
  
   

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 16822 

The contribution was presented at VECPAR 2014 :  
http://www.vecpar.org/2014/ 

 
 
 

To cite this version : Amestoy, Patrick and L'Excellent, Jean-Yves and Rouet, 
François-Henry and Sid-Lakhdar, Mohamed Modeling 1D distributed-memory 
dense kernels for an asynchronous multifrontal sparse solver. (2014) In: 11th 
International Meeting High-Performance Computing for Computational Science 
(VECPAR 2014), 30 June 2014 - 3 July 2014 (Eugene, Oregon, United States). 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/129780509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Modeling 1D Distributed-Memory Dense

Kernels for an Asynchronous Multifrontal

Sparse Solver

Patrick R. Amestoy1, Jean-Yves L’Excellent2, François-Henry Rouet3,
and Wissam M. Sid-Lakhdar4(B)

1 University of Toulouse, INPT(ENSEEIHT)-IRIT, Toulouse, France
2 University of Lyon, Inria and LIP (CNRS, ENS Lyon, Inria, UCBL), Lyon, France

3 Lawrence Berkeley National Laboratory, Berkeley, USA
4 University of Lyon, ENS Lyon and LIP (CNRS, ENS Lyon, Inria, UCBL),

Lyon, France
mohamed.sid lakhdar@ens-lyon.fr

Abstract. To solve sparse systems of linear equations,multifrontal meth-
ods rely on dense partial LU decompositions of so-called frontal matri-
ces; we consider a parallel asynchronous setting in which several frontal
matrices can be factored simultaneously. In this context, to address
performance and scalability issues of acyclic pipelined asynchronous fac-
torization kernels, we study models to revisit properties of left and right-
looking variants of partial LU decompositions, study the use of several
levels of blocking, before focusing on communication issues. The gen-
eral purpose sparse solver MUMPS has been modified to implement the
proposed algorithms and confirm the properties demonstrated by the
models.

1 Introduction

Multifrontal methods [2] are widely used to solve sparse systems of equations
of the form Ax = b, where A is a sparse matrix, b is the right-hand side and x

the unknown. They cast the factorization of the sparse matrix A into a series of
partial factorizations of smaller dense matrices, called fronts, or frontal matri-
ces. The dependency graph between those partial dense factorizations is a tree
(the assembly tree), processed from the leaves to the root, such that the Schur
complement so called contribution block (CB) produced after the partial factor-
ization of a front is used at the parent node to build the front of the parent in a
so-called assembly operation, before the parent node is in turn partially factored.

In this paper, we focus on the dense factorization kernels used in multifrontal
methods for unsymmetric matrices where an LU decomposition is applied. For
more information on multifrontal methods, we refer the reader to [11,15]. Much
work has been done and is being done by the dense linear algebra community
on LU factorizations, using for example static 2D block-cyclic data distribu-
tions [8], sometimes 2.5D communications [19], or DAG-based tiled algorithms



in both shared memory [1,7] and distributed-memory environments [5]. Recent
asynchronous approaches often rely on a task scheduling engine [4,6] and on
fine-grain parallelism for an efficient utilization of the computing resources. Most
often, the choice of using an asynchronous approach with fine-grain parallelism in
both directions (2D) implies relaxed pivoting strategies (such as tournament piv-
oting, typically used in communication-avoiding algorithms [13]). This is because
neither full rows nor full columns are available to test for pivots stability. This
is especially the case in distributed-memory environments, with the exception
of the (synchronous) ScaLAPACK library [8].

In multifrontal-based, asynchronous, distributed-memory sparse factoriza-
tion methods, many dense frontal matrices may be factorized simultaneously.
Processes might thus be involved in more than one dense factorization, depend-
ing on dynamic scheduling decisions based on current CPU load and memory
usage of each process and this is thus quite difficult to predict. We are also con-
cerned with numerical accuracy and thus want to maintain standard numerical
threshold pivoting [10] even in a distributed-memory context, which is quite a
unique feature for a general purpose distributed-memory solver. In this context,
a one-dimensional distribution of the dense factorization of fronts makes sense
and has been adapted [3]. We are thus interested in analyzing and pushing the
limits of this one-dimensional distribution. As we will show, analytical mod-
els can be complex because of the discrete nature of the phenomena. We have
therefore also developed simulator that models parallel executions for standard
blocked variants (so-called left and right-looking [12]) of the dense factorization
of multifrontal fronts. We note that our objective here is to model the individual
dense multifrontal kernels and not an entire sparse multifrontal factorization,
although the findings will have an impact on the overall peformance of a sparse
multifrontal factorization. Although cyclic pipelined factorizations have been
modeled in the past [9], we are not aware of a clear illustration of the natural
and intuitive properties of left-looking and right-looking approaches in a context
comparable to ours, with acyclic factorizations, and where the process in charge
of factorizing rows of the matrix does it either in an LL or RL way whereas other
processes always perform their updates as soon as possible in a RL manner. For
ScaLAPACK which relies on a 2D block cyclic distribution, right-looking is pre-
ferred over left-looking [8]; however, with our 1D technique, our conclusion is
different, as will be illustrated in this paper.

The paper is organized as follows. In Sect. 2, we first study the theoretical
behaviour of left-looking and right-looking variants for both one and two levels
blocked algorithms. In order to better reveal and illustrate some of the intrinsic
properties of those algorithms, we first consider a network with infinite bandwith.
Communication models are then studied in more detail in Sect. 3 where we also
analyse buffer memory requirements, cost of asynchronous one-to-many commu-
nications and impact on the blocked variants. This analysis has been used to
modify the general purpose distributed-memory solver MUMPS [3] and to illus-
trate in Sect. 4 the benefits of the proposed approach in a distributed-memory
environment.



2 Modeling Left-Looking and Right-Looking

Computations

We consider a distributed-memory dense partial factorization relying on a dyna-
mic asynchronous pipelined algorithm. A one-dimensional (1D) data distribution
is used to allow for efficient pivot searches without synchronization between
processes. In order to partially factorize the first npiv rows/columns of a front
of order nfront using nproc MPI processes, one process designated as the master
will handle the factorization of the npiv rows and the nproc-1 other processes
(called workers) will manage the update of the so called CB rows of size ncb =
nfront−npiv (see Fig. 1). The master uses a blocked LU algorithm with threshold
partial pivoting: pivots are checked against the magnitude of the row but pivots
can only be chosen within the first npiv ×npiv block. After factorizing a panel of
size npan, the master sends it to the workers in a non-blocking way, along with
pivoting information. The master can immediately update its remaining non-
factored rows (right-looking approach) or postpone this to when the next panel
will start (left-looking approach). In parallel, the workers update all their rows at
each panel reception. Thus, the behaviour of the workers always follows a right-
looking scheme. The factorization operations rely on BLAS1 and BLAS2 routines
inside panels, whereas update operations (both on master and workers) rely on
BLAS3 routines, where TRSM is used to update columns of newly eliminated
pivots and GEMM is used to update the remaining columns. For the sake of
clarity, we consider that CB rows are uniformly distributed over the workers.

Fig. 1. Partial factorization of a front of order nfront, with npiv variables to eliminate
by panels of npan rows, and ncb = nfront − npiv rows to be updated.

We have first modeled the factorizations analytically. Figure 2 shows the con-
text and main notations. We have used the MAPLE software to help in this task,
due to the complexity of the equations arising when solving problems such as
finding optimal parameters of the factorizations.



Equation 1 represents the number of floating-point operations necessary for
the factorization of a panel of k rows and k + n columns.

Wf(k, n) →

(

2

3

)

k3 +

(

n −

1

2

)

k2
−

(

n +
1

6

)

k (1)

This is the result of the sum of the floating-point operations of the factoriza-
tion of each row:

Wf(k, n) →

0
∑

i=k−1

i + 2 ∗ i ∗ (i + n) (2)

Fig. 2. Illustration of the factorization of a panel of size k × (k +n) on the master and
the corresponding update on a worker. The light and dark gray areas represent the
pieces of the front on a worker on which a TRSM and GEMM are applied respectively.

Equation. 3 represents the number of floating-point operations necessary for
the update of a block (factorization of the L factors and update of the contribu-
tion part) of m rows and k + n columns by a panel of k rows and k + n columns
(we thus assume a right-looking algorithm).

Wu(m,n, k) → WTRSM (m, k) + WGEMM (m,n, k) (3)

with
WTRSM (m, k) → mk2 (4)

and
WGEMM (m,n, k) → 2mnk (5)

– Given a GFlops/s rate β for update operations (TRSM and GEMM), MUi,
the time of update related to the ith panel by the master is given by:

MUi = β × Wu (npiv − min (npiv , i ∗ npan) ,npiv + ncb− ,

min (npiv , i ∗ npan) min (npan,npiv − (i − 1)npan)) (6)



– SUi, the time of update related to the ith panel by a worker is given by:

SUi = β × Wu

(

ncb

nslave
,npiv + ncb − min (npiv , i ∗ npan) ,

min (npan,npiv − (i − 1)npan)
)

(7)

– Given a GFlops rate α for the panel factorization (including some BLAS2
operations), MFi+1, the time of factorization of the (i + 1)th panel (if it
exists) by the master is given by:

MFi+1 = α × Wf

(

min

(

npan,npiv − npan min

(

i,floor

(

npiv

npan

)))

,

npiv + ncb − (i + 1) ∗ npan
)

(8)

The total factorization time of a RL factorization is then given by Eq. 9:

TRight = MF1 +

ceil( npiv
npan )

∑

i=1

max (SUi,MUi + MFi+1) (9)

An algorithm where the master uses an LL factorization can be modeled in
a similar way. Furthermore, communication costs can also be taken into account
in Formula 9 in a simple manner. At the price of complicated formulas it is
then possible with the help of Maple to build analytical formulas to express
some properties (efficiency, speed-up, . . . ). However, we have preferred to con-
sider the implementation of a simpler Python simulator for distributed-memory
factorizations. Our simulator is naturally able to take into account varying com-
munication and computation models and to produce Gannt-charts of the fac-
torization. In order to illustrate some intrinsic properties of the algorithms that
do not depend on the network bandwidth, we consider, to start with, that com-
munications take place on a network with infinite bandwidth γ and that com-
putations take place at a constant GFlops rate (α = β). Because the messages
sent are always reasonably large, we consider that the network latency is always
negligible.

Right-Looking and Left-Looking Algorithms. In order to better charac-
terize the main properties of our algorithms, we consider here a situation where
the number of floating-point operations (flops) on the master is equal to that
of each worker. Figure 3 represents the Gantt charts for nfront = 10000 and
nproc = 8 (in this case npiv = 2155 to equilibrate flops) using both right-looking
(RL) and left-looking (LL) blocked factorizations on the master, while workers
perform their updates at each received panel, in a right-looking way. In each
subfigure, the Gantt chart on the top represents the activity of the master and
the bottom one that of a single worker. Because all workers theoretically behave
the same way, only one worker is represented in the Gantt chart. Figure 3(a)



Fig. 3. Gantt chart of the RL and LL algorithms. Factorization in green, updates in
blue and idle times in red (Color figure online).

clearly illustrates the weakness of the RL approach. Given that npiv balances
the total amount of work (flops) between master and workers, one would expect
all processes to finish at the same time. However, the workers finish much later
because they have idle phases that sum up to the gap between master and
workers completion times. When computing the first panels, the master process
performs more update operations than the workers, which makes them become
idle. The amount of update operations relative to each panel decreases faster on
the master process than on the workers, and idle times decrease. When panels
get smaller, the master process performs less operations than the workers and
sends panels to the workers quicker than the workers manage to perform the
corresponding updates; the workers then work continuously, desperately trying
to catch up with their delay. As the consumption of factored panels is critical on
the workers, the master should produce panels as soon as possible, delaying its
own updates as much as possible. A solution consists in applying on the master
a left-looking algorithm instead, resulting in the perfect Gantt chart of Fig. 3(b).
In the following subsections, we compare the behavior of both variants.

Load Balance and Scalability. Although the ratio between npiv and nfront
is mainly defined by the sparsity pattern of the matrix to be factored, we will
show at the end of this section that we have some leeway to modify this ratio;
in Fig. 4(a), we study the influence of npiv for a fixed nfront. We distinguish
three parts, depending on npiv. In the first part, for npiv under a certain value
npiv0 (npiv0 ≈ 5000), LL and RL algorithms behave exactly the same: workers
are the bottleneck because they have much more work than the master. For



npiv > npiv0, LL becomes better than RL: npiv0 is the value above which the
time to apply the update (RL) of the first panel and factorize the second one on
the master becomes bigger than time to apply the update associated to the first
panel on the worker. Both variants reach their peak speed-up but for different
values of npiv. Then, for large values of npiv, the master has much more work
to do than the workers and becomes the bottleneck, leading to an asymptotic
speed-up of one.

Fig. 4. Influence of npiv on LL and RL algorithms with 2 (left) and 4 (right) processes:
speed-ups with respect to the serial version (nfront = 10000).

When nproc is larger — Fig. 4(b), the maximum speed-ups of RL and LL
tend to get closer. LL reaches its maximum speed-up when all processes (master
and worker) get the same amount of computations Flops equilibrium (eqFlops),
so that neither the master nor the workers are bottlenecks to each other. On
the other hand, RL reaches its maximum speed-up when all processes (master
and worker) are roughly assigned the same number of rows Rows equilibrium
(eqRows). This latter approximation relies on the fact that this keeps workers
always busy, leading to a speed-up at least equal to nproc − 1.

The previous theoretical model showed interesting results. However, in order
to benefit from them, we must first ensure that some fundamental hypotheses
hold true in practice. We show here the observed discrepancies and the algo-
rithms and techniques we applied to fix or reduce them.

Generalization to Multiple Levels of Panels and to Arbitrary Front

Shapes. The previous models showed that front factorizations are efficient when
the ratio npiv

nfront
respects eqRows and eqFlops for RL and LL, respectively. In order

to improve locality and BLAS3 effects on the master, recursive algorithms can be
used [20]. However, at the first level of recursion, the update of the second block
with the first one would take a significant amount of time, possibly making the
workers idle for a huge period. The adopted solution consists in using multiple



levels of blocking (in our case, two levels), which means computing an external
panel using internal ones. Because the GFlops rate on the master may still be
slightly lower than on the workers, corresponding to a smaller value of α than β

in the models, one must slightly modify the eqFlops ideal npiv
nfront

ratio (for LL)

in order to obtain flopsmaster

GFlops rate
master

= flopsworker

GFlops rate
worker

.

Another issue is that in practice, the multifrontal method results in frontal
matrices that often have an npiv

nfront
ratio larger than the ideal one, especially

for large nproc. Fortunately, assembly trees are not rigid entities and can be
reshaped, for example using two standard operations known as amalgamation
and splitting. Amalgamation consists in merging two related fronts into a single
one (a child and its parent, usually). It has the advantage of generating larger
fronts, which increases factorizations efficiency, sometimes at the cost of extra
fill-ins, inducing more computations and memory requirements. Contrarily, split-
ting consists in cutting a front into a so called split chain of fronts such that in
the chain, the Schur complement of a child is considered as a new, parent, front.
We note that remapping may have to be done between two successive fronts in a
chain, and that, although we consider nproc constant in our models and exper-
iments, dynamic scheduling strategies may imply variations of nproc between
two successive pipelined factorizations. Lost processes can be assigned to other
fronts in other subtrees; vice versa, new processes can be assigned to parent
fronts in the chain. In both cases, the shape of the fronts and the length of the
chain should be modified accordingly, with the aim to obtain a correct balance
of the work between master and workers in all intermediate fronts (except, pos-
sibly, for the last one). Simple models of such chains were discussed in [16] and
have been revisited in [17]. In Fig. 5, we report the simulated speed-ups with
varying npiv when this generalized approach is applied, with eqRows for RL and
eqFlops for LL. For both RL and LL, the speed-ups are much less sensitive to

Fig. 5. Simulated generalized 1D fac-
torization (nfront =10000,nproc =8)
with varying npiv. LL (resp. RL) uses
eqFlops (resp. eqRows).

Fig. 6. Amount of data sent but not
ready to be received using RL an LL
algorithms with eqFlops (nproc =8,
nfront =10000, npiv =2155).



npiv (compared to Fig. 4) because each intermediate 1D factorization is now
well-balanced. RL speed-ups are not as good as LL ones because of idle times
on the master. When targeting an entire sparse matrix factorization rather than
focusing on a single front or a chain of fronts, new kinds of load balancing issues
arise, which are handled in our context study by a dynamic and asynchronous
scheduling approach, which adapts to the load of the processes.

3 Modeling Communications

Memory for Communication. Assuming that sends are performed as soon
as possible, Fig. 6 represents the evolution of the memory utilization in the send
buffer for LL and RL factorizations, both with eqFlops. This send buffer is the
place in memory where panels computed by the master are temporarily stored
(contiguously) and sent using non-blocking primitives; when the workers start
receiving, send buffer can often be freed. This allows for an overlap of computa-
tions and communications, and allows the main process to manage its memory
independently of the advancement of communications. The memory utilization
in the send buffer then represents the volume of data that has been sent and that
is not received yet. Its size needs to be controlled and limited: a full send buffer
implies in practice that the sender will wait for receptions to occur before being
able to perform a new send. Most of the time, the buffer in the RL variant only
contains one panel, immediately consumed by the workers; When master com-
putations shrink (for the last panels), the master rapidly produces many panels
that cannot be consumed immediately. In contrast, the LL variant always has
enough panels ready to be sent. This is because RL with eqFlops is not able
to correctly feed the workers, whereas the LL does. Second, the peak of buffer
memory used for RL is 36 MB while it is 41 MB for LL. The scheduling advan-
tage of LL thus comes at the price of a higher buffer memory usage. However,
this additional memory becomes significant in comparison to the total memory
used by the master process for the factorization (nfront ∗ npiv ∗ sizeof(double)
= 172 Mb). Send buffers may have a given limited size in practice, smaller than
the peaks from Fig. 6 (36 MB and 41 MB for RL and LL variants, respectively).
If only a few panels can fit in buffer memory, the master must wait when the
send buffer is full, leading to some performance loss. Instead, we prefer to copy
new panels to the send buffer only when space is available in the buffer, indepen-
dently of the fact that many more panels may have been computed. This study
also shows that, in order to control buffer memory, messages should not be sent
as soon as possible (but should still be sent early enough so that receivers do
not have to wait).

Limited Bandwidth and Asynchronous Collective Communications.

We observed experimental results to be very similar to those of the model, as long
as the ratio between computations and communications remains large enough
(nfront relatively large compared to nproc). Strong scaling, i.e., increasing nproc
for a given nfront, globally increases the amount of communications while keeping



the amount of computations identical. The master process sends a copy of each
panel to more workers, decreasing the bandwidth dedicated to the transmission
of a panel to each worker: the maximal master bandwidth is divided by nworkers
in this one-to-many communication pattern, making the communication of the
panels from master to workers a possible bottleneck.

Many efficient broadcast implementations exist for MPI [21], and asynchro-
nous collective communications are part of the MPI-3 standard. However the
semantic of these operations requires that all the processes involved in the col-
lective operation call the same function (MPI IBCAST). This is constraining for
our asynchronous approach which is such that any process, at any time, receives
and treats any kind of message and task: we want to keep a generic approach
where processes do not know in advance if the next message to receive in the main
reception buffer is a factored panel or some other message. Furthermore, we need
an asynchronous, pipelined broadcast algorithm which means that a binomial
broadcast tree would not be appropriate since once a process has received a panel
and forwarded it, its bandwidth will be needed to process next panel. For these
reasons, we have designed our own asynchronous pipelined broadcast algorithm
based on MPI ISEND calls using a classical w-ary broadcast tree, as illustrated
in Fig. 7(b). The Gantt charts of Fig. 7 show the impact of the communica-
tion patterns with limited bandwidth per process, using our Python simulator.
With the baseline communication algorithm, the workers are most often idle,
spending their time waiting for the communications to finish, before doing the
corresponding computations, whereas the tree-based (here using a binary tree)
has a perfect behaviour: the Gantt chart of the worker is only slightly translated

Fig. 7. Influence of the IBcast communication pattern with a limited bandwidth per
proc (γ=1.2 Gb/s, α=10 GFlops/s) on LL algorithm with nfront = 10000, npan = 32,
nproc = 32 and npiv chosen to balance work (idle times in red) (Color figure online).



in time (due to the time it takes to receive the first panel) and the remaining
communications overlap well with computations. When further increasing nproc
or with more cores per process, we did not always observe such a perfect overlap
of communications and computations, but the tree-based algorithm always led

to an overall transmission time for each panel of nfront×npan×w×log
w

(nproc)
γ

, much

smaller than that of the baseline algorithm nfront×npan×(nproc−1)
γ

. An IBcast-like
scheme is thus of great importance when the number of processes grows.

4 Preliminary Experimental Results

In order to study the left-looking and right-looking variants of the 1D pipelined
factorization algorithm from Sect. 2 on arbitrary fronts, we generalized the asyn-
chronous factorization algorithms available in the MUMPS solver [3] in order to
implement left-looking and right-looking variants with several levels of blocking.
We use a Sandy Bridge-based cluster with 4×8 core nodes (ada, from IDRIS) as
well as a Xeon-based SGI Altix ICE 8200 with 2 × 4 core nodes (hyperion, from
CALMIP) Intel BLAS (MKL) and MPI libraries are used and, because asyn-
chronous communications only progressed inside MPI calls, we use a progress
thread [14] to force MPI TEST calls every milisecond.

Figures 8(a) and 8(b) show the Gantt-charts of executions of a dense partial
right-looking LU factorization on a front of size nfront = 10000 with nproc =
8 MPI processes, with a number of pivots to be eliminated following eqFlops
and eqRows, respectively. We can see that Fig. 8(a) is very similar to what our
model predicted (See Fig. 3). Moreover, we can see on Fig. 8(b) that the fact of
respecting eqRows in the RL variant makes the workers wait much less than in
the eqFlops case, which confirms the observations made thanks to our models.

(a) eqFlops (b) eqRows

Fig. 8. Gannt-chart of execution of a dense partial right-looking LU factorization on
a front of size nfront = 10000 with nproc = 8 MPI processes, with a number of pivots
to be eliminated either respecting eqFlops (on the left) or eqRows (on the right), on a
shared-memory node (to validate the communication-less model).

Other experiments with real-life Gantt charts confirmed that eqRows is more
adapted to RL and eqFlops is more adapted to LL. However, and as mentioned



before, due to the fact that computations on the master (that partly uses BLAS2)
are slower than on the workers, eqFlops (in case of LL) has to be slightly modified
and was replaced by eqTime, such that flopsmaster

GFlopsratemaster

= flopsworker

GFlopsrateworker

.
Table 1 confirms the interest of a tree-based pipelined IBcast algorithm. It

also illustrates the interest of using two levels of panels. In all cases, we used a
RL algorithm for internal panels, that was observed to be more efficient than
LL on small blocks. Also, and as predicted in the models, eqFlops (and eqTime)
led to bad results for RL; this is why we use eqRows in that table. Remark that,
although eqTime would have been better suited to LL, we used eqRows even for
LL in order to be able to compare the times of RL and LL on a front with the
same characteristics.

Table 1. Influence of IBcast and of double-blocking on the factorization time (seconds)
of a front, for RL and LL variants on the most external panels; “-” in column npan2

indicates that a single level of panels is used.

Machine nfront nproc (ncores) IBcast tree npan1 npan2 RL LL

ada 100000 64 (512) No IBcast 32 - 35.7 29.8

ada 100000 64 (512) depth 2 32 - 22.8 26.2

ada 100000 64 (512) binary 32 - 21.8 22.0

ada 100000 64 (512) binary 64 - 21.2 21.1

ada 100000 64 (512) binary 32 64 20.5 19.8

hyperion 64000 8 (64) binary 32 - 203 204

hyperion 64000 8 (64) binary 128 - 117 110

hyperion 64000 8 (64) binary 64 128 97 93

Table 2 shows the impact of the asynchronous broadcast algorithm on the
performance for a generalized frontal matrix with a binary IBcast tree when two
levels of panels are used. It is interesting to note that IBcast gains are larger when
more cores are used per process, showing that communications become more
critical in that case. When considering the factorization of an entire sparse matrix
in a limited-memory environment [16], more workers have to be mapped on each
front of the assembly tree. On 128 MPI processes of hyperion, on the factorization
of an entire sparse matrix arising from a 3D finite-difference Laplacian problem

Table 2. Influence of IBcast on hyperion with nfront =npiv =64000. Factorization
times in seconds.

Cores Cores/ MPI process Without With

64 1 1702 1341

512 8 1380 404



on a 1283 grid, we observed a time reduction from 805 to 505 s thanks to IBcast
(see [17] for further results).

5 Conclusion

We modeled a dense asynchronous kernel for multifrontal factorizations, target-
ing large matrices and large numbers of cores. We studied both communication
and computation aspects. The approach allows for standard threshold numer-
ical pivoting, and can be integrated in a fully asynchronous environment with
dynamic, distributed schedulers. Such an environment is precisely the one of the
MUMPS solver [3], on which this work was shown to have a strong performance
impact.

In the future, we plan to further optimize multithreaded kernels (inside each
MPI process), and optimize the communication volume when remapping needs to
be done between two successive pipelined factorizations. Topology-aware broad-
cast algorithms [18] are also a promising approach to further improve the cost
of broadcasting factorized panels. Moreover, comparisons between models and
experiments of dense factorizations will allow us to improve the performance
results on full sparse multifrontal factorizations. Comparison with techniques
used in HPL1 would also be interesting.

Acknowledgement. This work was granted access to the HPC resources of CALMIP
under the allocation 2013-0989 and GENCI/IDRIS resources under allocation
x2013065063.

References

1. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H.,
Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: the
PLASMA and MAGMA projects. J. Phys. Conf. Ser. 180(1), 012037 (2009)

2. Amestoy, P.R., Buttari, A., Duff, I.S., Guermouche, A., L’Excellent, J.-Y., Uçar, B.:
The multifrontal method. In: Padua, D. (ed.) Encyclopedia of Parallel Computing,
pp. 1209–1216. Springer, Heidelberg (2011)

3. Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl.
23(1), 15–41 (2001)

4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
Comput.: Pract. Experience 23(2), 187–198 (2011). Special Issue: Euro-Par 2009

5. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, A., Herault, T.,
Kurzak, J., Langou, J., Lemarinier, P., Ltaief, H., Luszczek, P., Yarkhan, A.,
Dongarra, J.J.: distibuted dense numerical linear algebra algorithms on massively
parallel architectures: DPLASMA. In: Proceedings of the 25th IEEE International
Symposium on Parallel & Distributed Processing Workshops and Ph.D. Forum
(IPDPSW’11). PDSEC 2011, pp. 1432–1441. Anchorage, USA (2011)

1 http://www.netlib.org/hpl/.



6. Bosilca,G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.:
DAGuE: A generic distributed DAG engine for high performance computing. In:
16th International Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS’11) (2011)

7. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled lin-
ear algebra algorithms for multicore architectures. Parallel Comput. 35(1), 38–53
(2009)

8. Choi, J., Dongarra, J.J., Ostrouchov, L.S., Petitet, A.P., Walker, D.W., Whaley,
R.C.: Design and implementation of the ScaLAPACK LU, QR, and Cholesky fac-
torization routines. Sci. Program. 5(3), 173–184 (1996)

9. Desprez, F., Dongarra, J.J., Tourancheau, B.: Performance complexity of LU fac-
torization with efficient pipelining and overlap on a multiprocessor. LAPACK work-
ing note 67, Computer Science Department, University of Tennessee, Knoxville,
Tennessee (1994)

10. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford
University Press, London (1986)

11. Duff, I.S., Reid, J.K.: The multifrontal solution of unsymmetric sets of linear sys-
tems. SIAM J. Sci. Stat. Comput. 5, 633–641 (1984)

12. Golub, G.H., Van Loan, C.F.: Matrix Computations, 2nd edn. Johns Hopkins
Press, Baltimore (1989)

13. Grigori, L., Demmel, J., Xiang, H.: CALU: a communication optimal LU factor-
ization algorithm. SIAM J. Matrix Anal. Appl. 32(4), 1317–1350 (2011)

14. Hoefler, T., Lumsdaine, A.: Message progression in parallel computing - to thread
or not to thread? In: IEEE International Conference on Cluster Computing,
pp. 213–222 (2008)

15. Liu, J.W.H.: The multifrontal method for sparse matrix solution: theory and prac-
tice. SIAM Rev. 34, 82–109 (1992)

16. Rouet, F.-H.: Memory and performance issues in parallel multifrontal factoriza-
tions and triangular solutions with sparse right-hand sides. Ph.D. thesis, Institut
National Polytechnique de Toulouse, October 2012

17. Sid-Lakhdar, W.M.: Scaling multifrontal methods for the solution of large sparse
linear systems on hybrid shared-distributed memory architectures. Ph.D. disserta-
tion, ENS Lyon (2014, In preparation)

18. Solomonik, E., Bhatele, A., Demmel, J.: Improving communication performance
in dense linear algebra via topology aware collectives. In: Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC 2011, pp. 77:1–77:11. ACM, New York (2011)

19. Solomonik, E., Demmel, J.: Communication-optimal parallel 2.5D matrix multi-
plication and LU factorization algorithms. In: Jeannot, E., Namyst, R., Roman, J.
(eds.) Euro-Par 2011, Part II. LNCS, vol. 6853, pp. 90–109. Springer, Heidelberg
(2011)

20. Toledo, S.: Locality of reference in lu decomposition with partial pivoting. SIAM
J. Matrix Anal. Appl. 18(4), 1065–1081 (1997)

21. Wadsworht, D.M., Chen, Z.: Performance of MPI broadcast algorithms. In: Pro-
ceedings of the 22nd International Parallel and Distributed Processing Symposium
(IPDPS 2008), pp. 1–7 (2008)




