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A Pragmatic and Systematic Statistical Analysis for Identification of
Industrial Robots

M. Brunot, A. Janot, F. Carrillo, and H. Garnier

Abstract—Identification of industrial robots is a prolific
topic that has been deeply investigated over the last three
decades. The standard method is based on the use of the inverse
dynamic model and the least-squares estimation (IDIM-LS
method) while robots are operating in closed loop by tracking
exciting trajectories. Recently, in order to secure the
consistency of the parameters estimates, an instrumental
variable (IV) approach, called IDIM-IV method, has been
designed and experimentally validated. However, the statistical
analysis of estimates was not treated. Surprisingly, this topic is
rarely addressed in mechatronics whereas it has been deeply
investigated in automatic control. This paper aims at bridging
the gap between these two communities by presenting a
pragmatic statistical analysis of the IDIM-IV estimates. This
analysis consists of a two-step procedure: first, the consistency
of the IDIM-IV estimates is validated by the Revised Durbin-
Wu-Hausman test, and then the statistical analysis of the
IDIM-IV residuals is treated. This two-step approach is
experimentally validated on the TX40 robot.

1. INTRODUCTION

Parametric identification of rigid industrial robots has
been deeply investigated over the last three decades see [1]-
[9] and the references therein. The usual method is based on
the use of the inverse dynamic model (IDM) and the least-
squares estimation (IDIM-LS method) while robots are
operating in closed loop by tracking exciting trajectories.

More recently, an instrumental variable (IV) approach
relevant for industrial robots, called IDIM-IV method, has
been designed in order to secure the consistency of the
estimates in [8]. Furthermore, in order to validate the
construction of the set of instruments, a method called the
Revised Durbin-Wu-Hausman test (Revised DWH-test) has
been developed in [9]. This IV approach was experimentally
validated on the TX40 robot but the statistical analysis of
estimates was not treated in a systematic way. Surprisingly,
statistical analysis of parameters estimates and/or residuals is
rarely addressed in mechatronics (see e.g. [10]-[13]) whereas
it has been deeply investigated in automatic control (see e.g.
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[14]-[18] and the references given therein). This may be
explained by the fact that these works are mostly
theoretically oriented, validated on low-dimensional linear
systems with few real world applications in the field of
mechatronics. Finally, it should be stressed that researchers
and engineers in mechatronics prefer to keep a physical
interpretation of the results.

This paper aims at bridging the gap between the
communities of automatic control and mechatronics by
proposing and validating a pragmatic and systematic
statistical analysis of the IDIM-IV estimates and residuals.
This analysis consists of a two-step procedure: the
consistency of the IDIM-IV estimates is first validated by the
Revised DWH-test and the statistical analysis of the IDIM-IV
residuals is then treated. This two-step procedure is
experimentally validated on the TX40 robot. The rest of the
paper is organized as follows: section II introduces the basics
of robot modeling while section III recalls the IDIM-IV
method; section IV presents the two-step statistical procedure
while a deep experimental validation on the TX40 robot is
presented in section V; finally, section VI concludes the

paper.

II. ROBOT MODELLING

A. The Inverse and Direct Dynamic Models

For robot having n moving links, the IDM expresses the
joint torques in terms of the joint positions, velocities and
accelerations [19]. It is given by

Tim ZM(q)q"'N(Q:Q) s (1)

with T, the (n Xl) vector of joint torques; q, ¢ and ¢

idm
are the (n Xl) vector of joint positions, velocities and
accelerations, respectively; M(q) the (n Xn) inertia matrix
of the robot; N(q,q) the (nx1) vector that gathers the
Coriolis, centrifugal, gravity and friction torques.

The direct dynamic model (DDM) provides the joint
accelerations as a function of the joint positions, velocities
and torques. It is given by

§=M"(q)(,, -N(q.4))- @)

B. Standard and base parameters
The standard parameters of a link j are the 6
components of inertia tensor XX, XY,, XZ, YYj, YZ,

and ZZ,; the 3 components of the first moments MX ;, MY,



and MZ 5 the mass m, ; the inertia of the drive chain I, ; the

viscous friction coefficient Fv 5 and the Coulomb friction
(or dry friction) coefficient Fc;. The base parameters are the

minimum number of dynamic parameters from which the
IDM can be calculated. The set of base parameters can be
determined numerically by the use of the QR decomposition,
[20]. Relation (1) is thus rewritten as

Tidm =IDM(qa qa q) B s (3)

where IDM(q,q,§) is the (7xb) matrix of basis functions;

B is the (bx1) vector of base parameters; and b is the
number of base parameters.

C. The IDIM model
Because of uncertainties (measurement noise, model
mismatch ...), the (n ><1) vector of the actual joint torques T

differs from 7, bya (7x1) vector of error e i.c.
t=1,, +e =IDM(q,q,4)p +e. 4

The filtered positions are obtained offline by processing
q through a lowpass Butterworth filter in both the forward

and reverse directions while (q,§) are calculated offline

using a central differentiation algorithm of the filtered
positions. Finally, a parallel decimation of the vector of
measurements and each column of the observation matrix is
carried out. All the details are given in [4]. The following
over-determined system is thus obtained

y(7) =X(d.4.4)p +e. )

with y(t) is the (» x1) measurements vector built from the
actual torques 7 ; X(fl,fl,fj) is the (r xb) observation
matrix built from (c],fl,ii') obtained by bandpass filtering of

the measurements of q; ¢ is the (r ><1) vector of error
terms; and 7 is the number of rows in (5).

III. THE INSTRUMENTAL VARIABLE APPROACH FOR ROBOT
IDENTIFICATION

Robots being identified while they are operating in closed
loop, an IV approach has to be used in order to secure the
consistency of the estimates, [17]. Equation (5) is, in fact, the
reduced form of the more general model defined by

y =Xp +¢
; (6)

X=ZI1+V
where Z is the (7 xb) instrumental matrix; II is the (b xb)
matrix of constant coefficients to be identified; and V is a
(rxb) matrix of error terms. The columns of Z are called

instruments. If the following assumptions hold rank (Z) =b,

E(2"¢)=0, E(2"V)=0 and E(V)=0, then Z is said
valid. The LS estimate of II, denoted I, is given by
fi=(z'z)" 7’x.

For robot identification, Z is constructed from simulated
data that are the outputs of the simulation of the DDM (2). Its
simulation is performed assuming the same reference
trajectories and the same control law structure for both the
actual and the simulated robots. In addition, the simulation
makes use of the IV estimates obtained at the previous

. . o k-1 . . .
iteration, P;, , and this defines an iterative process (also

called bootstrapping algorithm, [14]). All the details are
given in [8]. At step k, where k is the kth IV estimates, the

(n ><1) vectors of simulated joint accelerations, ¢ , is given

by
s =M (ag.BY") (75 -N(as.45.B5")). ™

q, and ¢, are the (nxl) vectors of simulated joint

positions and velocities, respectively; T, is the (nx1)

vector of the simulated torques. Finally, after simulating the
DDM and the parallel decimation that is still required
because it induces a low-pass filtering, at step &, one has

Z:X(‘Ipqs»iimﬁl;ljl)' ®)
The IDIM-IV estimates are then given by

Ak (AN

B, =(2'X) zy. ©)

This  bootstrapping until

B, ()-8 ()
B ()]
of B, . is the IDIM-IV estimate of B(i) at step k and ol is

ideally chosen to get a good compromise between rapid
convergence and good accuracy. The IDIM-IV estimates

process is  run

<tol , where B, (i), the ith compent

obtained at the last iteration are denoted P - Once the

algorithm has converged to ﬁ v » the instruments must be

validated. To do so, it is suggested to run the Revised DWH-
test introduced in [9]. The construction of Z is valid if the
Wald-test accepts the following hypothesis

Hy:M=1,. (10)

Loosely speaking, the Revised DWH-test is a formal test
that checks if X differs from Z by the error matrix V . The
full details of the Revised DWH-test are given in [9].

IV. A PRAGMATIC STATISTICAL ANALYSIS FOR ROBOT
IDENTIFICATION

A. Modeling of error
In automatic control, the error is often modeled with



8=H(z_l)£N =D(z_l)/C(z_l)£N , an

where H (z") =D(z'1) / C(z‘l) is a discrete-time filter that

colors g, that is assumed to be a zero-mean white noise with

a covariance matrix given by Q= afvly where I, is the
(#xr) identity matrix; C(z‘l) =l+¢z™ +-+c, z" and
D(z") =l+dz" +--+d, z"  are the  n, -degree

denominator and the #,-degree numerator of H (z'l)

respectively; and z7 is the
T

n =G n, 1 ny

By =[c ¢ d d, |

vector of the parameters of H (z_l) to be identified.

delay
be the ((n, +n,)x1)

operator. Let

When dealing with identification of real-world systems,
H (z‘l) has not a straight physical interpretation. In fact, the
user has two choices: it may exhibit an error in the model as
it may indicate that data are oversampled compared with the
maximum bandwidth of the position closed-loop control
denoted w),, . So, how to make a decision between these two

choices?

B. Extension for industrial robot identification

In automatic control, the literature addressing the
identification of B, is vast. The most relevant approach
consists in adopting a method inspired from the Refined
Instrumental Variable approach that consists of a two-step
algorithm, [17]: first, the physical parameters, f, are
identified; second, the parameters of the filters, B, , are
estimated. This two-step procedure has proved its
effectiveness through different types of systems, [17]. Before
calculating the estimate of B, , the important result published
by White in [21] has to be invoked. This result states that € ,
the residuals obtained with the identification method, is a
consistent estimate of & if the estimate of B is consistent

regardless the approach chosen by the user (e.g. LS or IV
methods). For robot identification, &=y -Xf, is a
consistent estimate of € if the IDIM-IV estimates given by
(9) are consistent. Since IV estimates are consistent if and
only if Z is valid, &€ is a consistent estimate of & if (10)
holds. In mechatronics, the estimation of B, makes sense if

and only (10) holds. Otherwise, there is an error in the model
that has to be solved.

B, can be identified with the IVARMA function of the

CAPTAIN toolbox. However, for practical purposes, an AR
model is generally enough, see [17], and the physical
interpretation of an AR model is usually easier than the
interpretation of an ARMA model. It is therefore suggested to

choose an AR model by imposing D(z'l) = 1 and identify
the parameters of C (z’l) by using the AIC function of the
CAPTAIN toolbox. Let € (z'l) and H (z'l) be the estimate

of C (z’l) and H (z"), respectively. To obtain refined

IDIM-IV estimates, the columns of Z and X as well as y
are filtered by H 'l(z"). Let Z,, X, and y, the filtered
instrumental matrix, the observation matrix and the vector of
measurements, respectively. The refined IDIM-IV estimates
and their associated covariance matrix are given by

B, =(2'x,) " 2ly,, 2, =62 (z}z,)" (12)

wih a2 =[,[/ir-b)  wih & =y, -XB

e & r=Yr P -
&3 ) =Zuw (i) being the i diagonal coefficient of £, ,
the relative standard deviation %0 ) is given by

%0, =100.&/§Iyr(i)/‘ﬁ»{y (i)‘ for \ﬁ{V (i)| #0.

C. Proposed statistical residual analysis

The pragmatic and systematic statistical residual analysis
relevant for industrial robot identification is summarized
below:

e Calculate the IDIM-IV estimates with the IDIM-IV
method described in [8];

«  Once the IDIM-IV has converged to B 1w » evaluate the
quality of the instruments with the revised DWH-test
described in [9];

e If the construction of Z has been validated, then
estimate f,, in order to compute the refined IDIM-IV
estimates given by (12).

V. EXPERIMENTAL VALIDATION: APPLICATION TO THE
TX40 ROBOT

A. Description of the TX40 robot
The Stiubli TX-40 robot has a serial structure with six
rotational joints. The robot kinematics is defined using the
modified Denavit and Hartenberg notation, [19]. The TX40
robot is characterized by a coupling between the joints 5 and
6. This coupling adds two new viscous and Coulomb friction
parameters Fv, . and Fc,,. The TX40 has 86 standard

dynamic parameters and 60 base parameters.

The identification of the dynamic parameters is carried
out with one trajectory using the controller CS8C of Staubli
robots. The joint positions and torques are stored with a
sampling measurement frequency f, = 5kHz. The IDIM-IV
method is initialized with the computer-aided-design values
provided by the manufacturer except for the friction
parameters that are initialized at zero.

B. The IDIM-1V method with an appropriate data
filtering
The IDIM-IV method is carried out with a filtered
position, ¢, calculated with a 50 Hz fourth-order
Butterworth filter and with velocities, (i , and accelerations,

ii, calculated with a central difference algorithm of q . The

maximum bandwidth for the sixth joint is 10 Hz leading to
choose a 50 Hz cutoff frequency, [4]. The parallel decimation



is carried out with a lowpass Tchebyshef filter with a cutoff
frequency of 20 Hz.

The IDIM-IV method has converges to the parameters
estimates given in Table 1 after 3 iterations. Their relative
standard deviations are given in the “App” column of Table
1. Only the set of essential parameters that has been
calculated with the F-test (see [8]) is given. From 60 base
parameters, only 28 are enough to completely describe the
dynamics of the TX40 robot. The construction of Z is
evaluated with the procedure described in [9]. The results
obtained validate the instruments since the Wald-test accepts
the hypothesis H, I = I, . The instruments being valid, the

IDIM-IV estimates can be therefore considered as consistent.

The plot provided by the ACF function of the CAPTAIN
toolbox (see [17]) shown in Fig. 1 suggests that € can be
considered as white since there are not significant
correlations between the samples. Furthermore, the plot of
the histogram of £ illustrated in Fig. 2 matches a Gaussian
distribution and all these results validate the hypothesis

€~ N(0,I,). By applying an appropriate data filtering such
as the one described in [4], one has H (z") =1 and the
IDIM-IV estimates are refined.

C. The IDIM-1V method with an inappropriate data
filtering

The IDIM-IV method is carried out with the positions q
filtered with a 500 Hz fourth-order Butterworth filter and
with velocities, (i , and accelerations, (i , calculated with a

central difference algorithm of q . The parallel decimation is

carried out with a lowpass Tchebyshef filter with a cut-off
frequency of 500 Hz. Those cut-off frequencies are chosen in
a total arbitrary way as a user not familiar with robot
identification or a beginner might do.

After 3 iterations, the IDIM-IV method converges to the
values given in Table 1. Their relative standard deviations are
given in the “I/nap” column of Table 1. Since the Wald-test
still accepts the hypothesis H, 81 =1,, the construction of
Z is still valid and the IDIM-IV estimates are considered as
consistent. However, their relative deviations are smaller than
those given in the “4pp” column of Table 1 and this raises
the following question: which estimates are the most
efficient? To answer this question, the statistical analysis of
£ has to be performed.

The plot provided by the ACF function shown in Fig. 3
suggests that there are significant correlations between the
samples of & . Despite the fact that the plot of the histogram
of & illustrated in Fig. 4 looks like a Gaussian distribution,
these results reject the hypothesis &~ N(0,I,). Such plots

are good reason for concerns and the engineer/researcher has
to find the origin of such correlations. In this case, because
the construction of Zhas been validated by the revised
DWH-test, the significant correlations observed are due to
the fact that data are oversampled in comparison with the
maximum bandwidth of the six closed loops in position. In
other word, these correlations are not due to an error in the

model and it comes out that the standard deviations given in
Table 2 are underestimated. The ACF plot suggesting a

AR(50) model denoted HAR(SO)(Z_I), the parameters of

H 4zes0) (z") are estimated by running the AIC function of
the CAPTAIN toolbox and y, the columns of X and Z are
then filtered by H ;1'?(50) (z" ) in order to calculate the refined

IDIM-IV estimates. The results given in Table 2 are very
close to those provided in section V.B: the standard
deviations stick to those given in Table 1 and there are no
significant correlations between the samples of £ since the
plot obtained with the ACF function (not shown here) is very
close to the one provided in Fig. 1. It should be mentioned
that the use of an ARMA model that can be estimated by
utilizing the IVARMA function of the CAPTAIN toolbox
does not improve the results.

Finally, it is not surprising that the AIC function has
estimated an AR(50) model. The maximum bandwidth being
10 Hz, there is no useful information beyond this frequency.
Data have been decimated at 500 Hz which is 50 times
greater than the maximum bandwidth. Then, to remove all
those useless samples that contain no information and to
whiten the residual, the AIC function returns an AR(50)
model. If data are now decimated at 100 Hz, then the AIC
function returns an AR(10) model. This experimental result
shows that the parallel decimation based on the use of a
lowpass Tchebyshef filter used in [4] is equivalent with the
parallel filtering based on the use of prefilters commonly
utilized in the automatic control community, [14]-[17].

D. The IDIM-1V method with an appropriate data
filtering and an error in the model

The gear ratios being greater than 25, the user can assume
that the parameters of gravity and the off-diagonal elements
of inertia matrices do not significantly contribute to the
dynamics. These parameters and their associated columns are
removed from the IDM and the data are filtered as explained
in section V.B. The IDIM-IV method has converged to the
solution given in Table 3 after 5 iterations. These values are
not compatible with those given in Table 1. For the inertia
parameters of joints 1, 2, 3 and 4, the Wald-test rejects the
hypothesis that Z is a valid instrumental matrix whereas the
set of instruments of joint 5 and 6 is valid. This is explained
by the fact that the gravity parameters and the off-diagonal
components of inertia matrices are practically null which
means that removing them from the dynamic model has no
consequences for those joints. The construction of Z being
rejected, the IDIM-IV estimates are expected biased.

The plot provided by the ACF function shown in Fig. 5
suggests that there are some correlations between the samples
of €. Despite the fact that the plot of the histogram of &
illustrated in Fig. 6 is not far from a Gaussian distribution,
these results reject the hypothesis &~ N(0,I,). The plot

provided by the ACF function suggests an AR(10) model that
is, compared with the AR(50) obtained with an inappropriate
data filtering, not a real reason for concerns from a practical
point of view. This experimental result clearly shows that it is
quite difficult to address the physical interpretation of



Hao (z7'): it may simply indicate that data are

oversampled compared with the bandwidth of interest (as in
the case of an inappropriate data filtering) or highlighten an
error in the model (as in this case). Without evaluating the
validity of Z by running the Revised DWH-test, it would
have been impossible to make a physical interpretation of

H oy (271) . This

methodologies developed in the automatic control have not
yet well penetrated the field of mechatronics; they cannot be
applied in a straightforward way because the points of view
adopted in mechatronics are not the same as those adopted in
automatic control. Nonetheless, in this paper, a pragmatic
statistical analysis inspired from the methods developed in
the automatic control community has been designed and
successfully applied to a 6-DOF industrial robot.

result may explain why the
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Fig. 2. Histogram of the IDIM-IV error and its estimated Gaussian obtained
with an appropriate data filtering.
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Fig. 3. Autocorrelation of the IDIM-IV error obtained with an inappropriate
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Fig. 4. Histogram of the IDIM-IV error and its estimated Gaussian obtained
with an inappropriate data filtering.
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Fig. 5. Autocorrelation of the IDIM-IV error obtained with an appropriate
filtering and an error in the model.

Fig. 6. Histogram of the IDIM-IV error and its estimated Gaussian obtained
with an appropriate data filtering and an error in the model.

Table 1: IDIM-IV ESTIMATES OBTAINED AFTER 3 ITERATIONS, RELATIVE
DEVIATIONS OBTAINED WITH AN APPROPRIATE (RESP. INAPPROPRIATE)
DATA FILTERING, COLUMN APP (%) (RESP. INAP (%))

By App | Inap By App Inap

() | (%) (o) | ()

77, 1.25 1.3 0.71 | Fes 6.0 1.9 0.93
Fv, 820 | 0.7 049 | MX4 [ -0.02 | 200 | 19.6
Fc, 6.55 | 2.6 1.81 | ITay 0.03 | 94 3.98
XX, -0.48 | 2.9 1.74 | Fv, 1.15 1.5 0.55
X7, -0.16 | 4.8 2.85 | Fey 227 |26 1.02
77, 1.09 | 1.2 0.65 | MYs | -0.03 | 140 | 6.17
MX, |221 |29 1.57 | Ias 0.04 | 11.0 | 436

Fv, 5.68 1.2
Fe, 7.77 2.1 1.78 Fes

0.65 Fvs 190 | 2.0 0.75
280 | 3.5 1.35

XX; 0.13 10.0 | 5.79 | Iag 0.01 109 | 4.28
775 0.12 | 88 4.79 | Fvs 0.69 1.6 0.61
MY; -0.60 | 2.3 1.17 | Fcs 200 |28 1.09
Ta; 0.10 | 9.2 443 | Fvye | 0.63 1.8 0.59

0.80

Fv; 2.03 1.8 Fcme 1.81 4.2 1.60




Table 2: IDIM-IV ESTIMATES OBTAINED AFTER 3 ITERATIONS AND THE
ESTIMATED AR(50) MODEL IDENTIFIED

B (%0, ) B (%0, )

77, 1.25(1.29%) | Fes 5.97 (1.62%)
Fv, 8.21 (0.68%) MXy -0.02 (19.50%)
Fe, 6.56 (2.55%) | las 0.03 (9.13%)
XX, 048 (1.99%) | Fvi | 1.16(1.35%)
XZ, 0.16 (4.24%) | Fos | 2.25(2.53%)
77, 1.08 (1.15%) MY;s -0.03 (13.74%)
MX, 222 (2.80%) | Ias 0.04 (10.12%)
Fv, 5.68 (1.13%) Fvs 1.95 (1.65%)
Fc, 778 (1.98%) | Fos | 2.80 (3.11%)
XX; 0.13 (9.91%) lag 0.01 (10.1%)
77, 0.11 (872%) | Fve | 0.69 (1.47%)
MY, -0.60 2.27%) | Fcs | 2.00 (2.34%)
Ta; 0.10 (8.87%) | Fvms | 0.64(1.71%)
Fvs 2.05 (1.71%) Fcme 1.79 (4.05%)

Table 3: IDIM-IV ESTIMATES OBTAINED AFTER 5 ITERATIONS AND AN
APPROPRIATE DATA FILTERING AND AN ERROR IN THE MODEL

B (%3, )
120 (5.8%)
2.17 (10.0%)

B (%3, )
77, | 10835%) | Fvs
Fvi | 8.17(3.6%) | Fes

Foi | 648 (11.0%) | Ias 0.05 (29.3%)
7Z, | 120(2.0%) | Fvs 1.89 (7.3%)
Fv: | 5.83 (5.8%) | Fes 2.75 (12.6%)
Fc, | 6.80 (11.0%) | Iag 0.01 (33.0%)
77y | 027(67%) | Fvs | 0.69 (5.4%)
Ta; | 0.07 (40.0%) | Fe 2.0 (9.3%)
Fv; | 222(7.6%) | Fvas | 0.64 (5.9%)
Fc; | 553 (95%) | Fems | 1.70 (16.0%)

lay 0.05 (31.1%)

VI. CONCLUSION

In this paper, a pragmatic and systematic statistical
analysis relevant for identification of rigid industrial robots
has been presented and experimentally validated on the 6
degrees-of-freedom TX40 robot manufactured and sold by
Staubli. It is worth to note that statistical analysis of
estimates is rarely addressed in Mechatronics whereas it has
been deeply investigated in Automatic Control.

This analysis consists of a two-step procedure: first, the
dynamic parameters of robot are estimated with the Inverse-
Dynamic-Model and Instrumental-Variables method, their
consistency is then validated by the Revised Durbin-Wu-
Hausman test; second, the statistical analysis of the IDIM-IV
residuals is treated. This two-step procedure is inspired from
the IDIM-LS approach often used in Robotics and the
Refined Instrumental Variables method that is an iterative
identification procedure popular in the field of Automatic
Control. In a sense, this paper aimed at bridging the gap
between the mechatronics and automatic control
communities.

Future works concern the use of this two-step statistical
analysis for other real-world systems such as electrical
motors, unmanned aerial vehicles and flexible aircraft.
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