

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 16840

The contribution was presented at SERA 2016 :
http://www.acisinternational.org/sera2016/

To cite this version : Khlif, Ilhem and Hadj Kacem, Mohamed and Stolf, Patricia
and Hadj Kacem, Ahmed Software architectures: multi-scale refinement. (2016)
In: 14th International Conference on Software Engineering Research,
Management and Applications (SERA 2016), 8 June 2016 - 10 June 2016
(Hammamet, Tunisia).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Software rchitectures: ulti- cale efinement

Ilhem KHLIF1,2,3,4, Mohamed HADJ KACEM1, Patricia STOLF4 and Ahmed HADJ KACEM1

1 University of Sfax, ReDCAD Research Laboratory, Sfax, Tunisia
2 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

3 Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France
4 University of Toulouse, IRIT, France

ikhlif@laas.fr, mohamed.hadjkacem@isimsf.rnu.tn, patricia.stolf@irit.fr, ahmed.hadjkacem@fsegs.rnu.tn

Abstract—We propose a multi-scale modeling approach for
complex software system architecture description. The multi-scale
description may help to obtain meaningful granularities of these
systems and to understand and master their complexity. This
vision enables an architect designer to express constraints con-
cerning different description levels, oriented to facilitate adapt-
ability management. We define a correct-by-design approach that
allows a given abstract architectural description to be refined
into architecture models. We follow a progressive refinement
process based on model transformations; it begins with a coarse-
grain description and ends with a fine-grain description that
specifies design details. The adaptability property management is
performed through model transformation operations. The model
transformation ensures the correctness of UML description, and
the correctness of the modeled system. We experimented our
approach with a use case that models a smart home system for
the monitoring of elderly and disabled persons at home.

Keywords—Software architecture, multi-scale modeling, refine-
ment, UML notation, model transformation rules, adaptability.

I. INTRODUCTION

Software architecture design is an important research area
in software engineering, for mastering the costs and the
quality of the development of large and complex software
systems. The design of a software architecture based on a
multi-level description is still a complex task. This study
investigates how to model software architectures to facilitate
their validation at different description levels. To solve this
problematic, we propose to consider different architecture
descriptions with different levels of modeling details: “the
scales". Our objective is to provide solutions for modeling
software architectures to facilitate their validation at different
description levels. We present a multi-scale description at
design time for complex software systems. The multi-scale
description may help to obtain meaningful granularities of
these systems and to understand and master their complexity.
This vision enables an architect designer to express con-
straints concerning different description levels, oriented to
facilitate adaptability management. We define a correct-by-
design approach that allows a given abstract architectural
description to be refined into architecture models. The pro-
posed design approach is founded on UML notations and uses
component diagrams. The diagrams are submitted to vertical
and horizontal transformations for refinement, for reaching a
fine-grain description representing the necessary details that
characterize the architectural style. Our approach is organized
around a set of vertical and horizontal refinement rules. The
adaptability property management is performed through model
transformation operations. The model transformation ensures

the correctness of UML description, and the correctness of the
modeled system. In order to show the viability and usefulness
of our solution, we experiment our methodological design to
deal with a complex system dedicated to the smart home
for monitoring elderly and disabled persons at home. The
remainder of the paper is organized as follows. We describe
our contribution in section II. Section III illustrates the use
case. In section IV, we present a survey of related work. We
conclude and outline some perspectives in section V.

II. CONTRIBUTION

This work refines previous work by the authors on a multi-
scale modeling approach for software architectures. In [6],
the multi-scale modeling solution has only considered a fixed
number of scales and describes a progressive process of
refinement from a generic model describing a given point
of view at a given scale to a specific model describing this
point of view at another scale. We have proposed a multi-
scale modeling perspective for Systems of Systems (SoS)
architecture description. We have focused on SysML (System
modeling language) notations and used block diagrams. To
generalize the approach, this paper considers unfixed number
of scales and proposes notations and common generic rules
at all scales. We extend the approach by considering the
refinement process as a vertical and horizontal model trans-
formation, and by adding more details on scales. Reaching
a fine-grained description that contains all necessary details
that characterize the architectural style will trigger the stop
condition and decide the last scale. We have proposed, in [7],
a hybrid approach. The top-down approach was presented by
the refinement process which transforms architecture in both
a vertical and a horizontal way. The bottom-up approach is
described by the abstraction process, which consists of vertical
and horizontal transformations. This paper details only the top-
down approach to study the multi-scale nature of complex
software systems. We develop a specific solution modeling
multi-scale software architecture that focuses on reference
architectures in particular the Publish-Subscribe style.

A. Multi-scale modeling approach

We illustrate the stepwise refinement (or the top-down
modeling) by a graphical representation shown in (Figure 1(a)).
We present the multi-scale approach by a two-dimensional
array describing vertical and horizontal scales. We define
a vertical description scale “Sv" as a model that provides
additional details of the design, which pertain to “Sv+1" and
more levels of abstraction related to “Sv−1". A vertical scale
can be further refined into several horizontal description scales

“Sv.h", thus providing more details. We consider that v (resp.
h) represents the scale number (v,h ≥ 0). Colored classes

represent the added details in each refined scale. Vertical
scales are the vertical description levels that allow the architect
to describe the same inherent requirements while providing
multiple descriptions having different granularity levels. Under
each vertical description scale, there are several horizontal
description scales. The first scale begins with specifying the
application requirements. It defines the whole application by
its name. Two horizontal refinements called horizontal scales
are associated with the first level. The first horizontal scale
shows all component types that compose the application. The
second one describes the links between those components.
Four horizontal refinements are associated with the second
level. The first scale presents composites for component types,
and enumerates all the roles that each component can take.
The second one identifies the list of communication ports for
each component, and refines those roles. The third one shows
the list of interfaces for communication ports. The last one
is obtained by successive refinements while adding the list of
connections established between components and composites.
This scale allows us to define the architectural style.

(a) Multi-scale Refinement

(b) Meta-model

Fig. 1: Multi-scale modeling approach

1) Model refinement rules: We detail the refinement be-
tween vertical and horizontal description scales through an
algorithm written by the designer to guide the user (Algorithms
1, and 2).

a) Vertical Refinement: We, first, elaborate an initial
abstract architecture description from the user requirements.
The scale S0.0 represents the entire application Application

as a unique class. We initialise the application by a precise
name. This is the beginning of traceability on which applica-
tion requirements are specified. The first vertical refinement
from S0 to S1 provides details on the whole system. S1.0

includes a class Component-Type that specifies more than “1"
component in the application. A Component-Type represents
a subclass of an Application. The second vertical refinement
is helpful for checking that S2 consists of Component-Type,
possibly composed of a sub-class named Composite.

b) Horizontal Refinement: At the same vertical scale
S1, an horizontal refinement allows the addition of associ-
ations between components type (at the scale S1.1) A class
Association is between at least “2" components, and contains
“2" ends of association. A class Association-End has a
multiplicity defined by a lower limit set to “1" and an upper
bound set to “*". A stepwise horizontal refinement is needed in
the scale S2. We start by providing more details on data relating
to the components. S2.0 enumerates roles for each component
and each composite. An enumeration named « Role » is used to

Algorithm 1: Refinement Step(1/2)

Input: v, h = 0: integer; S: array[N][M] of (component
diagram) /*Sv.h: Scale (vertical.horizontal)*/

BEGIN
while There are components to refine
/*Initialize S0.0 by a unique component*/
do

Identify the application name;
S[v][h]←Insert-Application(Application);
/*Refine in a vertical way to obtain S1.0*/
for v from 1 to N-1 do

for h from 0 to M-1 do
Identify all component types in the application;
while There are components to refine do

S[v][h]←Insert-Component-
Type(Component-Type);

end
/*Refine in a horizontal way to obtain S1.1*/
Identify all links between all component types;
S[v][h+1]←Insert-Association(Component-
Type,Composite);

end
end

end

enumerate roles that components can take. A component can
play a role among this list: “Event-Dispatcher", “Producer",
“Consumer", “Consumer-Producer", “Server", “Service", etc.

We are especially interested in refining the increasingly
commonly used architectural style for component-based sys-
tems: the Publish/Subscribe style. The strength of this event-
based interaction style lies in the full decoupling between
producers, and consumers. This decoupling is provided by
the event-dispatcher. This makes the publish/subscribe style
relatively easy to add or remove components in a multi-scale
architecture, introduce new events, register new consumers on
existing events or modify the dispatchers. To generalize our
approach, an added component is refined to play other roles
for other styles (SOA, Client-Server, etc). This refinement
is eventually guided by stylistic constraints to treat added
details. For example, an enumeration called « Service-Type »
can be defined at this scale to add details on the service
related to the SOA style among which can have one of the
types “Discovery", “Registry", “Provider" or “Consumer". S2.1

means the addition of communication ports and more details
on previous enumerations. The class Port represents the point
of interaction for a component. A Component-Type has one
or more Ports that constitute interaction points with their
environment. An “Event-Dispatcher" can have an architecture
using a centralized event service or an architecture using
a distributed event service. An enumeration called « Topol-
ogy » can be “Unique-Dispatcher", “Network-Dispatcher-
Hierarchical", “Network-Dispatcher-AcyclicPeerToPeer", or
“Network-Dispatcher-GeneralPeerToPeer".

The scale S2.2 allows the addition of interfaces in the
scale S2. The class Interface represents the interface of
a component. An interface can have a type which is either
provided ‘+=Provided’ or required ‘+=Required’. Then, in
S2.3 we establish connections between components. The class
Connector refers to a link that enables communication be-
tween two or more components. The enumeration « Connector-
Type » specifies two types of connectors: “Delegation" and

Algorithm 2: Refinement Step(2/2)

/*Refine in a vertical way to obtain S2.0*/
for v from 2 to N-1 do

for h from 0 to M-1 do
Identify all Composites for each Component-Type;
while There are components to refine do

S[v][h]←Insert-Composite(Composite);
Identify the role of component types;
for Each Component-Type do

Select Role from {Event-Dispatcher, Producer,

Consumer, Producer-Consumer, Client, Server, Service};

end
/*Refine in a horizontal way to obtain S2.1*/
Identify all required and/or provided ports for all
components;
S[v][h+1]←Insert-Port(Component-Type,
Composite);
if Component-Type is Event-Dispatcher then

Identify the topology of the event dispatcher;
Select Topology from{Unique-Dispatcher ,

Network-Dispatcher-Hierarchical,

Network-Dispatcher-AcyclicP2P,

Network-Dispatcher-GeneralP2P}

end
/*Refine in a horizontal way to obtain S2.2*/
Identify all required and/or provided interfaces of
all ports;
S[v][h+2]←Insert-Interface(Port);
/*Refine in a horizontal way to obtain S2.3*/
Swith(Topology) {Identify all
(Assembly/Delegation) connections between
component types;
S[v][h+3]←Insert-Connection(Interface);
{Identify the style of the application;
Select Style from{Publish-Subscribe, Client-Server, SOA};

end
end

end

“Assembly". For each connection, it is necessary to identify the
source and the recipient by respecting the followed topology.
S2.3 allows us to determine the architectural style of the
application. An enumeration named « Style » makes it pos-
sible to enumerate the following styles: “Publish-Subscribe",
“Client-Server", “SOA" or another architectural style. Algo-
rithms 1, and 2 summarize the different steps detailed by
refinements. Finally, we obtain, through vertical and horizontal
successive refinements, a meta-model (Figure 1(b)) based on
a named application with a precise architectural style. Thus,
the proposed approach is guided by heuristics and adopted a
rule-oriented description technique. The rules generate model
transformation operations to ensure adaptability constraints.
Each transformation corresponds to a possible refinement. The
validation scope involves the correctness of UML description,
and the correctness of the modeled system.

2) Adaptability management: Evolution of software sys-
tems is characterized by inevitable changes of software and
increasing software complexity. Adaptability is the system’s
ability to easily accommodate changes (in terms of components
and connections), explicitly in the requirements and early
design phases, and maintain it during the entire lifecycle [4].
The adaptability management is performed through model
transformation operations. Each transformation corresponds to
a possible refinement. In [5], the authors proposed a UML
profile to describe software architectures. Thus, we propose to

adopt the notation proposed by [5]. The model is composed
of five sections: The name of the operation to perform,
« RequireAndDelete » (the part of the system to remove during
the operation), « Insert » (the part of the system to create
during the operation), « RequireAndPreserve » (the part not
changed during the operation), and the pre-conditions that must
be verified so that the operation can be performed. We suggest
adopting the notation proposed by the authors and use the
reconfiguration operations model to specify refinement rules.
The application of a refinement rule is guided by specific
rules written by the designer and through constraints based on
interface compatibility to ensure consistency between scales.
The adaptability modeling approach was performed by both
adding and removing components and connections. The model
refinement executes the « Insert » transformation operation
to add new components and connections. Moreover, a model
abstraction executes the « Require&Delete » transformation
operation to remove components and connections [7]. In this
paper, we express two basic refinement operations, adding a
component, and adding a connection (or an association). We
propose to use the model transformation operations to specify
refinement rules. We propose this notation for a component-
type name Cm

v where v represents the vertical scale number (v
≥ 0), and m represents a cursor on the current component (m
≥ 0). It can be decomposed in the next scale. For example, if
we have a component-type C1

v , then its composite in the next
scale will obtain the name C1.1

v+1.

a) Adding a composite transformation rule: If there is
a new composite to be added at a given vertical scale Sv+1,
we can estimate at the refined scale Sv+2 this composite will
be added to refine the component-type that depend on it. This
transformation operation is used to insert an instance of the
composite C1.1

v+2. The modeling of this operation, with the UML
notation, is given in (Figure2). The name of the operation is
Insert-Composite (C1.1

v+2). In the « Insert » part, we present an
instance of the Composite to add to the system. In this opera-
tion we have nothing to remove, so the « RequireAndDelete »
part is empty. In addition to the inclusion of this composite, we
need to preserve an instance of the component type (C1

v+1) in
the « RequireAndPreserve » part. The initial state is shown on
the left (Sv+1). We apply this rule to obtain the result illustrated
on the right (Sv+2).

b) Adding an association transformation rule: Adding
a new association in the horizontal scale Sv.h leads to adding
an association in Sv.h+1 between the two component-types. The
name of the operation is Insert-Association (C2.1

v+1, C2.2
v+1) as

shown in (Figure3). This operation allows you to insert an
association instance to bind between two such instances of
component-types (C2.1

v+1) and (C2.2
v+1). To execute this operation,

there must be an instance of such association in the « Insert »
part. The insertion of an association requires the existence of
(C2.1

v+1) and (C2.2
v+1) instances that should be represented in the

« RequireAndPreserve » part. The initial state is shown on the
left (Sv.h). We apply the rule to obtain the result illustrated on
the right (Sv.h+1).

III. USE CASE

We are interested in studying the smart home system
established for the home monitoring of elderly and disabled
persons at home. The elderly and disabled person who wishes

to stay in his own home rather than in a health care institution
may be able to live a more independent life and may feel more
autonomous, and self-sufficient. Several software solutions
have been presented to specify architectures for the monitoring
of the elderly using wireless sensor technologies and the con-
trol of the components in smart home as needed. The authors,
in [2], designed a methodological approach dedicated to the
intelligent management of the comfort and safety of persons
at home. The main issue is to ensure efficient management of
the optimized comfort, and the safety of the elderly.

A. Smart Home system description

We specify the essential information architecture and we
illustrate, in (Figure 4), the participants in the smart home
system. The monitoring center is composed of three sys-
tems:the Environment Control and Comfort Management, the
Emergency Surveillance Center, and the Medical Surveillance
Center. Thus, the players selected who interact with other
entities of the system are: The Home Care Actor, who interacts
with the monitoring center, by setting medical or emergency
conditions. The Equipment, that includes sensors and house
devices. The emergency surveillance center deals with critical
situations that need an urgent intervention. This center controls
emergency and crisis situations using the activity sensors.
In order to track the presence and activity of the elderly
person, infrared activity sensors can be installed in each room.
Activity sensors include fall sensors, presence sensors, video
camera and microphone. The sensors send urgent signals to
the center which treat immediately the received information.
Once the signal is correct and the situation is critical, the
center call the SAMU dispatch center to react and help the
person. The medical surveillance center monitors physiological
sensors. To track the medical information of the elderly person,
physiological sensors can be installed in the bed, the chair,
and on the body to detect the O2 level, the blood pressure,
and the weight. The functions are achieved by the Oximeter,
the Pressure Sensor, and the Weight Scale Sensor, classified
as physiological sensors. While there are problems, the center
requires the medical assistant intervention. The doctor and the
nurse can deal with the needed medical care. The comfort
management and the environment control system guarantees a
comfort life for the users which are the elderly person and his
relatives. This center enables communications between users,
control the environment sensors (Humidity and Temperature
Sensors), and commands the house devices (Convectors, Air
conditioners).

B. Smart home modeling

We applied successive refinements and implemented the
previously described refinement algorithms with model trans-
formation rules. Based on the case study, we perform the tran-
sition from the style level (presented in section II through UML
meta-models) to the instance level (Figure 5). We obtained then
the following results: In S0.0, we apply the rule to define the ap-
plication named “SmartHome" . We obtain the scale S1 through
the “Insert-Application(Smart Home)" transformation opera-
tion. In fact, participants in the smart home are represented (in
S1.0) by their components. We apply the “Insert-Component-
Type(HomeCare-Actor), Insert-Component-Type(Equipement),
Insert-Component-Type(MonitoringCenter)" operations and

the “RequireAndPreserve(Smart Home)" operation. Those par-
ticipants communicate with each other via the monitoring
center. Those relationships are represented (in S1.1) as UML as-
sociations while applying the “Insert-Association(HomeCare-
Actor, MonitoringCenter), “Insert-Association(Equipement,
MonitoringCenter)" operations.

We also illustrate instances obtained in S2: In S2.0, we
apply successive model transformation operations to add the
following composites: MedicalAssistant, EmergencyService,
User, Physiological-Sensor, Activity-Sensor, Environemenrt-
Sensor, House-Device, MedicalSurveillanceCenter, Emergen-
cySurveillanceSystem, and EnvironementControlAndComfort-
Management. Then, we specify the role of each component
of the application. The MonitoringCenter plays the role of
an “EventDispatcher". The HomeCare-Actor and Equipement
play roles of “Producer-Consumer" in the application. S2.1

allows to add the list of the ports for each component. We
briefly describe the list of required/provided services of the
HomeCare-Actor component. The MedicalAssistant receives
information about the patient’s situation from the Medical-
SurveillanceCenter, he manages the patient’s medical care
(provides) and return a report after the care. The Emergen-
cyService receives information about a critical situation Emer-
gencySurveillanceCenter, reacts to save the patient (provides),
and return a report after the intervention. The User receives not
only emergency and medical services but also comfort services
like online communication or house device command provided
by the EnvironementControl And ComfortManagement compo-
nent. We define the propagation of events between participants,
which are mediated through a network of dispatchers called
Monitoring Center. We choose the “acyclic-P2P" topology.
In fact, equipments and actors communicate with each other
symmetrically as peers, adopting a protocol that allows a
bidirectional flow of communication. S2.2 assigns to each port
an interface of the type provided or required according to
the type of service. Finally, we indicate at the scale S2.3

connections established according to the used topology and
we define the “Publish-Subscribe" style as shown (in Figure
6(a)).

While there are still components to refine in the smart home
application, we apply the algorithms instructions and we move
to the scale S3 to add necessary design details. Applying the
model refinement to the smart home application shows that
this is a complex software system. We focused on mastering
the complexity description details through including the third
scale. This scale has not only included new composites but also
has detailed the information flow between them. Each added
composite (e.g. the doctor) is important for the application
design. We illustrate, (in Figure 6(b)), the last horizontal
scale S3.3 which contains more details on added composites
(Doctor, SAMU dispatch Center, Video Camera, etc), their
ports, interfaces, and connections. Finally, we reach a fine-
grain description at scale S3.3. The refinement steps allow us
to compose the application, to extract all design details which
are related to complexity, and to establish clear configurations.

IV. RELATED WORK

Considerable research studies have been presented on the
description of software architectures. Several works have fo-
cused on the use of UML for multi-level modeling. Brosch

et al. [3] proposed a meta-model for specifying adaptabil-
ity characteristics in a software product line. This model
is expressed on different levels. The architectural level uses
composite components to encapsulate subsystems and enable
their replacement. The authors presented a tool support that
allows the architects to design the architecture with UML
models. Anwar et al. [1] described a view-based modeling
methodology. They developed the VUML (View-based Unified
Modeling Language) that enables the modeling of a software
system. Other studies have focused on the architecture refine-
ment concept. Oquendo et al. [8] described Π-ARL, an archi-
tecture refinement language based on the rewriting logic. The
core of Π-ARL is a set of architecture refinement primitives
that supports transformation of architecture descriptions. The
authors formally modeled the stepwise refinement of software
architectures. Rafe et al. [9] proposed an automated approach
to refine models in a specific platform. For each abstraction
level, a style should be designed as a graphical diagram and
graph rules. In their approach, the model is designed by the
rules of graph transformation.

Several studies have been performed on the modeling of
multi-level architectures based on UML. These semi-formal
approaches did not, however, include the concept of refine-
ment. Although formal techniques and, more specifically,
works based on graph transformations allow the architecture
refinement, they require certain expertise in mathematics for
architects. Moreover, only few studies have provided a clearly
defined process that takes the compatibility between different
description levels into account, a challenging condition for
the multi-level description of dynamic architectures. In this
work, we have considered that a given modeling level can
be described by several scales. We needed a clear refinement
process to transit between scales. This work aimed to provide
solutions for modeling software architectures so as to facilitate
their validation at different description levels.

V. CONCLUSION AND PERSPECTIVES

In this paper, we have presented a multi-scale approach
for software architectures at the conceptual level and proposed
UML notations at the architectural style level. We have then
presented the rules of refinement/abstraction through model
transformation techniques. We have also presented a descrip-
tion of the instance level through a case study. Finally, we have
investigated the state of the art on how multi-level software
architecture modeling has been addressed. We are currently
working on the improvement of the validation scope of our
approach based on a notational correction through XML and
semantic correction. We are developing a support tool for the
multi-scale approach. In our future work, we expect to apply
our multi-scale approach to other case studies for modeling
complex system architectures (e.g. Systems of Systems). Ad-
ditional work is also needed to check architectural properties
related to both structural and behavioral descriptions. We exect
to provide structured representations of components behavior
using other UML diagrams (e.g. sequence diagram).

ACKNOWLEDGMENT

The authors would like to thank University of Toulouse
who permitted this research opportunity within the IDEX
“chaire d’attractivite" delivered to Pr. Gene COOPERMAN.

REFERENCES

[1] A. Anwar, T. Dkaki, S. Ebersold, B. Coulette, and M. Nassar. A
formal approach to model composition applied to VUML. In 16th IEEE

International Conference on Engineering of Complex Computer Systems,

ICECCS 2011, Las Vegas, Nevada, USA, 27-29 April 2011, pages 188–
197, 2011.

[2] S. Bonhomme, E. Campo, D. Esteve, and J. Guennec. Methodology and
tools for the design and verification of a smart management system for
home comfort. In Intelligent Systems, 2008. IS ’08. 4th International

IEEE Conference, volume 3, pages 24–2–24–7, Sept 2008.

[3] F. Brosch, B. Buhnova, H. Koziolek, and R. Reussner. Reliability
prediction for fault-tolerant software architectures. In QoSA/ISARCS,
pages 75–84, 2011.

[4] I. Crnkovic, S. Larsson, and M. Chaudron. Component-based devel-
opment process and component lifecycle. In Software Engineering

Advances, International Conference on, pages 44–44, Oct 2006.

[5] S. Kallel, M. Hadj Kacem, and M. Jmaiel. Modeling and enforcing
invariants of dynamic software architectures. Software and System

Modeling, 11(1):127–149, 2012.

[6] I. Khlif, M. Hadj Kacem, A. Hadj Kacem, and K. Drira. A multi-scale
modelling perspective for SoS architectures. In Proceedings of the 2014

European Conference on Software Architecture Workshops, ECSAW14,
pages 30:1–30:5, 2014.

[7] I. Khlif, M. Hadj Kacem, A. Hadj Kacem, and K. Drira. A UML-based
approach for multi-scale software architectures. In 17th International

Conference on Enterprise Information Systems (ICEIS), page (To appear),
2015.

[8] F. Oquendo. π-ARL: An architecture refinement language for formally
modelling the stepwise refinement of software architectures. SIGSOFT

Softw. Eng. Notes, 29(5):1–20, Sept. 2004.

[9] V. Rafe, M. Reza, Z. Miralvand, R. Rafeh, and M. Hajiee. Automatic re-
finement of platform independent models. IEEE International conference

on computer technology and development, pages 397–411, 2009.

Fig. 3: Horizontal Refinement

Fig. 4: Smart Home system

(a) Smart Home model at the scale S2.3

(b) Smart Home model at the last scale S3.3

Fig. 6: Smart Home model (2/2)

Fig. 5: Smart Home Model (1/2)

