedding of the negative vortices, at frequency fy, and the synchronized oscillation
of the saddle point position. Some minor differences in the vortex dynamics can be
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FIGURE 14. (Colour online) Same as figure 12 for regime VH1, (β, U∗)= (0.3, 6). In (d),
the three positive vortices trapped in the saddle point region are labelled (snapshot 3).

noted between both regimes. The coexistence of several positive vortices in the saddle
point region is less clearly defined in the present case. In addition, the emergence
of subharmonic components of the dominant frequency implies that two successive
oscillation/shedding cycles (of period 1/fy) are not strictly identical; no significant
alteration of the wake pattern is however noted from one cycle to the other.
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FIGURE 15. (Colour online) Same as figure 12 for regime VH2, (β, U∗) = (0.3, 12).

The properties reported in the above selected cases highlight persistent features of
regimes VH1 and VH2, which are generally observed in the corresponding regions of
the (β, U∗) parameter space. These regimes, which also develop under the lock-in
condition, are accompanied by a profound reorganization of the flow, compared with
regime VL. Even if the wake patterns encountered in regimes VH1 and VH2 are
comparable, the associated structural responses substantially differ, both by their
magnitudes and their spectral contents: the responses exhibit larger amplitudes and
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are mainly sinusoidal in regime VH1 while they often involve multiple harmonic
contributions, including significant subharmonics, in regime VH2. In the following,
focus is placed on the transition region between these two regimes.

4.2.3. Transition between regimes VH1 and VH2

The cylinder trajectories plotted in figure 13(a) show that the responses, which are
generally periodic in regimes VH1 and VH2, may become irregular in the transition
region between these two regimes. To illustrate the periodicity of the responses, the
phase portraits (velocity versus displacement) and Poincaré maps of the cross-flow
response are plotted in figure 16, for β = 0.3 and U∗ ∈ {6, 9, 12}, i.e. one typical case
of each regime and a case located in the transition region. Time series of more than
50 oscillation cycles are considered and the Poincaré maps are obtained by selecting
the instants of the time series where ζ̈y = 0 and ζ̇y > 0 (red dots in the phase portraits).
For U∗ = 6 and U∗ = 12 (figure 16a,b), the phase portraits are periodic; one and
four points appear in the Poincaré maps, respectively, as expected since the response
is essentially sinusoidal in the former case and periodic with some fy/4 component
contribution in the latter case. A distinct behaviour is noted for U∗ = 9 (figure 16c):
the phase portrait is aperiodic and a cloud of points appears in the Poincaré map. As
previously mentioned, such aperiodic responses, also observed in the in-line direction,
are common in the VH1–VH2 transition region (striped area in figure 10). They have
not been observed in the other transition regions.

In order to shed some light on the nature of the aperiodic oscillations, a
time–frequency analysis of the cross-flow displacement is presented in figure 17,
for (β, U∗) = (0.3, 9). A selected time series of ζy and the corresponding spectrogram,
based on short-time Fourier transform, are plotted in figure 17(a,b). For comparison
with the results reported in figure 9, the frequency is expressed in terms of frequency
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FIGURE 17. (Colour online) Time–frequency analysis of the cross-flow displacement
in the VH1–VH2 transition region, (β, U∗) = (0.3, 9): (a) selected time series of ζy,
(b) spectrogram and (c) histogram of the instantaneous frequency ratio ( f i∗

y ) and amplitude
(ζ i

y). In (a), a red dashed line indicates the instantaneous amplitude of the displacement
signal. The spectrogram and histogram are normalized by the magnitude of the largest
peak. In the spectrogram, a vertical dashed line indicates the beginning of the time interval
considered in figure 18. In the histogram, symbols indicate the values of (ζ m

y , f ∗
y ) obtained

for β = 0.3 and all U∗ and the case under study, U∗ = 9, is denoted by a white symbol;
a dashed line delimitates the regions associated with regimes VH1 and VH2.

ratio ( f ∗), i.e. normalized by the oscillator natural frequency fnat. Substantial amplitude
and frequency modulations can be noted in the displacement signal. A first overview
suggests that the large oscillation amplitudes are associated with low frequency ratios
while the lower oscillation amplitudes are connected to higher frequency ratios.

The instantaneous amplitude ζ i
y (red dashed line in figure 17a) and instantaneous

frequency ratio f i∗
y of the response are defined as the spectral amplitude and frequency

ratio of the dominant peak of the spectrogram. Iso-contours of the histogram of ζ i
y

and f i∗
y are plotted in figure 17(c); for β = 0.3 and each value of U∗, the maximum

amplitude ζ m
y and dominant frequency ratio f ∗

y are also reported (symbols) and the case
under study, U∗ = 9, is denoted by a white symbol. The histogram confirms the above
observation: a dominant peak emerges in the region associated with regime VH1, i.e.
high amplitudes and low frequency ratios, and a second peak of lower magnitude can
be identified in the region associated with regime VH2, which is characterized by
lower amplitudes and higher frequency ratios. The dominant peak of the histogram
deviates from the values of ζ m

y and f ∗
y obtained for (β, U∗) = (0.3, 9) (white symbol).

Such deviation is expected due to the irregular behaviour of the system; in addition,
the short-time Fourier transform tends to filter the amplitude modulations occurring
over the sampling window, viz. the peak amplitudes are not well captured by this
approach (figure 17a). The existence of two peaks in the histogram indicates that the
system exhibits an intermittent behaviour and switches from one state to the other. The
two peaks appear to be connected in the histogram, which suggests that the transitions
between the two states are relatively smooth; the time series plotted in figure 17(a)
corroborates this observation.

The occurrence of intermittent responses in the transition region between regimes
VH1 and VH2 raises the question of the persistence of the lock-in condition in this
context: this phenomenon could be related to successive interruptions in wake–body
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synchronization (i.e. intermittent lock-in) or instead, to a global, intermittent behaviour
of the flow–structure system, occurring under lock-in. Wake–body synchronization in
the intermittent case is briefly addressed in figure 18, which represents, for (β, U∗) =
(0.3, 9), the instantaneous frequency ratio of the cross-flow displacement ( f i∗

y ), as well
as the instantaneous frequency ratio of the spanwise vorticity at (x, y) = (10, 0) ( f i∗

ω ),
over a selected time interval indicated in figure 17(b). The instantaneous frequency
ratio of ωz is computed using short-time Fourier transform, similarly to f i∗

y . It appears
that f i∗

y and f i∗
ω exhibit comparable evolutions, with a time lag τ approximately equal

to 10 time units. This observation suggests that there is no interruption of the lock-in
condition; body oscillation and wake unsteadiness remain synchronized, even in the
case of intermittent responses.

5. Conclusion

The system composed of a circular cylinder, either fixed or elastically mounted, and
placed in linear planar shear flow, has been investigated on the basis of numerical
simulations. Wide ranges of values of the shear parameter (β ∈ [0, 0.4]) and reduced
velocity (U∗ ∈ [2, 14]) were considered, at Reynolds number 100.

The elastically mounted cylinder exhibits free vibrations in the in-line and cross-
flow directions. Large-amplitude structural oscillations develop over a region of the
(β, U∗) parameter space that encompasses the entire range of β under study, and a
range of U∗ that widens as β increases. The principal features of the system, outside
and within the large-amplitude vibration region, are summarized hereafter.

Outside the large-amplitude vibration region, the system exhibits three successive
regimes as a function of β. Regarding the flow behaviour and fluid forcing properties,
these regimes are similar to the three regimes identified in the fixed body case.

For β ∈ [0, 0.2], in regime L, the flow dynamics, including the vortex shedding
frequency and the wake pattern, is comparable to that observed in uniform current.
The most noticeable effects of the shear are the shift of the in-line/cross-flow force



frequency ratio, from 2 to 1, and the appearance of a negative time-averaged force in
the cross-flow direction.

A second unsteady flow regime, referred to as regime H, occurs for β ∈ [0.2, 0.3].
It is characterized by a pronounced asymmetry of the wake structure with contrasted
dynamics of the positive and negative vortices, and by a substantial decrease of the
vortex shedding frequency. The saddle point, which appears close to the body, is found
to oscillate and its motion is synchronized with flow unsteadiness; such oscillations are
not observed in the other regimes. The shear has a major impact on the fluid forces
in this regime; for example it induces a large reduction of the time-averaged in-line
force.

For β ∈ [0.3, 0.4], in regime S, the flow is steady and the wake exhibits a triangular
pattern whose lower corner coincides with the saddle point.

Within the large-amplitude vibration region, three distinct regimes of the flow–
structure system are uncovered. In all regimes, body motion and flow unsteadiness
are synchronized, i.e. the lock-in condition is established.

In the low-shear part of the parameter space, for β ∈ [0, 0.2], the first large-
amplitude vibration regime encountered, referred to as regime VL, is characterized by
a limited influence of the shear on the system behaviour. It develops over a relatively
narrow range of U∗ which remains close to that reported in uniform current. The
flow pattern, fluid force properties and cross-flow response are also comparable to
that observed for β = 0. The main impact of the shear concerns the amplification of
the in-line response and the transition from figure-eight to ellipsoidal orbits as β is
increased, i.e. shift from 2 to 1 of the in-line/cross-flow response frequency ratio.

The range of U∗ over which large-amplitude responses develop rapidly widens
around β = 0.2 and it reaches the maximum reduced velocity considered in this study
(U∗ = 14), for β > 0.2. For β ∈ [0.2, 0.4], two large-amplitude vibration regimes are
identified: a low-frequency ratio regime in the lower range of U∗, regime VH1, and
a high-frequency ratio regime in the higher range of U∗, regime VH2. Structural
vibrations thus develop beyond β = 0.3, where a steady flow was observed in the
fixed body case.

The wake patterns encountered in regimes VH1 and VH2 are comparable and
resemble the asymmetric pattern associated with regime H. The saddle point position
oscillates; it is synchronized with vortex shedding and body motion through lock-in.
Even if the flow patterns observed in regimes VH1 and VH2 are comparable, the
associated vibrations and forces clearly differ. The peak amplitudes of body responses
and fluid forces appear in regime VH1. The response amplification is particularly
pronounced in the in-line direction where the oscillations reach 2 body diameters
versus 0.03 diameters in uniform flow. A maximum amplitude of 1.3 diameters is
noted in the cross-flow direction. The vibrations are periodic and mainly sinusoidal in
this regime. In contrast, much lower amplitudes of vibration are observed in regime
VH2 and the responses, still periodic, often involve several harmonic contributions,
including significant subharmonics. The force fluctuations are small in comparison
with regimes VL and VH1.

The responses of the system are generally periodic, except in the transition region
between regimes VH1 and VH2, where aperiodic, intermittent oscillations are found
to occur; even in this case, body motion and wake unsteadiness appear to remain
synchronized.

Acknowledgement

This work was performed using HPC resources from GENCI (grants x20152a7184,
c20162a7184).



Study Ly St Cx Cy

Lei et al. (2000) 8 0.180 1.49 −0.13
Present (BC1) 8 0.166 1.33 −0.08
Present (BC2) 8 0.176 1.46 −0.08

Kang (2006) 10 0.175 1.44 −0.09
Present (BC1) 10 0.165 1.33 −0.08
Present (BC2) 10 0.171 1.41 −0.08

Kang (2006) 20 0.166 1.35 −0.10
Present (BC1) 20 0.162 1.32 −0.09
Present (BC2) 20 0.162 1.33 −0.09

Present (BC1) 40 0.159 1.30 −0.10
Present (BC2) 40 0.159 1.30 −0.10

Present (BC1) 60 0.158 1.29 −0.10
Present (BC2) 60 0.158 1.29 −0.10

TABLE 2. Influence of the cross-flow blockage on the Strouhal frequency and
time-averaged fluid force coefficients, in the fixed body case, for β = 0.1.

Appendix A. Comments on the effect of blockage in the fixed body case

The effect of the cross-flow size of the computational domain Ly in the fixed
body case is illustrated in table 2, for β = 0.1. The Strouhal frequency (St) and
time-averaged force coefficients are reported for a range of Ly and two types of
external boundary conditions. The first type (BC1) corresponds to the boundary
conditions employed in this study, i.e. far-field conditions based on the Riemann
invariants. The second type (BC2) consists of far-field conditions on the lateral
boundaries of the domain (xc = ±Lx/2) and slip wall conditions on the upper and
lower boundaries (yc = ±Ly/2); this second type of conditions is considered for
comparison with previous works, as discussed in the following. The other numerical
parameters are the same as the reference parameters described in § 2.2 (case 2 in
table 1). It appears that the blockage significantly impacts the results, but convergence
with respect to Ly is noted for Ly > 40. It is also observed that the choice of external
boundary conditions (BC1 versus BC2) does not influence the results for Ly > 20.
This confirms that the size of the flow domain selected in this study (Ly = 40) is
large enough to avoid any blockage effect.

Numerical results obtained by Lei et al. (2000) and Kang (2006) under large
blockage and conditions enforcing no cross-flow velocity on the upper and lower
boundaries (i.e. comparable to conditions BC2), at the same Reynolds number
(Re = 100), are also reported in the table; they are close to the present results
obtained with conditions BC2.

Appendix B. Validation in the uniform flow case

A comparison between the present results and prior experimental and numerical
works, in the case of a fixed cylinder immersed in uniform flow, is reported in table
3. The comparison is based on three physical quantities: the Strouhal frequency, the
time-averaged in-line force coefficient, and the maximum cross-flow force coefficient.
In this appendix, for comparison with previous works, the maximum value (denoted
by the subscript max) designates the peak value and thus differs from the definition



Study Exp./num. St Cx Cy,max

Wieselsberger (1922) exp. — 1.41 —
Tritton (1959) exp. — 1.26 —
Braza, Chassaing & Minh (1986) num. 0.16 1.28 0.29
Norberg (1987) exp. 0.165 — —
Williamson (1988) exp. 0.165 — —
Kang, Choi & Lee (1999) num. 0.165 1.32 0.32
Kim, Kim & Choi (2001) num. 0.165 1.33 0.32
Shiels et al. (2001) num. 0.167 1.33 0.30
Stojković, Breuer & Durst (2002) num. 0.165 1.34 0.33
Shen, Chan & Lin (2009) num. 0.166 1.38 0.33
Bourguet & Lo Jacono (2014) num. 0.164 1.32 0.32
Present num. 0.164 1.32 0.31

TABLE 3. Flow past a fixed circular cylinder immersed in uniform flow at Re = 100:
Strouhal number, time-averaged in-line force coefficient and maximum cross-flow force
coefficient, issued from the present simulation and from prior experimental (exp.) and
numerical (num.) works.

Study fy ζy,max Cx Cy,max

Shiels et al. (2001) 0.196 0.58 2.22 0.77
Shen et al. (2009) 0.190 0.57 2.15 0.83
Bourguet & Lo Jacono (2014) 0.188 0.57 2.08 0.88
Present 0.190 0.57 2.17 0.81

TABLE 4. Vortex-induced vibrations of a circular cylinder immersed in uniform flow and
restrained to move in the cross-flow direction at Re = 100, for m = 1.25, ξy = 0 and U∗ =
4.46: oscillation frequency, maximum cross-flow displacement, time-averaged in-line force
coefficient and maximum cross-flow force coefficient, issued from the present simulation
and prior numerical works.

employed in the rest of the paper (i.e. average of the highest 10 % of fluctuation
amplitudes). The present results are close to those reported in prior studies.

Table 4 focuses on the vortex-induced vibrations of a cylinder immersed in
uniform flow and restrained to move in the cross-flow direction. The oscillation
frequency, maximum cross-flow displacement, time-averaged in-line force coefficient
and maximum cross-flow force coefficient issued from the present simulation are
compared to prior numerical results. The present results show a good agreement with
previous works.

To summarize, the results reported in tables 3 and 4 confirm the reliability of the
present simulation approach.
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