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Improving WCET Analysis Precision

through Automata Product

Vincent Mussot* and Pascal Sotin*

*Toulouse University, IRIT[1]

Email: {mussot, sotin}@irit.fr

Abstract—Real-time scheduling of application requires sound
estimation of the Worst-Case Execution Time (WCET) of each
task. Part of the over-approximation introduced by the WCET
analysis of a task comes from not taking into account the fact
that the (implicit) worst-case execution path may be infeasible.

This article does not address the question of finding infeasible
paths but provides a new formalism of automata to describe sets
of infeasible paths. This formalism combines the possibilities to
express state-based path acceptance (like in regular automata),
constraints on counters (in the Implicit Path Enumeration Tech-
nique fashion) and contexts of validity (like in Statecharts).

We show the applicability of our proposal by performing
infeasible paths aware WCET analyses within the OTAWA
framework. We provide algorithms that transform the control
flow graph and/or the constraints system supporting the WCET
analysis in order to exclude the specified paths.

I. INTRODUCTION

a) Context: Task scheduling and resource management
lie at the very heart of embedded systems. Under-sizing
hardware may lead to unsafe and erroneous executions of
programs while over-sizing will increase costs. As a result,
a major aspect of the real-time domain is to get as close as
possible to the optimal dimensions for every single element of
the architecture while remaining safe.

A critical information needed to dimension the whole
system is a Worst-Case Execution Time (WCET) for each task.
A WCET is an upper bound on the execution time of a task.
Although it is hardly possible to determine the exact WCET
of a program, static timing analysers can compute a safe upper
bound instead.

Timing analysis relies on both low-level and high-level
analyses which work together in an effort to precisely esti-
mate the timing of a task. Low-level analysis focuses on the
behaviour of caches, on the processor pipeline and on the
memory accesses to determine the execution time of groups
of instructions. High-level analysis combines the basic timings
according to the program control flow. A popular way of doing
that is the Implicit Path Enumeration Technique (IPET). The
low-level timings and the dependencies between number of
executions of each basic block are turned into an Integer Linear
Program (ILP). Its resolution delivers a safe WCET.

b) Motivations: The path implicitly considered by IPET
may be infeasible, meaning that it does not correspond to any
realistic execution of the program. Infeasible paths are a major
challenge for WCET analysis since they can cause serious
WCET over-estimation (see experiments in Section V)1.

1This work is supported by the French ANR project W-SEPT.

If we take an arbitrary path in the Control Flow Graph
(CFG) of a program, it might be infeasible for reasons like:

i. It executes some dead code (undetected by the compiler),
ii. It iterates a loop too many times,

iii. It goes through two exclusive branches,
iv. It executes some code in a context which makes it dead

code. . .

IPET-based static analysers, according to what they can
detect or what they are told, try to reflect the infeasibility
by either modifying the CFG (Item i. typically) or enriching
the ILP (Item ii. typically). We do not discuss in this article
the question of infeasibility detection but focus on expressing
infeasible paths and integrating automatically and faithfully
this information in the WCET analysis.

Annotation languages for WCET analysis deal with the
question of expressing facts (for a complete survey, see [1])
but all suffer at least one of the following limitations:

• The expressiveness is limited to ease the integration,
• The computational cost of the integration cannot be

controlled,
• The integration is reduced to adding new ILP constraints,
• Part of the annotation that can be written cannot be

integrated in the analysis process,
• The integration process has not been formalised.

c) Contributions: Our contribution is not a new WCET
annotation language but a versatile automata-based formalism
to describe infeasible paths. Our automata are first class
citizens:

• An automaton recognizes a well-defined language of CFG
transitions (Section III-B).

• They can be built using a combination of well-known fea-
tures in the field of static analysis: linear constraints, state-
based acceptances and contexts of validity (Section III-A).

• We formally define operations for automata manipulation
(Section III-C) and provide the corresponding algorithms
(Section IV), including a product with any CFG.

• We show the applicability of our proposal by implement-
ing it as a plug-in for OTAWA, an academic state-of-the-art
framework for WCET analysis (Section V).

We illustrate our purpose in Section II with an example
that shows how path properties are expressed in our formalism
and how this information is integrated in the analysis process.
In Section VI we discuss the strengths and limitations of our
proposal, relating it to existing works.
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II. OVERVIEW

In this section, we give an example where infeasible paths
are damaging the WCET analysis, and solve this issue using
the formalism and algorithms we propose. Here is the process:

• Somebody or something identifies that a program contains
syntactic paths that are not feasible (Section II-A),

• An automaton that encodes the source of the infeasibility
is created. We call it a Path Property Automaton (PPA)
(Section II-B),

• The program CFG and the PPA are merged into a
product PPA that accepts only feasible syntactic paths
(Section II-C),

• The resulting PPA is brought back to a representation suit-
able for a WCET analysis tool, possibly at the cost of an
over-approximation of the feasible paths (Section II-D).

A. Software
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Fig. 1. CFG.

We consider a fragment of soft-
ware containing a loop whose max-
imal number of iterations (N ) is
known. The loop body contains two
if-then statements. The compila-
tion process turned this piece of code
into a binary file whose CFG, built
by a static analysis tool, is depicted
on Figure 1. Nodes of this graph
represent basic blocks of assembly
instructions. Edges of this graph rep-
resent transitions between blocks due
to code continuation or branching
instructions. The static analysis tool estimated a WCET which
happens to be seriously above the measured timings.

The analysis of the source code, either by a human or by
a static analyser, revealed that in each iteration of the loop, at
most one then branch is executed. Since that fact does not
appear on the CFG, IPET maximized the WCET by picking
A and B in each iteration of the loop. In a better world, the
programmer would have used an if-then-else statement
or a static analysis within the compiler or the WCET tool
would have noticed and exploited that fact. Unfortunately, in
the real world, WCET static analysers have no control on
the source code nor on the compilation process, and their
first concern is to model faithfully the low level behaviour.
Infeasible paths are for them an orthogonal issue. We thus
face the problem of telling the WCET analyser, in the least
intrusive way, to ignore paths where both transitions A and B
are taken during one iteration of the loop.

B. Infeasible paths

Using the formalism proposed in this article (detailed in
Section III) we encode the exclusivity property mentioned
before as a Path Property Automaton (PPA) that rejects the
infeasible paths. On Figure 2, we show two alternative en-
codings. On both PPAs, the CFG transitions E (entry) and X
(exit) define the boundaries of an iteration. Within this context
(rounded corners rectangle) the number of CFG transitions A
and B are counted. On Figure 2a the counting process relies on
a counter attached to the transitions and a constraint attached
to the context: when leaving the context, the α counter must be
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Fig. 2. Two PPAs rejecting the infeasible paths.

4

2α ≤ 1

6

8

5

7 2

2

1 3

E X

E

A:α

B:α
X

(a)

4

2

6

8

5
6

82 7 2

2

1 3

E X

E

A

B
XX

(b)

Fig. 3. Two PPAs accepting the feasible syntactic paths.

lower or equal to 1. The ⋆ symbol denotes a default transition.
On Figure 2b counting is based on states: once either A or B
has been seen, both are no longer accepted.

C. Product

The CFG of Figure 1 can be considered as a PPA that
describes the syntactic paths of the software. Hence we now
reduce our concerns to combine the CFG and the property in a
PPA accepting only paths that are both syntactically valid and
feasible (w.r.t. the property). In automata theory, This operation
is called a product. We do not define a generic product for
any pair of PPAs but exploit the flat nature of the CFG to
define an asymmetric product that we call injection product.
We call the PPA resulting from this operation a hierarchical
CFG. Figures 3a and 3b respectively result from the injection
of the CFG in 2a and 2b. Note that some basic blocks may be
duplicated in the internal representation of the WCET analysis
tool but that the program itself is unchanged.

D. Flattening

Both automata shown on Figure 3 describe exactly the
feasible paths of our software. Unfortunately, WCET analysers
are not used to this kind of hierarchical objects. We thus need
an operation to get back to a flat PPA. We call this operation
a flattening. Figures 4a and 4b respectively results from the
flattening of 3a and 3b. On Figure 4a the CFG carries a
numerical constraint, entailed by the original one, that prevents
from always taking A and B in all iterations. On Figure 4b the
possibility of executing both A and B in the same iteration has
been syntactically removed.

We give back the CFG of Figures 4a and 4b to the WCET
analyser which respectively computes a 26% and a 40% more
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Fig. 4. Two result CFG.

precise WCET. The gap between the two evaluations is due to
the fact that the CFG transformation allowed some low level
analysis improvement. Details and additional experiments are
presented in Section V.

III. FORMALISM

In this section we present an automata formalism to encode
feasible paths (and by complement infeasible paths). This pro-
posal is novel and is directed toward an efficient integration of
the feasibility information in the IPET-based WCET analyses.

A. Features

We present four features offered by the formalism allowing
concise and modular expression of a set of paths.

1) Nodes and arrows: An automaton can be built using
nodes and arrows2. One node is marked as initial. To each
arrow is attached a set of program transitions3. A program
transition is the transfer of the instruction pointer from a
control point to another. The ⋆ symbol is used to accept any
program transition which is not accepted by any other outgoing
arrow.

A path is accepted by the automaton if its program transi-
tions can be consumed by the automaton starting in the initial
state. We consider deterministic automata where a transition
is carried by at most one outgoing arrow of each node.

Figure 5a shows an automaton that accepts any trace
provided that this trace does not contain the program transition
0x10 7→ 0x12 (i.e. this program transition is infeasible).
The automaton of Figure 5b accepts at first any transition but
refuses transition F once the program went through transition E
(i.e. transition E makes transition F infeasible).

2) Counters and constraints: In addition to sets of program
transitions, the arrows of an automaton can carry a set of
counters. Throughout the article, we use Greek letters to denote
a counter. These counters are used in a conjunction of linear
constraints attached to the automaton itself.

An execution path is accepted if it is accepted by the nodes
and arrows of the automaton and if the number of occurrences
of each counter on the path satisfies the constraint.

2The consecrated words in automata theory are states and transitions. We
keep these words for more semantic notions (CFG transition, current state
in an automaton) and use instead nodes and arrows to denote the syntactic
elements that compose an automaton.

3More generally each arrow carries a set of symbols taken in an alphabet.
In our setting we chose the alphabet to be all the program transitions.
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Fig. 5. Nodes and Arrows: examples
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Fig. 6. Counters and Constraints: examples

Figure 6a denotes the set of paths where the program tran-
sition G is taken at most four times. Figure 6b denotes the set
of paths where transition E is taken the same number of times
as transition F. The latter example illustrates a major difference
between our proposal and the counter automata [2]. Using
regular counter automata, a program transition is accepted only
if the current state of the counters allows it. Our constraint only
applies when considering the whole path: eventually α = β.

3) Super-node and sub-automaton: Each node of a PPA
may contain another automaton. The node is then called a
super-node and the embedded automaton is called its sub-
automaton. This turns our proposal into a formalism similar to
the hierarchical automata [3], [4].

The acceptance rules are modified as follows:

• When the (parent) automaton consumes a program tran-
sition and ends up on a super-node, its sub-automaton
must also consume the transition (starting from its initial
state). The new state is composed of the current super-
node together with the current state of the sub-automaton.

• When the (parent) automaton is currently on a super-
node and the transition to consume is not carried by any
outgoing arrow then the sub-automaton must consume the
transition. The parent automaton stays on the super-node
and the state of the sub-automaton is updated.

• When the (parent) automaton is currently on a super-node
and the transition to consume is carried by an outgoing
arrow then the sub-automaton must consume the transition
(still). The parent automaton then consumes the transition
and ends up on the head of the arrow.

In other words reaching a super-node temporarily gives the
control to the sub-automaton. The path fragment starting by the
program transition leading to the super-node and ending with
the first transition that leaves the super-node must be accepted
by this sub-automaton. One should note the overlapping on the
first and last transitions, and the priority given to the parent
arrows. A program transition can thus be used to enter and/or
exit multiple levels of hierarchy at once.

When leaving a super-node, the path fragment accepted
by its sub-automaton must satisfy the numerical constraints
on the counters of this automaton. This counters are forgotten
afterwards (they are “reset” in some sense).
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Fig. 8. Example of a Symbolic Product

Figure 7 states that after a transition A of a path is
encountered, at most four transitions G are traversed before
the next transition B.

4) Symbolic product: In our formalism, an automaton can
be a hierarchical automaton carrying constraints, as presented
in the beginning of this section but it can also be the
symbolic product of several automata. A path accepted by
all the automata of a symbolic product is accepted by the
symbolic product itself. The symbolic product can be read as
a conjunction of properties or as an intersection of languages.
If A and B are two PPAs, then A ⋊⋉ B denotes their symbolic
product.

Figure 8 provides information on an inner loop whose back
edge is B2, nested in an outer loop whose body starts by the
program transition I1 and ends with its back edge B1. The inner
loop presents a triangular behaviour. Its maximal number of
iterations in an iteration of the outer loop is 10 (as stated by the
first hierarchical automaton) but it happens that on a complete
execution of the outer loop the total number of iterations of
the inner loop is exactly 55 (second automaton). The third
automaton provides an exact bound for the outer loop. The
symbolic product of Figure 8 could eventually be embedded
in the context of the outer loop.

B. Recognized language

We give here a formal definition of the set of words
accepted by an automaton built using the features presented
in III-A. We write JAK ∈ P(Σ⋆) for the set of words accepted
by the automaton A ∈ Auto. The set Σ is an alphabet; in our
instantiation, it contains all CFG transitions.

An automaton can be either a symbolic product or a
hierarchical automata ie. Auto = Prod ⊎ Hier. The language
of a symbolic product is defined by:

JA1 ⋊⋉ · · · ⋊⋉ AnK = JA1K ∩ . . . ∩ JAnK

If A is not a symbolic product then it is a hierarchical
automaton defined by the tuple 〈N, i, sub, X,Φ,Arr〉 where:

• N is a set of nodes and i ∈ N is the initial one,
• sub ∈ N → (Auto ⊎ {⊥}) associates a sub-automaton to

each super-node and ⊥ to the ordinary nodes,
• X is a set of counters (Greek letters in the constraints),
• Φ is a conjunction of linear constraints over X ,

• Arr is a set of arrows. An arrow is defined by its source
node, its destination node, a set of accepted transitions,
and a set of counters to increment when crossing it.

The presence of a hierarchy makes the acceptance defini-
tion recursive. To handle the top level of the hierarchy, we
define the set Walk(A) of valid walks in A. A valid walk
π starts at node i and follows arrows in Arr (walks do not
descend in the hierarchy). We define the following notations:

• π |= Φ states that the counters seen on π satisfy Φ,
• |π| is the number of arrows traversed by π,
• acck(π) is the set of transitions accepted by the k-th arrow

of the walk π,
• nodek(π) is the k-th node of the walk π.

The set of words accepted by the hierarchical automaton
A is the set of words t ∈ Σ⋆ such that:

∃π ∈ Walk(A), |π| = m,π |= Φ,

∃a ∈ Σm, s ∈ (Σ⋆)m+1, t = s0.a0 . . . sm−1.am−1.sm,

∀k, ak ∈ acck(π)

∀k, nodek(π) = n,






sub(n) = A′ ⇒

{

ak.sk.ak+1 ∈ JA′K
outgoing(n) ∩ (↓ sk) = ∅

sub(n) = ⊥ ⇒ sk = ε

where xi is the element at position i (starting from 0) in the
sequence x; a−1 and am are defined to be the empty word ε;
the dot operator stands for the concatenation; ↓ u stands for
the set of letters of the word u; outgoing(n) stands for the
letters accepted by the arrows leaving node n.

In the formula above, t is decomposed on two levels
according to the walk π. The sequence of letters a is made
of single transitions consumed by the arrows of the automaton
itself. The sequence of words s is made of fragments of words
matched by the sub-automata contained in the nodes. The
formula enforces the priority of the automaton on the sub-
automata and the consumption of transitions at several levels
(as described in Section III-A3).

C. Operations on automata

Both the program CFG and infeasible paths can be encoded
in our formalism. A CFG is represented by an isomorphic
automaton C where every basic block becomes a node and
every edge becomes an arrow labelled by the edge (eg. Fig 1).
The infeasible paths are encoded as an automaton P that
accepts any paths but the infeasible ones (eg. Figs 2,5,6,7,8).

Using operations on automata, we combine C and P into
an automaton C′ that can be fed to most of the existing IPET-
based WCET analysers. We define the set Flat of PPAs that can
be built using only nodes, arrows carrying a single transition,
counters and constraints (Sections III-A1 and III-A2). The Flat
subset of Auto is assumed to be similar to the internal repre-
sentation of an IPET-based WCET analysers. The operations
that we will consider are:

Name Symbol Type

Product × Flat × Flat → Flat
Unfolding unfold Auto → Flat
Flattening flatten Auto → Flat
Injection ⋊ Flat × Auto → Auto



The product is the usual product of automata. The unfolding
operations turns an automaton into an equivalent flat one
having no counter nor constraints. The flattening operation
turns an automaton into a more permissive flat one. The
injection is a special kind of product that adapts the transitions
of a flat automaton to the structure of another automaton.

Ideally we would like a flat automaton C′ of reasonable size
such that JC′K = JCK ∩ JPK. Unfortunately, no combination of
the operations mentioned above is fully satisfying and we need
to renounce either to:

1) Flatness. C ⋊ P is a non-flat PPA whose accepted paths
are exactly the desired ones. It is not compatible with the
existing WCET analysers.

2) Reasonable size. The unfolding operation would allow to
compute a flat automaton encoding precisely the paths
common to C and P . This method would face serious
scalability issues.

3) Exactness. In the context of WCET analysis, we can relax
our ambition into finding a flat automaton C′ such that
JC′K ⊇ JCK ∩ JPK (safe approximation).
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Fig. 9. Unfolding and flattening of Figure 7

Figure 9 illustrates the transformations 2 and 3 on the
automaton of Figure 7. If we leave this automaton unchanged,
it is not flat (Item 1 lost). If we unfold it as shown on Figure 9a
then its size has seriously grown (Item 2 lost) and it would be
even worse with a constant of 100 instead of 4. If we flatten it
as shown on Figure 9b then it becomes a two-state automaton
but the path AGGGGGBAB containing five consecutive G is
accepted for the reason that it contains two A (Item 3 lost).

We follow the solution of Item 3 and choose to compute
flatten(C ⋊ P). Note that C × flatten(P) is not always a
reasonable option for computing C′. The presence of symbolic
products in P can lead to an automaton flatten(P) of exponen-
tial size. Performing the injection first then flattening reduces
this issue to the only points where it is required to faithfully
express the property.

IV. ALGORITHMS

The two main stages of the CFG transformation and en-
richment are detailed in this section. The first stage is injecting
the CFG into a PPA in order to obtain a hierarchical CFG.
This is done by the InjectionProduct algorithm (Function 1)
which relies on AcceptTrans (Function 2). The second stage is
flattening the newly built CFG to retrieve a usual flat CFG
enclosing the path properties. This is done by the Flatten
algorithm (Procedure 3) which relies on BreakFrontier (Proce-
dure 4) and the classical automaton product. These operations
were sketched in Sections II-C and II-D. Their specification
was defined in Section III-C.

Function 1: InjectionProduct

Data: Flat C, Auto P
Result: Auto R

1 // WorkList WL contains 〈Node, State, State〉
2 initialization of the new automaton R
3 create R initial state from those of C and P
4 begin with C, P and R initial states in the WL
5 foreach Triplet 〈 NC , SP , SR〉 of WL do
6 retrieve the list L of outgoing arrows from node NC
7 foreach Arrow Arr of L do
8 save the current R
9 try

10 pair 〈S′
P
, S′
R

〉 = AcceptTrans(SP , Arr, SR)
11 retrieve the head node N ′

C
of Arr

12 push 〈N ′
C
, S′
P
, S′
R
〉 in the WL

13 catch failure
14 rollback R

15 return R

A. Injection product

Function 1 creates a new automaton from the injection of a
flat automaton into a PPA that can be hierarchical or a product
of automata. This function has been designed to inject a clas-
sical CFG into an automaton representing semantic properties
with context-sensitivity, in order to create a hierarchical CFG.

This product relies on a work list algorithm which uses
the AcceptTrans function to build nodes, arrows, sub-automata,
and constraints in the result automaton. Upon a successful call
to AcceptTrans, the result automaton will integrate the changes,
while upon a failure it will remain unchanged

In the classical automaton literature, work lists contains
states of the automaton (that we call nodes). Due to the
hierarchy and the symbolic product in our formalism, the
notion of node and state no longer coincide. In our setting,
we define a state to be:

• The name of a regular node N in a hierarchical automaton
• The name of a super-node in a hierarchical automaton

together with a state in its sub-automaton (N.S).
• A tuple of state 〈S1 . . .Sn〉 when the automaton is a

symbolic product

Function 2 allows to follow a specific arrow Arr in an
automaton A which can be hierarchical or a symbolic product.
In this process, it creates the associated states, arrows, sub-
automata and constraints in the result automaton. This function
takes as parameters the arrow that should be followed, the
state in A where to begin the arrow matching, and the state in
the result automaton where to continue the construction. The
treatment of the hierarchy follows the acceptance criteria of
Section III-A3:

• We descend in the node hierarchy until we find a matching
arrow

• The corresponding states and arrows are then built in the
result automaton.

• The arrow shall then be accepted by the matching arrow
tail sub-automata if it exists.



Function 2: AcceptTrans

Data: State S, Arrow Arr, State R
Result: State S′, State R′

1 Auto A = retrieve automaton where S belongs
2 if A is a Prod then //S,R are of the form 〈X1, . . . , Xn〉
3 foreach automaton A1 . . .An that composes A do
4 〈S′i, R

′
i〉 = AcceptTrans(Si, Arr, Ri)

5 S′ = 〈S′1, . . . , S
′
n〉 ; R′ = 〈R′1, . . . , R

′
n〉

6 else //A is a Hier; S,R are of the form N.Ssub, M.Rsub

7 if Arr matches an outgoing arrow of N then
8 //We note N ′ the head of N outgoing arrow
9 create or retrieve the node M ′ in M automaton

create Arrres by copying Arr in M automaton
10 add counters from both arrows on Arrres

11 if N has a sub-automaton sub-A then
12 AcceptTrans(Ssub, Arr, Rsub)
13 //This might spread a failure

14 if N ′ has a sub-automaton sub-A′ then
15 //We note Sini the initial state of sub-A′

16 create sub-automaton sub-AR′ in R′

17 create an initial state Rini in sub-AR′

18 〈S′ini, R
′
ini〉 = AcceptTrans(Sini, Arr, Rini)

19 S′ = N ′.S′ini ; R′ = M ′.R′ini

20 else
21 S′ = N ′ ; R′ = M ′

22 else
23 if N has a sub-automaton sub-A then
24 〈S′sub, R

′
sub〉 = AcceptTrans(Ssub, Arr, Rsub)

25 S′ = N.S′sub ; R′ = M.R′sub

26 else
27 raise failure

28 return 〈S′, R′〉
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Fig. 10. Illustration of ACCEPTTRANS

• Finally the arrow shall be accepted by the matching arrow
head sub-automata if it exists and a new automaton in the
result automaton should then be created.

Figure 10a represents a case where AcceptTrans was called
with the state 0.1 as start state, and the arrow A. In this case,
the parent automaton will try to consume the arrow from its
super-node 0 to its super-node 3. Prior to this consumption,
since 0 was a super-node, its sub-automata must accept the
arrow, and that is done by taking the arrow from 1 to 2 in this
sub-automaton. Once the parent automaton has consumed the
arrow, it reaches the super-node 3 which must then accept the
arrow starting from its initial sate 4, which is done by going
from 4 to 5 in this sub-automaton. In the end, the arrow A
accepted by this automaton from the state 0.1 ends up in the
state 3.5.

Figure 10b represents the failure case where an arrow A is
not accepted by the sub-automaton of its ending node.

Procedure 3: Flatten

Data: Auto A
1 if A is a Prod then
2 Flatten each automata of A
3 Product all flattened automata together
4 else // A is a Hier
5 foreach Node of A do
6 Flatten the sub-automaton of the Node
7 Break the frontier of Node

Procedure 4: BreakFrontier

Data: Node N
1 // N sub-automaton is assumed to be flat
2 add a unique new counter β on all N incoming arrows
3 adapt constraints of N (multiply constants by β)
4 copy constraints of N in the parent automaton
5 match incoming arrows with intern arrows
6 match outgoing arrows with intern arrows
7 remove N and unreachable nodes

A

:α

B

α ≤ 2

A

B A

:α

B

α ≤ 2

A

B

α ≤ 2β

A:β

B

Fig. 11. Illustration of BREAKFRONTIER

B. Flattening phase

Procedure 3 is able to transform a PPA into a flat automa-
ton. It relies on the BreakFrontier procedure (at line 7) and the
classical automata product (at line 3). Both algorithms only
operate on flat automata, and this Flatten algorithm mainly
serves this purpose. The recursive calls start by flattening the
deepest automata, up to the top.

Procedure 4 is applicable on a specific super-node of a
hierarchical automaton. The objective is to remove the context
represented by the node while merging the sub-automaton into
the parent automaton. For this purpose, the node has to be
replaced by its sub-automaton and the constraints it carries
must be adapted to maintain the context-sensitivity. This is
done by introducing a new counter at line 2 and by the
multiplication of constants of all constraints by this counter
(see [5], [6]). Figure 11 illustrates the BreakFrontier algorithm
applied on a super-node.

The product mentioned at line 3 of Procedure 3 refers to the
classical automata product. The algorithm is adapted in order
to handle the counters: in the result, counters are combined
using the disjoint union (renaming may happen).
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V. EXPERIMENTS

A. Tool chain

In order to demonstrate the efficiency of our method, we
implemented our automata as a plug-in into the WCET analysis
toolkit OTAWA [7]. This academic tool dedicated to timing
analysis supports multiple instruction sets such as PowerPC,
ARM, TriCore, Sparc and several micro architectures.

Figure 12 presents our complete WCET analysis system,
focusing on modules related to the automata described in
this paper. The work flow begins with the source code to
analyse and the associated binary file. On the left side, the
academic tool oRange [8] is used on the source code to
automatically generate a Flow Fact in Xml (FFX) file which
contains contextual loop bounds. Using the same FFX format,
the user can provide its own properties on the code such as
exclusivity between conditions. On top of the figure, the binary
and its debugging information are used by OTAWA to build
the CFG of the program. This CFG and the FFX files are the
central points of the analysis.

The Flow Fact Automata Builder module is responsible for
the parsing of the FFX files. Using the edges of the CFG, it is
able to generate an automaton that represents all the properties
described in FFX. This PPA is fed to the Hierarchical CFG
Builder that uses the InjectionProduct to inject the CFG
into the PPA. The Automata Flattener is then fed with the
Hierarchical CFG to obtain a flat CFG with unfolded/removed
parts and additional ILP constraints. All known high level
properties are now enclosed in this new CFG with its ILP
constraints and it can be sent to the low level analysis, then to
IPET for the WCET computation.

B. Existing benchmarks

We used an architecture model derived from ARM9 pro-
cessor of OTAWA with a 1 kB instruction cache and a 16 kB
data cache. The instruction cache used is a two-way associative
cache with a Least Recently Used (LRU) replacement policy.
In these experiments, we used programs from benchmarks of
WCET Tool Challenge 2014 [9]. However we selected only
few of them because for now, infeasible paths research is done
manually, and we were not able to find obvious infeasible paths
in the remaining of the benchmark suite.

Results of our experiments are presented in the Table I.
The bounded loops column presents WCET computation with
the only knowledge of maximum number of iterations of each
loop to ensure basic finiteness of the program. The other

TABLE I. WCET RESULTS WITH AND WITHOUT AUTOMATA

bounded loops additional constraints unfolded

Program WCET WCET Gain WCET Gain

runFlightPlan 1715 1534 10.6% 1534 10.6%

tcas-a 19880 17484 12.0% 17484 12.0%

TABLE II. WCET RESULTS FOR THE OVERVIEW EXAMPLE

bounded loops additional constraints unfolded

Program WCET WCET Gain WCET Gain

excl mod 419810 312900 25.5% 253556 39.6%

columns present results from the use of automata to encode
constraints into the CFG or the ILP system. In the additional
constraints column, exclusivity constraints have been encoded
as counters and constraints in a single state automaton and the
resulting product with the CFG is the same as the initial CFG,
with a richer ILP system. In the unfolded column, exclusivity
constraints have been encoded as a two-state automaton and
the resulting product with the CFG is an unfolded CFG. Both
automata did capture the constraint correctly, which gives more
than 10% precision gain. We could expect some low-level
side-effect improvements for the unfolded versions, but there
happens to be none in these benchmarks. WCETs are therefore
identical for both automata versions.

The program runFlightPlan comes from the benchmark
heli which is a control software for a helicopter model, and
tcas-a, derived from the benchmark tcas, is a traffic collision
avoidance software. In these programs, we added constraints
to express exclusivity between conditions in specific functions.

C. Overview example

The program presented in the overview (Section II) is
a simplified version of the excl mod program of Table II.
This experiment shows a precision gain even between the
WCET with additional constraints and the WCET with an
unfolded version of the CFG, due to instruction cache effects.
The program is composed of a simple loop containing two
expensive blocks A and B that are mutually exclusive, followed
by a common expensive block C. First, results show a precision
improvement between the WCET with only basic finiteness
and the WCET with additional constraints expressing the
exclusivity. This constraint was added in the ILP system:

A occurences + B occurrences ≤ Number of iteration
This global constraint ensures that at the end of the execution,
we were not able to go through A or B more than the number
of iterations of the loop. Without this constraint, the Worst-
Case Execution Path (WCEP) was to go through A and B in



TABLE III. AT MOST K THEN TAKEN OVER n IF-THEN STATEMENTS.

K feasible paths program family

n 2
n

n− 1 2
n

− 1 dense n

n/2 about 2n/2 half n

1 n + 1 sparse n

every iteration of the loop. The 25.5% that we can see in the
gain column comes from the removal of these infeasible paths.

The unfolded version shows a 14% additional gain which is
mainly explained by the behaviour of the instruction cache and
the associated memory access penalty. It has been mentioned
that A, B and C were expensive blocks, but more precisely, they
can each fill one of the two ways of the instruction cache, and
with the LRU policy, in the sequence A → B → C → A etc.
each block will be evicted from the cache right before it would
be needed again.

If we look at the cache behaviour with the additional ILP
constraint version, we can understand that since this constraint
is global, and with an important memory access penalty, the
WCEP found in reality is to go through A, B and C in half
of the iterations and only in C for the other iterations. If we
focus on the first half of the iterations, and as explained earlier,
the sequence of blocks will result in the constant eviction of
A, B and C from the instruction cache. In this situation, each
instruction of these blocks will be tagged with always-miss.
Moreover the other half of the iterations where instructions
of the block C will be tagged with always-hit will not be
considered by the static analyser due to the pessimism required
by the WCET analysis. Therefore instructions of C will be
tagged with always-miss as well.

In the unfolded version, the sequence A → B → C →
A etc. has disappeared due to the path unfolding (see Figure 4).
Therefore, the WCEP becomes A → C → B → C → A etc.
which makes each block A and B evict each other from the
cache while C is not evicted any more from the cache. As a
result, instructions of C are now tagged with first-miss, which
participates in the improvement of the WCET precision.

D. Micro-architectural side-effect improvements

We experimented our plug-in on families of programs de-
signed to explore several quantities and densities of infeasible
paths. The families are sparse n, half n and dense n
where n is a number. Each of these programs contains the same
function main which consists of a sequence of n if-then

statements in a predictable for loop. Each loop body thus
contains 2n syntactic paths. The only path restriction that can
be stated is a limit on the number of then taken during any
iteration of the loop. Three variants of this limitation shown
in Table III give birth to the three families.

Figure 13 presents computed WCET of the sparse n
program family with an increasing number of conditions (from
2 to 30) in the loop. The path restriction stated in Table III
can be expressed as a PPA in order to include it in the WCET
analysis process. Two types of PPAs are compared here but
the liberty of the automata formalism allows to create other
types of PPAs to express this specific property. The first option
presented here is to include this property as a constraint in
an iteration context (e.g. in Figure 2a). This constraint will
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Fig. 13. Computed WCET depending on the number of if-then statements
of the sparse n program

be adapted during the flattening process and will result in a
global ILP constraint depending on the number of iterations
of the loop. Another option presented here is to express this
property with a two-nodes automaton in an iteration context
(e.g. in Figure 2b) which will result in an unfolding of the
CFG and a duplication of some basic blocks.

The first noticeable fact is that the inclusion of any of the
two PPAs described improves the WCET precision. Indeed,
with no information about the if-then statements, the path
selected by the static analyser for the safe WCET computation
was going through every then branch in every iteration of
the loop. Any of the two PPAs removes this infeasible path
(and many others) which leads to this precision gain. Note
that the basic blocks of the if-then statements are not
negligeable and are part of the loop, which takes an important
part in the WCET increase for the Constraints and Unfolded
curves. Moreover none of the PPAs presented here forbids to
go through a different if-then statement in each iteration
of the loop, which will result in multiple cache penalties and
will again increase the WCET.

The other point to consider is the delta between the
unfolded version of the PPA and the constraint version. The
WCEP for the constraint version becomes longer with every
additional condition while the WCEP for the unfolded version
is only composed of a few basic blocks in each iteration. Sim-
ilar to the example presented in Section V-C, in the unfolded
case and considering a well-suited cache size, instructions
of the first and last block could be tagged with first-miss
instead of always-miss which results in this WCET precision
improvement.

E. Scalability

In order to study the scalability of the WCET computation
time, each family of program has been analysed with a more
important number of if-then statements. Results are pre-
sented in the Figure 14. Base bounded loops and Auto bounded
loops curves correspond to the computation timings for basic
finiteness of the program, using respectively the OTAWA FFX
loader and our plug-in to inject loop information in the static
analyser. Constraints (all) curve gathers timings for the three
families of programs4 presented in Table III where information
on conditions were injected as constraints through automata in
the analysis process. The last curve Sparse Unfolded shows
results for the sparse n family with unfolded PPA. The

4differences between these curves are invisible at this scale
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unfolding of other families leads to an exponential explosion
of the CFG. If we stick to basic finiteness, our tool does not
provide WCET gain and gets slower than the built-in tool on
large CFG. With richer infeasible paths, the estimation gain is
consequent with respect to the extra analysis time. Unsurpris-
ingly, unfolding costs more than playing with constraints.

VI. DISCUSSION AND RELATED WORK

A. Automaton formalisms

Description of sequences using automaton comes initially
from the language theory [10] and it has proved to be worth-
while in many domains. In particular, controller synthesis uses
them in the same way that we do: for reducing the possible
executions of a program. The closest work to ours is [4] where
the notion of hierarchical automata is present, including the
fact that an event can be used at several level. However, the
presence of linear constraints on the occurrences of a transition
brings our expressiveness beyond regular expressions (we can
encode for example AnBn). Our proposal cannot be reduced
to existing automata formalism. A close formalism is Timed
Automata [11] which is well-suited for model checking (as
in [12]). These automata embed free-running clocks that follow
the real-time execution of the system. Our proposal is directed
towards static analysis with IPET and focuses on number
of executions of edges in complete finite traces and not on
continuous timing properties.

B. WCET annotation languages

Feeding information to the WCET analyser in order to
tighten (or simply enable) the estimation is not new. Each
tool has one or several annotation languages to serve that
purpose. In [1] Kirner et al. survey most of them and gives
some classification criteria. If we apply these criteria to our
formalism we obtain:

• A path-complete language. Able to describe all control
flow path of arbitrary terminating programs.

• Information located out of the code and applicable to
the binary CFG. The use of our proposal at the source
code level would require an agreement with the user on
a source-based CFG.

In the following, we compare our formalism to several annota-
tion languages listed in [1] and also to a recent proposal [13].

Using automata modelling knowledge on the program was
already the idea beneath the regular expressions of Park [14],

used for path-based WCET. Our proposal can be seen as a
transfer and adaptation of this idea to the field of IPET-based
WCET analysis. The added features help the expression and
integration of properties in an IPET-based context.

Engblom and Ermedahl propose an approach similar to
ours in [5] where they consider function calls or loops as
scopes of programs. They attach execution count variables on
nodes representing basic blocks of the program and express
flow information facts related to these variables in a specific
scope. As they express these flow facts locally, they also
address the problem of converting local constraints into IPET
global constraints. However, their approach uses the CFG to
directly attach counter variables, while we offer a degree of
abstraction in the representation of flow facts information as
well as a degree of liberty in the representation of the CFG:
The arrows presented in our work are derived from edges
of the CFG but they are a compact view of multiples edges
where we can attach a unique counter, that will automatically
be duplicated at the right place during the injection process.
Moreover, our nodes are not directly related to basic blocks
of the CFG, which gives us the liberty to encode properties
in multiple ways, resulting for example in partial unfolding of
the CFG (eg. Figure 13).

Our proposal contains few ingredients but expressive ones.
It does not offer a specific structure for loop bounds, for
branching incompatibility or for function scopes, but each of
these notions can be encoded in our formalism. Having few but
generic and powerful constructs is something we share with
logic-based languages (e.g. [13], [15]). However the major
difference is that we have been able to define (in Section IV)
algorithms that perform integration of any automaton in a
program CFG. Logic-based languages are so expressive that
only a fragment of the logic can actually be used by a static
analyser. The extent of the fragment and the way to take it
into account in the analysis is often tool-dependent.

C. Information on data

Contrarily to languages like [13], [16] or [17], our for-
malism cannot express directly knowledge on data. Such
knowledge must be fed to a static analyser able to turn it into
knowledge on the program paths. From a WCET analyser point
of view, the absence of information on data in our formalism
is not a major issue and it will not require any extension of
our proposal. The truth is that a WCET analyser can do little
with information on data but to perform its own value analysis
in order to prove the infeasibility of some paths. The values
stored in the registers or in memory have almost no impact5

on the timing analysis of a basic block.

D. Pertinence of the information

When a user or a static analyser provides paths properties
not restricted to the loop bounds for a program, it is legitimate
to ask whether this information will have any impact on the
WCET estimation (other than slowing its computation). If the

5One can argue that the timing of some arithmetic operations can depend
on their operand value on some architectures (e.g. multiplication on ARM9
can range from 3 to 6 cycles). However it is even more noticeable when
these operations require a software emulation for which path properties can
be expressed.



infeasible paths happen to be “short” paths, then the WCET
estimation will probably be unchanged except in specific cases
where it avoids imprecision on the low level analysis. Our
proposal will give the best of itself in a context where the
user/analyser has the capability to predict which information
is likely to improve the WCET. A first approach to address
this issue is the use of tools like the one proposed in [18]
that identify C conditional statements that are syntactically
unbalanced. Another approach is to create a feedback loop
from the implicit Worst-Case Execution Path to the infeasible
paths analysis. [19] and [20] automate such a feedback loop.

E. Sources of path properties

We can have several sources of path properties: the
programmer, the compiler or dedicated static analysers. As
described in Section V-A, our OTAWA plug-in automatically
turns FFX files (generated by ORANGE or hand-written) into
automata.

Describing an automaton in our formalism can be a pretty
tedious task. For a higher user-friendliness we recommend the
use of a language like the ones mentioned in Section VI-B
and turn it automatically into an automaton. Once the ambi-
guities of that language have been resolved, the translation is
pretty straightforward. Difficulties may arise when the initial
language gives properties on the source code level but we
believe it is a good thing that these difficulties arise at that
specific moment rather than being melt with the difficulty of
integrating the information.

Compilers are tightly linked with the infeasible paths issues
since many infeasible paths can be removed by compiler
optimisations. When activated they make our proposal less
useful but they also make more difficult the transcription of
source-level properties into binary-level properties. In [21], Li
et al. allow loop bound annotation to be transformed according
to the optimisation of the loops in the CFG.

We also mention works on automatic infeasible path de-
tection and exploitation for specific WCET tools [22], [23] as
potential source of path properties.

VII. CONCLUSION

We presented a formalism based on automata and lin-
ear constraints for modelling path properties, called Path
Properties Automata (Section III). This formalism allows an
expressive and compact representation of path restrictions
relevant for the WCET analysis. We showed that it was
suitable for effective use within an IPET-based WCET analyser
(Section V).

The strength of our proposal is that integration of the
infeasible path information does not require the modification of
the WCET analysis itself. Instead we transform and decorate
with linear constraint the control flow graph of the analyser
using well defined operations on PPA. Algorithms for these
operations are provided (Section IV). We showed that encoding
infeasible paths using state-based acceptance might improve
the low level accuracy in the WCET computation, with respect
to linear constraints only.

The formalism we proposed opens several research tracks.
The link between the hierarchical CFG and modular WCET

analysis has to be explored. The capability to express path
restrictions both explicitly and implicitly using either states
or constraints offers an interesting way to drive the trade-off
between cost and precision.
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[4] F. Maraninchi and Y. Rémond, “Argos: an automaton-based syn-
chronous language,” Comput. Lang., vol. 27, no. 1/3, pp. 61–92, 2001.

[5] J. Engblom and A. Ermedahl, “Modeling complex flows for worst-case
execution time analysis,” in RTSS, 2000.

[6] P. Raymond, “A general approach for expressing infeasibility in implicit
path enumeration technique,” in Proc. of EMSOFT, New Dehli, 2014.
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