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Chapter 1

Introduction

The worldwide mix of primary fuels used to generate electricity has changed over the past

several decades. Generation from nuclear power increased rapidly from the 1970s through

the 1980s, and natural gas-fired generation increased considerably after the 1980s. The

use of oil for generation declined after the late 1970s, when sharp increases in oil prices

encouraged power generators to substitute other energy sources for oil.

At the beginning in the early 2000s, concerns about the environmental consequences

of greenhouse gas emissions intensified interest in the development of renewable energy

sources that emits significantly less CO2 than either oil or coal per kWh generated. In the

international energy outlook 2016 (IEO2016) [1], presented by the U.S. energy information

administration (EIA), the long-term global prospects continue to improve the power ge-

neration from natural gas, nuclear, and renewable energies are the fastest-growing source

of energy for electricity generation.

1.1 Renewable Energy Source Development

Renewable energies have experienced one of the largest growth areas in percentage of

over 30% per year. The goal of the European community (the EU) is to reach 20% of

energy consumption from renewables in 2020. The US has adopted similar goals under the

pressure of public opinion concerned by environmental problems. However, the policies

of Asia and Pacific countries, with 35% of world energy share, will probably be more

important in the future energy scenario.

Since the end of 2004, worldwide renewable energy capacity grew at rates of 10 -

60% annually for many technologies. Wind energy has rapidly reached 4% of worldwide

electricity production and 11.4% in the EU [2, 3]. However, grid-connected photovoltaics

(PV) increased at the fastest rate among of all renewable technologies, with a 60% annual

average growth rate. According to the 2011 projection by the international energy agency
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1. Introduction

(IEA) [4], solar power generators may produce most of the world’s electricity within 50

years, reducing the emissions of greenhouse gases that harm the environment.

Cedric Philibert, senior analyst in the renewable energy division at the IEA said: ”Pho-

tovoltaic and solar-thermal plants may meet most of the world’s demand for electricity by

2060 – and half of all energy needs – with wind, hydro power and biomass plants supplying

much of the remaining generation.

The year 2015 witnessed several developments in the renewable energy scenario, in-

cluding the lowest-ever prices for renewable power long-term contracts and an increase

in attention to energy storage. Furthermore, a climate agreement brought together the

global community in December at the United Nations Framework Convention on Climate

Change’s (UNFCCC) 21st Conference of the Parties (COP21) in Paris, where 195 countries

agreed to limit global warming to well below 2 degrees Celsius. A majority of countries

committed to scaling up renewable energy and energy efficiency.

Renewable technologies are now established around the world as mainstream sources

of energy. Consequently, new markets for both centralized and distributed renewable

energy are emerging in all regions, providing an estimated 19.2% of global final energy

consumption by the end of 2014, as shown in Fig. 1.1. Out of this total share, traditional

biomass, used primarily for cooking and heating in remote and rural areas of developing

countries, accounted for about 8.9%, and modern renewables (not including traditional

biomass) increased their share slightly over 2013 to approximately 10.3%. In 2014, hydro

power accounted for an estimated 3.9% of final energy consumption, other renewable

power sources comprised 1.4%, renewable heat energy accounted for approximately 4.2%

and transport bio-fuels provided about 0.8% [5].

Global investment also has been increased to a new record level and for the sixth

consecutive year, renewable energy sources outpaced fossil fuels for net investment in

electric power capacity additions.

Based on 2016 REN21 (Renewable Energy Policy Network for the 21st Century) report,

renewable electric power generation capacity saw its largest annual increase in 2015, with

an estimated 147 GW of renewable capacity added, where 77% is from wind and solar PV

together and 19% from hydroelectric reaching an estimated 1064 GW. Fig. 1.2 reports the

electricity production by the end of 2015, where the renewable energy sources represent an

estimated 23.7% of global electricity production and the hydroelectric sources are providing

about 16.6% [4].

Renewable energies achieved high penetration levels in several countries. For example:

wind power met 42% of electricity demand in Denmark, 23.2% in Portugal and 15.5% in

Uruguay, while the solar power accounted for 7.8% of electricity demand in Italy, 6.5% in

2



1.1. Renewable Energy Source Development

Greece and 6.4% in Germany.

The Italian electricity market is changed along the global electricity production trans-

formation. In Fig. 1.4 is reported the transformation of electricity production share in

Italy from 2005 to 2015, in which the renewable production share increased from the 14%

to the 29%.

The diffusion of renewable energy sources is due to technological improvements that

have reduced the production and installation costs. However, the economic competitive-

ness of renewable technologies still depends on regulatory framework and market design [7].

Figure 1.1: Estimated renewable energy share of global final energy consumption in 2014
[5].

Figure 1.2: Estimated renewable energy share of global electricity production at the end
of 2015 [5].
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1. Introduction

Figure 1.3: Renewable electric power global capacity in the top countries in 2015 [5].

1.2 Integration Challenge

Around the world, technical, economic and market transformation of the electric power

sector continued to accelerate in 2015, creating both challenges and opportunities. Re-

newable energy is increasingly displacing existing generation system and interfering with

traditional energy markets and business models. Several factors, as technological advances,

social changes and policy goals, are driving a transformation from centralized systems to

more-complex systems that comprise a growing number of decentralized generating units.

The factors which supported the integration of renewable energy are the technology and

efficiency improvements, the increasing use of smart grid technologies and the significant

Figure 1.4: Ten years evolution of the Italian electricity share of production [6].
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progress in hardware and software design. The key challenge is adapting the power grid to

integrate rising shares of renewable generation, developing more-flexible systems to balance

variable resources (on both the supply and demand sides), while minimizing the costs [8].

Many developed countries and some developing countries have begun to respond to the

challenge of grid integration, included various combinations of: increased flexibility on

the demand side and on the supply side (e.g., innovations in flexible fossil power plants;

energy storage, particularly pumped storage; active power controls at wind and solar

power plants); construction of new transmission networks; development of smarter grids;

interconnection and co-ordination with neighboring grids; advanced resource forecasting;

integrated heating and cooling systems; and innovative market designs [8,9]. Utility-scale

storage in the power sector, not including pumped storage and lead-acid batteries, in-

creased by a record 250 MW in 2015 (compared with an estimated 160 MW in 2014) [10].

An example of the integration issue is the innovative hybrid systems of the Longyangxia

station in China, where a 1280 MW of hydro power is linked to an 850 MW solar PV

plant [11].

Globally, renewable electric power production in 2015 continued to be dominated by

large generators (>4 MW) that are owned by utilities or large investors [12]. At the same

time, a number of distributed, small-scale generation has started to rise and developed

countries and regions, like Australia, Europe, Japan and North America, have witnessed

a significant growth in numbers of residential electricity customers that produce their own

electric power. Hence, the diffusion of renewable energy resources is continuously changing

the structure and operation of the medium and low voltage (MV and LV) distribution

networks, where these generators are connected. In particular the residential environments

have experienced one of the most relevant growth of distributed-generation power systems

[13–15]. Most of the low-power distributed energy resources (DER) units consist of power

electronic converters with limited number of sensors and communication capabilities [16],

increasing the complexity of the network management and operation for the distribution

system operator (DSO) [17].

In a growing number of regions and countries, the increasing distributed renewable

energies penetration requires changes to the grid system, regulations and market design.

The main goal to increase the flexibility of electricity and to facilitate the growth and inte-

gration of variable renewable energy is to develop innovative business models, regulations

and technical rules. To address such challenges in the EU, several initiatives are under

way to advance grid integration [18]. Furthermore, advancements in inverter technologies

are enabling solar and wind power to provide a range of crucial balancing services in order

to secure the stability of the electric power system.

5



1. Introduction

This complex scenario has influenced the latest grid code requirements for DER units

[19, 20]. In fact, European standards state the reference technical rules for the DER con-

nection in order to ensure the power quality and stability of distribution and transmission

electric systems. Standards state DER requirements for grid connection under normal and

transient conditions of the electric system. Furthermore, many standard bodies require

that distributed generators have to play an active role in the system stability by partici-

pating to the ancillary services of active and reactive power regulation.

1.3 Grid Integration - Power Electronic Converters

Power electronic converter technology is the link between energy sources (renewable en-

ergy generation, energy storage . . . ) and the electric power system enabling an efficient

and flexible interconnection. Hence, the power converters play a key role in the future

decentralized power system based on smart grid technologies, as in the traditional cen-

tralized power system the synchronous machines play a central role. Power generation

based on power electronics is changing the electric power system transient behavior: while

the electromagnetic field has a major role in the synchronous machine, the grid converter

is based mainly on semiconductor technology, signal processing and its connection filter.

The increase in the power that needs to be managed by the distributed generation sys-

tems leads to the use of more voltage levels, leading to more complex structures based on

a single-cell converter or a multi-cell converter and the use lower switching frequency to

manage a higher power level as well as to the availability of a more powerful computational

device [21].

In the design and control of the grid converter, challenges and opportunities are related

to the need of grid synchronization and integration. All DER units interfaced by inverters

deal with issues related to synchronization with the grid, control and stability at the

system level in order to detect and manage islanding conditions for PV power systems

and control under grid faults for wind turbine power systems.

1.4 Thesis Motivation and Objectives

The proliferation of distributed renewable energy resources, such as PV systems combined

with the new technical rules, has led to an increasing concern about the problem of un-

intentional islanding (also referred as undesired or uncontrolled) in the medium and low

voltage distribution electric networks. The islanding condition is defined as a portion of

the utility system containing both loads and DER units that remain energized while it is
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isolated from the main grid. Many studies and research activities address the intentional

islanding topic, which will be of growing importance in the future. These studies deal

with control strategies, protections improvements, etc. However, the intentional islanding

is still not diffused in the existing distribution network. Hence, this thesis is focused on

the actual islanding issues related to the DERs units connected to the electric distribution

networks. In existing distribution lines, islanding, even for very short time, is undesir-

able, as the voltage on the islanded portion can drift respect to the one of the main grid,

with a risk of damage in the electric equipment during the automatic grid reconnection.

Therefore, islanding detection methods are essential in the design of the inverter control

strategy, with the role of recognizing the islanding conditions and disconnecting the is-

landed DER unit.

The integration of distributed renewable energy resources in medium and low voltage

distribution electric network is the ultimate challenge that Italian legislation and standard

bodies are facing (similarly to many other developed countries). Therefore, the Italian reg-

ulatory authority for electricity gas and water AEEGSI (autorità per l’energia elettrica, il

gas e il sistema idrico) asked one of the major DSO, called e-distribuzione SpA to conduct

specific studies about unintentional islanding.Part of the research activity of this thesis has

been pursued in collaboration with e-distribuzione SpA. This study concerns the analysis

of distribution electric networks with large penetration of distributed renewable energy

resources based on power electronic converters, with respect to the new connection rules

required by standard bodies. Particular focus has been addressed to the possible inter-

action between DERs, protection systems and connection rules, in order to analyze the

causes and the influencing factors of unintentional islanding in MV and LV distribution

network. The unintentional islanding issue has interested many studies and publications

over the last decades [13, 16, 22–24]. However, the literature seems to be lacking of con-

sidering the lately introduced European standards and technical specifications for DERs.

This thesis describes the novel aspects of how requirements and ancillary services

influence the unintentional islanding operations and highlights new relevant factors, such

as the role of the loads characteristics, the influence of the frequency measure and the

inverter regulation speed. Therefore, the major scientific contributions of this thesis are:

� The effects of the regulating droop functions (P/f and Q/V ), required by recent

standards, on the unintentional islanding operations and anti-islanding protection,

while in literature DERs units are often considered as mere current source inverters

(CSIs) with constant power generation and unity power factor, as reported in several

publications [25–27];

7



1. Introduction

� Analysis of the DERs grid synchronization systems (phase locked loops) during is-

landing conditions of low power single-phase and three-phase current controlled volt-

age source inverters, where a specific single-phase phase locked loop (PLL) structure

increases the islanding risks [28];

� Temporary islanding analysis in presence of automatic re-closure procedures adopted

in several countries, which is described under several aspects in [29–31];

� Crucial role of the settling time of the power regulating droop functions, i.e. the

power regulation speed of a DER unit influence may affect the possibility of islanding

events even in presence of active anti-islanding techniques, as presented in [29,32,33];

� Analysis and experimental research of residential type loads (typical of the electric

distribution networks) for unintentional islanding studies instead of the paralleled

RLC resonant load introduced in literature studies, which is considered the worst case

scenario in terms of islanding detection, but do not represent the possible islanding

events in distribution networks, as presented in [34,35].

Moreover, these results enable the distribution system operators (DSOs) to predict

how the large diffusion of DERs would affect the unintentional islanding and they de-

scribe possible solutions and corrective actions for upcoming guidelines and international

standards.

In the following paragraph, the structure of this thesis is briefly summarized. The

second chapter describes the unintentional islanding events and presents an overview of

the actual islanding detection methods and test-bench conditions on which the majority of

the literature works is based on. Furthermore, the new requirements introduced by stan-

dard bodies are reported, describing the new rules for the connection of DERs units (i.e.

inverter capability and power regulating droop functions). In particular, the Italian case

is described, where the automatic maneuver procedures influence the temporary islanding

operations. The analysis of the loads typical of the electric distribution networks is pre-

sented in the third chapter, since the load characterization plays an important role on the

islanding phenomena. The introduction of different power dependences on voltage ampli-

tude and frequency presents new islanding behavior that was not considered in the actual

anti-islanding requirements and test-benches stated by international standards. Then, the

thesis describes the models and the tools, that allowed the islanding operation investiga-

tions and validations. The description of the power converter modeling is reported in the

fourth chapter, while the experimental setup and hardware in the loop configuration (HIL)

are proposed in the fifth chapter. The sixth chapter describes the unintentional islanding

non detection zone (NDZ), which reveals the particular conditions when the protection

8
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system may fail to detect the islanding operations. In chapter six, the novel influence

of the power regulating droop functions is also described. Moreover, the inverter speed

regulation plays an important role on the definition of the NDZ, introducing a new player

in the unintentional islanding operations not evaluated by anti-islanding requirements.

The role of the phase locked loop (PLL) grid synchronization system is investigated in the

seventh chapter. The description of the temporary unintentional islanding is presented

in chapter eight, where the automatic re-closure procedure is considered. These results

show the lack of integration of DERs in the grid automation procedures in case of unin-

tentional islanding. This chapter confirms the dangerousness of the islanding events and

the need of improvements on anti-islanding requirements. The ninth chapter introduces

the active anti-islanding technique Sandia frequency shift (SFS). In the literature, such

active methods have a negligible NDZ. However, here the SFS is presented in combination

with the power regulating droop functions and with different inverter regulation speed,

describing potentially dangerous effects of high regulation speed on the NDZ size. The

regulation speed influences the behavior of the active anti-islanding protection and it may

reduce its effectiveness. Then, in chapter ten the multiple inverter case is presented. Here,

the analysis of the power regulation speed is proposed in a more complex scenario, where

different percentage of power is regulated by different regulation speed. This concept was

not presented in the literature and here is described as a key player in the unintentional

islanding operations. Finally, chapter eleven draws the thesis conclusions highlighting the

lack of standards requirements and proposing corrective actions in order to prevent the

unintentional islanding.

9





Chapter 2

Unintentional Islanding

2.1 Introduction

The high penetration of distributed renewable resources (DERs) in the electric distribu-

tion network system, generally integrated by power electronic converters, is changing the

electric power system structure and behavior. This complex scenario, shown in Fig. 2.1,

is regulated by different technical requirements of the DER units depending on their size

and level of integration in the power system. Thus, monitoring of the grid conditions is

always a crucial feature for the DERs units at any level, where the detection of a possible

unintentional (i.e. uncontrolled) islanding condition is always important.

For DERs units, such as residential PV systems, the distribution system operator

(DSO) defines an anti-islanding requirement if the main electric grid should cease to ener-

gize the down stream distribution lines. Furthermore, DERs are regulated by requirements

that contribute to the stability of the grid, such as low-voltage ride-through capability,

which avoids the disconnection from the grid during faults.However, the power system

is evolving and a future scenario may consider the presence of smart micro-grid with the

capability of automatically managing the stand-alone operation and the grid reconnection.

Furthermore, since the new grid codes are facing a continuous growth of the integrated low

power DERs units into the distribution system, the recent requirements have introduced

also local power control strategies, called droop functions.Hence, the typical low power

DER anti-islanding requirements may not be effective and the detection of islanding can

be considered as an important feature.

Unintentional islanding operations occur when a section of the distribution network

system is isolated from the main grid due to a certain fault as an example, but local DERs

continue to supply its loads without any protection intervention. The electrical model

shown in Fig. 2.2 may be considered in order to simplify the definition of unintentional
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Figure 2.1: Electric diagram of a LV network connected to a MV distribution grid, charac-
terized by the presence of local generation, for example: photovoltaic (PV) energy sources.

islanding operation. This model consists of a three-phase PV inverter paralleled with a

local load and both are connected to the main grid through a utility breaker.

According to the power flows defined in Fig. 2.2, consider a case in which PL = PPV

and QL = QPV , where PL is the load active power, PPV is the PV inverter active power,

QL is the load reactive power and QPV is the PV inverter reactive power. Under this

condition, there is no current flowing through the utility breaker and ∆P = ∆Q = 0,

where ∆P and ∆Q are defined in 2.2. Hence, if the utility breaker is opened, the PV DER

continues to supply the parallel load without any variations in the system parameters,

such as voltage amplitude and frequency. In this case, it is not possible to prevent the

islanding operation and the isolated system continues to operate.

Unintentional islanding operations are undesirable for several reasons, where the most

important reason is that the utility personnel may not be aware that a portion of the

utility system is still energized by equipment at the customer’s side. Thus, they are

exposed to an electric shock hazard. Another important reason is that if the PV system

drifts slightly out of phase with the utility voltage source during islanding, large surge

12
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Load

PV
˜
G

=

˜

Grid

Inverter

PPV + jQPV
∆P + j∆Q

PL + jQL

Utility
breaker

(recloser)

PCC

Figure 2.2: Unintentional islanding operation in a basic LV system, which comprises PV
unit, local load and main grid that provides the power mismatch of ∆P + j∆Q between
the PV generated power (PPV + jQPV ) and the load power (PL + jQL).

currents can flow upon reconnection, damaging the PV system, customer loads, or other

utility equipment. In particular, in some countries, like Italy, the utility operator has

implemented an automatic reclosing procedure that allows short time disconnections in

case of temporary faults along the distribution networks, minimizing the electric outages.

Hence, islanding events, even for very short time, risk to damage the electric equipments

during the automatic grid reconnection [31,34].

Due to the severity of these risks, utilities and standard bodies require from the differ-

ent DERs units to be equipped with specific islanding detection and prevention schemes

in order to disconnect the PV system, when an islanding is detected. This aspect is reg-

ulated by different country-level standards, which require different control strategies and

protection systems.

So far, different anti-islanding techniques have been proposed and implemented in the

power converters based applications. These techniques have been reviewed in [21, 36, 37]

and they are usually classified into active and passive inverter-resident and utility level

or communication based techniques. Each of these techniques has different performance

in terms of reliability (i.e. detecting all the existing islanding conditions), selectivity (i.e.

distinguishing between islanding and grid disturbances) and minimum perturbation ca-

pabilities [21]. However, when there is a large number of DERs, the behavior of such

provisions, being different from each manufacturer and not specified by standards, is un-

predictable and in some cases these techniques can fail to detect the islanding operation

mode and the disconnection of the inverter may not happen [24].

Fig. 2.3 and 2.4 present the unintentional islanding even that took place during May

2009 in Iberdola distribution network in Spain, where the frequency and the voltage am-

plitude are reported respectively.

In this case, Iberdrola electric distribution network was disconnected from the main

grid due to maintenance work, but the system continued an uncontrolled operation with-

13



2. Unintentional Islanding

Figure 2.3: Measured minimum, maximum, and average frequency values during the un-
intentional islanding event in the Iberdrola distribution network in Spain [38].

Figure 2.4: Measured minimum, maximum, and average line-to-ground voltage values
measured during the unintentional islanding event in the Iberdrola distribution network
in Spain [38].

out the protections intervention. During the unintentional islanding event, the 2.5 MW

PV plants connected to the network continued to supply the local loads for 13 minutes.

The achieved generation-load balance did not change the values of voltage frequency and

amplitude, which were inside the protections thresholds during the islanding operation.

Therefore, technical personnel had to manually disconnect the system and interrupt the

unintentional islanding operation before reconnecting the islanded distribution network to

the main grid.
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L CREUT

S1S2

S3

Simulated
main grid

+

−

Figure 2.5: Test-setup for the anti-islanding requirement of DER system in IEEE 1547.1
[39].

2.2 Anti-Islanding Requirements

The anti-islanding requirements are considered as one of the most challenging technical

features in the grid integration of the different DERs units. In order to avoid unintentional

islanding events with possible sever consequences, safety anti-islanding (AI) requirements

have been issued in several international standards. Recently, they made a great effort

to revise the technical requirements due to the challenge of DERs integration with the

existing legislation and technical rules of the electric distribution system. Adopted AI

requirements all over the world, differs from a country to another, where each one is using

its own local regulations. In the following are reported the international standards IEEE

1547 [39] and IEC 62116 [40], which describe the AI test-bench requirements. Furthermore,

the German standard VDE 0126-1-1 is presented as an example of national standard.

2.2.1 Anti-Islanding Requirements According to IEEE Std 1547

According to IEEE Std 1574, the AI requirements impose that, after an unintentional

islanding, the DER shall detect the islanding condition and disconnect within 2 seconds

[39]. The test-setup, shown in Fig. 2.5, represents the used DER system according to [39],

where adjustable RLC load is connected in parallel with the equipment under test (EUT)

and the grid.

The resonant LC circuit should be adjusted to resonate at the rated grid frequency f

and to have a quality factor Qf = 1, because it represents the most difficult condition for
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2. Unintentional Islanding

islanding detection. Thus, the values of the local RLC load are calculated by:


R =

V 2

P

L =
V 2

2πfPQf

C =
PQf

2πfV 2
,

(2.1)

where P is the DER active power. The R, L and C parameters values are selected in order

to balance the active power of the DER system under test. In this balanced condition, S3

should be opened and the time before disconnection should be less than 2 seconds.

2.2.2 Anti-Islanding Requirements According to IEC 62116

The IEC 62116 presents AI requirements similar to IEEE 1547. Moreover, the test-setup

is the same as the one used in the IEEE 1547.1 shown in Fig. 2.5 and a power balance

is required before the islanding detection test. The requirements for passing the test and

confirming island detection includes different steps, where the inverter is tested at three

power levels (A: 100–105 %, B: 50–66 % and C: 25–33 % of its rated power) [40]. The

maximum trip time is the same as in IEEE 1547.1 Std, which is 2 seconds.

2.2.3 Anti-Islanding Requirements According to VDE 0126-1-1

The VDE 0126-1-1 standard allows the compliance for AI requirements using one of the

following methods:

1. impedance measurement, whose test-setup is depicted in Fig. 2.6. In this method,

the procedure is based on local balancing of the active and reactive power using

the variable RLC circuit and the switch S is opened in order to increase the grid

impedance by 1 Ω. The disconnection required time for the inverter should be

within 5 seconds. The test should be repeated for different values of the simulated

grid impedance (R2, L2).

2. disconnection detection with RLC resonant load, whose test-setup is the same as

for IEEE 1547.1, shown in Fig. 2.5, in which the RLC load is in balanced power

condition with the inverter, but with the difference that the RLC resonant circuit

parameters should be calculated for a Qf > 2 as presented in (2.1). In islanding

conditions, the inverter should disconnect within 5 seconds as before, considering for

the following power levels: 25 %, 50 % and 100 %.
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Figure 2.6: Test setup for the anti-islanding requirement of DER system in VDE 0126-1-1.

2.3 Islanding Detection Methods

Developing an effective islanding detection method has been seen as a challenging task,

resulting in a large number of research works and publications. Two main approaches have

been adopted for islanding detection: the first one is called grid-resident detection, which

is based on the communication between the grid and DER inverters. A transmitter is in-

stalled near the line protection switch and a receiver is positioned at the point of common

coupling (PCC) in the proximity of the inverter [41]. The communication signal is based

on power line communication PLC technology and, during normal operating conditions, it

is sent to the inverter receiver. In case of grid disconnection, the communication signal is

absent and the islanding is detected. The same goal can be achieved with a dedicated line

of communication.The grid-resident methods have not been commercialized yet because

of the high installation cost, but they are the ultimate islanding detection methods, also

working perfectly in case of multiple inverters operating in parallel, one of the hardest

goals to achieve by all other methods. The second approach is called inverter-resident

detection and relies on software implementation inside the inverter control platform. Over

the years, several anti-islanding algorithms have been proposed and they can be classified

into passive and active methods [42]. Passive methods verify changes of grid parameters

at the DER PCC due to the power mismatch after the disconnection, such as over/under

voltage (OUV), over/under frequency (OUF) [43], detection of the voltage/current har-

monics [21, 44] and phase variations [16]. Active methods introduce disturbances at the

PCC, such as active frequency drift (AFD), slip mode frequency shift and active/reactive

power variations [21, 45, 46]. The active methods are claimed more efficient in island-

ing detection, but they present a set of fundamental drawbacks: they are not regulated

by standards, they are not mandatory in all countries and they are different from each

manufacturer. Moreover, the different perturbations generated by each inverter may be

compensated by each other in a large distribution network and, last but not least, they

have the potential to affect power quality and to generate instability in the grid, especially

if more inverters are connected in parallel.
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2. Unintentional Islanding

Standard bodies required islanding detection methods to be complaint with the AI

test requirements as IEEE Std 1547, IEC 62116 and VDE 0126-1-1. This load condition

is assumed to be the worst case in terms of unintentional islanding detection. However,

the loads connected at the distribution level present different characteristics in active and

reactive power dependency on voltage frequency and amplitude. Moreover, the dynamic

behavior of the load on a distribution system varies depending on the load type, being

residential, commercial or industrial, as well as the season and the climate conditions

[47, 48]. More details on load frequency dependence and composition employed in this

work are reported in Chapter 3.

2.4 Passive Islanding Detection Methods

The passive methods rely on monitoring grid parameters that typically change during

islanding. In literature different passive islanding detection methods are described and

the most relevant one are reported in the following sections.

2.4.1 OUF-OUV Protections

All grid-connected DER inverters are required by standard bodies to have an over/under

frequency (OUF) and over/under voltage (OUV) protections. The inverter should be

disconnected if the voltage or the frequency value is out of the imposed thresholds. Voltage

and frequency during islanding conditions differs from their rated values due to the power

balance conditions before the disconnection from the main grid. Therefore, monitoring

these two parameters is typically used in order to trip the inverter in case of OUV or OUF

and thus, islanding detection is achieved. However, when the amount of power mismatch

is small, this method may fail to detect islanding as voltage and frequency variations might

be negligible to hit OUF or OUV limits.

2.4.2 Phase Jump Detection Method

This method observes the phase difference between the inverter terminal voltage and

its output current. Typically, during islanding the phase between voltage and current

changes due to the power mismatch. Compared to the OUF/OUV method, the phase jump

detection (PJD) can theoretically detect much faster the islanding condition, because a

phase change may be detected faster than a frequency variation. A typical implementation

of this method is to use the zero-cross detection synchronization methods, where the phase

of the current is updated once every zero-crossing of the voltage and thus it is possible

to detect the phase jump. Another implementation is done by using the phase-locked
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loop (PLL) synchronization system, but it is necessary to use two PLLs, one with a fast

synchronization dynamics (e.g. with a settling time of 100 ms) and the second one is very

slow for islanding detection (e.g. with a settling time of 1–2 s). Thus, by comparing the

calculated two phases, it is possible to detect the jump of phase. However, choosing the

correct threshold for a reliable islanding detection is the most difficult part. In fact, during

reactive loads switching (capacitors banks, inductive motors, etc.) or for inverters working

with non-unity power factor, the nuisance trips are the main drawback of this method.

2.4.3 Harmonic Detection Method

The voltage harmonic detection method monitors the total harmonic distortion (THD) of

the voltage at the PCC and it detects the islanding events in case the THD exceeds the

threshold. DER inverters, even if perfectly controlled to work as an ideal current source,

produce high order harmonics due to switching, dead-time and semiconductor voltage drop

or ripple of the DC link voltage. A typical standard requirement for a grid-connected

inverter is to maintain the THD index below 5% [39]. Thus, manufactures introduce

hardware solutions (typically filters) or compensation techniques embedded in the control

algorithm. The amount of voltage harmonics depends on the level of the grid impedance,

which is usually low, so during grid-connected operations, the THD is maintained low

and difficult to detect. In case of islanding event, the grid impedance is replaced by the

load impedance, which is higher. Therefore, the voltage THD will be increased and can be

used as an indicator for islanding detection. The main difficulties related to the application

of this method are in the choice of the parameters that should be evaluated (harmonics

or indexes that combines some of them) for islanding detection and in the choice of the

thresholds. In fact, it is not easy to discriminate between the harmonic pollution created

by the grid, by the loads and by islanded DERs units, hence, false trips are possible.

Also, transient voltage disturbances, such as those related to the switching of capacitor

banks, could be interpreted by DER system as a momentary increase in THD, depending

on the used measurement technique [49]. The challenge is to make the method selective

and reliable for islanding detection, avoiding nuisance trips. In literature, many studies

are described, which are related to the choice of the indicators, with the aim to increase

the robustness of the THD method, and other studies that give guidelines for selecting

the right thresholds by analyzing the relation between various harmonics causes. Many

possible solutions have been studied to overcome this problem, but these techniques cannot

be implemented cost-effectively in small DER. For this reason, the harmonic distortion

method had a limited diffusion.
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Figure 2.7: Inverter output current phase-frequency dependence using slip-mode frequency
shift (SMS) anti-islanding method [21].

2.5 Active Islanding Detection Methods

Active AI methods involve the injection of small perturbations at the inverter output,

generating variations of a parameter of the islanded system as frequency, phase, harmonics,

active and reactive power. There are several possible techniques implementations in the

literature [22,42].

It is worth mentioning, that active AI methods are not mandatory in all countries. The

compliance with the anti-islanding requirements is a task developed by the manufacturers,

that decide the active AI algorithm to implement in the embedded control of the DER

inverters.

In the following subsections the most popular active AI methods are reported.

2.5.1 Slip-Mode Frequency Shift

In this scheme, a positive feedback is applied to the phase of PCC voltage to destabilize

the inverter by changing the short-term frequency. The phase angle of the inverter is made

a function of the frequency, as depicted in Fig. 2.7, and the reference injected current is:

i∗ =
√

2I sin [2πft+ ΦSMS(f)] , (2.2)

where f is the frequency of the PCC voltage and the ΦSMS(f) represents the current

phase, which is a function of the frequency.

The phase response curve of the inverter is designed such that the phase of the inverter

increases faster than the phase of the (RLC) load with a unity-power factor in the region

near the utility frequency.
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Figure 2.8: Inverter output current waveform using active frequency drift AFS anti-
islanding method [21].

The design of the phase-frequency dependence makes the nominal frequency an unsta-

ble operating point for the DER system. If the utility is disconnected, the phase-frequency

operating point of the load and DER can be at an intersection of the load line and DER

phase response curve. If there is any small perturbation in the voltage frequency, the

inverter phase response curve increases the phase error and, hence, causes instability in

the frequency. This instability further amplifies the perturbation of the frequency of PCC

voltage and drive the system to a new stable operating point designed to be out of the

OUF protection thresholds. The possible implementation of this method is in the design

of the synchronization control system of the inverter.

The drawback of this AI method is the influence of the loads. In particular if the loads

have phase response curves that increase faster than the phase of the slip-mode frequency

shift (SMS), the nominal frequency becomes a stable operating point and renders SMS

ineffective.

2.5.2 Active Frequency Drift Method

This method perturbs the frequency reference with a positive feedback. As long as the

grid is present, the frequency can not be drifted, but when the grid is disconnected, the

disturbance will be able to drift the frequency until it hits OUF limits. The inverter output

current is slightly distorted, presenting a zero current segment for a drift-up operation [50].

As reported in Fig 2.8, the implementation of the active frequency drift (AFD) method

is based on the use of a zero-current segment per semi-cycle for a time Tz, defined by

Tz =
1

2
[(1/f)− (1/(f + δf))], (2.3)
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where f is the measured grid voltage frequency and δf is the difference between f and

the current frequency during the positive semi-cycle. The ratio between Tz and half of the

grid voltage period TY is referred as the chopping fraction cf , defined by

cf =
2 · tz
TY

= 2 · f · tz. (2.4)

The inverter reference and phase for this method in the steady state are

i∗ =
√

2I sin [2π (f + δf)] ,

θAFD = πfTz =
πδf

f + δf
.

(2.5)

During the first portion of the first half-cycle, the PV system’s current output is a

sinusoidal wave with a frequency slightly higher than the one of the utility voltage. When

the PV output current reaches zero, it remains at zero for time tz before beginning the

second half-cycle. For the first part of the second half-cycle, the PV output current is the

negative half of the sine wave from the first half-cycle. When the PV current again reaches

zero, it remains at zero until the rising zero crossing of the utility voltage. Thus, there is a

continuous trend to change the frequency, but the grid presence will prevent this. In case of

islanding operations, for example applying the current waveform in Fig. 2.8 to a resistive

load, its voltage response will follow the output current of the inverter waveform. The

PV system detects an increase in the voltage frequency and tends to increase its current

reference frequency to attempt to maintain the relationships in (2.4). The resistive load

again responds by advancing the negative to positive voltage zero crossing by Tz, which is

again interpreted by the PV system as an increase in frequency. Therefore, the frequency

will be drifted away with eventually tripping of the OUF protection. AFD is effective

in detecting a wide range of islanding conditions. However, this method presents same

drawbacks, especially if the local load has a high capacitive portion (e.g. insertion of

capacitor banks). In fact, the presence of a capacitive load tends to increase the frequency

of an islanded system in presence of a current source inverter. Therefore, if the Tz of the

inverter output current is fixed, there is always a particular value of capacitance which

can be added to a resistive load, resulting in a downward frequency drift that exactly

cancels the upward frequency drift of the DER, and under this condition islanding can

continue [51].
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2.5.3 Sandia Frequency Shift Method

The Sandia frequency shift (SFS) method is an extension of the AFD. It presents an

additional feature by applying a positive feedback to the voltage frequency of PCC. To

implement the SFS, the chopping fraction cf is a function of the frequency as given by

cf = cf0 + k(f − fn), (2.6)

where k is the acceleration gain, cf0 is the chopping factor when there is no frequency error

and f − fn is the difference between the estimated frequency and nominal value. When

the DER is connected to the grid, no frequency changes are detected and the SFS follows

the behavior of the AFD, which attempts to increase the frequency of the injected current,

but the stiff grid prevents any change in the system frequency. However, during islanding

operations the frequency error increases and the chopping fraction increases and the PV

inverter also increases its frequency. The inverter, thus, acts to reinforce the frequency

deviation, and this process continues until the frequency reaches the threshold of the OUF.

2.5.4 Reactive Power Variation Method

This AI method consists on a perturbation signal (typically with low frequency, i.e. 1 Hz)

in the reference of the reactive current i∗q . This perturbation on the reactive component

attempts to modulate the frequency of the system due to the nature of the resonant RLC

load. When the DER is connected to the grid, the stiff system does not allow any frequency

change of the voltage. In the islanding situation, the voltage depends linearly on the

injected current and the frequency variations can be detected. The periodical alteration

of the reactive power component makes a phase difference between the output voltage

and current of the system during islanding conditions. The phase difference induces an

increase or decrease of the frequency of load voltage that eventually hits the OUF limits.

In the literature, different implementation of this AI techniques are presented, differing in

the detection time and the perturbation signal amplitude and frequency [45,52,53].

2.5.5 Harmonic Injection Grid Impedance Estimation

The concept is that a certain disturbance, such as harmonic injection (HI), is used to

estimate the grid impedance based on the response of the grid. In other words, it is based

on the injection of a harmonic current and measuring the resultant voltage harmonic.

Thus, it is possible to estimate the grid impedance at that harmonic. A special attention

is required on the selection of the harmonic injected, that shall not be a frequency present

in the electric system, avoiding nuisance trips. Also, the non-characteristic frequencies are
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chosen to avoid interaction with the current controller in the case when the proportional

resonant current controller with harmonics compensation is used and they should not be

near the output filter resonance frequency.

Many different implementations are presented in literature and they differ for the

harmonic selection and numbers of injected harmonics (one or two harmonics) [54–56]. In

the case of two harmonics, the grid parameters are calculated by

Z2
1 = R2

g + ω2
1L

2
g

Z2
2 = R2

g + ω2
2L

2
g,

(2.7)
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Zg =
√
R2
g + ω2

gL
2
g, (2.9)

where ω1 and ω2 are the injected harmonic frequencies, Z1 and Z2 are the impedances

calculated at ω1 and ω2, and Rg and Lg are the resistive and inductive parts of the grid.

2.6 Grid Code Requirements

In the last few years, grid codes and standards requirements have been revisited in order to

maintain the quality and stability of the electric power system. The Italian standards CEI

0-21 and CEI 0-16, which regulate DERs connections at the low voltage (LV) and medium

voltage (MV) levels respectively, introduce some innovations on permissive thresholds of

the interface protection system (IPS) and the power control strategies at the local level.

Fig. 2.9 shows the permissive voltage and frequency thresholds based on a fault ride

through (FRT) allowing the DER units to maintain the grid connection during temporary

variations of the distribution networks parameters.

The new standards require ancillary services of the DER inverters with rated power

above 6 kW, with the aim of improving the quality of the electric power system. These

inverters are required to change their active and reactive power level with the droop

regulating functions P/f and Q/V . The droop characteristics are reported in Fig. 2.10

and are based on a local logic, monitoring the voltage amplitude and frequency at the
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Figure 2.9: Over/under voltage and over/under frequency limits: a) voltage protection
with low voltage fault ride through LVFRT philosophy; b) frequency protection, where
the old restrictive thresholds (dashed lines) and the recent permissive thresholds (solid
lines) are reported.

inverter terminals.

Voltage values (V1i, V1s and V2i, V2s) in Fig. 2.10 b) are defined by the distribution

system operator (DSO) with default in per units level of V1i = 0.98 p.u., V1s = 1.02 p.u.,

V2i = 0.9 p.u., and V2s = 1.1 p.u. The reactive power limits Qmax and Qmin are based on

the imposed capability in Fig. 2.11 as a power factor of 0.9 (Qmax,min = ±0.483·PN ), where

only rectangular red zone is mandatory. In this work, only the rectangular capability has

been considered. Therefore, the inverter nominal power (Pn) is P ′ and the active power

production is not reduced in case of need of reactive power by the Q/V regulation.

f [Hz]

Pout/Prated

1

50.3 51.5

V
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Q

V2i V1i

V1s V2s
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a) b)

Figure 2.10: Droop characteristics based on local logic required by Italian standards [57,
58]. a) active power over frequency regulation function (P/f); b) reactive power over
voltage amplitude regulation function (Q/V ).

In this work, the droop P/f performs a continuous regulation during frequency vari-

ations as shown in Fig. 2.10a. This active power regulation is required at the European

level with the technical specifications CENELEC TS 50549 [20,59].

The Italian version of the P/f regulation presents a hysteresis behavior, i.e. the

inverter reduces the active power in front of the first rise of the frequency f , and should

maintain for the reduced level (P ′) for 300 s when f decreases to the nominal value, as
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Figure 2.11: Capability of grid connected inverter with nominal power above 6 kW [57].
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Figure 2.12: Active power regulation during over frequency events [57].

shown in Fig. 2.12.

The P/f regulation required by European technical specifications [20, 59] has been

selected for this thesis work, as allowing a complete study of unintentional islanding op-

erations in front of a possible future standard integration.

Moreover, the European grid code and technical specification require the DER inverter

based units to perform the P/f and Q/V regulating droop characteristics as fast as tech-

nical feasible, in order to support the power electric system. Instead, the Italian standard

fixes maximum settling times for the power regulations, which are 2 s for the P/f and 10

s for the Q/V .

2.6.1 Automatic Selection of Faulted Line Sections

The main purpose of the automatic selection procedure of faulted line sections in MV lines

is the fast fault localization, the isolation of the faulted section and the reduction of the

outages time due to temporary faults. In Italy, MV distribution networks are equipped

with circuit breakers located in HV/MV (high voltage / medium voltage) primary substa-

tion, which operate with maximum current and directional earth-fault current relays.

The analysis of unintentional islanding operations due to the high penetration of DER

systems, concerns also the temporary islanding due to fault events. In this case, the pri-
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mary substation protections disconnect the faulty lines from the main grid. However, the

DER units continue to energize the faulted section, causing serious issues especially when

dealing with network automation procedures for fault selection and supply restoration, as

it is the case in the Italian distribution networks. In that case, the automatic re-closure

procedure may introduce risks associated with the possibility of out-of-synchronism recon-

nection of two separate systems due to the DERs temporary islanded operation.

Here are reported the automatic re-closure procedures that may increase the danger-

ousness associated to temporary islanding events. The breaker installed in the HV/MV

primary substation performs a re-closures cycle when a faulty condition is detected. This

procedure aims at minimizing the disconnection time with the main grid in case of tem-

porary faults. The sequence maneuvers of the re-closure cycle depend on the distribution

network type, neutral connection and possible presence of line automation. In Tab. 2.1,

the number and the type (i.e. time of intervention) of automatic re-closures of the Ital-

ian distribution networks are reported, where two main procedures are adopted. In the

case of simple automatic re-closure procedure, only the breaker in the primary substation

(PS) is used to disconnect the downstream lines if faults happen. Instead in presence of

automatic selection of faulted line section procedure, the downstream lines are equipped

with specific devices for a more accurate selection of the fault position, combining the PS

breaker re-closure cycle with the re-closure procedure of these devices. The distribution

networks with the automatic selection of faulted line section procedure, present also one

more last re-closure of the PS breaker in order to supply the safe lines sections, after the

disconnection of the single faulted line section. This type of automatic procedure is de-

scribed in the followings. Furthermore, in Tab. 2.1, the different number of re-closure are

reported, depending on the line types, where lines are cables or a combination of cables

and over-head lines.

In Fig. 2.13, is reported the sequence maneuvers of the re-closure cycle of the PS

breaker for a MV distribution network with simple automatic re-closure procedure.The

rapid re-closure time is TRR=600 ms, which is enough to allow the extinction of a tempo-

rary fault condition.

The sequences maneuvers of the re-closure cycle for a MV distribution network consist

of two parts:

� first series of automatic re-closures of the breaker installed in the primary substation,

typically for temporary faults;

� a following series of re-closures (automatic or manual) in case of permanent faults.

The automation of an electric distribution network with automatic selection of faulted
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Table 2.1: Automatic re-closure device (ARD) installed in the HV/MV primary substation
(PS).

Automation Line type Number of re-closure Re-closure type

Simple automatic
re-closure procedure

cable 2
1°rapid

2°slow (30s)

mixed 3
1°rapid

2°slow (30s)
3°slow (70s o 120s)

Automatic selection
of faulted line

section procedure

cable 3
1°rapid

2°slow (30s)
3°slow (70s o 120s)

mixed 4

1°rapid
2°slow (30s)

3°slow (70s o 120s)
4°slow (70s o 120s)

Close

Open
TRR TRR

a) b)

Close

Open

Figure 2.13: Primary substation breaker state during a re-closure cycle under two hypoth-
esis. a) rapid re-closure succeeded; b) slow re-closure failed, with TRR the rapid re-closure
time.

line section procedure is possible using specific devices called fault passage indicators

(FPI), whose Italian acronym is RGDAT, installed at the MV/LV secondary substations,

which are able to elaborate the information of three phase over-current, directional earth

fault current and presence/absence of downstream line voltage.

The numbers of line sections should be selected by the probability of faults and number

of connected users. The sections number has to consider the following cases:

� a small number of sections reduces the re-closure maneuvers and dedicated devices,

but increases the number of possible disconnected users;

� a high number of sections increases the re-closure maneuvers and dedicated devices,

but reduces the number of possible disconnected users, allowing a more precise se-

lection of faulted section.

The typical number of line sections for an Italian electric distribution network is 4

÷ 6, with 3 ÷ 5 secondary substations. The line sections are called level and the level

values starts from the end of the lines increasing going upstream. In Fig. 2.14, a 4 level

distribution line is reported.
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Primary
Substation

Secondary
Substation

Fourth
Level Third

Level
Second
Level

First
Level

Secondary
Substation

Secondary
Substation

Figure 2.14: Level subdivision of automated distribution lines.

The automation is performed by a temporized procedure without any communication

between the primary and secondary substations. The FPI, installed in the secondary

substation, allow the disconnection of the downstream line by the local breaker, with a

procedure, which depends on the neutral connection of the distribution network and the

type of fault. The automatic selection of faulted line sections procedure are:

� FRG (Italian acronym for function based on fault indicators) procedure used for

isolated neutral and any fault type or for compensated neutral and multi-phase

faults;

� FNC (Italian acronym for function for neutral compensated) procedure for compen-

sated neutral and single-phase to ground faults.

2.6.2 FRG Procedure

This technique is used in isolated or compensated neutral state. With this procedure only

the FPI, that detects the fault current, allows the opening of the breaker at the secondary

substation; the procedure is:

� the breakers of the secondary stations shall open if the relative FPI measures an

under voltage (due to the first re-closure cycle of the primary substation breaker)

and has measured the fault current;

� the closure of the open breakers of the secondary substations is after reading the

nominal voltage level (due to primary substation re-closure) and with a specific

order (starting from the nearest to the primary substation);

� the opening in a blocked state of the breaker whose FPI reads: under voltage within

a selected time and the fault current;

� reconnection of the primary substation and the line section upstream the faulted

one, whose breaker is open and blocked.
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t [s]

Fault
t = 0

30 s 70/120 s 70/120 s

0.3 s0.3 s0.4 s

0.6 s

RR SR SR TD2 = 5 s Last reclosure

Third opening

Second opening

First opening

Last opnening of the PS breaker

Figure 2.15: FRG procedure for the automatic selection of the faulted line section; with
RR the rapid re-closure, SR the slow re-closure and TD is the discrimination time, which
allows the opening on the PS breaker in presence of fault current during this time.

The FRG technique is reported in Fig. 2.15.

2.6.3 FNC Procedure

The FNC procedure is applied only for compensated neutral (with Petersen coil) and

single-phase to ground faults, where in any other case the procedure switch to the FRG.

With this technique after the fault there is not the first automatic re-closing cycle of

the primary sub station. Instead the breaker at the secondary substations opens with a

specific time order in case of their FPI reads the single-phase to ground fault current. The

PFIs, that detected the fault, allow to open the associated breaker starting from the end

of the lines. During this procedure, the primary substation breaker remains closed. This

allows the sections upstream the faulted one to be supplied by the main grid. In the case

of fault located in the first section (last level), the primary substation starts the automatic

procedure of re-closures. As for the FRG technique the breaker that detected the fault is

open and blocked. In Fig. 2.16 the breaker state in the primary substation is shown.
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6 s

12 s

18 s

20 s

0.6 s

0.3 s 0.3 s 0.3 s

30 s 70/120 s

t [s]

First level
secundary substation

breacker opening

RR SR SR

First opening of
the breaker in the PS
due to a fault in the

first line section

Fault
t = 0

Second level
secundary substation

breacker opening

Third level
secundary substation

breacker opening

Figure 2.16: FNC procedure for the automatic selection of the faulted line section.
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Chapter 3

Distribution Electric Network

Load Modeling

This chapter deals with the analysis of typical distribution electric network loads, reporting

the model for their characterization. The aim of load modeling is related to the study of

islanding analysis, anti-islanding requirements and in general analysis of the distribution

network behavior. In order to properly simulate the performance of the protection systems

it is necessary to adopt accurate models of the electric network and loads. In fact, the

condition of islanding mainly depends on network conditions before the grid disconnection

(i.e. power balance condition between DERs and local loads) and the dynamic behavior of

the loads, such as resistive, inductive, interfaced with power electronics, etc. Besides the

characterization of the loads connected to the network, it is useful to predict and resolve

instability situations of the electric system. In literature many different load models have

proposed, depending on the type of the load and the field of application of the models:

� Model IEEE ’93 [47];

� Linear model;

� Exponential model;

� Polynomial model.

In this analysis the more popular mathematical models are considered for each load

and the representative model, which has the smaller error compared to the measured

characteristic, is considered for the correct representation of the load.
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3.1 Load Modeling Introduction

Load modeling is very useful, because by using these models it is possible to know the

dynamics of very complex electrical systems, giving the possibility to prevent and avoid

undesired and dangerous phenomena in the distribution networks. Hence, with different

loads and the network models, it is possible to identify potential undesired situations and

solve them. To analyze the loads and distribution network behavior, it is necessary to

introduce some simplifications, which lead to a certain level of uncertainty on the results.

The most used approach considers the worst operating conditions; however, it does not

always manage to identify the worst case, and also risks to over-size for events with low

probability to appear. On the other hand, the optimistic case may lead to a weak design

in case of perturbations.

Distribution network load modeling identification and implementation are character-

ized by several issues:

� the electric system presents several different load types connected at the same time;

� loads composition varies during the day;

� a global load model is not suitable to represent all the load types, but it is necessary

a combination of models;

� informations about the behavior and characteristics of different loads are required;

� some load types may introduce non-linear characteristics with problems related to

the implementation of the model.

The introduction of power electronic changed the behavior of the loads and introduced

the need of new load models.

3.2 Static Models

The static load models are implemented to study the variations of load active and reactive

power absorbed due to alteration of the supply conditions, such as voltage amplitude

and frequency. The accurate load representation is crucial for the unintentional islanding

analysis presented in this work. In fact, the static models allow to evaluate the equilibrium

point of the islanded system, where loads and DERs power characteristics match at specific

voltage and frequency values, which are controlled by the over/under voltage (OUV) and

over/under frequency (OUF) protections. Therefore, the loads static models allow to

forecast the potential islanding risks or the intervention of the OUV and OUF protections.
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Literature studies present the static models with the focus on steady-state solutions,

without considering the transient behaviors, which, for residential loads connected to the

electric low voltage distribution networks, present settling time typically 50 ÷ 100 ms (i.e.

the active and reactive load power reach the steady-state levels 50 ÷ 100 ms after variation

of the voltage or frequency values) [60]. For the purpose of this unintentional islanding

analysis, these transient behaviors may be neglected, because the islanded systems, which

are considered low voltage distribution networks in particular at the residential level,

present slower dynamics. Loads active and reactive power are function of the network

parameters amplitude and frequency of the voltage waveform:P = fP (U, f)

Q = fQ(U, f),
(3.1)

where P and Q are, respectively, the load active and reactive power and the fP and fQ are

the different active and reactive power functions, which depend on the voltage amplitude

(U) and frequency (f). The static models are typically useful to represent resistive loads,

lights, residential type loads, and other with the exclusion of electric rotating machines.

3.2.1 Exponential Model

The exponential model is the most popular in literature; the equations of this model are

derived from 3.2 and 3.3:

P = Pn

(
U

Un

)kpu ( f

fn

)kpf
(3.2)

Q = Qn

(
U

Un

)kqu ( f

fn

)kqf
(3.3)

where P and Q represent respectively the active and reactive power at the voltage

U and frequency f , Pn and Qn are the active and reactive power at the nominal value

of voltage Un and frequency fn, while kpu, kpf , kqu and kqf are the parameters that

characterize each load type [61].

Usually in a distribution network the frequency variation are not frequent and a typical

simplification is to consider the voltage variation. Therefore, the (3.2) and (3.3) are

simplified as

P = Pn

(
U

Un

)kpu
(3.4)

Q = Qn

(
U

Un

)kqu
. (3.5)

However, the (3.4) and (3.5) are not suitable for:
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• load analysis with uncontrolled perturbations;

• low rated power systems, which present small inertia.

The model represented by the (3.4) and (3.5) can be a constant power load if kpu and

kqu are equal to 0; a constant current load if kpu and kqu are equal to 1 and a constant

impedance load if kpu and kqu are equal to 2. In some studies the frequency dependency in

(3.2) and (3.3) is modified using the Taylor series due to the limited variation of frequency

compared to the voltage variation. Thus, the Taylor simplified model is:

P = Pn

(
U

Un

)kpu
(1 + kpf∆f) (3.6)

Q = Qn

(
U

Un

)kqu
(1 + kqf∆f), (3.7)

where ∆f = (f − fn)/fn represents the variation from the nominal value.

3.2.2 Polynomial Model

The polynomial model is also diffused in literature, in particular the second order model.

The expression of this model, that does not consider any variation of frequency, is:

P = Pn

[
p2

(
U

Un

)2

+ p1

(
U

Un

)
+ p0

]
(3.8)

Q = Qn

[
q2

(
U

Un

)2

+ q1

(
U

Un

)
+ q0

]
(3.9)

This model is also called ZIP, because it represents the load as sum of three constant

factors: impedance (Z), current (I) and power (P). The parameters p1 and q1 are related

to the constant impedance part, the p2 and q2 are related to the constant current part,

and p3 and q3 are related to the constant power part. Moreover, the sums of p1,2,3 and

q1,2,3 are both equal to 1. The relationships that consider the variation of the frequency

are reported:

P = Pn

[
p1

(
U

Un

)2

+ p2

(
U

Un

)
+ p3

]
(1 + kpf∆f),

3∑
i=1

pi = 1 (3.10)

Q = Qn

[
q1

(
U

Un

)2

+ q2

(
U

Un

)
+ q3

]
(1 + kqf∆f),

3∑
i=1

qi = 1. (3.11)

These equation are similar to (3.2) and (3.3), where a frequency dependency is added.
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3.2.3 Linear Model

The linear model is typical in the analysis where the voltage variation is near the nominal

value. Therefore, it introduces errors in case of wider voltage ranges.

The proposed linear model presents the a0 and a1 parameters for the active power and

the b0 and b1 parameters for the reactive power [62], as described by

P = Pn

(
a0 + a1

U

Un

)
, (3.12)

Q = Qn

(
b0 + b1

U

Un

)
. . (3.13)

In the literature, it is also specified to use the linear model only for the active power

and the polynomial model for the reactive power [63]. However, it is possible to describe

the frequency dependency also with the linear model:

P = Pn

(
a0 + a1

U

Un

)
(1 + kpf∆f), (3.14)

Q = Qn

(
b0 + b1

U

Un

)
(1 + kqf∆f), (3.15)

The relation between active and reactive power and the frequency is similar two poly-

nomial model with the Taylor simplification.

3.2.4 Comprehensive Static Model

The static comprehensive model has been introduced for low voltage loads [64]. It is called

comprehensive because the model includes loads with static and dynamic characteristics.

This model is based on a polynomial model combined with two different exponential

models:

P = Pn[PZIP + PEX1 + PEX2 ], (3.16)

where:

PZIP = p2

(
U

Un

)2

+ p1

(
U

Un

)
+ p0 (3.17)

PEX1 = p4

(
U

Un

)a1
(1 + kpf1∆f) (3.18)

PEX2 = p5

(
U

Un

)a2
(1 + kpf2∆f) (3.19)
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The same procedure is adopted for the formulation of the reactive power equations.

3.2.5 IEEE Task Force 1993 Load Model

IEEE task force has studied the behavior of loads formulating a load model. The model

coefficients are calculated basing on the typology of typical 1993 loads.

P = Pn · (
U

Un
)kpu · (1 + kpf · (f − fn)) (3.20)

Q = Qn · (
U

Un
)kqu · (1 + kqf · (f − fn)) (3.21)

It represents the load voltage dependency with an exponential part and frequency

dependency with a linear element, which is the same as the linear model. The coefficients

depends on the load type and seasoning. The dynamic response of the model allows a

rising time of 100 ms [65], with a first order dynamic for voltage and frequency variations.

3.3 Load Modeling - Experimental setup

In order to characterize the load models a measurement setup has been implemented, so

that the load under test can be supplied by different voltage amplitude and frequency

values. Further measurement and sensing devices combined with protection system have

been introduced in the setup configuration to guarantee accurate representative models

and to avoid the damaging of equipments. Two similar setups have been implemented

depending on the load type. The first one is dedicated to single-phase load with rated

power under 2 kVA, as typically present in domestic loads.

The second one is a three-phase setup for loads up to 30 kVA, as typically present in

commercial or industrial loads.

The control, acquisition and preliminary data elaboration is performed by the National

Instruments (NI) PXI, which is a real-time operative system device used for data acqui-

sition/generation. The NI PXI controls the amplifier (single/three-phase) output voltage

applied to the load under test, in terms of amplitude and frequency. At the same time,

this device acquires the measured parameters as load voltage and current, and sends the

acquisition to the PC for the final elaboration process. The single-phase amplifier has a

maximum output power of 2 kVA, while the three-phase amplifier has a maximum output

power of 30 kVA, with a 5 kHz bandwidth. In Fig. 3.3, the experimental setup for the

single-phase low power loads is presented, where the LabVIEW code for generating the

reference voltage source of the tests is running in the real-time system of the NI PXI.

The current and voltage measurements are sampled by the NI PXI and then elaborated
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Figure 3.1: Single-phase setup for load under 2kVA.

with Matlab in order to calculate the load power characteristics and models. The same

principle is applied to the experimental setup for high power three-phase loads, shown in

Fig. 3.4, where the NI PXI signals are sent via LAN to the NI CompactRIO, which sends

these signals to the three-phase amplifier.

These amplifiers generate a stable output voltage controlled by an analogical signal of

the PXI. As presented in Fig. 3.2 and 3.1, the LabVIEW system implements program files

that are performed in the PXI, and saves the acquired data by the PXI. The code used

on the real-time system of the PXI allows the generation of the output voltage required

for the tests as changing the voltage amplitude or frequency.

During the testing procedure, after the variations of the voltage level or frequency

value, the acquisition system waits the end of the initial transient in order to measure

the steady-state conditions. The acquired voltage and frequency are sent to the PC for

the model elaboration. This is an automatic procedure replicated for each voltage and

frequency level.

3.3.1 Acquisition Parameters

The load static characterizations are used for all the tested loads. The ranges of testing

conditions are based on the thresholds of over/under voltage and over/under frequency

protections for connection to the low voltage networks. Therefore, the tests are performed

in the range of ±15% of the nominal voltage level (195Vrms - 265Vrms), with steps of

5Vrms, and from 47.5 Hz to 51.5 Hz for the frequency variations, with a step of 0.2 Hz.

The time between two consecutive variations depends on the specific load under test, e.g.
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Figure 3.2: Three-phase setup for load up to 30kVA.

under 50 ms for LED lamps and 100ms for metal halide lamps.

During the voltage characterization the voltage frequency is stable at 50 Hz and each

measure lasts 1 second. While during the frequency characterization the minimum time to

guarantee 0.2 Hz precision is 5 seconds. The characteristics of the data acquisition system

are:

� sampling of 100kSample/s;

� voltage variation tests: 1 second of data acquisition (100000 samples);

� frequency variation tests: 5 seconds of data acquisition (500000 samples);

� time for the test of voltage variation: 10 minutes;

� time for the test of frequency variation: 20 minutes.

Each test has been repeated three times and the model has been characterized with

the average of the three results. In general terms, the variations of the results among the

three tests were small.

3.3.2 Model Identification Tests

This subsection reports the active and reactive power calculation procedure.

The setup configuration has been compared with the wattmeter results, and after

software compensations, the error introduced by the sensing devices, is under the 1.5%
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LabVIEW
Matlab

NI PXI

Current and
voltage
sensing

single-phase
amplifier

Loads

Figure 3.3: Single-phase experimental setup for load below 2kVA.

respect to the wattmeter. In order to understand the model identification procedures,

the load characteristic curve of PLf(f, v) and QLf(f, v) during only voltage variations is

described in the following sections. The aim is to calculate the active and reactive load

power from the current and voltage PXI acquisitions at each voltage level of the tests.

After the PXI sample acquisitions, the signals are scaled (i.e. the signals are scaled to the

real values after the sensing), the fast fourier transforms (fft) of the current and voltage

samples of each testing voltage level (100000 samples in case of voltage variations tests)

are performed in order to evaluate the fundamental harmonic of the signals.

The fft calculates the amplitude and phase values of the voltage and current, allowing

the calculation of active and reactive power since the amplitude of voltage and current

and the phase difference are known. In Fig. 3.5, this procedure is presented.

Using the fft analysis, it is possible to compensate voltage and current phase errors

due to the sensing, comparing the results with the wattmeter.

The procedure is then similar for the frequency variation tests. The difference is the

length of the acquisition signals, which in case of frequency variation tests depends on the

frequency values, since the accuracy for each test is 0.2 Hz. Therefore, in this case the

voltage and current signals are composed by 500000 samples.

The two model identification procedures (i.e. voltage amplitude and frequency varia-

tion tests) may be performed also for different voltage and frequency values used in the

tests, by changing them in the front panel of the LabVIEW code.

After the power characterization tests, it is possible to evaluate the coefficients of

the various load model presented and to select which load model better describes the

load under test. This model identification procedure is done using a specific Matlab

function (fsolve) for continuous non-linear systems. For each test of voltage and frequency
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Figure 3.4: Three-phase experimental setup for load up to 30kVA.

variations, the active and reactive calculated power are used by the fsolve function to

derive the coefficients of the model under consideration. Thus, the final model coefficients

are the average values of all tests performed for each coefficient.

3.3.3 Load Considered For Tests

Different load types have been considered for the characterization of a typical residential

environment. The residential type loads tested with the experimental setup are presented

in Fig. 3.6. For all the loads, the representative models have been evaluated, i.e. the

models that present the lower error in the PLf(V ), PLf(f), QLf(V ) and QLf(f) char-

acteristic curves. Therefore, an equivalent load for a residential and domestic system can

be created by the combination of the different load connected to the system. In Fig. 3.7,

the potential beneficial of this load modeling analysis is shown. Further studies may use

the combined model load as the more accurate representation of loads connected to the

electric distribution networks not only for unintentional islanding.

� IEEE 1993 model

P (v, f) = Pn · (
U

Un
)kpv · (1 + kpf · (f − fn))

Q(v, f) = Qn · (
U

Un
)kqv · (1 + kqf · (f − fn))
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Figure 3.5: Static characterization procedure for active and reactive curves.

� Linear model

P (v, f) = Pn · (a1 ·
U

Un
+ a0) · (1 + kpf · (f − fn))

Q(v, f) = Qn · (b1 ·
U

Un
+ b0) · (1 + kqf · (f − fn))

where a0 + a1 = 1 e b0 + b1 = 1

� Exponential model

P (v, f) = Pn · (
U

Un
)kpv · ( f

fn
)kpf

Q(v, f) = Qn · (
U

Un
)kqv · ( f

fn
)kqf

� ZIP model

P (v, f) = Pn · [p2 · (
U

Un
)2 + p1 · (

U

Un
) + p0] · (1 + kpf · (f − fn))

Q(v, f) = Qn · [q2 · (
U

Un
)2 + q1 · (

U

Un
) + q0] · (1 + kqf · (f − fn))

dove p1 + p2 + p3 = 1 e q1 + q2 + q3 = 1

The experimental results identify the coefficients to represent the behavior of the loads

using the static models. An example is reported in Tab. 3.1, where the loads coefficients

are calculated according to the IEEE task force load model. Tab. 3.1 reports the 1993
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Table 3.1: Experimental results of the model identification of the loads reported in 3.6.
Coefficients calculated according to the IEEE 1993 model.

IEEE 1993 model coefficients

Load kpv kqv kpf kqf

IEEE 1993 residential 1.3 2.7 0.8 -2
IEEE 1993 industrial 0.1 0.6 2.6 1.6
IEEE 1993 agricultural 1.4 1.4 5.6 4.2
Fluorescent lamp 1.016 0.555 0.0027 -0.0071
Halogen lamp 1.478 1.973 0.0006 -0.0312
LED lamp 0.098 -0.996 -0.0036 -0.0213
Neon lamp inductive reactor 1.817 3.179 -0.0247 -0.0293
Neon lamp electronic reactor 1.39 -0.011 0.0012 -0.0039
Sodium-vapor lamp 2.27 3.30 -0.0378 -0.3130
Metal halide lamps 1.806 8.337 -0.0219 -0.2260
Notebook 0.089 0.372 0.0017 -0.0013
Monitor -0.049 0.928 -0.0015 0.0065
PC desktop 0.095 -4.607 -0.0001 0.0057
Motor with auxiliary pole 2.442 2.603 -0.0214 -0.0190
Compressor 1.031 7.234 0.0112 -0.1653
Electric pump 2.149 4.937 -0.0133 -0.0971
Washing machine 3.104 4.255 -0.0417 -0.0719

loads (i.e. IEEE 1993 residential, IEEE 1993 industrial and IEEE 1993 agricultural) and

the measured loads coefficients. It is worth noting that the dependence on the frequency is

strongly reduced mainly due to the introduction of new technologies. Thus, the load anal-

ysis is crucial to understand the behavior of the current electric distribution networks not

only for islanding operations. For completeness, the calculated THD indexes introduced

by the loads under investigation are reported in Tab. 3.2, where the presence of high

THD index represents the effect of power electronic devices in the low power applications,

especially at the domestic level.

Fig. 3.8 describes an example of active and reactive power characteristic curves during

variations of voltage amplitude and frequency of an electro pump. Furthermore, the errors

introduced by the use of a static load model are reported in Fig. 3.9, where the polynomial

or ZIP model represents the best fit comparing the average errors values.

In this work, the loads modeling analysis reported the active and reactive characteristic

curves and the coefficients of the static loads models, which represent the behavior of the

typical loads connected to the electric distribution networks. These calculated models

differ obviously from the specific paralleled RLC resonant load, used in the literature

analysis of unintentional islanding and in the AI requirements presented in standard.

Therefore, this work considers a different load for islanding analysis. In particular,

this load presents active and reactive power dependencies, which are comparable with the
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Table 3.2: Total harmonic distortion (THD) index of the loads under investigation.

IEEE 1993 model coefficients

Load THD

Fluorescent lamp 101.3
Halogen lamp 0
LED lamp 107.7
Neon lamp inductive reactor 11.08
Neon lamp electronic reactor 28.84
Sodium-vapor lamp 19.23
Metal halide lamps 15.27
Notebook 194.0
Monitor 193.4
PC desktop 81.92
Motor with auxiliary pole 29.29
Compressor 11.59
Electric pump 6.70
Washing machine 10.07

residential load type within the range of OUF and OUV limits. The load is presented in

Fig. 6.5 and in chapter 6.This choice has been done also with the purpose to simplify the

experimental validation.
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3. Distribution Electric Network Load Modeling

a) Fluorescent
lamp

b) Halogen lamp c) LED lamp
d) Neon lamp

(inductive reactor)

e) Neon lamp
(electronic reactor)

f) Sodium-vapor
lamp

g) Metal halide
lamp

h) Notebook i) Monitor j) PC desktop

k) Fan motor
(with auxiliary

pole)
l) compressor m) Electric pump n) Washing

machine

Figure 3.6: Loads adopted for the experimental model identification.
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3.3. Load Modeling - Experimental setup

α% β% γ% δ% ε% ζ%

Others

Figure 3.7: Residential system identified with a combination of load, based on the share
of the total power.

a) b)

Figure 3.8: Active and reactive power characteristic curves of the electro pump calculated
in two cases: a) variations of the voltage amplitude level and b) variations of the voltage
frequency value.
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3. Distribution Electric Network Load Modeling

a) b)

c) d)

Figure 3.9: Active and reactive power errors introduced by the linear, the exponential and
polynomial (or ZIP) model compared to the measurements. a) errors of active power in the
range of frequency variations; b) errors of active power in the range of voltage variations;
c) errors of reactive power in the range of frequency variations; d) errors of reactive power
in the range of voltage variations.

R1 L1 C1

R2

C2

Figure 3.10: Generic local load with active and reactive power dependencies PL(f, u) and
QL(f, u).
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Chapter 4

Power Converter Structure and

Modeling

Electronic power converters are employed in DER systems with the main function of in-

jecting the power generated by the energy source, such as PV panels, into the electric

power system. They are needed for the connection and synchronization with the electric

system. Control algorithms of the converter allow the grid synchronization, the control

of the voltage and the current injected into the grid, the standards ancillary services and

the internal protection functions required for the normal operation of the DER system.

However, control concepts and characteristics of power electronic converters are signifi-

cantly different from those of the conventional rotating machines. Therefore, the control

strategies and dynamic behavior of the electrical grid having a large number of dispersed

generators can be different from that of a conventional power system. Thus, the modeling

of the DER power converter plays a key role in the analysis of the distribution networks

with large penetration of inverter-based distributed generators.

In this thesis, the model of a DER PV system has been adopted in order to study the

causes and the influencing factors of unintentional islanding in MV and LV distribution

networks. The number of grid-connected PV systems has been significantly increased and

this technology reached a large penetration in the grid, changing the traditional concept

of passive distribution electric networks into active networks.

The model is implemented with the library Power System Blockset, a toolbox of Matlab

and it is compliant to the Italian standard requirements for distribution electric networks.

The model of the grid-connected PV inverter is reported in this chapter, including the

description of the principal circuital and control blocks. This model enables the study of

the dynamic behavior of the inverter during the disconnection from the main grid.
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4. Power Converter Structure and Modeling

4.1 Power Converter Structure

Literature analysis shows different topologies for power converters [66–69]. All the con-

verter topologies have to deal with the following constrains:

� conversion efficiency: the efficiency is usually required to be above 90%;

� electric grid connection: the converter has to be compliant with the technical re-

quirements imposed by standard bodies, e.g. active and reactive power regulations;

� maximum power point tracker (MPPT): the converter has to reach the optimum

working point in order to ensure the maximum power transfer to the grid.

Due to the high cost of solar energy, the PV inverter technology has been driven

primarily by efficiency. New innovative topologies have been developed for PV inverters

with the main purpose of increasing the efficiency and reducing the manufacturing cost.

For example, a typical efficiency increase of 1–2 % can be obtained eliminating the galvanic

isolation provided by high-frequency transformers in the DC–DC boost converter or by

low-frequency transformer on the inverter output. As the lifetime of PV panels should

be typically longer than 20 years, efforts to increase the lifetime of PV inverters are also

under way.

Thus, a very large diversity of PV inverter topologies can be found on the market and

in the literature over the recent years. However, it is possible to select two main categories

based on: (i) the ratio between the numbers of PV modules and converters, and (ii) the

number of converter stages. The first category is made up of different technologies: (a)

centralized, (b) strings and (c) modules, while the second is based on: (a) single stage,

(b) double stage and (c) multi-stage.

4.1.1 Centralized Technology

The first PV applications were based on centralized single stage technology, as shown in

Fig. 4.1a. This scheme ensured high reliability, easy control strategies and good grid

connected performance.

The introduction of higher switching frequency components helped the diffusion of this

technology, reducing the current distortion injected in the electric system. Moreover, es-

pecially for single stage applications, the limited numbers of components have represented

over the years a winning factor in the commercialization of this technology. However, it

has to be mentioned that, in spite of the number of conversion stages, the input voltage

level needs to be higher than the peak of the grid voltage. Therefore, this solution requires

the series connection of multiple PV strings, with the drawback of reducing the efficiency
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4.1. Power Converter Structure

Figure 4.1: Typical PV converter systems: (a) centralized, (b) string, (c) multi-string and
(d) modules technology.

in case of partial shading. The parallel connection of different strings requires the intro-

duction of decoupling diodes, connected in series in each string, with corresponding power

losses.

In single-phase applications, this technology requires a capacitor designed to compen-

sate a full power swing at twice the line frequency, in order to reduce the corresponding

voltage ripple at the input voltage of the conversion module. This electrolytic capacitor

is the element that limits the reliability and the life time of the system. Finally, the con-

version module becomes relatively inflexible, being optimized for a specific configuration

of the PV modules. For all these reasons, in recent years the use of centralized solutions

is decreased.

4.1.2 String Technology

The strings technology represents the state of the art in photovoltaic systems, although

there are still various centralized solutions on the market. The conversion modules are of

small-medium size and each module is connected to a string of PV modules in series, as

shown in Fig. 4.1b.

The conversion modules are connected in parallel in order to supply the desired power.

This technology provides high flexibility, being able to adapt to different power sizes.

Moreover, the overall PV system efficiency is higher, given that each string can have its

own MPPT. If the number of photovoltaic modules per string is sufficiently high (above 10),

the conversion module may not require the voltage amplification. Otherwise, one DC/DC
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4. Power Converter Structure and Modeling

boost converter stage, possibly with high frequency transformer, must be included in the

module. It is important to note that the most recent implementations of string technology,

called ”multi-string” (Fig. 4.1c), are based actually on double stage conversion modules,

using DC/DC converters connected in parallel. They supply a DC bus which feeds a

single DC/AC converter, connected to the electric grid. Therefore, this solution combines

the advantage of the better employment of the photovoltaic system, guaranteed by string

converters and the presence of a single central inverter. For this reason, the multi-string

is the basis of all the latest commercial products.

4.1.3 Modules Technology

The evolution of the multi-string solution is represented by modules technology (Fig.4.1d)),

in which each PV module is equipped with converter connected to the electric grid. This

solution provides maximum flexibility and the best possible use of the PV system (the

modules are all in parallel and each has its own MPPT). Furthermore, it offers the pos-

sibility of an integrated converter in the photovoltaic module, with a consequent costs

reduction.

Consider the realizations of the technology described above, it must be said that each

of them is, in principle, compatible with topologies of converters with both single and

multiple stages. As matter of fact, the literature presents several different solutions [69].

However, the main part related to this study is limited to the PV grid interface. To this

end, regardless of the fact that the system is single-stage or double-stage or multi-string,

the main part remains the grid-connected inverter. For this reason, the power electronics

modeling is focused on the grid-connected inverter.

4.2 Two-Level PV Inverter

The power stage of DC/AC converters is characterized by several topologies. The most

commonly used is the two level inverter shown in Fig. 4.2. In the literature, there are

solutions to 3-level (neutral point clamped, T-type, etc.) and solutions using multiple

levels (5, etc.). However, the two-level solution has been selected for the purposes of this

study, since a fundamental role in the unintentional islanding is played by the inverter

control. Any topology, which guarantees the capability of reactive power, provides very

similar results. Hence, it is reasonable to use the most widespread and simple solution.

Fig. 4.2 shows such two-level inverter together with the photovoltaic source, the DC side

capacitor, the primary inductive filter, the EMI (Electromagnetic interference) filter and

the connection to the electrical network.

This thesis is focused on the role of the inverter control during unintentional islanding
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4.2. Two-Level PV Inverter

Figure 4.2: Block diagram of the three phase inverter.

Figure 4.3: Ideal switching cell of a three phase inverter.

operations considering the possible interaction with the load, the protection system and

the standard requirements. Therefore, it is possible to neglect issues like the switching

losses and harmonics distortion. In fact, the case of ideal switches has been considered

and the equivalent diagram of the switching cell is highlighted in Fig. 4.3. In following

section, the derivation of the analytical steps is unfolded.

The mathematical model of the fundamental equations of the switching cell is per-

formed using the switching function s(t), that is 1 if the switch is closed and 0 if open. As

highlighted in Fig. 4.3, sa(t), sb(t) and sc(t) are the switching functions for the phases a,

b and c with va(t), vb(t) and vc(t) voltages of the phase a, b and c referred to the point n.
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It is possible to define the following line to line values:

−→v l−l =


vab

vbc

vca

 =


va − vb
vb − vc
vc − va

 ,

−→s l−l =


sab

sbc

sca

 =


sa − sb
sb − sc
sc − sa

 ,

−→
i l−l =


iab

ibc

ica

 =
1

3


ia − ib
ib − ic
ic − ia

 .

(4.1)

Therefore, the equations that connect the DC side to the AC side are:


−→v l−l = −→s l−l · VDC
iDC = −→s Tl−l ·

−→
i l−l

. (4.2)

The differential equations of the schematics in Fig. 4.4 are:

vab = L
d

dt


ia − ib
ib − ic
ic − ia

+


va − vb
vb − vc
vc − va

 = 3L
d

dt


iab

ibc

ica

+


vab

vbc

vca

 , (4.3)

iDC = C
dVDC
dt

+ iPV . (4.4)

Resulting:

dVDC
dt

=
1

C
(iDC − iPV ),

−→
i l−l
dt

=
1

3L
−→v L−L −

1

3L
−→v l−l,

(4.5)

where: −→v L−L =
[
vAB vBC vCA

]T
. Using the (4.2), the switching model is described
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4.3. Average Time Model

Figure 4.4: Three phase PV inverter switching model.

by:

dVDC
dt

=
1

C
(−→s Tl−l ·

−→
i l−l − iPV ),

−→
i l−l
dt

=
1

3L
−→v L−L −

1

3L
−→s l−l · VDC .

(4.6)

The switching model is able to reproduce the switching operations and can be very

useful for studying high frequency phenomenons, such as harmonic distortions, electromag-

netic compatibility (EMC) problems, interference with power line communication (PLC)

used by the distribution system operator (DSO), etc. However, the switching model also

introduces some drawbacks, resulting in long simulation times and high computational

resources. Therefore, a simplified model, which is capable of reproducing the static and

dynamic behavior of the average voltage and current values inside the switching period,

is needed.

4.3 Average Time Model

The average time model can reproduce the behavior of the PV system in a low-frequency

range with easier deployment and higher computing speed (at least a factor of 10). Thus,

for the purpose of this thesis, the behavior of the PV inverter in the high-frequency

range is not required. This section continues from the previous mathematical derivation,

introducing the time averaging of the voltage, current and switching function values within

the switching period. Consider the following average operator:

x(t) =
1

T

∫ t

t−τ
x(τ)dτ, (4.7)
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where the x(t) is the average of x within the switching period. The average value of the

switching function s(t) is the duty-cycle d = tON/Tsw, with tON the closing time of the

switch and Tsw the switching period. Therefore, it is possible to obtain:

d = s(t) =
1

T

∫ t

t−τ
s(τ)dτ. (4.8)

This averaging function is linear. Thus, the Kirchhoff law can be applied. With the

hypothesis of small or linear ripple, it is possible to include the non linear elements, i.e.:

−→s l−l · VDC ≈ −→s l−l · V DC =
−→
d l−l · V DC ,

−→s Tl−l ·
−→
i l−l ≈ −→s Tl−l ·

−→
i l−l =

−→
d Tl−l ·

−→
i l−l.

(4.9)

Using the average operator (4.7) in the switching model (4.6), we obtain:

1
T

∫ t
t−τ

dVDC(τ)
dt dτ =

1

T

∫ t
t−τ

(
1

C
−→s Tl−l(τ) · −→i l−l(τ)− 1

C
iPV

)
dτ

,

1

T

∫ t
t−τ

−→
i l−l(τ)

dt
dτ =

1

T

∫ t
t−τ

(
1

3L
−→v L−L(τ)− 1

3L
−→s l−l(τ) · VDC(τ)

)
dτ,

(4.10)

and applying the (4.9), the system becomes:

d
−→
i l−l
dt

=
1

3L

(−→v L−L −−→d l−lV DC

)
,

dV DC

dt
=

1

C

(−→
d Tl−l ·

−→
i l−l − iPV

)
,

(4.11)

where: −→v L−L =
[
vAB vBC vCA

]T
.

The time averaging model is presented in Fig. 4.5. This model implementation re-

quires the use of generators controlled on voltage and current level based on the (4.11).

There are no appreciable differences between the switching and averaging models for the

phenomena occurring at frequency below half of the switching frequency. Furthermore,

the harmonic distortion of the injected current is negligible, due to the absence of the dead

time.
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Figure 4.5: Three phase PV inverter - averaging time model.

4.4 Simulink/Matlab Inverter Model

The Simulink/Matlab model implementation is reported in Fig. 4.8 and Fig. 4.9. Fig. 4.8

shows the average time inverter model, where the typical six switches inverter structure

is replaced by ideal voltage sources controlled by the block diagram in the upper portion.

This block diagram implements the average time model of the inverter output voltage with

the DC component VDC implemented as a constant DC voltage source. This is a voltage

source inverter (VSI) with an inner current closed-loop in order to provide the active

and reactive power. Fig. 4.8 shows the output inductive filter and the EMI filter. The

reference current values Iref are generated by the external power closed-loop represented

in Fig. 4.9, where three-phase voltage source inverter model of Fig. 4.8 is included in the

orange subsystem called Three−phase Inverter. The control architecture of the inverter

is proposed in Fig. 4.9. In this configuration, two different phase locked loop (PLL) blocks

have been implemented. The PLL called PLLmeas is used for the external measurement

of frequency and amplitude of the voltage during unintentional islanding operation, while

the PLLinverter block tuned with a lower bandwidth (5 Hz) realizes the inverter grid

synchronization used to generate the desired active and reactive power. Furthermore,

the PLLinverter block generates the reference values of f and V for the regulation droop
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Figure 4.6: Three phase PV inverter - PLL for grid synchronization.

Vα

Tαβ
dq Kppll +

Kipll

s
1
s

Vβ

Va Vd

Vq

θω
Tabc
αβ

Vb

Vc

Figure 4.7: Typical three-phase SFR-PLL scheme.

functions P/f and Q/V . The PLL model is reported in Fig. 4.6, and it is adopted for

both the PLLmeas and PLLinverter block, changing only the PI regulator parameters.

In this model, a synchronous reference frame (SRF) PLL has been implemented. SRF-

PLL are widely applied in three-phase DER. Previous papers [70–74] have focused on

the PLL performance, such as nonlinear PLL techniques [70, 71], during distorted and

unbalanced grid conditions, to improve the trade off between tracking bandwidth and

filtering. Fig. 4.7 shows the widely used three-phase SRF PLL system [75,76].

It uses a abc/dq transformation block as the phase-detector (PD) to convert the mea-

sured utility positive-sequence phase-voltages into the q channel signal.

Though many sophisticated PLLs are proposed with different PDs, the results drawn

from the SRF PLL are still applicable to others solutions, since they share the same phase

locking principle [75,77].

In Fig. 4.9 the active and reactive external closed-loops are presented. The blocks

droopP (f) and droopQ(V ) elaborate the reference value of the active and reactive power

starting from the nominal external value and the PLL frequency and voltage measurements

at the point of common coupling terminals. Thus, in grid connected operations the voltage

frequency and amplitude are imposed by the main grid, while in islanding operations the

inverter maintains the voltage supplying the local load. Furthermore, the blocks droopP (f)
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4.4. Simulink/Matlab Inverter Model

Figure 4.8: Three phase PV inverter - averaging time model voltage sources.

and droopQ(V ) have been designed in order to perform the following functions:

� constant power references;

� activate the active and reactive power droop P/f and Q/V , with the possibility to

select one or both of them;
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Figure 4.9: Three phase PV inverter - averaging time model implemented in simulink/powersystem blockset.
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The inverter control model has been implemented with the possibility to change the

active and reactive power regulation loop bandwidth. Fig. 4.9 shows the active and

reactive power regulator, which lead to the current reference values for the inner current

loop in Fig. 4.8. The regulator comprises PI blocks with the possibility to change the

bandwidth of the power closed-loops. Hence, the role of the power speed response has

been analyzed during unintentional islanding operations.

Finally, the block diagram Currentrst elaborates the current reference values using the

PLL system to synchronize to the measured voltage and to generate the required active

and reactive power. The Currentrst block is designed with the possibility to activate the

active anti-islanding (AI) method called SFS (Sandia frequency shift), as shown in Fig.

4.10.
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Figure 4.10: Three phase PV inverter - averaging time model voltage sources
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4.4. Simulink/Matlab Inverter Model

This active anti islanding protection injects a slightly distorted current. The imple-

mentation of this methods is described in chapter 9.
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Chapter 5

Hardware in the loop and

Experimental setups validation

This chapter describes the two setups adopted for the validation of the unintentional is-

landing analysis. The study-case scenario, selected for islanding operation investigations,

is depicted in Fig. 5.1, where a three-phase PV inverter, at the point of common coupling

(PCC), is connected in parallel to a local load and to the main grid, which can be discon-

nected by the switching of the utility breaker. The first setup is experimental and it is

implemented in a lab-scale prototype, where the control algorithms of the PV inverter are

implemented in a 15 kVA UPS, whereas, the hardware in the loop (HIL) configuration is

used as second setup. The HIL setup, which is much more flexible than the experimental

hardware one, allows the test of islanding operations in complex scenarios as the multi-

ple inverter case. In this work, the HIL simulations permitted to interface the simulated

study-case, shown in Fig. 5.1, with a physical interface protection system (IPS) of the

type required by the Italian standard [57].

Load

PV
˜
G

=

˜

Main grid

Inverter

Utility
breaker

PCC

Figure 5.1: Study-case scenario. Single-phase equivalent representation of a three-phase
PV inverter connected in parallel to a local load and the main grid at the point of common
coupling (PCC).
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5. Hardware in the loop and Experimental setups validation

Figure 5.2: UPS used for the experimental setup of unintentional islanding operations.

5.1 Experimental Setup

As shown in Fig 5.2, a three phase experimental setup has been implemented. This

system is a double conversion UPS, i.e the grid voltage (VinA,B,C) is first rectified to DC

bus (650 V) and an inverter supplies the desired amplitude and frequency of the voltage

waveform. All the control is performed by a micro-controlled interfaced digital signal

processor (DSP), which can be programmed in order to obtain the desired operation at

the switching frequency of 12.5 kHz.

For the experimental setup an external rectifier has been implemented to supply di-

rectly the DC bus with the rectified utility voltage. Than, the UPS rectifier has been

programed as PV inverter with the DC source representing the DC voltage of the em-

ulated solar panels, while the UPS inverter AC voltage source acts as Emulated Grid.

Thus with the UPS it is possible to have both the distributed energy resource (DER) unit

and the main grid for unintentional islanding operations. The load has been connected in

parallel with the PV inverter an the Emulated Grid, and a switch has been inserted to

disconnect the Emulated Grid from the islanded portion and Load.

The single-phase equivalent diagram of the three-phase experimental setup is reported

in Fig. 5.3. The Emulated Grid plays the role of distribution grid and is controlled as

voltage generator with a voltage loop bandwidth of 500 Hz. The PV Inverter, as DER unit,

is controlled with a current loop bandwidth of about 2.7 kHz on the inductor current of

L1. A Synchronous Rotating Frame (SRF) PLL has been used to synchronize the current

controller of the inverter to the grid voltage and to get the frequency and amplitude

measures for the P/f and Q/V droop functions. The PLL bandwidth of PV Inverter

is about 5 Hz. The PV inverter is equipped with closed loop controllers to ensure that

the active and reactive power references are properly tracked, and these closed-loops are

designed in order to change the bandwidths and select the desired active and reactive power
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C2

L3L1

C1

PV Inverter Emulated Grid

igrid

S7

S8

S1

S2

Load

L2

ZL

Cbus

Switch

Cbus

Cbus

Cbus

ugriduinv

iinv

iout

Figure 5.3: Single-phase equivalent diagram of the experimental setup.

settling. The detailed PV Inverter model implementation is the same of the simulation

model and it is described in chapter 4.

The nominal phase voltage is 230 Vrms and the nominal power is 15 kVA, although the

test, reported below, has been performed using Vb = 151 Vrms and Ib = 12 Arms as the

base quantity to evaluate the per-unit values. Since the current control of PV Inverter is

performed on L1 current, C1 can be considered as part of the ZL that consists of a set

of passive components: it is a parallel connection of a resistor RL1 = 18Ω, an inductor

LL1 = 87.5mH, a capacitor CL1 = 14.4µF and a resistive-capacitive series (RL2 = 82.5Ω

and CL2 = 60µF ). Due to its low value the L2 = 1600µH has been neglected in the

analytical analysis of islanding events.

In Fig. 5.4 the lab-scale prototype for unintentional islanding is represented . This

experimental setup comprises the rectifier, the supply, the DC bus of the two three-phase

inverters of the UPS and the elements that compose the load in parallel with the two

inverter. A manual switch has been positioned to disconnect the Emulated Grid inverter

from the islanded system.

5.2 Hardware in the Loop Simulations

The hardware-in-the-loop (HIL) process has been in use for no more than 15 to 20 years.

Its roots are found in the Aviation industry. The reason the use of an HIL process is

becoming more prevalent in all industries is driven by two major factors: time to market

and complexity. HIL simulation is a technique that is used in the development and test of

complex systems. The definition for HIL simulator is a setup that emulates a system by

connecting in real-time physical subsystems with a simulated mathematical representa-

tion of the remaining subsystems. Hardware-in-the-loop is a form of real-time simulation,
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Figure 5.4: Experimental laboratory setup

but differs by the addition of physical components in the closed-loop, using bidirectional

interactions between the physical and simulated subsystems. HIL simulation represents

an efficient approach to the development, testing and validation of prototypes under in-

vestigation. The HIL introduction in the engineering processes enables to limit the cost

of testing or developing equipments or prototypes, to have more flexibility in reproducing

a variety of testing conditions and to guarantee the safety depending on the applications.

Furthermore, HIL provides the efficient control and safe environment where test or appli-

cation engineer can focus on the functionality of the controller.

In recent years, HIL simulation for power systems has been used for verifying the

stability, operation, and fault tolerance of large-scale electrical grids. Current-generation

real-time processing platforms have the capability to model large-scale power systems

in real-time. This includes complex systems with associated generators, loads, power

factor correction devices, and network interconnections and many other devices, which

are present in the power electric system. These platforms enable the evaluation and

testing of large scale power systems in realistic emulated environments. Moreover, HIL

for power systems has been used for studying next-generation SCADA systems and power

management units, and static synchronous compensator devices.
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5.2.1 Hardware in the Loop Setup Implementation

HIL is used to investigate the integration of distributed energy resources in the distri-

bution electric network. Most of low-power DER units use power electronic converters,

which increase the complexity of the network management and operation for the dis-

tribution system operator (DSO) [17]. Many literature studies addressed the topic of

DERs integration in the existing power system, focusing on different aspects (e.g. control

strategies, converter technology, protection systems, etc.). However, none of them have

investigated the effect the physical IPS operations and the DER control operations during

unintentional islanded conditions. For such purpose, a specific HIL test bed is proposed

in this work, where the DER is modeled with a real-time simulator that drives, through a

signal amplifier, the physical IPS.

In detail, the HIL setup is composed by the real time simulator OP4500 by OPAL-RT

and the signal amplifier in order to interface signals from simulations with the external

commercial IPS, which by monitoring the simulated voltage at the PCC can disconnect

the DER, if required. Fig. 5.5 presents the HIL setup, where the study-case of PV inverter

(with the embedded control algorithms), the local load and the main grid are simulated

in real-time by the OP4500.

Such platform enables a more comprehensive understanding of the physical operation

and interaction of the IPS with the DER control action during unintentional islanding

operations, especially in terms of P/f and Q/V droop functions. The proposed HIL setup

is suitable to address the effects of different inverter control actions or of different network

configurations. As in any HIL test-bench, it is very easy to modify parameters or to

simulate more complex test cases without the need to change the experimental hardware

configuration.

The model has been developed in the real-time simulator using Matlab/Simulink en-

vironment, including DER inverter-interfaced, local passive load and the main grid with

embedded voltage control. The main grid is disconnected by controlling the switch/recloser

in order to start the islanding events. The model of a typical PV unit DER is implemented

with active and reactive power loops control, droop regulating function and embedded PLL

synchronization system.

The configuration of the inverter model is described in chapter 4. In detail, the model

has been implemented as the average model of a three-phase inverter, with its inner cur-

rent closed-loop and the external power closed-loop in order to generate the required active

and reactive power using constant PG,ref and QG,ref reference values or calculated by the

regulating droop functions P/f and Q/V . Furthermore, the control uses the synchronous

frame reference (SFR) phase locked-loop (PLL) to ensure the synchronization and con-
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Figure 5.5: Single phase equivalent of the HIL setup implemented to analyze the real IPS
during unintentional islanding operations.

nection with the grid voltage.

This specific inverter configuration is implemented for discrete-time simulations with

fixed time step Tsim = 20µs, imposed by the real-time simulator as the minimum step

size in order to prevent errors during simulations. Therefore, the control loops of the

inverter could not have the same dynamic of the simulated electric components such as

inductances, capacitors and resistances. Thus, a factor of ten has been introduced in

the control dynamic, i.e. Tcontrol = 10 · Tsim. While the experimental setup switching

frequency is 12.5 kHz (80 µs), the inverter model control is simulated at 5 kHz (200 µs).

This means that the dynamic behavior of the two systems may differ at high frequency, but

they present the same response at low frequency (under 1 kHz). Typical unintentional

islanding events present dynamic behavior near the nominal grid frequency (±10 Hz),

where simulation model and experimental setup have the same dynamics.

Hence, it is worth mentioning that the inverter models have been validated comparing

to lab-scale setup, using the same configuration and control schemes implemented in the

experimental inverter digital signal processor (DSP) described in [26, 27, 29]. This vali-

dation has been established comparing the islanding transients after the disconnection of

the main grid, as shown in Fig.5.6. The tests are performed with a power unbalance of

70



5.2. Hardware in the Loop Simulations

∆P = 0.9 and ∆Q = −0.2, with different settling time for the power regulating droop

functions:

� Case I : constant PG,ref and QG,ref ;

� Case II : τP = 5s, τQ = 7.5s;

� Case III : τP = 2s, τQ = 3.5s;

� Case IV : τP = 0.6s, τQ = 1.4s.

Fig. 5.6 shows how the dynamic of the inverter model of HIL simulations is the same

of the experimental setup. It may also be noticed in Fig. 5.6g and 5.6h that the HIL

model has the same transient behavior of the hardware setup, due mainly to the selected

settling time which creates oscillations in the droop controls.

Once the model has been properly and accurately tuned, the analysis of different sit-

uations and conditions of the system is more flexible with respect to real full power test

beds. Results of the presented study show many dynamic phenomena of the system,

ranging from the increase of uncontrolled islanding probability, to different behaviors of

inter-operating system components (protection, inverters controls, etc.), such as the speed

response of the inverter power regulation. Therefore, it would be of paramount impor-

tance to predict the behavior of IPS, P/f and Q/V functions and even the presence of

active anti-islanding protection implemented in the DER inverter and, in general terms,

to enable the DSO to predict how the large diffusion of DERs in the distribution grids

would affect the unintentional islanding and other transient phenomena.
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a) b)

c) d)

e) f)

g) h)

Figure 5.6: Results of ∆P = 0.9 and ∆Q = −0.2 unintentional islanding: a) experimental
(constant PG,ref and QG,ref ), b) HIL (constant PG,ref and QG,ref ), c) experimental (τP =
5s, τQ = 7.5s), d) HIL (τP = 5s, τQ = 7.5s), c) experimental (τP = 2s, τQ = 3.5s), d)
HIL (τP = 2s, τQ = 3.5s), g) experimental (τP = 0.6s, τQ = 1.4s), h) HIL (τP = 0.6s,
τQ = 1.4s)
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Chapter 6

Unintentional Islanding Non

Detection Zone

6.1 Introduction

The diffusion of renewable energy resources (RESs), such as photovoltaic and wind en-

ergy sources, is continuously increasing and changing the structure and operations of the

medium and low voltage (MV and LV) distribution networks. Residential environments

have experienced one of the most relevant growth of distributed-generation power sys-

tems [13–15, 78]. Most of low-power DERs units consist of power electronic converters

with limited number of sensors and communication capabilities [16], increasing the com-

plexity of the network management and operations for the distribution system operator

(DSO) [17]. The proliferation of such systems has led to an increasing concern about the

problem of unintentional islanding on distribution networks. The islanding condition is de-

fined as a portion of the utility system containing both loads and DER units that remains

energized while it is isolated from the main grid. The analysis of unintentional islanding

has been addressed in several literature studies, such as [24,26,27,44,79], and interesting

studies on the determination of non detection zone (NDZ) can be found in [80–83].

This complex scenario has also influenced the latest grid codes and country-level re-

quirements for DER units [19, 20]. At this time, no universal standard for anti-islanding

(AI) requirement has been adopted. Over the years several different AI algorithms have

been proposed and they can be classified in passive and active methods [42]. Passive meth-

ods verify grid parameters at DER point of common coupling (PCC), such as over/under

voltage (OUV) and over/under frequency (OUF) [43], detection of the voltage/current har-

monics [21,44] and phase variations [16]. Anti-islanding techniques for inverter have been

proposed so far for DER applications and surveys are given for instance by [21,36,37,84].

However, when there is a large number of DERs, the behavior of such provisions, being
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Figure 6.1: Voltage and frequency thresholds imposed by the standard for inverter based
DER.

different from each manufacturer and not specified by standards, is unpredictable and in

some cases these techniques can lack to detect the operation mode and so the disconnec-

tion of the inverter may not happen [24,29]. Grid-connected DER systems are required by

standards and technical rules to adopt OUV and OUF protections which disconnect the

DER system from the utility when the magnitude or frequency at the point of common

coupling (PCC) is out of the prescribed limits [57, 58]. This protection system is used to

protect the electric equipments but also has the role of passive islanding detection method.

Therefore, this analysis is focused on passive AI methods OUV and OUF, since active AI

methods present a set of fundamental drawbacks to be used for a general analysis: they

are not regulated by standards, they are different from each manufacturer, the different

perturbations, each inverter is generating, tend to be compensated each other in a large

distribution network and, last but not least, they are not mandatory in all countries. The

OUV and OUF are implemented in the interface protection system (IPS) presented in Fig.

6.1 [57].

New European standards state the reference technical rules for the connection of active

users to the grid and for their behavior during temporary voltage and frequency variations

[19,20,59]. Moreover, these standards together with some country-level ones are imposing

the participation of DERs to the voltage and frequency regulation to improve the system

stability, through the P/fand Q/V droop characteristics (Fig. 6.2) [57]. One of the

most relevant modification are the extension of the frequency range that is allowed during

normal operation of DERs from the traditional thresholds 49.7 Hz and 50.3 Hz to the less

stringent values 47.5 Hz and 51.5 Hz, and the extension of the voltage levels to 15% of the

rated voltage (Fig. 6.1).

This work focuses on the risk of permanent islanding operation [26,27,31], that is the

risk of an unintentional islanding whose steady-state frequency and voltage remain within

the allowed thresholds, for instance those reported in Fig. 6.1.
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6.2 System Description and Area of Uncontrolled Islanding

The goal is to analyze the DER unintentional islanding risks in the case of the supporting

functions P/f and Q/V are activated. In particular, it is addressed the mapping of the

IPS NDZ considering the individual contribution of the P/f and Q/V droop regulations,

first enabling only one of them, either P/f or Q/V , and then both. In order to simplify

the analysis, the test-case shown in Fig. 6.3 has been adopted, where a low voltage PV

three-phase inverter and a local load are considered.

Regarding the active and reactive generated power references PG, ref and QG, ref of

the DER, four Cases are considered:

� Case I of a DER with constant active and reactive power references;

� Case II of a DER with only Q/V droop characteristic as in Fig. 6.2;

� Case III of a DER with only P/f droop characteristic as in Fig. 6.2;
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6. Unintentional Islanding Non Detection Zone

� Case IV of a DER with both Q/V and P/f droop characteristics as in Fig. 6.2,

where Cases II and III are usually not considered in the literature.

After the transition from grid-connected to islanded operation, the active and reactive

powers PG and QG generated by the inverter have to balance the ones absorbed by the

load PL and QL, i.e.PL(f, u) = PG(f)

QL(f, u) = QG(u).
(6.1)

Here in general, PL and QL are functions of the frequency f and the voltage ampli-

tude u, while PG is a function of the frequency f and QG is a function of the voltage

amplitude u, considering the droop characteristics 6.2. Notice that this choice is general

and it can be done also for the case of an inverter with constant power references. After

the disconnection, the power balancing between generation and local load leads to a new

steady-state solution (f∗, u+) for the system. If f∗ and u∗ do not trigger the DER protec-

tions, for instance those in Fig. 6.1, then an unintentional islanding is possible [25]. Here,

the permissive allowed ranges are considered

u ∈ [umin, umax] = [0.85, 1.15] p.u.

f ∈ [fmin, fmax] = [47.5, 51.5] Hz
(6.2)

Taking into account the variability of the power source and the load components in

terms of grid-connected active and reactive powers, a set of solutions is found that defines

the non detection zone (NDZ), i.e. an area representing the power mismatch ∆P =

PG(f0) − PL(f0, u0) versus ∆Q = QG(u0) − QL(f0, u0) at the PCC, where the islanding

condition is possible, where f0 and u0 are respectively the nominal frequency and nominal

voltage amplitude. If, for a certain ( ∆P ∗,∆Q∗ ), the corresponding steady-state solution

(f∗, u∗ ) is within the voltage and frequency thresholds and if such operating point is stable,

then a permanent islanding operation can be maintained, in other words ( ∆P ∗,∆Q∗

) points belongs to the NDZ. The frequency and voltage thresholds of (6.2) identify a

rectangular area on the plane of allowed deviation of voltage amplitude ∆u = u − u0

versus deviation of frequency |Deltaf = f − f0. The borders of this region is given by

∆umin = umin − u0,
∆umax = umax − u0,
∆fmin = fmin − f0,
∆fmax = fmax − f0,

(6.3)
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Figure 6.4: Mapping of the ∆fmax, ∆fmin, ∆umax and ∆umin borders from ∆f − ∆u
plane to ∆P −∆Q plane.

and they are mapped on the ∆f − ∆u plane to the ∆P − ∆Q plane. In this reference

frame, other four borders are identified and thus the NDZ of unintentional islanding, as

shown schematically in Fig. 6.4.

It is possible to draw the NDZ regions (for each different Case), considering the load

power dependencies PL(f, u) and QL(f, u), with the following procedure:

1. the load power point P ∗L and Q∗L is evaluated for a precise point (f∗, u∗ ) on the

∆f −∆u border;

2. then, because in islanded operation P ∗L and Q∗L must be equal to the inverter active

and reactive powers, P ∗G and Q∗G, for (f∗, u∗ ), knowing the particular case and

the droop characteristics of the inverter, the active and reactive powers PG(f0) and

QG(u0) in grid-connected mode can be calculated;

3. the ( ∆P,∆Q) point on the NDZ border (Fig. 6.4) are derived from the grid-

connected powers of the inverter and from those of the load, PL(f0, u0) andQL(f0, u0),

which are known;

4. the previous points are then repeated for all the border in the ∆f −∆u plane of Fig.

6.4.

In this analysis, the grid-connected operating point is (f0, u0) regardless the power

absorbed or generated by the main grid, meaning that the small voltage drop due to the

output impedance of the grid is neglected.

This analysis is general and it can be applied for a generic local load, whose active and

reactive power dependencies are known, PL(f, u) and QL(f, u). For instance, it can be

used with standard modeling choices of loads, as residential, agricultural and industrial

described in [47]. In this work, it has been considered a local load that consists of a set

of passive components, as shown in Fig. 6.5 : it is a parallel connection of a resistor R1,

an inductor L1, a capacitor C1 and a resistive-capacitive series (R2 and C2), whose values
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Table 6.1: Load parameters: base power is the active load power at (f0, u0).

R1 = 17 = 0.873 p.u.
R2 = 82.5 = 0.180 p.u.
L1 = 87.5 mH = 0.551 p.u.
C1 = 14.4 µF = 0.067 p.u.
C2 = 60 µF = 0.280 p.u.

are in Tab. 6.1 and whose power dependencies PL(f, u) and QL(f, u) are shown in Fig.

6.6. This choice has been done for the sake of experimental validation and simplicity.

For such load, the NDZ areas, evaluated using the method described before, are re-

ported in Fig. 6.7, where Fig. 6.7a refers to the Case I, while Fig. 6.7.b shows that

including the Q/V droop control (Case II) causes a slight widening of the unintentional

islanding region. On the other hand, introducing only the P/f droop control (Case III)

produces a larger area widening (Fig. 6.7c).

Finally, in Fig. 6.7d for Case IV, the islanding risk is maximum since the region is by

far the largest. Notice that introducing the P/f droop originates a potential unbounded

area. However, in a real application, this area will be limited by the rated power of the

inverter. To quantify the area enlargement, the areas of the regions of Fig. 6.7 limited to

R1 L1 C1

R2

C2

Figure 6.5: Generic local load with active and reactive power dependencies: PL(f, u) and
QL(f, u).
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Figure 6.6: Active PL and reactive QL powers of the load as functions of frequency f and
voltage u: powers are normalized to the active power of the load at nominal frequency f0
and nominal voltage u0.
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Figure 6.7: ∆P−∆Q area of possible permanent unintentional islanding when the inverter
operates with droop characteristics: a) no droop, b) only Q/V droop, c) only P/f droop
and d) both Q/V and P/f droop.

Table 6.2: Areas of NDZ: values are normalized to the area of Case I.

Case I 1
Case II 1.16
Case III 8.41
Case IV.16 45.9

those axis ranges, that is inside the plane ∆P ∈ [0.5, 1] p.u. and ∆Q ∈ [−0.8, 0.8] p.u.,

have been evaluated and reported in Tab. 6.2.

This analysis shows that in the last three cases (II-III-IV), the risk of islanding increases

compared to Case I, where the unintentional islanding operation can be formed due to the

regulation characteristics of the load, i.e. the dependencies of the active and reactive load

powers to the frequency and the amplitude of the voltage. In the other cases the risk is

increased due to the droop characteristics of the inverter-interfaced generator.
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Figure 6.8: Qualitative example of NDZ extension in the plane ∆P − ∆Q due to the
P/f and Q/V droop characteristics, depending on the embedded inverter power control
scheme [27].

The regions of this NDZ analysis refer only to the steady-state solutions of a permanent

islanding operation. Further investigation, as reported in Chapter 8, 9 and 10 will describe

how the NDZ extension is not only influenced by the load characteristic or the presence

of the P/f and Q/V droop regulating functions, but also by speed response of the power

regulation implemented in the inverter.

6.2.1 Power Regulation Speed Response in the Single Inverter Case

The investigation on the role of the speed response of the droop functions P/f and Q/V

during unintentional islanding is a recent topic, introduced by the latest grid code and

standards. Recently, inverter interface DER units are required to perform fast droop

regulation functions in order to increase the stability of the electric power system, as

recalled in chapter 2.6.

In Fig. 6.8, it is shown a qualitative example on how the speed of the power control

plays a fundamental role in the NDZ sizing and in the unintentional islanding issue in

general.

In particular, the response time of the closed-loop for active power regulation TP and

reactive power regulation TQ may increase the size of the NDZ.

As a matter of fact, by increasing the time response of the power regulating functions,

the NDZ will be reduced to the Case I, where the active and reactive power generation

is constant. Hence, the required fast droop characteristics may play a useful stabilizing
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role by quickly responding to the temporary grid perturbations, whereas in this work it is

highlighted how they may play a negative role in terms of unintentional islanding events.

The analysis of power regulation speed response influence on the sizing of the NDZ

obtained in Fig. 6.7d has been validated via experimental tests.

6.3 Experimental Results

A lab-scale prototype has been implemented in order to perform experimental validations

as described in chapter 5. A switch allows the islanding operation by isolating the PV

inverter and the passive load ZL from the main grid. The same load structure described

in Section 6.2 is adopted in the experimental setup, where the nominal phase voltage is

182 Vrms and the nominal line frequency is f0 = 50 Hz.

A synchronous rotating frame (SRF) PLL has been used to synchronize the current

controller of the inverter to the grid voltage and to get the frequency and amplitude mea-

sures for the P/f and Q/V droop control. If one of the droop characteristics is disabled,

the corresponding power reference will be constant regardless the frequency or the volt-

age amplitude. The outputs of the PLL together with the output current measure of the

inverter are used to evaluate the output active and reactive powers of the inverter: these

are feedback variables for the power regulator.

In Fig. 6.10, the test 20 of Fig. 6.9 is considered. It exhibits a frequency value out

of the thresholds for the Case II (64.8 Hz in Fig. 6.10a), a voltage close to the minimum

voltage threshold 182 · 0.85 = 154.7Vrms for Case III (158.7 Vrms in Fig. 6.10b) and

frequency and voltage values within the thresholds for Case IV (50.59 Hz and 173.5 Vrms

in Fig. 6.10c).

Experimental results prove the widening of the NDZ in the plane ∆P −∆Q and are

reported in Fig. 6.9: in particular Fig. 6.9.a refers to Case II, Fig. 6.9.b to Case III and

6.9.c to Case IV. All the results indicate that the risk of unintentional islanding increases

introducing inverter droop control with respect to the case of a constant power inverter

and that such risk is higher introducing both P/f and Q/V droop control: there is a ex-

tremely good agreement between analytic and experimental results. Moreover, the effect

of the P/f droop is stronger in terms of area change than the Q/V droop one. In such

results, a stable steady-state is reached, but this does not always happen: for example,

Case IV for Test 31 in Fig. 6.11 shows a system behavior that is not perfectly stable and

so oscillations on the voltage amplitude appear. However, such instability does not trigger

the DER protections and so a permanent islanding operation is still achieved. Another

cause that can trigger the DER protections is related to the initial transient just after
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Case II Case III

Case IV

Figure 6.9: Experimental results of∆P −∆Q area of permanent unintentional islanding:
a) Case II, b) Case III and c) Case IV; blue circles refer to an islanding operation out of the
protection thresholds, red asterisks refer to an islanding operation within the protection
threshold.

the disconnection. During this transient, the frequency and the voltage of the islanded

grid can exhibit some oscillations that can bring those quantities out of the protection

thresholds. Two examples of such oscillating transients are in Fig. 6.12, however they do

not trigger the protections.

The resulting points of unintentional islanding on the plane ∆P −∆Q represent the

steady-state islanding conditions. As shown the Fig. 6.9.c the Case IV present the activa-

tion of both P/f and Q/V . This condition allows the enlargements of the NDZ, increasing

the number of stable steady-state islanding operations. It has been reported that the tran-

sient to reach this condition may cause the intervention of the interface protection system

and this is mainly due to the speed response of the power regulation.

The experimental results reported in Fig. 6.13 show that with different regulation

speed response, it is possible to obtain different results in terms of NDZ. Using a small
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a)

b)

c)

Figure 6.10: Experimental results of inverter output voltage uinv (100 V/div) and current
iinv (30 A/div) for Test 20 of Fig. 6.9: a) Case II where the frequency is 64.8 Hz and
the voltage 203.6 Vrms, b) Case III where the frequency is 50.62 Hz and the voltage 158.7
Vrms and c) Case IV where the frequency is 50.59 Hz and the voltage 173.5 Vrms; time
with 10 ms/div scale.

bandwidth for the power regulation closed-loop the system reacts very slowly to voltage

frequency and amplitude variations. Therefore, the equilibrium point is reached with a

slow transient, which may be characterized by frequency and voltage values out of the
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6. Unintentional Islanding Non Detection Zone

Figure 6.11: Experimental results of inverter output voltage uinv (100 V/div) and current
iinv (30 A/div) for Case IV for Test 31 of Fig. 6.9; time with 50 ms/div scale

(a)

(b)

Figure 6.12: Experimental results of islanding transients a) for Case IV of Test 26 and b)
for Case IV of Test 28 of Fig. 6.9: inverter output voltage uinv (100 V/div), its measured
frequency finv (1 Hz=div) and current iinv (30 A/div); time with 200 ms/div scale.

protection thresholds causing the disconnection of the DER and the islanding detection.

Fig. 6.13 Case C presents an increased size of the NDZ compared to Fig. 6.13 Case B.

This is due to the change of the power control bandwidth: from ωp = ωq = 2π4.2 Hz (Case

B) to ωp = ωq = 2π5 Hz (Case C).

Fig. 6.14 compares the islanding transition of the test 5 in Fig. 6.13. It is possible to
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Figure 6.13: Experimental test results are reported in the plane ∆P −∆Q with different
response times of the droop characteristics: Case A constant power references, Case B
droop regulation with ωp = ωq = 2π4.2 Hz and Case C droop regulation with ωp = ωq =
2π5 Hz; red dot tests allow islanding operations, while black diamonds do not

note that using even a small difference on the bandwidth of the power regulation control

loop (4.2 Hz and 5 Hz) the transient behavior of the islanding operation is drastically

different. Hence, in Fig. 6.14b the islanding conditions leads to an over voltage transient,

which will cause the disconnection of the DER system. In this specific configuration, the

experimental tests were not equipped with the interface protection system, because of the

interest on the transient behavior with different power regulation bandwidths. However

as reported in Fig. 6.14b the system voltage exceed the limit of the over voltage relay,

while in Fig. 6.14a the faster regulation guarantees a shorter transient, without exceeding

the protection thresholds. In Fig. 6.14, it is also reported the automatic re-closure time

(600 ms) when the islanded grid should be reconnected to the main grid in presence of an

automatic re-closing procedure. In this test case, due to the use of fast droop regulation

the DER could not be disconnect before the automatic re-closure with the serious danger

of out-of-phase reconnection with the main grid. This topic is presented in chapter 8.

6.4 Conclusions

The proposed investigation shows that the risk of permanent unintentional islanding in-

creases introducing P/f or Q/V droop regulation to the control of DERs and that the

∆P −∆Q area widens more including both the P/f and Q/V droop regulations, rather

than only one of them. Thus, the non-simultaneous operation of P/f and Q/V seems to

be an effective approach to reduce the NDZ, for example disabling the Q/V function when

activated the P/f under over-frequency operation.

In future generation of distribution grid with large penetration of renewable energy

sources, the understanding of the stabilizing effects of droop control in islanded opera-

tion is of paramount importance in order to provide insights on design criteria for the

DER connections and on settings of P/f and Q/V droop functions on future standards.

Moreover, the speed of the power regulation plays an important role in the unintentional
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6. Unintentional Islanding Non Detection Zone

a)

b)

Figure 6.14: Test 5 of Fig. 6.13 for ∆P = 0.67 p.u. and ∆Q = 0.07 p.u.: example of
islanded operation: a) droop control with ωp = ωq = 2π5 Hz and b) with ωp = ωq =
2π4.2 Hz (Uisland - 100 V/div, UL - 100 V/div, Iisland - 30 A/div, time - 100 ms/div).

islanding forming and NDZ and show as the criteria of requiring fast DER system has a

major drawback in terms of unintentional islanding an so in terms of security of people

and electric devices.

All the aspects reported in this analysis may allow the selection of new requirements for

the upcoming standard and technical specifications, in order to reduce the risks associated

with unintentional islanding events. These results give also the opportunity to the DSO to

endorse corrective actions limiting the possible islanding events in order to guarantee the

quality of the distribution electric system, as adopting non-simultaneous P/f and Q/V

droop regulations and requiring a slow power regulation in order to minimize the NDZ.
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Chapter 7

Non Detection Zone with Single

Phase PLL Synchronization

System

The significant increasing number of generating units connected to the low voltage (LV)

level is interesting the residential level, such as single-phase PV sources. The dynamic

behavior of distributed generators depends on the embedded control system of the inverter

more than the structural characteristic of the source, as it is for the synchronous generators.

The control systems are designed by the manufactures using different techniques, and when

all different inverters are connected to the same grid, instability or interaction issues may

occur during steady-state and transient conditions [85,86].

The LV distribution networks are characterized by the presence of three-phase and

even more small sized single-phase inverters (under 3kW ) connected to different phases

and with different control techniques, as presented in literature [87, 88]. The differences

among each embedded control systems lead to different responses and behaviors during

network alterations of operative conditions [89].

Specific focus has been dedicated to unintentional islanding operations in presence of

different synchronization control scheme. In particular, the single-phase and three-phase

synchronous reference frame phase locked loop (SRF-PLL) behaviors have been compared

in order to study their influence in the unintentional islanding non-detection zone (NDZ)

of the protection system.

7.1 System Description

The investigation on the SRF-PLL single-phase contributions on the unintentional island-

ing forming is carried out in a LV 4-wire electric distribution network, where single-phase
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7. Non Detection Zone with Single Phase PLL Synchronization System

Figure 7.1: Distributed generator and load units three-phase and single-phase, connected
to the distribution LV network.

and three-phase DER inverters are connected, as presented in Fig. 7.1. Lately, standards

have imposed permissive thresholds for interface protection systems that could lead to a

failure on the detection of unintentional islanding events, due to the sensitivity loss on the

deviation of voltage amplitude and frequency from the nominal (grid connected) values.

This protection system is equipped with a fault ride through (FRT) logic in order to avoid

unintentional DERs disconnections during voltage and frequency temporary deviations

from the nominal values. Only the mandatory protection system required by the Italian

standard are here considered. Therefore, the inverter is equipped with an interface pro-

tection system (IPS) with over/under voltage (OUV) and over/under frequency (OUF)

passive protections. Other anti-islanding protections have been neglected so the only pos-

sibility to detect an islanding forming operation is by the tripping of the IPS OUV and

OUF.

The OUV and OUF protections system required by Italian standard for LV inverter

based DER units are reported in Tab. 7.1, as described in Chapter 2.6.

A simplified scenario, has been considered: a three-phase LV inverter is connected to

the main grid at the PCC with in parallel a local load. The grid-interface inverter is pro-

vided by internal current feedback and PLL to ensure the desired generation of active and
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7.1. System Description

Table 7.1: Interface Protection System thresholds.

Value Tripping time

OV 1.15 p.u. 0.2 s
UV1 0.85 p.u. 0.4 s
UV2 0.4 p.u. 0.2 s
OF 51.5 Hz 1 s
UF 47.5 Hz 4 s

reactive power references during steady-state and grid connected operations, as presented

in 7.4. Furthermore, the embedded control of inverter is designed to work on constant ac-

tive and reactive power reference. Hence, in this section the regulating functions P/f and

Q/V are not considered, because they are required for DER units above the rated power

of 6 kW. Usually the single-phase current source inverters, on which the investigation is

made, are characterized by lower rated power (around 3 kW). Even if the level of power

of each generator is small, this study earns importance by the huge diffusion of this small

DER units (especially PV systems) in the LV distribution network at the residential level.

Many grid-synchronization techniques have been proposed in literature [75, 90, 91].

Regarding the PLL, the following two cases are considered:

1. three-phase SRF-PLL;

2. single-phase SRF-PLL.

The single-phase SRF-PLL case is the main focus of this analysis. Different techniques

for single-phase inverter have been studied in [92, 93]. The PLLs structure used are pre-

sented in Fig. 7.5 and Fig. 7.6. In the single-phase PLL the quadrature component is

generated introducing a second order filter (Eq. 7.1). There are several other possible solu-

tions to realize the quadrature component for a single-phase systems and (7.1) is adopted

for the sake of explanation.


Fs(s) =

1
s2

w2
s

+ s · 2ξws + 1

ws = 2πf rad/sec

ξ = 0.5,

(7.1)

where f is the grid voltage frequency.

In order to study the contribution of each type of PLL, it is possible to consider the

islanded portion of the grid composed by the inverter and a local load, in order to make a
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Figure 7.2: Bode diagram of the single-phase PLL filter.

R1 L1 C1

R2

C2

Figure 7.3: Generic local load with active and reactive power dependencies: PL(f, u) and
QL(f, u).

Tabc
dq Kppll +

Kipll

s
1
s

VRST

Vd

Vq

θ = ω · tω cos

θ∗add I∗peakθ

I∗peak · cos(wt+ θadd)

Regv(s)
v∗dc

vdc
dc-link voltage

Reactive
power

reference

Figure 7.4: Scheme of the embedded current control of the inverter.

simplified approach with the aim to analyze a more complex system composed by different

inverters and loads. The local load has been considered as RLC parallel impedance shown

in Fig. 7.3, where the active PL and reactive QL powers depend both on the frequency

and the amplitude of the voltage waveform, as presented in Chapter 6.

After the transition from grid-connected to islanded operation there must be a balance

between the generated power of the inverter and the absorbed power of the load. That is:
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7.2. Three-phase and single-phase SRF-PLL

Vα

Tαβ
dq Kppll +

Kipll

s
1
s

Vβ

Va Vd

Vq

θω
Tabc
αβ

Vb

Vc

Figure 7.5: Typical three-phase SRF-PLL scheme.

Vα

Tαβ
dq Kppll +

Kipll

s
1
s

delay
T/4

Vβ

Va Vd

Vq

θω

Figure 7.6: single-phase PLL scheme with fixed delay for the quadrature component, where
T is the period of the voltage waveform.

PL(f, u) = PG

QL(f, u) = QG,
(7.2)

where PG and QG are the inverter generated active and reactive powers. Solving the

system in Eq. (7.2), it is possible to evaluate the frequency and amplitude (f∗ and u∗) of

the steady-state point of uncontrolled islanded grid. Then, such solution can or can not

meet the standards. We define:

∆P = (PG − PL)/PL umin < u∗ < umax,

∆Q = (QG −QL)/PL fmin < f∗ < fmax,
(7.3)

with umax = 1.15 p.u., umin = 0.85 p.u., fmax = 51.5 Hz and fmin = 47.5 Hz for permissive

protection thresholds [57] and considering the PL the nominal power value of the system.

As explained in Chapter 6, a set of solutions is found that define the non detection

zone (NDZ), i.e. an area representing the power mismatch (∆P versus ∆Q) at the PCC

where the islanding condition is possible [27]. The PLL scheme have a role on the sizing

of the NDZ with current source PV inverter as reported in Fig. 7.4.

7.2 Three-phase and single-phase SRF-PLL

One of the most common technique for grid synchronization in grid connected inverter

applications is the SRF-PLL. In grid connected operations it is essential to be synchro-

nized to the network voltage at the PCC in order to supply the active and reactive power
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Figure 7.7: Three-phase inverter system connected to the main grid at the PCC, with a
local load.

Ic(θc)
ZL

Zg

+ Vg(θ1)
Vc

Figure 7.8: Single-phase equivalent scheme with the inverter as a current source.

references required. The typical SRF-PLL three-phase model implemented in our analysis

is shown in Fig. 7.5. Where the first system transformation Tabc/αβ allows to generate

a two-phase quadrature rotating system Vαβ from the three-phase rotating system Vabc.

Then a second transformation Tαβ/dq introduces two static quadrature components Vdq

as reported in eq.7.4, considering symmetrical and balance conditions of the Vabc sys-

tem. Other applications have been analyzed under unbalanced and frequency polluted

conditions as in [94–96] and faulty conditions [97].


Va = Vm · ej(ωt)

Vb = Vm · ej(ωt−
2π
3
)

Vc = Vm · ej(ωt+
2π
3
)

Vα = Vm · ej(ωt)

Vβ = Vm · ej(ωt−
π
2
)

Vd = Vm · ejθ

Vq = Vm · ej(θ−
π
2
)

(7.4)

θ =
∫
ω(t)dt.

Using a regulator, for example a PI controller (Kp+Ki/s), it is possible to synchronize

the voltage dq components in order to obtain Vd = Vm and Vq = 0. Under hypothesis of

symmetrical and balance conditions of the Vabc system, the three-phase model in Fig. 7.7

can be represented as a single-phase equivalent as shown in Fig. 7.8. Thus it is easier to

study the contribution of the particular single-phase PLL presented in this work, compared

with the common three-phase PLL scheme.
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Ic(θc)

ZL

ZgVc2

ZL

Zg

+ Vg(θ1)
Vc1

abc
dq Kp +Ki/s

2π50

1/s
θc

VC2a,b,c

VC1a,b,c

VCa,b,c

VCd

VCq +

θc

ωc

Figure 7.9: Scheme of the superposition of the effects on the inverter in Fig. 7.8.

The voltage contributions of the current and voltage generator in Fig. 7.8 are separated

by the superposition of the effects as shown in Fig. 7.9.


VC1,abc =

ZL
Zg + ZL

· Vg =| ZL
Zg + ZL

| ·Vg · ej(θg+ϕ1)

VC2,abc =
ZgZL
Zg + ZL

· IC =| ZgZL
Zg + ZL

| ·IC · ej(θC+ϕ2),

(7.5)

where the ϕ2 is the phase of the local load. Considering the two contributions, we can

describe the PLL behavior as follow:

Vabc = VC1,abc + VC2,abc, (7.6)

Va = G · cos(θ1 + ϕ1) + C · cos(θ2 + ϕ2), (7.7)

where: 
G = Vg· |

ZL
ZL + Zg

|

C = Ic· |
ZL · Zg
ZL + Zg

|,
(7.8)

[
Vd

Vq

]
=

2

3

[
cos(θ2) cos(θ2 − 2π

3 ) cos(θ2 + 2π
3 )

−sin(θ2) −sin(θ2 − 2π
3 ) −sin(θ2 + 2π

3 )

]
va

vb

vc

 . (7.9)
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ϕ2(ωc) sin() Ic | ZL | Kp +Ki/s

ω0

1/s
+

Vq
θc

ωc

Figure 7.10: Scheme of the three-phase SRF-PLL in unintentional islanding operation.

In order to be synchronized with the grid voltage at the PCC, the Vq component

(7.10) is the regulator input. The system under consideration for unintentional islanding

operation is presented in Fig. 7.10 with Zg = ∞ after the disconnection from the main

grid. Thus,

Vq = G · sin(θ1 + ϕ1 − θ2) + C · sin(ϕ2), (7.10)

Vq = C · sin(ϕ2), (7.11)



| ZL |= RL√
1−Q2

F (
ω2
ωr
−ωr
ωc

)2

ϕL(ω2) = arctan
[
QF (

ω2
r−ω2

2
ωrω2

)
]

ωr = 1√
(LLCL)

QF = RL

√
CL
LL
.

(7.12)

This configuration presents a positive feedback that depends on the ϕL(ω2). The

three-phase PLL system is unstable if ω2 6= ωr, which means that there is no equilibrium

point between load and inverter. Such balance condition is found in case of a generation

of active and reactive power matching the load consumption.

The three-phase is than compared with the single-phase SRF-PLL, where the quadra-

ture component Vβ is obtained with the second order filter in Eq. 7.1. This single-phase

PLL guarantees a correct synchronizing with the PCC voltage only with a stable frequency

at 50 Hz. In presence of a frequency deviation from the nominal value, the filter intro-

duces a ϕF 6= −π/2 as presented in the Bode diagram in Fig. 7.2. However, this specific

PLL implementation is suitable for grid-connected applications, because in presence of the

main bulk system, the frequency is fixed at the nominal value and the possible frequency

temporary variations are usually near to 50 Hz value (±0.5 Hz); therefore do not introduce

an error in the Vβ that compromises the grid synchronization.
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Consider the same consideration of superposition of the effects made for the three-phase

PLL. The single-phase PLL system is defined:

Vα = G · ej(θ1+ϕ1) + C · ej(θ2+ϕadd+ϕ2)

Vβ = WF ·G · ej(θ1+ϕ1+ϕF ) +WF · C · ej(θ2+ϕadd+ϕ2+ϕF )
, (7.13)

[
Vd

vq

]
=

[
cos(θ2) sin(θ2)

−sin(θ2) cos(θ2)

][
Vα

Vβ

]
, (7.14)

Vq =−G · cos(θ1 + ϕ1) · sin(θ2)+

− C · cos(θ2 + ϕadd + ϕ2) · sin(θ2)+

+WF · cos(θ1 + ϕ1 + ϕF ) · cos(θ2)+
+WF · C · cos(θ2 + ϕadd + ϕ2 + ϕF ) · cos(θ2).

(7.15)

Considering islanding operation (Zg =∞ ):

Vq =− C · cos(θ2 + ϕadd + ϕ2) · sin(θ2)+

+WF · C · cos(θ2 + ϕadd + ϕ2 + ϕF ) · cos(θ2),
(7.16)

Vq =− C

2
[sin(2θ2 + ϕadd + ϕ2)− sin(ϕadd + ϕ2)+

−WF · sin(
π

2
+ 2θ2 + ϕadd + ϕ2 + ϕF )

−WF sin(
π

2
+ ϕadd + ϕ2 + ϕF )].

(7.17)

The single-phase PLL model in islanding operation is presented in Fig. 7.11.

Substituting WF = 1 and ϕF = −π/2 the system is reduced to the three-phase PLL

scheme in in Fig. 7.10. It is demonstrated in the simulations (Section 7.3) that during

islanding operation the single-phase configuration, when the frequency deviates from the

nominal value the positive feedback is reduce by the presence of the filter, starting from

the same ϑadd condition in comparison with the three-phase PLL case.

7.3 Simulations

The validation of the study is proposed using a time domain Simulink/Matlab model of

a current controlled voltage source inverter in parallel with a local load (RLC parallel).
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Figure 7.11: Scheme of the single-phase SRF-PLL in unintentional islanding operation.

The inverter embedded control has been designed following the scheme in Fig. 7.4, in

which the inverter power injection (PG - QG) is regulated by PLL synchronization and

current control loop. In order to compare the effects, different unintentional islanding

events have been simulated using the two PLL selected configurations in different power

balance condition with the load. The maximum power mismatch (∆P = (PG − PL)/PN

and ∆Q = (QG − QL)/PN with PN as the load nominal power) has been considered in

order to allow unintentional islanding operations in which voltage amplitude and frequency

are within the protection thresholds stated by the standard.

In particular, the initial power mismatch ∆P −∆Q corresponds to specific reference

values of Ic and ϑadd in the inverter current control, which leads to the islanding voltage

amplitude V ∗ and frequency f∗. Therefore, the limits of the NDZ have been determinate

considering this constrains Vmin ≤ V ∗ ≤ Vmax and fmin ≤ f∗ ≤ fmax. The simulation

results allowed to determinate an enlargement of the NDZ for the single-phase PLL respect

to the three-phase PLL, as presented in the analysis due to the compensation of the positive

feedback in presence of ϕF (ω2) described in Fig. 7.11. This means that with this single-

phase PLL configuration, the protection limits are respected by wider power unbalance

conditions on the plane ∆P - ∆Q. In Fig. 7.12 are presented the NDZ of the single

and three-phase PLL contributions, where the ∆P - ∆Q before the islanding event is

presented in terms of Ic - ϑadd in order to validate the study referring to the analytical

model presented in Fig. 7.11. Thus, with this specific single-phase PLL, the ϑadd range

which allows unintentional islanding conditions is enlarged by the contribution of the filter

in Eq. 7.1 respect to the case of three-phase PLL system.

This result leads to a wider NDZ in the plane ∆P −∆Q for the inverter adopting this
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Figure 7.12: Analytic area resulting of simulink simulations; Ic - ϑadd combination that
allows islanding operations.

Figure 7.13: Experimental test-bed equivalent single-phase configuration. The Inverter
controlled as a PV DER (PV Inverter) and the passive load (ZL) are separated by the
emulated grid using a manual switch.

specific single-phase SRF-PLL, as demonstrated by the experimental result of a lab-scale

prototype in Section 7.4.

7.4 Experimental setup

The test-bed used to perform experimental validations is reported in Fig. 7.13. The PV

inverter is equipped with a current control loop and the PLL bandwidth is about 10 Hz.

The nominal phase voltage is 230 Vrms and the nominal power is 15 kVA, however the

following tests have been performed at reduced voltage and current levels. In the tests, we

have used Vb = 150 Vrms and Ib = 8.5 Arms as the base quantities to evaluate the per-unit

values.
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Figure 7.14: Analytic area resulting of
simulink simulations; Ic - ϑadd combination
that allows islanding operations.

Figure 7.15: Analytic area resulting of
simulink simulations; Ic - ϑadd combination
that allows islanding operations.

The experimental results confirm a different behavior of the inverter depending on the

PLL implementation: a single-phase with a filter-delay PLL and a three-phase PLL. In

Fig. 7.14 and 7.15, the NDZ comparison in the plane ∆P −∆Q is presented.

Figure 7.16: Test 5 using three-phase PLL,
output voltage va(t) (50V/div), inverter out-
put current ia(t) (10A/div), 10ms/div, is-
landing operation frequency 48.1 Hz and volt-
age 135 Vrms (0.90 p.u.).

Figure 7.17: Test 5 single-phase PLL, output
voltage va(t) (50V/div), inverter output cur-
rent ia(t) (10A/div), 10ms/div, islanding op-
eration frequency 49.4 Hz and voltage 135.5
Vrms (0.90 p.u.).

In Tab. 7.2 and 7.3 are presented the experimental results. The case with single-phase

PLL presents a wider NDZ in the plane ∆P - ∆Q, as shown in Fig. 7.15. In Fig. 7.16 and

7.18 the waveform of the islanding operations presents a higher values of frequency, while

in Fig. 7.17,7.19 the tests have been repeated starting from the same ∆P - ∆Q, but the

frequencies are closer to the nominal frequency. This effect is due to the presence of the

filter for the quadrature component that reduce the deviation of the frequency from the

nominal value.
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Figure 7.18: Test 11 three-phase PLL, out-
put voltage va(t) (50V/div), inverter output
current ia(t) (10A/div), 10ms/div, islanding
operation frequency 52.3 Hz and voltage 145
Vrms (0.97 p.u.).

Figure 7.19: Test 11 single-phase PLL, out-
put voltage va(t) (50V/div), inverter output
current ia(t) (10A/div), 10ms/div, island-
ing operation frequency 51.0 Hz and voltage
146.1 Vrms (0.97 p.u.).

Table 7.2: Test with three-phase PLL.

f [Hz] Vrms [p.u.]
Test ∆P ∆Q island island

1 0.160 -0.002 47.7 1.13
2 0.145 -0.055 51.4 1.15
3 -0.159 0.029 51.4 0.85
4 -0.151 0.070 47.5 0.86
5 -0.108 0.052 48.1 0.90
6 -0.054 0.004 51 0.94
7 0.089 -0.032 50.6 1.07
8 0.100 0.007 47.9 1.10
9 0.108 0.037 45.8 1.09
10 -0.027 0.062 46.1 0.97
11 -0.023 -0.024 52.3 0.97
12 0.052 -0.075 54.4 1.04
13 -0.236 0.064 49.2 0.79

7.5 Conclusions

This chapter has proposed an analysis of the interface protection system NDZ for un-

intentional islanding operations, considering the mismatch ∆P − ∆Q between load and

generation. We have shown the single-phase PLL important role in the sustain of islanding

conditions compared with a typical three-phase PLL. In particular, the investigation was

focused on the single-phase SRF-PLL with orthogonal component obtained by a fixed filter

(nominal condition 50 Hz). The size of the ∆P −∆Q NDZ is not negligible and it should

be analyzed for the future generation of LV distribution grids with large penetration of

renewable energy sources.
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Table 7.3: Test with single-phase PLL.

f [Hz] Vrms [p.u.]
Test ∆P ∆Q island island

5 -0.108 0.052 49.4 0.90
9 0.108 0.037 48.6 1.10
11 -0.023 -0.024 51 0.97
13 -0.236 0.064 50 0.79
14 0.181 0.078 47.5 1.14
15 0.161 -0.096 51.4 1.13
16 -0.157 0.125 47.5 0.85
17 -0.162 -0.002 51.5 0.85
18 -0.107 -0.042 52.3 0.91
19 0.070 -0.096 52.1 1.07
20 0.128 0.145 46.1 1.09
21 -0.124 0.169 46.3 0.87
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Chapter 8

Temporary Unintentional

Islanding

The number of distributed energy resources (DER) units connected to medium and low

voltage (MV and LV) distribution grids through inverters has increased and new intro-

duced European standards regulate the connections of active users to the grid, in particular

during temporary variations of voltage and frequency [19, 20, 59]. These standards, with

some country-level ones, state the support of DERs to voltage and frequency regulations

via P/f and Q/V droop characteristics. Furthermore, these grid codes have recently

extended the frequency range of normal operation of DERs.

Inverters introduce fast dynamics into the grid and they could continue to feed parts

of the grid also when the mains disconnect. In this case, undesired islanded portions of

the grid can still be energized [22, 98].The temporary islanding operation, below 600 ms,

caused by the automatic re-closing procedure is also considered herein, because it may

increase the risk of possible out-of-synchronism reconnection [27, 29]. This automatic

procedure is adopted in some distribution networks of European countries and has the

purpose of fast localization and separation of the faulted line segment of a MV distribution

network [57,99]. In order to avoid out-of-synchronism reconnection during the main switch

re-closing, unintentional islanded conditions must be detected by the DERs, which have

immediately to disconnect from the grid [23,39].

In this chapter, it is shown that the risk of temporary unintentional islanding can

potentially increase with the introduction of P/f and Q/V droop characteristics. Such

risk may also change according to the speed of such regulators, i.e. the faster the droop

regulators, the greater the islanding probability.
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Figure 8.2: P/f and Q/V droop characteristics for inverter [57]; Qmax and Qmin are
respectively 0.483 · PG,ref and −0.483 · PG,ref .

8.1 System Description of Temporary Islanding

The considered scenario includes a LV inverter connected to the main grid and having a

local loads as Fig. 8.1 shows. This is a three-phase system, but similar results can also

be obtained for the single-phase case [27, 34]. The inverter has internal current/voltage

feedbacks and phase-locked loop (PLL) to ensure the desired generation of active and

reactive powers while grid-connected.

Two Cases are considered for the power generation:

� Case I for an inverter with constant active and reactive power references PG,ref and

QG,ref ;

� Case II for an inverter with P/f and Q/V droop characteristics as in Fig. 8.2.

After the breaker opening at the point of common coupling (PCC) in Fig. 8.1, the

active PG and reactive QG powers of the inverter balance those of the load, PL and QL:PL(f, u) = PG(f)

QL(f, u) = QG(u)
(8.1)
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where the load has been modeled with its active PL and reactive QL powers as functions

of the frequency f and the voltage amplitude u, as in [47]. The permissive limits of [57]

are considered: steady-state operation is allowed within 0.85 ÷ 1.15 p.u. for the voltage

and within 47.5÷ 51.5 Hz for the frequency.

After the disconnection and the initial transient, a new operating point can be reached.

This steady-state point is the solution of the system (8.1) in terms of frequency and voltage,

that is (f?, u?). If f? and u? remain within the previously defined voltage and frequency

ranges, then a permanent unintentional islanding is possible. In grid-connected operations,

active and reactive powers flow toward the grid because of imbalances between load and

generation: these powers are ∆P = PG − PL and ∆Q = QG − QL. Considering these

imbalances, a set of solutions is found that defines the NDZ on the plane ∆P versus ∆Q

where the islanding condition is possible.

The temporary islanding problem has been introduced in [27] as the problem of under-

standing if the disconnection transient in terms of frequency f and voltage u of the islanded

system fulfills the standard thresholds, for a defined time interval after the break opening.

It is analyzed if during a 600 ms transient, due to the automatic re-closing procedure, the

islanding operation can be maintained according to the protections of [57]. However, for

the temporary islanding the voltage and frequency have to be within the allowed ranges

in an established time, and so the speeds of the P/f and Q/V droop regulations play

an important role on the ∆P − ∆Q region shaping. Describing these speeds with two

response times of the droop control loops, respectively τp and τq, it has been verified that

larger time constants lead to smaller NDZ. This phenomenon is qualitatively shown in

chapter 6 at section 6.2.1 and it should be adopted also for the temporary unintentional

islanding operations. Note that, when studying the temporary islanding during the auto-

matic re-closing time, only the voltage protections may trip within the intervention time

of 600 ms [57].

8.2 Dynamic Analysis for NDZ

In this section, the islanded system of Fig. 8.1 is modeled to analytically derive the

NDZ. The inverter is managed with multiple control loops as in Fig. 8.3. It has an inner

current controller that ensures the tracking of two current references which are evaluated

by outer power loops that track power references from the P/f and Q/V droop regulators.

Moreover, the SRF-PLL (synchronous reference frame phase-locked loop) is included in

order to synchronize the current regulator to the output voltage. This PLL evaluates also

the frequency and voltage amplitude for the droop regulation scheme. Here, the active

power loop of the inverter is an abstraction to simplify the analysis and to describe the
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Figure 8.3: Control architecture of the inverter with active and reactive power loops and
P/f and Q/V droop functions.

behavior of a real PV inverter.

8.2.1 Modeling of the Inverter with Constant Power

Now a dynamic model for Case I is proposed to predict the temporary NDZ. This model

exploits the time scale separation of the dynamics of the system in Fig. 8.1, meaning

that there are fast dynamics due to the current and power regulators and the load that

are negligible to describe the 600 ms transient for the automatic re-closure procedure and

others that are slower, as those due to the PLL. With this observation, we can provide

a static description of the faster dynamics, i.e. the current and power regulation loops,

while all the dynamic contributions of this model are related to the PLL [29]. These

approximations will be validated with simulations.

In a SRF-PLL that is synchronized to the q component of the voltage [86], the d

component can be used as measure of voltage amplitude up:ud = u cos ξ , up

uq = u sin ξ
(8.2)

where u is the actual voltage amplitude at the inverter output and ξ is the phase shift

between the actual voltage space vector and the PLL reference frame.

If the current and power loop dynamics are neglected as said before, the feedback

powers are always equal to their reference powers (the tracking error is always zero):

SG,ref = PG,ref + jQG,ref =
3

2
up

[
uejξ

ZL(f)

]∗
=

=
3

2

u2 cos ξe−jξ

ZL(f)∗

(8.3)

where ∗ is the complex conjugation operation and its argument is the space vector of
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8.2. Dynamic Analysis for NDZ

the inverter current in the PLL reference frame. The small-signal model is obtained by

linearized in the grid-connected operating point just before the grid transition. The overall

model can be described with the Laplace transfer functions Hδf (s) and Hδu(s):

Hδf (s) =
L
[
f̂
]

L
[
δ̂
]

Hδu(s) =
L [û]

L
[
δ̂
] (8.4)

where the input δ̂ of this model is a phase perturbation that triggers the PLL transient

caused by the sudden cancellation of the grid current. The expressions in (8.4) can be

used to evaluate the PLL frequency and voltage amplitude for a certain time t̄ after the

grid disconnection or to predict the whole transient after the disconnection, exploiting

the Laplace anti-transform. This model description and a possible extension in order to

account the droop regulations can be found in [29].

8.2.2 Analytic results for constant power inverter

A validation of the model of section 8.2.1 based on Matlab/Simulink simulations is now

proposed. The simulation model is a detailed description of the architecture of Fig. 8.1

and 8.3. Nominal voltage amplitude is u0 = 150 VRMS (phase to neutral) and nominal

frequency is f0 = 50 Hz. This choice has been done to have the same parameters both in

simulation and for the experiments of Section 8.4.

The closed-loop bandwidths are: 5 Hz for the SRF-PLL, 7 Hz for the active power

control loop and 5 Hz for the reactive power control loop. The load, i.e. ZL, is a set

of passive components, including in parallel connected a resistor R1, an inductor L1, a

capacitor C1 and a series of a resistor R2 and a capacitor C2, where their values are in

Tab. 8.1.

Table 8.1: Load parameters: base impedance is at the nominal value of voltage amplitude
and frequency u0 and f0.

R1 = 18 Ω = 0.798 p.u.

R2 = 82.5 Ω = 0.174 p.u.

L1 = 87.5 mH = 0.534 p.u.

C1 = 14.4µF = 0.065 p.u.

C2 = 60µF = 0.271 p.u.

A simulation of the disconnection transient is proposed in Fig. 8.4 in terms of frequency

f measured by the PLL and voltage amplitude u, with ∆P = 0.2 p.u. and ∆Q = 0.4 p.u.
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Figure 8.4: Time-domain comparison between the small-signal model and a detailed sim-
ulation: the frequency measured by the PLL and the actual voltage amplitude for a grid
disconnection with ∆P = 0.2 p.u. and ∆Q = 0.4 p.u. for Case I [29].

(base power is the apparent load power). In Fig. 8.4, it is shown the good matching

between the mathematical model, i.e. (8.4), and the simulation results: only a fast ini-

tial transient is not described in the small-signal model because of the approximations

described in Section 8.2.1.

Evaluating the Laplace anti-transform of Hδu(s) · δ̂, the voltage, for instance, at t̄ =

600 ms can be set equal to the higher or lower protection thresholds and the resulting

system can be solved backward in order to evaluate δ̂ and then back again to ∆P and

∆Q (NDZ border). Therefore, it is possible to identify the analytical NDZ (∆P − ∆Q

plane) which includes the temporary unintentional islanding region [29]. An example of

these results is in Fig. 8.5 for the constant power inverter, where the red solid lines

delimit the NDZ. These results are obtained considering the voltage within 0.4÷ 1.15 p.u.

at t̄ = 200 ms and within 0.85 ÷ 1.15 p.u. at t̄ = 400 ms and t̄ = 600 ms. This is an

approximation because the small-signal model can be applied only a finite number of t̄,

while the inverter protections continuously check the voltage in the 0 ÷ 600 ms interval;

for analytic, simulation and experimental results [29].

The NDZ obtained with the small-signal model is compared to one obtained with simu-

lation in Fig. 8.5. Blue dots are unintentional islanded operations verified by simulations,

checking if the voltage remains within the protection ranges for all the interval 0÷600 ms.

In these simulations, also frequency limits have been included to maintain the islanded

operation: such limits are 45 ÷ 55 Hz, instead of the protection thresholds (47.5 Hz and

51.5 Hz) which time intervention is higher (respectively 4 s and 1 s) than the temporary

islanding time considered (600 ms). The comparison shows a good agreement between the

analytic approach and the simulation-based results in terms of NDZ. The missing region

within the analytic borders is due to the frequency limits (not tested analytically), while

the voltage thresholds are well approximated [29].
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Figure 8.5: Analytic and simulation NDZs below 600 ms for Case I (powers normalized to
the nominal load power) [29]

8.3 Temporary Islanding Simulation Results

Simulations are presented to describe how the temporary unintentional islanding risk in-

creases introducing the P/f and Q/V droop functions and with respect to their speeds.

The system in Fig. 8.1 is simulated with the same control architecture described in the

section 8.2 (also same parameters). The NDZs are evaluated with the same method of

section 8.2.2.

The NDZs for an inverter with P/f and Q/V droop functions with different rise times

of the active τp and reactive τq power loops are in Fig. 8.6. As presented in chapter

6, the results of Fig. 8.6 clearly show that the risk of unintentional islanding operation

increases introducing droop functions. Moreover, the considerations in chapter 6.2.1 are

also visible here, since the ∆P −∆Q area widens more with faster P/f and Q/V droop

controllers (i.e. for smaller τp and τq). With other words, the temporary unintentional

islanding risk increases with faster systems. However, in some cases fast droop regulation

may destabilize the autonomous system, leading to a reduction of the temporary NDZ [29].

Examples of time-domain simulations are reported in Fig. 8.7 for the disconnection

transient in terms of the grid voltage and PLL frequency. They are for the same ∆P =

0.29 p.u. and ∆Q = −0.14 p.u. and for different τp and τq rise times.

8.4 Temporary Islanding Experimental Results

The lab-scale three-phase prototype has been used for the experimental validation [27,34].

The configuration is described in chapter 5, where a switch allows the islanding operation
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Figure 8.6: Simulation results for ∆P −∆Q area of unintentional islanding (for a 600 ms
time) when the inverter operates with droop characteristics according to [57] for different
power response times (Case IV): a) with τp = 5 s and τq = 5.8 s; b) with τp = 1 s and
τq = 1.5 s and c) with τp = 0.24 s and τq = 0.35 s (∆P and ∆Q are normalized to the
nominal load power) [29].

by isolating the PV inverter and the passive load ZL from the main grid. The nominal

phase voltage is 150 Vrms and the nominal line frequency is f0 = 50 Hz and the same load

described in Section 8.2 for the simulation analysis is used here.

The control scheme for a typical PV application with active and reactive power closed-

loop controllers and SRF-PLL (in this implementation the PLL closed-loop bandwidth is

equal to 4 Hz) is reported in Fig. 8.8.

Experimental results show an enlargement of the NDZ in the plane ∆P −∆Q in Fig.

8.9, in which tests indicated with a blue dot represent unintentional islanding operation

within 600 ms. Furthermore, each test is performed with different τp and τq response

times of the P/f and Q/V droop characteristics. Some disconnection transients from the

experimental setup are reported in Fig. 8.10 for ∆P = 0.9 p.u. and ∆Q = −0.2 p.u. for

the same conditions of Fig. 8.9.

These results confirm that the risk of unintentional islanding increases using droop

control for supporting functions with respect to the case of a constant power inverter.

Moreover, the enlargement of the NDZ depends on the time response of the inverter

regulation functions, i.e. the fast droop controllers (small τp and τq) lead to wider NDZs.

However, potential increase of the temporary unintentional islanding risk due to fast droop

regulations have been shown. It has to be reported that, in some cases, especially with

large unbalance conditions, this is not always true. In some cases the temporary islanding

risk may decrease with faster droop controllers because they may destabilize the islanded

system [29]. This can be due to several aspects that can be different for different PV

installations in the distribution grid, for example due different control implementation,

bandwidths of the inner inverter regulators, local load structures, etc.
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Figure 8.7: Test of Fig. 8.6 for ∆P = 0.29 p.u. and ∆Q = −0.14 p.u.: examples of
temporary islanded operation (simulation results) a) with τp = 5 s and τq = 5.8 s; b) with
τp = 1 s and τq = 1.5 s and c) with τp = 0.24 s and τq = 0.35 s (∆P and ∆Q are normalized
to the nominal load power) [29].
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Figure 8.9: Experimental test results in the plane ∆P −∆Q with different response times
of the droop characteristics: a) constant power references, b) τp = 5 s and τq = 7.5 s and
c) τp = 2 s and τq = 3.5 s; blue dot tests allow temporary islanding operations [29].
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droop control with τp = 5 s and τq = 7.5 s and c) for τp = 2 s and τq = 3.5 s; v(t) →
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Figure 8.11: Experimental test results for the proposed control technique in order to reduce
the NDZ in the plane ∆P −∆Q with different response times: a) τp = 5 s and τq = 7.5 s
and b) τp = 2 s and τq = 3.5 s; blue dot tests allow temporary islanding operations.

8.5 Conclusions

The proposed analysis gives an evaluation of the ∆P −∆Q region where temporary un-

intentional islanding can occur, the case of 600 ms automatic re-closure procedures is

investigated. The analysis shows that the risk of temporary unintentional islanding in-

creases introducing P/f or Q/V droop regulation to the control of DERs. Moreover, the

speed of the P/f and Q/V droop functions has a strong impact on the ∆P −∆Q area:

the faster the time responses, potentially the larger the risk of temporary islanding.

These results are shown by small-signal modeling, simulation and experimental valida-

tions. The understanding of the effects of droop characteristics and their time responses

stated by the standards for PV connection is strongly advisable for the future generation

of LV distribution grids with large penetration of renewable energy sources, providing

insights on design criteria for the DER connections and on their settings.
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Chapter 9

Active Anti-islanding Detection

Method

This analysis refers to the complex scenario, where several photo-voltaic (PV) sources are

connected to the medium and low voltage (MV and LV) distribution networks. Island-

ing detection methods are essential in the design of the inverter control strategies, with

the role of recognizing the islanding conditions and disconnecting the islanded renewable

energy resources (DERs). Islanding protection methods are classified into passive and

active, where the passive ones detect the islanding operations setting thresholds on spe-

cific measured parameters as frequency and voltage amplitude, while the active methods

are based on a particular inverter control designed to force a certain system parameter to

drift once the islanding event occurs [42] [100]. Usually, manufacturers protect DERs from

the unintentional islanding with active methods, which are not regulated by standards as

they may be different for each manufacturer to another and they are not mandatory in all

countries.

In this thesis an active frequency shift anti-islanding (AI) method has been consid-

ered, such as one of the most widely used in the DER inverter interfaced systems, in order

to interrupt unintentional islanding operations. In particular, the Sandia frequency shift

(SFS) active protection algorithm has been implemented in the embedded inverter control

system. This active anti-islanding detection protection is characterized by a positive feed-

back that forces the frequency drifting in islanding conditions. It has been establishes a

hardware in the loop (HIL) method to assess the interactions between active anti-islanding

methods and grid codes requirements, as supporting functions in steady state conditions

and even during fast transient, in order to understand and predict the behavior of interface

protection system (IPS) and DER during islanding operations.

In order to simplify the analysis and study the interactions between the active anti-

islanding method and the control actions of the PV inverters, the test-case shown in Fig.
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Figure 9.1: Test-case adopted to study unintentional islanding operations on a LV system
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Figure 9.2: Active and reactive power regulations stated by standards. These droop
regulating actions modify the active power in (a) and reactive power in (b) of the inverter
output set-point due to local frequency and voltage amplitude measurements.

9.1 has been adopted, where a PV three-phase inverter and a local load are considered.

In particular, the performance of the SFS method has been tested taking into account

the load frequency dependence, as in chapter 6. It should be noted that this is not taken

into consideration in the design of active methods such as the SFS method, which is tested

on a parallel-connected RLC load, according to IEEE Std 1547-1 [39]. This resonant load-

ing condition is assumed to be the worst case in terms of unintentional islanding detection.

However, the loads connected at the distribution level present different characteristics in

active and reactive power dependency on voltage frequency and amplitude, with dynamic

behavior depending on the type, being residential, commercial or industrial [47] [48].

9.1 Sandia Frequency Shift Implementation

Chapter 6 addressed effects of power regulating actions (P/f , Q/V ) during unintentional

islanding, demonstrating a non-detection zone (NDZ) increase with respect to the case of
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9.1. Sandia Frequency Shift Implementation

Figure 9.3: Inverter output current waveform using Sandia frequency shift anti-islanding
method.

constant DER generation.

Here, the DERs SFS active anti-islanding protection is included in the unintentional

islanding NDZ analysis. When the SFS is activated, the inverter injected current presents

a slightly distorted waveform in order to drift the frequency outside the protection limits.

As reported in Fig 9.3, the implementation of the SFS method is based on the use of a

zero-current segment per semi-cycle for a time tz, defined by:

tz =
1

2
[(1/f)− (1/(f + δf))], (9.1)

where f is the measured grid voltage frequency and δf is the difference between f and the

actual frequency during the positive semi-cycle. In this implementation δf = 1.5 during

grid-connected condition [48] [101].

The ratio between tz and half of the grid voltage period Tv is referred as the chopping

fraction cf , defined by:

cf =
2 · tz
Tv

= 2 · f · tz. (9.2)

The SFS introduces a positive feedback to increase the cf and tz in order to destabi-

lize the unintentional islanded system increasing the deviation of the frequency from the

nominal value [101]. The chopping factor as a function of the voltage measured frequency
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Figure 9.4: Inverter control scheme with active and reactive power loops based on the P/f
and Q/V droop regulation and the SFS active anti islanding method.

is given by:

cf = cf0 + k(f − f0), (9.3)

where cf0 is the nominal chopping factor during the grid-connection , i.e. grid connected,

and k is a gain factor which accelerates the frequency deviation in islanding operations; in

this work we consider cf0 = 0.03 and k = 0.064 in order to detect the islanding condition

according the IEEE standard [39].

When islanding occurs in presence of a parallel RLC loading condition and a DER

constant generated power, the SFS control algorithm increases the frequency of the output

current as a consequence to maintain a constant chopping fraction. Therefore, the voltage

follows the frequency variation, drifting outside the protection thresholds and the islanding

condition can be detected [39].

The model of the DER inverter presented is compliant with the droop regulations

P/f and Q/V required by the standard [57]. The inverter is equipped with an inner cur-

rent loop (∼ 1kHz) and external active and reactive regulation loops in order to provide

the correct power references imposed by the P/f and the Q/V functions. The inverter

synchronization system with the grid voltage has been implemented using SRF-PLL (Syn-

chronous reference frame - phase locked loop) system.
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9.2 Inverter Regulation Speed Response

For the sake of investigation, the possibility to change the active and the reactive power

regulation speed response has been considered demonstrating the importance of the speed

regulation in terms of NDZ in presence of active anti-islanding protection. This imple-

mentation is relevant for the upcoming grid codes and standards requirements, because

it shows the important role of the speed response of the inverter. As matter of facts, the

lately introduced grid code requires an inverter regulation which is fast as technical fea-

sible in order to support the power system stability. However, the following results show

how this requirement plays negative role in terms of unintentional islanding risk allowing

the presence of the protection NDZ even when an active anti-islanding method activated.

Two speed responses for active and reactive regulation have been selected to perform

the analysis:

1. ”Slow regulation”: τP = 2s, τQ = 10s,

2. ”Fast regulation”: τP = 0.5s, τQ = 1.1s,

where τP and τQ are the settling time of active and reactive power regulations on a 1 p.u.

step variation of the power set-point values, calculated in grid connected conditions.

The τP , τQ of the ”Slow regulation” have been selected because they represent the

maximum limit conditions imposed by standard [57]. Meanwhile, the ”Fast regulation” is

an arbitrary faster regulation.

The active SFS anti-islanding protection has been implemented in the current loop of

the inverter control scheme, as shown in Fig. 9.4. The SFS chopping factor, reported in

(9.3), modifies the angle θP of the PLL system. This implementation is based on the zero-

current segment per semi-cycle introduced in the dq current components, which allows the

frequency shift and the detection of the islanding operation in the test-bench conditions

required by IEEE standard [39].

9.3 Case Study: Droop function and SFS Interfaced With

a Real Protection System in HIL Simulations

The possible interactions between P/f and Q/V droop regulating functions and the SFS

active anti-islanding detection method are analyzed using four case studies:

Case I) ”Slow regulation” droop functions and SFS disabled;

Case II) ”Slow regulation” droop functions and SFS enabled;
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Figure 9.5: Load used for the HIL simulation setup.

Case III)”Fast regulation” droop functions and SFS disabled;

Case IV) ”Fast regulation” droop functions and SFS enabled.

Thus, the importance of the power regulation speed response is addressed comparing

the test case I with case III and case II with case IV. The analysis has been carried out

with hardware in the loop (HIL) simulations, where an employed setup comprises the real

time simulator OP4500 by OPAL-RT, a signal amplifier in and a commercial IPS.

The model of PV-based DER unit is implemented with active and reactive power

control logics, based on the regulating droop functions stated by the standards, and on an

embedded three-phase SRF-PLL synchronization system [20, 57]. The models presented

have been validated comparing to lab-scale tests, using the same configurations and control

schemes. Thus, it proposes an investigation on a suitable platform to analyze the active

anti-islanding protection system and the DER control actions interfaced with a real IPS.

The general analysis, presented in this chapter, is suitable for a generic local load with

active and reactive power dependencies on voltage amplitude and frequency PL(f, u) and

QL(f, u). In this work, we consider a local load that consists of a set of passive components,

as shown in Fig. 9.5.

The load is represented by a parallel-connected RLC in parallel with a series-connected

RC, as described in chapter 6.

9.4 Simulation Results

The HIL tests report important results in the investigation of the droop regulating func-

tions role in presence of the active anti-islanding SFS protection. Results of Fig. 9.6 shows

that the combination of P/f and Q/V regulations and control speed response may cancel

the effect of the SFS protection.

The comparison among of results reported in Fig. 9.6a and 9.6b shows that the active

anti-islanding protection efficiency in the islanding detection in case of ”Slow regulation”

of the inverter control system. In case I of Fig. 9.6a, the droop regulation allows the

inverter to change its power references. Therefore, it is possible to create a matching of
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(a) (b)

(c) (d)

Figure 9.6: NDZ cases in which the ” ∗ ” symbols represent an permanent unintentional
islanding condition, while the ”◦” symbols represent the intervention of the IPS. (a) NDZ
with ”Slow regulation” droop functions and SFS disabled; (b) NDZ with ”Slow regulation”
droop functions and SFS enabled; (c) NDZ with ”Fast regulation” droop functions and
SFS disabled; (d) NDZ with ”Fast regulation” droop functions and SFS enabled.

power generated and absorbed by the load without the tripping of the IPS. Using the

droop regulations as grid supporting functions, the NDZ of the IPS is compromised with

multiple cases of unintentional islanding operations, depending on the speed response of

the inverter control power loops as shown comparing results of Fig. 9.6a to Fig. 9.6d.

From the case of sensible NDZ size of Fig. 9.6a, the activation of the SFS ensures

a frequency deviation, which allows the intervention of IPS, preventing any permanent

unintentional islanding operation. This is due to the difference between the control speed

regulation of the inner current loop and the external power loops, which allows the SFS

action before the intervention of the P/f and Q/V functions.

The main focus is related to the important result reported in Fig. 9.6d, in which SFS
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active anti-islanding protection and the droop regulations have been activated and, in

particular, the speed response of the power control are set as ”Fast regulation”.

In this conditions, the combination of the P/f andQ/V functions and ”Fast regulation”

cancels the SFS function of detecting the islanding condition forcing a frequency drift. To

explain this behavior, we considered the fundamental component of the distorted inverter

output current which leads the voltage (if unity power factor) by the angle ΦSFS [24],

given by:

ΦSFS = −π
2

[cf0 + k(f − f0)]. (9.4)

Therefore, the SFS protection changes the current angle ΦSFS depending on the fre-

quency value. The change of ΦSFS due to frequency variations causes active and reactive

power deviations, which are compensated by the ”Fast regulation” droop functions. There-

fore, the NDZ size reported in Fig. 9.6d is slightly changed from the case III in Fig. 9.6c,

where the SFS is deactivated. Only few tests have changed their status from islanded to

detected.

As shown in Fig. 9.7, the introduction of the SFS in the inverter control scheme may

not be the solution in unintentional islanding detection in presence of ”Fast regulation”

droop functions. This figure shows the islanding transients of a particular power unbalance

condition: ∆P = 0.05 p.u. and ∆Q = −0.1 p.u. It also reports the signal StartIPS , which

is the feedback signal of the real IPS of the HIL setup. The StartIPS is set to zero if the

IPS does not detect the voltage amplitude and frequency out of the standard limits. At

the instant that one threshold triggered, the IPS generates a sinusoidal StartIPS signal

(50 Hz), and, after the required tripping time the protection, will disconnect the inverter.

In Fig. 9.7a, the islanding is detected by the IPS due to an under voltage transient and

the DER is disconnected. Besides, in Fig. 9.7b, the same initial conditions (∆P −∆Q)

are applied, but the phase shift introduced by the SFS is compensated by the ”Fast reg-

ulation” droop functions allowing the islanding operation and the IPS does not have the

possibility to disconnect the inverter.

Therefore, the positive feedback introduced by the implemented anti-islanding algo-

rithm is compensated by the ”Fast regulation” of the droop functions, which have been

conceived to support the grid stability.

The leaking of regulation and standardization on the active protection methods do

not help the unintentional islanding detection. Therefore, a coordination between the

regulation droop functions P/f and Q/V and protection system is needed.
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(a) Case II: ”Slow regulation” with SFS

(b) Case IV: ”Fast regulation” with SFS

Figure 9.7: Role of the speed response of the inverter power regulations combined with
the SFS anti-islanding protection in the HIL test ∆P = 0.05 and ∆Q = −0.1. (a) ”Slow
regulation” of the droop functions P/f and Q/V and SFS enabled; (b) ”Fast regulation”
of the droop functions P/f and Q/V and SFS enabled. (V oltage = 200 V/div, StartIPS
= 5 V/div, FrequencyPLL = 2 Hz/div, time = 500 ms/div).

9.5 Conclusions

The results presented describe the complex scenario of the increasing penetration of DER

units and as consequence the unintentional islanding probability. Indeed, the active AI

algorithm implemented is not always sufficient to detect the islanding conditions and the

inverter is not disconnected by the IPS.

A critical aspect in the unintentional islanding detection is a coordination between

the speed regulation of the droop functions and the active AID protection system. The
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reason of this analysis is to emphasize the importance of a standardization of protection

and regulation functions, in particular with the speed response of the P/f and Q/V droop

functions. The speed of active and reactive power regulation seems to be a key factor on

the sizing of the unintentional islanding NDZ in general, with or without the active SFS

protection.

Therefore, the results offer a view of a possible scenario that needs new certification

procedure and connection rules for upcoming guidelines and standards.

122



Chapter 10

Multiple Inverter Case

The following analysis addresses on the possible interaction between two distributed re-

newable resources (DERs). This chapter addresses the role of the power regulation speed

in a more complex scenario respect to the previous chapters. Two inverters are considered

in order to better understand some basic phenomena in the distribution electrical network,

where many different DER are connected. Each distributed generator affects network be-

havior and dynamics depending on the specific control algorithms designed by manufactur-

ers. Thus, DERs influence in different way the distribution network, due to the diversity

of manufacturers implementations. Moreover, the adoption of active anti-islanding (AI)

techniques is not always mandatory and not all the inverters may be equipped with such

techniques.

The single phase equivalent diagram of the test case is reported in Fig. 10.1, where

two low voltage three-phase PV inverters are connected at the same PCC bus in parallel

to a local load and the main grid.

In this investigation, a local load described in chapter 6, has been considered with

reference to Tab. 6.1. It is a parallel connection of a resistor R1, an inductor L1, a capacitor

C1 and a resistive-capacitive series (R2 and C2), and it introduces power dependencies

PL(f, u) and QL(f, u) similar to the ones of residential loads. The load selection is also due

Load

˜
G

Grid

Utility
breaker
(recloser)

PCC

PV

=

˜
Inverter A

PV

=

˜
Inverter B

Figure 10.1: Unintentional islanding operation on a basic LV system composed by two PV
units, one local load and the main grid.
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to HIL simulations purpose, because it replicates the hardware experimental laboratory

setup. Therefore, since being the hardware experimental load a composition of such passive

components, the same load condition is replicated in the HIL test case model (shown in

Fig. 10.1) in order to deal with unintentional islanding operations with dynamic and

steady-state behavior equal to the experimental setup.

10.1 Different Power Regulation Speed

This section describes the case study presented in Fig. 10.1, where two low voltage three

phase inverters are connected to the distribution network. The different share of the

two inverters’ generated power plays a relevant role on the sizing of the protection NDZ.

Inverter A and B adopt the same control scheme described in chapter 5.2.

They are required to regulate the output power using both the droop functions P/f

and Q/V , as stated by the Italian standard [57]. The anti-islanding method is based only

on the passive over/under frequency (OUF) and over/under voltage (OUV) protections of

the IPS. However, the two inverters, power control closed-loops have been designed with

different bandwidths in order to analyze the role of the power regulation speed considering

a distribution network where different DER with different control speed implementation

are connected.

The reason of this investigation is that the speed response is not considered to be

a problem in the standard anti-islanding requirements. The grid code requires DERs

to perform as fast as technical feasible the droop power regulations and also the Italian

standard do not consider the possible negative effects during unintentional islanding. Only

a maximum settling time ir required for the regulation. Thus, how fast the inverter action

will be depends solely on the manufacturer.

This analysis proposes two different regulation power speeds, as described in chapter

9:

� Inverter A: the so called slow regulation, which performs the P/f and Q/V droop

functions within the maximum allowed settling time stated by the Italian standard

(τP = 2s, τQ = 10s) [57];

� Inverter B : the so called fast regulation, arbitrarily faster than the Inverter A (τP =

0.5s, τQ = 1.1s);

where τP and τQ are the settling time of active and reactive power regulations on a set-

point step variation in grid connected conditions. The tests have been carried out with

the same load conditions and varying the share of generated power of each inverter, as

reported in Tab. 10.1. Five cases have been analyzed so that different levels of grid

diffusion of inverter type B (fast regulation) can be investigated.
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Table 10.1: Two inverter test-case: share of total power generated.

Active power share [%]
Case I Case II Case III Case IV Case V

Inverter A 100 90 65 30 0
Inverter B 0 10 35 70 100

The Case I and V represent the two opposite scenarios: 1) (Case I) all the generation

on the distribution network is based on inverters with power regulation speed adjusted

at the maximum settling time accepted by the standard [57]; 2) (Case II) all the DER

inverters are designed fast as possible [19,20,59].

Important results are presented in Fig. 10.2 reporting the main role of the regulation

speed, in case of an increase share of total power generated by the Inverter B with the

fastest regulation. Unintentional islanding NDZ is highly influenced by the presence of

inverter B (designed with fast regulation of the droop function P/f and Q/V ). Moreover,

in particular in case III the 35% of generation is based on the inverter B and the NDZ is

about twice the size compared to Case I.

Finally, results reported in Fig. 10.2 are congruent with the experimental results

in chapter 6, which describes how increasing the power regulation speed maximizes the

NDZ. Here the same effect is obtained increasing the amount of generated power with fast

regulation droop functions.

10.2 Different Regulation Speed with the Active Anti Is-

landing Method

The role of the active AI methods, based on the Sandia frequency shift (SFS) has been

presented in chapter 9, and the results indicate that the SFS method could be beneficial for

reducing the unintentional islanding issue. As a matter of fact, the specific case of adopting

this anti-islanding algorithm combined with the design of a “slow ”inverter control presents

a null NDZ, meaning that any permanent unintentional islanding operations are detected.

Reasonably, the combination of SFS method with slow regulation drop functions (P/f

and Q/V ) can be assumed as an efficient method to prevent islanding events. Hence, the

following analysis is based on two different inverter control implementations:

� Inverter A: power closed-loop designed with slow regulation (τP = 2s, τQ = 10s [57])

combined with SFS anti-islanding method;

� Inverter B : power closed-loop designed with fast regulation (τP = 0.5s, τQ = 1.1s)

without active anti-islanding functions;

125



10. Multiple Inverter Case

a) b)

c) d)

e)

Figure 10.2: Non detection zone of the two inverter case: Inverter A (power regulation
τP = 2s, τQ = 10s) and Inverter B (power regulation τP = 0.5s, τQ = 1.1s); active power
share of the inverter B a) 0% b) 10 c) 35% d) 70% e) 100%.

where τP and τQ are the settling time of active and reactive power regulations. In this

scenario the possible iterations between fast regulation and active anti-islanding protection

are addressed changing the sharing of the total power generated between inverter A and

B, as shown in Tab. 10.2.

This analysis concerns to the complex case of DERs integration in a distribution net-

work of several inverters with different dynamic and AI methods. The Fig. 10.3a shows

how the SFS with a slow regulation basically eliminates the NDZ, whereas making the

25% of the generation from the inverter B, the NDZ increases (10.3c), and adding more

fast regulation power the NDZ reaches the same limits of a system without the active SFS

methods, as presented in chapter 9.
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Table 10.2: Two inverter test-case: share of total power generated

Active power share [%]
Case I Case II Case III Case IV Case V Case VI Case VII

Inverter A 100 90 75 50 35 20 0
Inverter B 0 10 25 50 65 80 100

10.3 Conclusions

The fast droop regulations required in some grid codes may play a detrimental role in

terms of unintentional islanding, even in presence of active anti-islanding protections.

The amount of fast regulation droop functions P/f and Q/V needed to a NDZ relevant

size, is less than the 30%. Therefore, high level of speed regulation may compensate the

active AI methods.

These results highlight the lack of coordination on the standards requirements. More

precisely, the main player in the unintentional islanding is the power regulation speed,

which should be taken in consideration in the upcoming grid codes and standards in order

to avoid unexpected compensation of anti-islanding methods.
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a) b)

c) d)

e) f)

g)

Figure 10.3: Non detection zone of the two inverter case: Inverter A (power regulation
τP = 2s, τQ = 10s and SFS activated) and Inverter B (power regulation τP = 0.5s,
τQ = 1.1s); active power share of the inverter B a) 0% b) 10 c) 25% d) 50% e) 65% f) 80%
g) 100%.
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Chapter 11

Conclusions

The diffusion of renewable distributed energy resources (DERs), such as photovoltaic and

wind energy sources, is continuously increasing and changing the structure and operation

of the Medium and Low Voltage (MV and LV) distribution networks. Several factors,

as technological advances, social changes and policy goals, are driving a transformation

from centralized systems to more-complex systems that comprise a growing number of

decentralized generating units. Residential environments have experienced one of the most

relevant growth of distributed-generation power systems. Most of low-power DER units

consist of power electronic converters with limited number of sensors and communication

capabilities, increasing the complexity of the network management and operation for the

Distribution System Operator (DSO).

This complex scenario has also influenced the latest grid code requirements for DER

units. In fact, European standards state the reference technical rules for the DER con-

nection in order to ensure the power quality and stability of distribution and transmission

electric systems. Standards state DER requirements for grid connection under normal and

transient conditions of the electric system. Moreover, many standard bodies require that

distributed generators have to play an active role in the system stability by participat-

ing to the ancillary services of active and reactive power regulation. More precisely, many

standard bodies require that DER units provide active and reactive power (P/f and Q/V )

regulation characteristics. Another relevant modification is the wider frequency range that

is allowed during normal operation of DER units, from the traditional thresholds (49.7

Hz and 50.3 Hz) to the less stringent values (47.5 Hz and 51.5 Hz), and at the same time,

permissive voltage levels are in a range of ± 15 % of the rated voltage.

The proliferation of such systems combined with the new technical rules has led to an

increasing concern about the problem of unintentional islanding on distribution networks,

defined as a portion of the utility system containing both loads and DER units that

remains energized while it is disconnected from the main grid. Islanding, even for very
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short time, is undesirable, as the voltage on the islanded portion can drift respect to the

one of the main grid, with a risk of damage in the electric equipment during the automatic

grid reconnection. Therefore, islanding detection methods are essential in the design of

the inverter control strategy, with the role of recognizing the islanding conditions and

disconnecting the islanded DER unit.

The unintentional islanding issue has been addressed in several studies and publica-

tions over the last decades. However, the literature research is lacking of considering the

lately introduced European standards and technical specifications for DERs. This thesis

describes the novel aspects of how requirements and ancillary services influence the un-

intentional islanding operations. Moreover, the presented study highlights new relevant

factors on this topic, such as the role of the loads characteristics, the influence of the

frequency measure and the inverter regulation speed.

Several analytical, numerical and experimental tools have been adopted in order to

comprehensively study the different aspects of the unintentional islanding issue. This

has been analyzed via small-signal modeling, simulations, experimental validations and

hardware in the loop (HIL) simulations.

The main results of this PhD thesis describe the complex scenario of the increasing

penetration of DER units and the conclusions highlight several factors influencing the non

detection zone (NDZ) of the anti-islanding protection system.

The NDZ describes the unbalance conditions between DERs and local loads (∆P−∆Q

area) when unintentional islanding can occur, which depend by the load and source char-

acteristics. In particular, the different dynamic response of the loads highly influences the

behavior of the phenomena. Thus further investigations on the dynamic characterization

of loads (active and reactive variation function of voltage amplitude and frequency, inertia,

etc.) should be carried out in order to achieve sufficient level of details. The presented

analysis of the NDZ is general and it can be applied to generic local loads, whose active

and reactive power dependencies are known. This approach differs from the majority of

literature works, which promote the NDZ analysis on a resonant parallel connected RLC

load, considered the worst case in terms of islanding detection, but it does not represent

the behavior of distribution networks loads. Therefore, different effects are expected with

real loads, especially when the inverter regulating functions are activated. With regards

to generators, different generator capabilities strongly influence the system behavior. The

work has reported an analytic approach in order to draw the NDZ ∆P −∆Q areas of per-

manent unintentional islanding, which has been confirmed by experimental verifications

on a lab-scale prototype. The proposed investigation shows that the risk of permanent

unintentional islanding increases introducing P/f or Q/V droop regulations to the control

of DERs and that the ∆P −∆Q area widens more including both the P/f and Q/V droop

130



regulations, rather than only one of them. Thus, the non-simultaneous operation of P/f

and Q/V seems to be a possible effective approach to reduce the NDZ, for example dis-

abling the Q/V function under over-frequency operation conditions. Hence, in setting or

revising future grid code standards for distribution grids with large penetration of renew-

able energy sources, understanding of the stabilizing effects of droop control in islanded

operation is of paramount importance in order to provide insights on design criteria for

the DER connections and on settings of P/f and Q/V droop functions parameters. From

Distribution System Operators (DSOs) perspective, this type of analysis would represent

a powerful planning criteria to evaluate DER connections to distribution networks and

to identify proper settings and activation delays (even complete deactivation) of P/f and

Q/V droop functions and, possibly, other regulation laws.

The work has also proposed an assessment of the ∆P −∆Q area where temporary un-

intentional islanding can occur, i.e. below the 600 ms for automatic re-closure procedures.

Moreover, the speed of response of the P/f and Q/V droop functions imposed by stan-

dards to DER generators enlarges the ∆P − ∆Q area: faster time responses potentially

increase the risk of temporary islanding.

In a scenario with large diffusion of single-phase DERs, the single-phase PLL (Phase

locked loop) important role sustaining islanding conditions compared with a typical three-

phase PLL, has been investigated. The investigation was focused on the single-phase

SRF-PLL (Synchronous reference frame - phase locked loop) with orthogonal component

calculated by a fixed filter at nominal condition (e.g. 50 Hz), which is still a popular

solution adopted by manufacturers. However, different single-phase PLL models may

leads to two different conclusions, clearly indicating that future investigations of the role

of PLL algorithms would be useful to follow up the presented analysis. Since the size of

the ∆P −∆Q NDZ results not negligible.

None of the previous literature works have investigated the effect of combining the

droop functions and the active anti-islanding methods on the physical interface protection

system (IPS) during unintentional islanded conditions. In this work, an active frequency

shift anti-islanding method is considered, which is the most widely used in the DER

inverter interfaced systems in order to interrupt unintentional islanding operations. Thus,

the Sandia frequency shift (SFS) active protection algorithm has been implemented in the

embedded inverter control system. Results show that the active anti-islanding algorithm

implemented is not always sufficient to detect the islanding conditions and the inverter is

not disconnected by the IPS. A crucial aspect in the unintentional islanding detection is a

coordination between the speed regulation of the droop functions and the active protection

system. In fact, using as fast as technically feasible power regulations the active anti-
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islanding method considered in this study, can be compensated and thus failing to detect

the unintentional islanding operations. The reason of this analysis is to emphasize the

importance of a standardization of protection and regulation functions, in particular with

the speed response of the P/f and Q/V droop functions. The speed of active and reactive

power regulation seems to be a key factor on the sizing of the unintentional islanding NDZ

in general, with or without the active SFS protection.

Such standardization would be of paramount importance to ensure the necessary coor-

dination between IPS, the active anti-islanding method and of P/f and Q/V DER inverter

functions and, in general terms, to enable the Distributor System Operator (DSO) to pre-

dict how the large diffusion of DERs in the distribution grids would affect the unintentional

islanding and other transient phenomena.

11.1 List of publications

The research activity discussed in the previous chapters led to several international con-

ference publications and journal papers, as listed below.

Journal papers

J.1 R. Sgarbossa, S. Lissandron, P. Mattavelli, R. Turri and A. Cerretti, ”Analysis of

∆P −∆Q Area of Uncontrolled Islanding in Low-Voltage Grids With PV Genera-

tors,” in IEEE Transactions on Industry Applications, vol. 52, no. 3, pp. 2387-2396,

May-June 2016.

Conference papers

C.1 R. Sgarbossa, S. Lissandron, P. Mattavelli, R. Turri, A. Cerretti,” Analysis of Un-

intentional Islanding in low-voltage grids with PV generators” IEEE COMPEL’14,

June 2014, Santander.

C.2 F. Amadei, A. Cerretti, M. Coppo, P. Mattavelli, R. Sgarbossa, R. Turri, “Tempo-

rary islanding operations of MV/LV active distribution networks under fault condi-

tions” 2014 Power Engineering Conference (UPEC), September 2014.

C.3 R. Sgarbossa, S. Lissandron, P. Mattavelli, R. Turri, A. Cerretti,” Analysis of ∆P −
∆Q area of uncontrolled islanding in low voltage grids with PV generators ” IEEE

Energy Conversion Congress and Exposition (ECCE), September 2014, Pittsburg

(USA), pp. 5667- 5674.

C.4 A. Cerretti, L. D’Orazio,C. Pezzato, G. Sapienza, G. Valvo, N. Cammalleri, P. Mat-

tavelli, R. Sgarbossa, R. Turri, E. De Berardinis, ”Uncontrolled islanding operations
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of MV/LV active distribution networks,” in PowerTech, 2015 IEEE Eindhoven , vol.,

no., pp.1-6, June 29 2015-July 2 2015.

C.5 P. Mattavelli, R. Sgarbossa, R. Turri, G. Sapienza, G. Valvo, C. Pezzato, A. Cerretti,

E. Berardinis, ” Generators and loads models to investigate uncontrolled islanding

on active distribution networks“, CIRED, 2015 23rd International Conference and

exhibition on Electricity Distribution , June 2015.

C.6 S. Lissandron, R. Sgarbossa, L. Dalla Santa, P. Mattavelli, R. Turri, A. Cerretti,

”Impact of non-simultaneous P/f and Q/V grid code requirements on PV inverters

on unintentional islanding operation in distribution network,” in Power Electronics

for Distributed Generation Systems (PEDG), 2015 IEEE 6th International Sympo-

sium on , vol., no., pp.1-7, 22-25 June 2015.

C.7 R. Sgarbossa, L. Dalla Santa, P. Mattavelli, A. Petucco, F. Cavazzana, A. Cerretti

“Phase-Locked Loop Effect on Non-Detection Zone of Unintentional Islanding” in

17th Conference on Power Electronics and Applications, EPE’15-ECCE Europe,

Geneva, 8th to 10th September 2015.

C.8 S. Lissandron, R. Sgarbossa, L. Dalla Santa, P. Mattavelli, R. Turri, A. Cerretti,”∆P−
∆Q Area Assessment of Temporary Unintentional Islanding with P/f and Q/V

Droop Controlled PV Generators in Distribution Networks” IEEE Energy Conver-

sion Congress and Exposition (ECCE), September 2015, Montreal (CDN).

C.9 L. Cocchi, A. Cerretti, E. Deberardinis, F. Bignucolo, A. Savio, R. Sgarbossa, “Influ-

ence of average power factor management on active distribution networks” CIRED,

2015 23rd International Conference and exhibition on Electricity Distribution, Lione,

June 2015, Paper 634.

C.10 A. Savio, F. Bignucolo, R. Sgarbossa, P. Mattavelli, A. Cerretti and R. Turri, “A

Novel Measurement-based Procedure for Load Dynamic Equivalent Identification”,

1st Int. Forum on Research and Technologies for Society and Industry (RTSI),

Torino, 16-18 Sep. 2015.

C.11 R. Sgarbossa, L. Dalla Santa , P. Mattavelli, R. Turri, A. Cerretti , “Analysis of

interface protection system with Distributed Energy Resources compliant with the

most recent grid codes: the Unintentional Islanding case” PES General Meeting,

Boston, 16-21 July 2016.

C.12 R. Sgarbossa, L. Dalla Santa , P. Mattavelli, R. Turri, A. Cerretti , “Effects of P/f

and Q/V Regulations on Anti-islanding Detection Methods in Distribution Networks

” ISGT Europe, Ljubljana, 2016.
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[43] O. Raipala, A. Maäkinen, S. Repo, and P. Jaärventausta, “The effect of differ-

ent control modes and mixed types of dg on the non-detection zones of islanding

138



Bibliography

detection,” in Integration of Renewables into the Distribution Grid, CIRED 2012

Workshop, May 2012, pp. 1–4.

[44] W. Bower and M. Ropp, “Evaluation of islanding detection methods for photovoltaic

utility-interactive power systems,” Energy Conversion, IEEE Transactions on, vol.

Tech. Rep. IEA-PVPS, Dec 2002.

[45] J. Jeong and H. Kim, “Active anti-islanding method for pv system using reactive

power control,” Electronics Letters, vol. 42, no. 17, pp. 1004–1005, August 2006.

[46] L. Lopes and H. Sun, “Performance assessment of active frequency drifting islanding

detection methods,” Energy Conversion, IEEE Transactions on, vol. 21, no. 1, pp.

171–180, March 2006.

[47] IEEE Task Force, “Load representation for dynamic performance analysis [of power

systems],” IEEE Transactions on Power Systems, vol. 8, no. 2, pp. 472–482, May

1993.

[48] H. H. Zeineldin and M. M. A. Salama, “Impact of load frequency dependence on the

ndz and performance of the sfs islanding detection method,” IEEE Transactions on

Industrial Electronics, vol. 58, no. 1, pp. 139–146, Jan 2011.

[49] T. E. Grebe, “Application of distribution system capacitor banks and their impact

on power quality,” in Rural Electric Power Conference, 1995. Papers Presented at

the 39th Annual Conference, Apr 1995, pp. C3/1–C3/6.

[50] Ropp, M. E., Begovic, M. and Rohatgi, A., “Analysis and performance assessment

of the active frequency drift method of islanding prevention,” IEEE Transactions

onEnergy Conversion, vol. 14, no. 3, pp. 810–816, Sept 1999.

[51] G. A. Kern, “Sunsine300, utility interactive ac module anti-islanding test results,” in

Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth

IEEE, Sep 1997, pp. 1265–1268.

[52] I. Varjasi, A. Balogh, and S. Halasz, “Sensorless control of a grid-connected pv

converter,” in Power Electronics and Motion Control Conference, 2006. EPE-PEMC

2006. 12th International, Aug 2006, pp. 901–906.

[53] Choe, G. H., Kim, H. S., Kim, H.G., Choi, Y. H. andKim, J. C., “The characteristic

analysis of grid frequency variation under islanding mode for utility interactive pv

system with reactive power variation scheme for anti-islanding,” in Power Electronics

Specialists Conference, 2006. PESC ’06. 37th IEEE, June 2006, pp. 1–5.

139



Bibliography

[54] M. Salman, N. Kapsokavathis, X. Zhang, D. Walters, and X. Tang,

“Method and apparatus for monitoring an electrical energy storage device,”

Jun. 26 2008, uS Patent App. 11/736,151. [Online]. Available: https:

//www.google.ch/patents/US20080150457

[55] L. Asiminoaei, R. Teodorescu, F. Blaabjerg, and U. Borup, “A digital controlled

pv-inverter with grid impedance estimation for ens detection,” IEEE Transactions

on Power Electronics, vol. 20, no. 6, pp. 1480–1490, Nov 2005.

[56] M. Ciobotaru, R. Teodorescu, and F. bjerg, “On-line grid impedance estimation

based on harmonic injection for grid-connected pv inverter,” in 2007 IEEE Interna-

tional Symposium on Industrial Electronics, June 2007, pp. 2437–2442.

[57] CEI Comitato Elettrotecnico Italiano, “Standard-CEI 0-21, reference technical rules

for the connection of active and passive users to the lv electrical utilities,” 2011-12,

standards.

[58] CEI Comitato Elettrotecnico Italiano, “Standard-CEI 0-16, reference technical rules

for the connection of active and passive consumers to the hv and mv electrical

networks of distribution company,” Tech. Rep., 2011-12, standards.

[59] pr TS 50549-2, “Requirements for the connection of generators above 16 a per phase

- part 2: Connection to the mv distribution system (clc tc 8x).”

[60] K. Tomiyama, S. Ueoka, T. Takano, I. Iyoda, K. Matsuno, K. Temma, and J. J.

Paserba, “Modeling of load during and after system faults based on actual field

data,” in Power Engineering Society General Meeting, 2003, IEEE, vol. 3, July

2003, p. 1391 Vol. 3.

[61] J. R. Ribeiro and F. J. Lange, “A new aggregation method for determining composite

load characteristics,” IEEE Transactions on Power Apparatus and Systems, vol.

PAS-101, no. 8, pp. 2869–2875, Aug 1982.

[62] Y. Baghzouz and C. Quist, “Determination of static load models from ltc and capac-

itor switching tests,” in Power Engineering Society Summer Meeting, 2000. IEEE,

vol. 1, 2000, pp. 389–394 vol. 1.

[63] T. Frantz, T. Gentile, S. Ihara, N. Simons, and M. Waldron, “Load behavior observed

in lilco and rg amp;e systems,” IEEE Power Engineering Review, vol. PER-4, no. 4,

pp. 37–38, April 1984.

140

https://www.google.ch/patents/US20080150457
https://www.google.ch/patents/US20080150457


Bibliography

[64] K. Yamashita, M. Asada, and K. Yoshimura, “A development of dynamic load model

parameter derivation method,” in 2009 IEEE Power Energy Society General Meet-

ing, July 2009, pp. 1–8.

[65] K. Tomiyama, S. Ueoka, T. Takano, I. Iyoda, K. Matsuno, K. Temma, and J. J.

Paserba, “Modeling of load during and after system faults based on actual field

data,” in Power Engineering Society General Meeting, 2003, IEEE, vol. 3, July

2003, p. 1391 Vol. 3.

[66] F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power electronics as efficient interface

in dispersed power generation systems,” IEEE Transactions on Power Electronics,

vol. 19, no. 5, pp. 1184–1194, Sept 2004.

[67] M. Calais, J. Myrzik, T. Spooner, and V. G. Agelidis, “Inverters for single-phase

grid connected photovoltaic systems-an overview,” in Power Electronics Specialists

Conference, 2002. pesc 02. 2002 IEEE 33rd Annual, vol. 4, June 2002, pp. 1995–

2000.

[68] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-

connected inverters for photovoltaic modules,” IEEE Transactions on Industry Ap-

plications, vol. 41, no. 5, pp. 1292–1306, Sept 2005.

[69] Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau, and T. Shimizu, “Topologies of single-

phase inverters for small distributed power generators: an overview,” IEEE Trans-

actions on Power Electronics, vol. 19, no. 5, pp. 1305–1314, Sept 2004.

[70] M. Saitou and T. Shimizu, “Generalized theory of instantaneous active and reactive

powers in single-phase circuits based on hilbert transform,” in 2002 IEEE 33rd

Annual Power Electronics Specialists Conference, vol. 3, 2002, pp. 1419–1424 vol.3.

[71] T. Thacker, R. Wang, D. Dong, R. Burgos, F. Wang, and D. Boroyevich, “Phase-

locked loops using state variable feedback for single-phase converter systems,” in

APEC 2009, Twenty-Fourth Annual IEEE Applied Power Electronics Conference

and Exposition, 2009., Feb 2009, pp. 864–870.

[72] S. M. Silva, B. M. Lopes, B. J. C. Filho, R. P. Campana, and W. C. Bosventura,

“Performance evaluation of pll algorithms for single-phase grid-connected systems,”

in 39th IAS Annual Meeting. Conference Record of the 2004 IEEE Industry Appli-

cations Conference, 2004., vol. 4, Oct 2004, pp. 2259–2263 vol.4.

[73] R. M. S. Filho, P. F. Seixas, P. C. Cortizo, L. A. B. Torres, and A. F. Souza, “Com-

parison of three single-phase pll algorithms for ups applications,” IEEE Transactions

on Industrial Electronics, vol. 55, no. 8, pp. 2923–2932, Aug 2008.

141



Bibliography

[74] S. Shinnaka, “A robust single-phase pll system with stable and fast tracking,” IEEE

Transactions on Industry Applications, vol. 44, no. 2, pp. 624–633, March 2008.

[75] F. M. Gardner, Phase Lock Techniques. Wiley, 1979.

[76] J. Park and F. Maloberti, “Fractional-n pll with 90/spl deg/ phase shift lock and

active switched-capacitor loop filter,” in Proceedings of the IEEE 2005 Custom In-

tegrated Circuits Conference, 2005., Sept 2005, pp. 329–332.

[77] J. R. C. Piqueira, A. Z. Caligares, and L. H. A. Monteiro, “Considering double

frequency terms from phase detectors in synchronous master-slave networks,” in

2006 Proceeding of the Thirty-Eighth Southeastern Symposium on System Theory,

March 2006, pp. 453–456.

[78] F. Cadoux and G. Gross, “Integration of vehicles with rechargeable batteries into

distribution networks,” Smart Grids, pp. 243–261, 2013.

[79] Y. Degeilh, F. Cadoux, N. Navid, and G. Gross, “Economic assessment of the explicit

representation of ramping requirements on conventional generators in systems with

integrated intermittent resources,” in 2012 IEEE Power and Energy Society General

Meeting. IEEE, 2012, pp. 1–5.

[80] H. Zeineldin, E. El-Saadany, and M. Salama, “Impact of DG interface control on

islanding detection and nondetection zones,” IEEE Transactions on Power Delivery,

vol. 21, no. 3, pp. 1515–1523, July 2006.

[81] D. Salles, W. Freitas, J. Vieira, and B. Venkatesh, “A practical method for non-

detection zone estimation of passive anti-islanding schemes applied to synchronous

distributed generators,” IEEE Transactions on Power Delivery, 2014.

[82] H. Zeineldin and M. Salama, “Impact of load frequency dependence on the NDZ

and performance of the SFS islanding detection method,” IEEE Transactions on

Industrial Electronics, vol. 58, no. 1, pp. 139–146, Jan 2011.

[83] J. Bruschi, F. Cadoux, B. Raison, Y. Bésanger, and S. Grenard, “Impact of new

european grid codes requirements on anti-islanding protections: a case study,” in

23rd International Conference and Exhibition on Electricity Distribution (CIRED

2015), June 2015.

[84] D. Reigosa, F. Briz, C. Charro, P. Garcia, and J. Guerrero, “Active islanding de-

tection using high-frequency signal injection,” IEEE Transactions on Industry Ap-

plications, vol. 48, no. 5, pp. 1588–1597, Sept 2012.

142



Bibliography

[85] M. Cespedes and J. Sun, “Renewable energy systems instability involving grid-

parallel inverters,” in Applied Power Electronics Conference and Exposition, 2009.

APEC 2009. Twenty-Fourth Annual IEEE, Feb 2009, pp. 1971–1977.

[86] D. Dong, J. Li, D. Boroyevich, P. Mattavelli, I. Cvetkovic, and Y. Xue, “Frequency

behavior and its stability of grid-interface converter in distributed generation sys-

tems,” in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference

and Exposition (APEC), Feb 2012, pp. 1887–1893.

[87] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and

grid synchronization for distributed power generation systems,” IEEE Transactions

on Industrial Electronics, vol. 53, no. 5, pp. 1398–1409, Oct 2006.

[88] A. Timbus, M. Liserre, R. Teodorescu, and F. Blaabjerg, “Synchronization methods

for three phase distributed power generation systems - an overview and evaluation,”

in 2005 IEEE 36th Power Electronics Specialists Conference, June 2005, pp. 2474–

2481.

[89] S. K. Chung, “Phase-locked loop for grid-connected three-phase power conversion

systems,” IEEE Proceedings - Electric Power Applications, vol. 147, no. 3, pp. 213–

219, May 2000.

[90] P. Rodriguez, J. Pou, J. Bergas, J. I. Candela, R. P. Burgos, and D. Boroyevich,

“Decoupled double synchronous reference frame pll for power converters control,”

IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 584–592, March 2007.

[91] P. Rodriguez, A. Luna, I. Candela, R. Teodorescu, and F. Blaabjerg, “Grid synchro-

nization of power converters using multiple second order generalized integrators,” in

Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE, Nov

2008, pp. 755–760.

[92] S. A. O. da Silva, R. Novochadlo, and R. A. Modesto, “Single-phase pll structure

using modified p-q theory for utility connected systems,” in 2008 IEEE Power Elec-

tronics Specialists Conference, June 2008, pp. 4706–4711.

[93] H. K. Yada and M. S. R. Murthy, “A new topology and control strategy for extraction

of reference current using single phase sogi-pll for three-phase four-wire shunt active

power filter,” in Power Electronics, Drives and Energy Systems (PEDES), 2014

IEEE International Conference on, Dec 2014, pp. 1–6.

[94] M. Karimi-Ghartemani and M. R. Iravani, “A method for synchronization of power

electronic converters in polluted and variable-frequency environments,” IEEE Trans-

actions on Power Systems, vol. 19, no. 3, pp. 1263–1270, Aug 2004.

143



Bibliography

[95] P. Rodriguez, A. Luna, M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, “Advanced

grid synchronization system for power converters under unbalanced and distorted

operating conditions,” in IECON 2006 - 32nd Annual Conference on IEEE Industrial

Electronics, Nov 2006, pp. 5173–5178.

[96] I. Carugati, P. Donato, S. Maestri, D. Carrica, and M. Benedetti, “Frequency adap-

tive pll for polluted single-phase grids,” IEEE Transactions on Power Electronics,

vol. 27, no. 5, pp. 2396–2404, May 2012.

[97] P. Rodriguez, R. Teodorescu, R. Candela, I. Timbus, M. Liserre, and F. Blaabjerg,

“New positive-sequence voltage detector for grid synchronization of power converters

under faulty grid conditions,” in Power Electronics Specialists Conference, 2006.

PESC ’06. 37th IEEE, June 2006, pp. 1–7.

[98] R. Walling and N. Miller, “Distributed generation islanding-implications on power

system dynamic performance,” in 2002 IEEE Power Engineering Society Summer

Meeting, vol. 1, July 2002, pp. 92–96.

[99] A. Cerretti, G. Scrosati, and L. Consiglio, “Upgrade of ENEL MV network automa-

tion to improve performances in presence of faults and to deal DG,” in CIRED 2011,

June 6th-9th - Frankfur 2011.

[100] F. D. Mango, M. Liserre, A. Dell’Aquila, and A. Pigazo, “Overview of anti-islanding

algorithms for pv systems. part I: Passive methods,” in 12th International Power

Electronics and Motion Control Conference EPE-PEMC, Aug 2006, pp. 1878–1883.

[101] M. Ropp, M. Begovic, A. Rohatgi, G. A. Kern, S. Bonn, R.H., and S. Gonzalez,

“Determining the relative effectiveness of islanding detection methods using phase

criteria and nondetection zones,” IEEE Transactions on Energy Conversion, vol. 15,

no. 3, pp. 290–296, Sep 2000.

144


	Introduction
	Renewable Energy Source Development
	Integration Challenge
	Grid Integration - Power Electronic Converters
	Thesis Motivation and Objectives

	Unintentional Islanding
	Introduction
	Anti-Islanding Requirements
	Anti-Islanding Requirements According to IEEE Std 1547
	Anti-Islanding Requirements According to IEC 62116
	Anti-Islanding Requirements According to VDE 0126-1-1

	Islanding Detection Methods
	Passive Islanding Detection Methods
	OUF-OUV Protections
	Phase Jump Detection Method
	Harmonic Detection Method

	Active Islanding Detection Methods
	Slip-Mode Frequency Shift
	Active Frequency Drift Method
	Sandia Frequency Shift Method
	Reactive Power Variation Method
	Harmonic Injection Grid Impedance Estimation

	Grid Code Requirements
	Automatic Selection of Faulted Line Sections
	FRG Procedure
	FNC Procedure


	Distribution Electric Network Load Modeling
	Load Modeling Introduction
	Static Models
	Exponential Model
	Polynomial Model
	Linear Model
	Comprehensive Static Model
	IEEE Task Force 1993 Load Model

	Load Modeling - Experimental setup
	Acquisition Parameters
	Model Identification Tests
	Load Considered For Tests


	Power Converter Structure and Modeling
	Power Converter Structure
	Centralized Technology
	String Technology
	Modules Technology

	Two-Level PV Inverter
	Average Time Model
	Simulink/Matlab Inverter Model

	Hardware in the loop and Experimental setups validation
	Experimental Setup
	Hardware in the Loop Simulations
	Hardware in the Loop Setup Implementation


	Unintentional Islanding Non Detection Zone
	Introduction
	System Description and Area of Uncontrolled Islanding
	Power Regulation Speed Response in the Single Inverter Case

	Experimental Results
	Conclusions

	Non Detection Zone with Single Phase PLL Synchronization System
	System Description
	Three-phase and single-phase SRF-PLL
	Simulations
	Experimental setup
	Conclusions

	Temporary Unintentional Islanding
	System Description of Temporary Islanding
	Dynamic Analysis for NDZ
	Modeling of the Inverter with Constant Power
	Analytic results for constant power inverter

	Temporary Islanding Simulation Results
	Temporary Islanding Experimental Results
	Conclusions

	Active Anti-islanding Detection Method
	Sandia Frequency Shift Implementation
	Inverter Regulation Speed Response
	Case Study: Droop function and SFS Interfaced With a Real Protection System in HIL Simulations
	Simulation Results 
	Conclusions

	Multiple Inverter Case
	Different Power Regulation Speed
	Different Regulation Speed with the Active Anti Islanding Method 
	Conclusions

	Conclusions
	List of publications

	Bibliography

