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ABSTRACT

Dynamical aspects have a central role in the biological function of proteins. Each motional process

has a characteristic time scale, amplitude and energy range. Proteins in particular display a

broad range of characteristic motions, from very fast and localized, such as atomic fluctuations, to

motions that occours on the scale of the whole molecule, such as folding transitions. Futhermore,

dynamical events occourring at long time scales are actually coupled to faster motions, and

they can be seen as rare events, the origin of which is found on the microdynamics of rotation

around chemical bonds. Electron and nuclear magnetic spectroscopies are sensible to molecular

motions at different time scales, making them very powerful tools in the study of molecular

dynamics. Nevertheless the dynamical information contained in the experimental data is hidden

and theorethical methodologies of interpretation are needed. In this work, we present different

theoretical approaches which allow to better describe the stochastic descriptions of flexible

macromolecules in solution. State-of-the-art approaches to dynamic models are first reviewed,

aimed at the interpretation of magnetic resonance relaxation experiments. Next, the main focus

is on i) the comparison between information content of the experiment and prediction capability

of the model, using a Bayesian Markov-Chain Monte Carlo approach ii) defining a way to identify

subgroups of atoms, the dynamics of which can be treated independently from the others iii) a

new model of description of flexible macromolecules via projection operators, which allows to tune

the description of the system to the preferred level of description in relation to the spectroscopic

observable of interest.
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ABSTRACT

(ITALIANO)

Aspetti dinamici hanno un ruolo centrale nella funzione biologica delle proteine. Ad ogni processo

dinamico, sono associati un tempo, ampiezza ed energia caratteristici del moto. In particolare,

le proteine presentano una vasta distribuzione dinamica, da moti rapidi e localizzati, come

fluttuazioni atomiche, a processi che coinvolgono l’intera molecola, come le transizioni di folding.

Inoltre, i processi che avvengono a scale temporali lente, sono accoppiati a moti piú rapidi, i

primi possono essere quindi visti come eventi rari, la cui origine risiede nella microdinamica

di rotazione attorno ai legami chimici. Le risonanze magnetiche, sia elettroniche che nucleari,

sono estremamente sensibili ai moti molecolari a diverse scale temporali, rendendo di fatto

tali tecniche, strumenti fondamentali per lo studio di aspetti dinamici. Tuttavia, l’informazione

dinamica contenuta negli esperimenti è nascosta, per cui sono necessari modelli teorici interpre-

tativi. In questo lavoro, vengono presentati diversi approcci teorici con lo scopo di migliorare la

descrizione stocastica della dinamica di macromolecole flessibili in soluzione. Nella prima parte

sono quindi descritte ed applicate metodologie teoriche avanzate ai fini dell’interpretazione di

esperimenti di risonanza magnetica. Successivamente, l’attenzione viene posta i) sul confronto

tra la quantità di informazione contenuta in un esperimento e le capacità predittive di un deter-

minato modello teorico interpretativo, basato sulla combinazione di simulazioni Monte Carlo di

catene Markoviane ed il teorema di Bayes, ii) sulla definizione di una metodica identificativa di

sottogruppi di atomi la cui dinamica puó essere trattata in maniera indipendente rispetto agli

altri, basata su metodi di clustering dinamico ottenuti da simulazioni di dinamica molecolare,

iii) sulla descrizione di una nuova modellistica descrittiva di macromolecole flessibili attraverso

tecniche di operatori proiettivi; tale metodologia permette di adattare la descrizione del sistema
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al livello di dettaglio oppertuno, in funzione dell’osservabile spettroscopica d’interesse.
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ABSTRACT

(FRANÇAIS)

La dynamique des protéines ocupe un rôle central dans la réalisation de leurs fonctions bi-

ologiques. Ces mouvements sont très divers, aussi bien sur le plan de l’échelle de temps concernée

que de son amplitude ou des énergies mises en jeu. Dans le cas des protéines, les mouvements

moléculaires peuvent être aussi bien localisés et rapides, par exemple dans le cas de rotations

ou de vibrations des liaisons chimiques, que diffus, à l’échelle spatiale de toute la protéine et

concernant des échelles de temps longues, comme dans le cas du repliement des protéines. Ces

mouvements moléculaires se produisant sur des échelles de temps longues sont en réalité couplés

à la mobilité rapide, les premiers pouvant être considérés comme des évènements rares dont

l’origine se trouve dans la microdynamique de rotation autour des liaisons chimiques. Les spectro-

scopies de résonance paramagnétique électronique (RPE) et de résonance magnétique nucléaires

(RMN) sont sensibles à la mobilité se produisant à différentes échelles de temps et en font ainsi

des outils puissants pour l’étude de la dynamique moléculaire. Cependant, le contenu dynamique

des informations obtenues expérimentalement nécessite le recours à des modèles théoriques

et des méthodologies d’analyse des données permettant d’interpréter les observations. Dans ce

travail, nous présenterons diverses approches théoriques permettant d’améliorer la description de

la dynamique stochastique de macromolécules flexibles en solution. Après avoir rappelé quelques

méthodes et modèles usuels d’interprétation des expériences de relaxation de spins nucléaires,

nous aborderons les thèmes principaux de ce travail, qui se répartissent sur trois axes. Il s’agit

d’une part de revisiter la question de l’interprétation des mesures de vitesses de relaxation RMN

afin d’extraire des paramètres dynamiques, et de préciser les attentes et les limites d’une telle

approche. D’autre part, nous présenterons une nouvelle méthode, reposant sur une analyse de
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simulations de dynamique moléculaire et consistant à identifier des sous-groupes d’atomes d’une

protéine dont la dynamique peut être traitée indépendamment. Enfin, une approche nouvelle

permettant de décrire la dynamique de macromolécules flexibles et utilisant des opérateurs de

projection sera proposée. Cette dernière permet en particulier d’adapter la description de la

molécule étudiée au niveau de description souhaité selon la technique spectroscopique utilisée et

l’observable mesurée.
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1
INTRODUCTION

I
nternal and overall dynamics of proteins and macromolecules in general, are critically

involved in the determination and the regulation of their physical and chemical properties,

biological functions and spectroscopic signatures. Examples of dynamic-controlled classes

of processes are the allosteric effects in enzyme catalysis, the formation of non-specific transient

encounter complexes in the protein-protein association[2, 3] and the regulation of molecular

recognition.

Monitoring and describing proteins dynamics is therefore a fundamental area of investigation

in modern physical chemistry. Experimental study of protein dynamics is divided into two main

strands. The former, which we shall call “ensemble techniques” is related to experiments done

on samples containing order of the number of Avogadro of molecules. The latter regards single-

molecule experiments [4] that are conducted on a very reduced number of molecules (ideally only

one). A short overview of these methods is given in the following.

Ensemble techniques

Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) is a widely employed technique in studying both structure

and dynamics of proteins [5–13]. Information on dynamics is obtained interpreting relaxation
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and cross-relaxation measurements (as T1, T2 and Nuclear Overhauser Effect, NOE) of spin

labeled nuclei, in particular 15N, 13C and 2H, by means of a proper model. The two most employed

methhos are the Model Free (MF) approach [14, 15] and the Slowly Relaxing Local Structure

(SRLS) model [16–18] which is described in detail in Section 2.1.2. Both the models associate

the relevant dynamics of the protein to that of two diffusive stochastic rotors, one describing the

rotational motion of the protein and the second collecting the local motions in which the probe (the

aminoacid) is involved. SRLS is based on the full description of the diffusive model, taking into

account rigorously the coupling of the two rotors due to a potential of mean force that emulates

the constraints that chemical bonds and non-local interactions impose to the motion of the residue

wiht respect to the rest of the protein. MF, instead, is based on the statistical decoupling of the

rotators and represents an approximation of SRLS, which is valid within certain limits (”rigid”

residues in globular proteins). The kind of information that can be extracted from NMR using

these models is both structural and dynamical and regards local properties, i.e. residue-specific

knowledge is gained from the analysis. In particular, from the structural point of view NMR

analysis gives information on the local potential of mean force acting on the probe, thus having

access to the amplitude of motion of each residue and the kind of possible movements. Secondly,

on the dynamical point of view, information on local diffusive properties and correlation time

scales is obteined. This kind of knowledge is important to understand how locally residues can

induce / permit conformational changes, make the protein adapt to binding substrates, adapt to

external stimuli, etc.

Recently high interest arose on a different kind of observable measured with NMR: the Residual

Dipolar Coupling (RDC). The protein is constrained to not equally sample all the rotations, e.g.

by use of diluite liquid crystals [19]. In this way, the anisotropic magnetic interactions, specially

the dipolar-dipolar interaction, are not averaged. On one hand, this leads to a very precise

definition of the orientation of internuclear bonds relative to a molecular-fixed frame, making

RDC powerful for structure determination of proteins. On the other hand, RDC measurements

report on averages over relatively long time-scales (up to millisecond range), opening access to

dynamic information complementary to motions detected from NMR spin relaxation studies [20].
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Electron paramagnetic resonance

Electron paramagnetic resonance (EPR) spectroscopy is widely employed to obtain information

about molecular dynamics of system into which a stable free-radical probe group has been intro-

duced. The most frequently used probes are nitroxides, which are often covalently attached to a

particular residue of interest in proteins (site-directed spin labeling, SDLS-EPR).[21] The EPR

specturm of a nitroxide is sensitive to molecular reorentation because the magnetic interactions

of the unpaired electron with the applied magnetic field, as well as those with the nuclei on

the probe, are inherently anisotropic. Depending on the EPR frequency, molecular motion is

broadly classified in three regimes that depend on the relative magnitudes of the characteristic

time scale of the motion, τc, and the inverse of the frequency width, ∆ω, of the spectrum. In the

fast motion regime, τc∆ω¿ 1, the anisotropic interactions are averaged out, leading to simple

Lorentzian line shapes are observed, and only estimates of molecular parameters (e.g., diffusion

tensor values) are obtained. At very long correlation times, a static distribution of all the possible

orientations, the “rigid limit” spectrum, is observed. When τc∆ω' 1, the motion is said to fall

in the slow motion regime for the given EPR frequency. The interpretation of slow motional

spectra requires an analysis based upon sophisticated theory, combining the world of quantum

mechanics, as far as the parameters of the spin Hamiltonian are concerned, and the world of

molecular dynamics and statistical thermodynamics for the spectral lineshapes. Interpretation of

EPR spectra will be discussed in Section 2.2.

Fluorescence anisotropy decay

The triptophan (Trp) aminoacid is a useful chromophore for UV studies of proteins. In particular

time resolved fluorescence can give access to proteins dynamics [22]. In particular what is mea-

sured is the anisotropy decay of Trp probe fluorescence which, through appropriate moteling, can

be associated to local motional properties of the probe and its surroundings. Thus the information
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obtained from this kind of measurements is similar to that obtained from NMR and require some

specific modeling of protein motions, specially when the technique is used to probe mobile regions

as loops [23].

The fact that the information on dynamics that can be extracted is localized around the probe

makes this technique not completely exhaustive because the probes are not distributed all over

the protein structure as it happens in NMR, where all the residues contain the probe (a part

proline in N-H relaxation measurements). Site specific labeling by mutating residues to Trp

aminoacids can be used to improve the investigation of protein dynamics using fluorescence

anisotropy decay. Anyway, care must be paid when exptrapolating information collected from

mutants to the wild-type protein, specially in the case of very flexible systems.

Time-resolved X-Ray

A recently developed technique in studying protein dynamics is time-resolved X-ray scattering,

which has been succesfully applied to the study, in crystal, of kinetics of CO migration from

myoglobin to the water layer surrounding the protein.[24] Because X-ray crystallography gives

direct access to the electron density of the molecule no model is required, a part the atomic model,

to follow the molecular dynamics. So, it is possible to directly "watch" proteins moving while

carrying out their function. However, a couple of issues are still to be solved.

The former is related to time resolution of the technique. At present it is around 100 ps. This

was sufficient to carry out the cited study on myoglobin, but is certainly too large for detailed

study of reactions, where bonds are broken and formed at very shorter time scales. A possible

breaktrough seems to be given by a new technique for producing very bright X-ray beams which

is called X-ray free electron laser [25]. It seems that this technique can produce 0.1 fs pulses,

which are compatible to atomic motions.

The second issue concerns the fact that not all proteins can be crystallized and many processes

cannot occur in the crystal. Moreover, doubts can be arisen about the extrapolation to solution of

mechanisms and kinetics studied in the crystal state. To overcome this problem, time-resolved
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X-ray scattering has been ported also to solution techniques. In particular small angle X-ray

scattering (SAXS) and wide angle X-ray scattering (WAXS) techniques have been used to study

the same kinetics of CO migration from myoglobin in water.[26] It was shown that the kinetic

scheme of the reaction can be recognized and followed using the combined information from SAXS

and WAXS, looking at the system for 10 ms. Unfortunately this approach cannot give a direct

information on 3D structure of the molecule and it is not possible to directly access the molecular

dynamics, as is possible in the crystal. To solve this problem a search of the correct structure

giving simulated SAXS/WAXS spectra corresponding to experimental ones need to be used.

Single-molecule techinques

Förster fluorescence resonance energy transfer

A spectroscopic technique for the single-molecule study of molecular dynamics is Förster fluo-

rescence resonance energy transfer (FRET).[27] It requires the presence, in the same molecule

of both a donor fluorophore (DF) and an acceptor fluorophore (AF). What is meaused is the

non-radiative transfer of energy from the excited DF to AF via a strongly distance-dependent

dipole-dipole coupling. The measured FRET efficiency provides information on long-range molec-

ular distances in the range of 20 - 100 Å. When performed at the single-molecule level, FRET

studies can yield information about heterogeneities in terms of conformations and conformational

dynamics that are unavailable from ensemble measurements. The particular ability of this

technique of detecting different conformations has been exploited mainly in the investigation

of folding/unfolding pathways and kinetics. Recent applications are on the determination of an

upper bound for transition path times in folding of labeled small protein GB1 for which a simple

two-state folding path exists. [28] FRET has also given new insights in the effect of molecular

chaperones in affecting protein folding. In particular of rhodanese protein, by analyzing FRET

trajectories outside and inside a chaperonin cage.[29] Another example of application of FRET is

on the determination of rates of the fast-folding protein α3D.[30]

In all the cited cases a two-state model was used to describe the folding kinetics. However, FRET,

which is sensitive to different conformations, can be potentially used to detect a larger number of
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subpopulations and the kinetics of transitions among them.

Opical tweezers

Optical tweezers are ideally suited to perform force microscopy experiments which isolate a single

biomolecule, which then provides multiple binding sites for ligands [31]. At the extremes of the

biomolecule are attached two beads. One is kept fixed, while the second one is trapped by a laser

beam focused on the bead. Moving the laser makes the bead move, stretching the biomolecule.

This technique as been used mainly in studies regarding DNA mechanical properties and binding

to proteins. [31, 32] Also biological motors have been studied with optical tweezers [32]. The

methodology is suited even for the direct study of folding kinetics [33]. The protein is unfolded by

pulling away the two terminal residues and then system is released to let the protein re-fold. The

profiles of the unfolding and folding forces versus extension contain important information on

kinetics and thermodynamics of the process.

Coupling experimental observations to molecular dynamics simulations makes optical tweezres

an important tool in the understanding the dynamic behaviour of individual protein molecules at

the single-molecule level.

Atomic force microscopy

The atomic force microscopy (AFM) technique is a quite versatile tool for the in singulo study of

biomolecules. In particual two kinds of experiments can be performed. The first is AFM imaging,

which can lead to both structural and dynamical information. AFM imaging is performed by

absorbing the biomolecule(s) on a solid surface (usually mica) and scan the surface with a tip.

What is registered is the force required to keep the tip at a certain distance from what’s below

it and a sort of topographic image is obtained. Recent examples of studies of biomolecules with

AFM imagaing regard the incorporation of membrane proteins in single lipid bilayers [34] and

properties of single-stranded DNA-binding protein - DNA complexes. [35] Furthermore, with
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time-resolved AFM imaging it is possible to study dynamic processes and their kinetics at single-

molecule level. An example of application of this method is the kinetics of association/dissociation

of the complex between the E. Coli chaperonin GroEL and its co-chaperonin GroES [36].

AFM can also be used in a way similar to optical tweezezers or hydrodynamic manipulation by

attaching one ending of the molecule to the tip. With this setup it is possible to get information on

mechanical properties of biomolecules [37, 38] as well as binding and folding forces [39]. As for the

previously mentioned “dragging” experiments, coupling with molecular dynamics simulations is

very important in order to interpret at atomistic level the experimental observations. An exmaple

of this kind of approach can be found in the literature applied to the study of mechanical extension

of a 26-residue long polyalanine chain. [40] Application of the idea to biomolecules require high

performance calculation resources (both hardware and software) and ad hoc interpretative tools

in order to understand the complex information that molecular dynamics simulations provide.

As previously stated, the acquired experimental observations need in most cases to be

rationalized in order to acquire a meaningful description of (some of) the many complex relaxation

processes, therefore of the underlying motions. These include global reorientation and small or

large amplitude motions of entire domains, as well as limited local readjustments and restricted

single-residue motions. In general, different spectroscopic techniques probe different physical

observables which, in addition, provide information on motions taking place at different time

windows. It seems therefore particularly important to introduce relevant sets of coordinates,

the definition of which depends on the observable involved in the experimental method. This

consideration is especially important in the case of magnetic resonance spectroscopies for which

modeling methods for internal relaxation processes have been developed early on. Once, however,

a precise model for the internal and global dynamics of the macromolecule has been defined,

interpretation (and in a few cases, again mostly beloging to the subset of relaxation magnetic

resonance techniques) of complex experimental results is fully feasible.

Naturally, the apparent simplicity of the above statement "a precise model for the internal

and global dynamics of the macromolecule has been defined" is deceptive. Unless relatively small

systems (such as oligopeptides) or well-defined, in terms of structural and internal dynamical
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properties, are considered, the actual predictive power of most theoretical approaches is based on

a trial-and-error philosophy: i) define a suitable set of markovian internal variables, describing

the relevant motional properties of the macromolecule, ii) attempt to interpret any available

experimental datum, iii) refine choice of point i) until a satisfactory interpretation is reached. It

is tempting to bypass this modelistic approach by using brute force approaches (e.g. extensive

molecular dynamics simulations, MD), but in practice the complexity of the macromolecule

properties often defies this shortcut.

In this thesis we shall propose a number of investigations, carried out partly at the University

of Padova and partly at the École Normale Supérieure in Paris, having the general purpose

1) of understanding some of the major difficulties implied by a modelistic approach to protein

motions, or rather their limited description for the interpretation of EPR and NMR relaxation

experiments, and 2) of proposing some possible novel developments to partially overcome such

difficulties. Basically, one can identify several steps, requiring a careful definition of appropriate

theoretical methods

1. The description of the dynamics of a large object, such as a protein, requires a careful

definition of molecular frames to which the motions can be referred. Therefore, in general,

some geometrical considerations are needed in order to actually relate a dynamic model

with a set of observables amenable to experimental measurement, and care should be taken

to accurately account for the tensorial nature of the magnetic interactions, by defining

proper frames of reference; after this is done, integrated computational approaches based on

a combination of stochastic models and effective Liouville dynamics can be computationally

solved to describe most systems. Chapter 2 presents a self-contained example of advanced

interpretation of an actual experiment.

2. The technical solution of the resulting theoretical apparatus (in the form an augmented

stochastic equation) can be carried out, nowadays, with relative easiness; however one has

first to question if the model employed is well-defined, i.e. if the information contained in

the experiment is sufficient to justify a complex theoretical apparatus. Chapter 3 discusses

the conditions under which information on complex dynamics can be reliably obtained from
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NMR relaxation data.

3. Most existing modelistic approaches for intepreting relaxation experiments rely on a

phenomenological definition of variables describing the molecular internal dynamics; a self-

consistent procedure to identify internal degrees of freedom relaxing in different time-scales

would be needed, as the basis for a rational model. Chapter 4 is devoted to build a protein

motion analysis on suitably chosen cross-correlated functions of the atomic coordinates,

which can be used to perform a cluster reduction of the protein.

4. Finally, once a number of effective coordinates has been selected, in order to apply the full

machinery of stochastic methods, the problem remains of defining their reduced dynamics.

Chapter 5 introduces the theoretical framework for the derivation of stochastic descriptor

of flexible macromolecules in solution from atomistic models, via projection operators. An

example of an approximate approach to the interpretation of magnetic resonance relaxation

experiments is presented.
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2
INTEGRATED COMPUTATIONAL APPROACHES TO THE

INTERPRETATION OF MAGNETIC RESONANCE RELAXATION

I
nterpretation of structural, and dynamical behaviour of molecules is of fundamental

importance to understand their reactivity, biological function and activity. In general, one

has to deal with complex systems in which a wide range of time scales are present, from

localized fluctuations involving selected chemical groups (ps and fs) to global dynamics (µs and

slower). Physico-chemical properties of molecules and macromolecules in solution depend on the

action of different motions at several time scales. Information on multiscale dynamics can be

gained, in principle, by a variety of spectroscopic techniques. In this work we focus our attention

on magnetic spectroscopies, both electron paramagnetic resonance (EPR) and nuclear magnetic

resonance (NMR).

2.1 Interpretation of NMR relaxation experiments

2.1.1 Introduction

Nuclear magnetic resonance spectroscopy showed to be a powerful method to elucidate protein

dynamics because of the possibility to interpret nuclear spin relaxation properties in terms of
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microdynamic parameters. Magnetic relaxation rates R1, R2 and nuclear Overhouser enhance-

ment (NOE, ηNH) of 15N, 13C and 2H nuclei, depend on dipolar (15N and 13C) and quadrupolar

(2H) interactions, chemical shift anisotropy (CSA) and cross-correlation effects. When the spin

probe is the X-1H bond, following standard Bloch theory [41], it is possible to express the NMR

relaxation rates as functions of the spectral densities J(ω) evaluated at the Larmor frequencies

0, ωH , ωX , and ωH±X =ωH ±ωX:

ηNH = 1+ γH

γX

d2

R1
(6J(ω H+X)− J(ω H-X))

R1 = d2 (3J(ωX)+ J(ω H-X)+6J(ω H+X))+2c2J(ωX)(2.1)

R2 = d2
[
2J(0)+ 3

2
J(ωX)+ 1

2
J(ω H-X)

+ 3J(ωH)+3J(ω H+X)
]
+ c2

(4
3

J(0)+ J(ωX)
)

where d =µ0~γHγX/4
p

10π〈r3
XH〉, c = γXB0∆σX/

p
15 , and rXH is the XH distance. The parameters

γH and γX are the gyromagnetic ratios of X and 1H atoms, respectively, µ0 is the vacuum

magnetic susceptibility, ~ is the reduced Planck constant, and ∆σX is the 15N chemical shift

anisotropy. Usage of stochastic modeling in simulating/interpreting NMR relaxation of complex

systems dates back to 1982, when Lipari and Szabo [42, 43] introduced the so-called “Model-Free”

(MF) approach, and applied it to globular proteins. In the MF framework, an analytic expression

for the correlation function (from which the spectral density is obtained) is introduced. The whole

system is then described by the combination of two uncoupled motions: the global tumbling of the

whole molecule and the effective local motion of the 15N-1H (or 13C-1H) bond. The correlation

function takes the form of a bi-exponential, which in many cases, is sufficient to fit NMR data.

However, parameters entering the bi-exponential have a physical interpretation only if timescale

separation between global and local dynamics is valid, limiting the cases of application.[44].

In parallel, a model that takes into account those cases excluded by MF analysis and allows a more

complete local description of the protein has been introduced in the early 90s, the “slowly relaxing

local structure” (SRSL) model. [45, 46] SRLS consists on a two-body Smoluchowski equation that

describes the time evolution of the density probability of two relaxation processes (at different

time scales) coupled by an interaction potential. To the description of protein dynamics, the

two relaxing processes are interpreted as the slow global tumbling of the whole protein and the
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relatively fast local motion of the spin probe, the local motion (e.g. the 15N-1H bond). Both the

processes are described as rigid rotators the motion of which is coupled by a potential correlating

their relaxation and that is interpreted as the local ordering that the molecule imposes to the

probe. In the following section we give a summary overview on how the SRLS model is applied to

the interpretation of NMR data.

2.1.2 The SRLS model

SRSL model is a two-body (protein and probe) coupled rotator model. To give a full definition of

the model it is necessary to introduce a number of reference frames. In what follows, take Fig. 2.1

as reference:

- LF is the fixed inertial laboratory frame;

- M1F is the protein fixed frame where the diffusion tensor of the protein, D1, is diagonal;

- M2F is the protein fixed frame where the diffusion tensor of the probe, D2, is diagonal;

- VF is the protein fixed frame having the z-axis aligned with the director of the orienting

potential;

- OF is the probe fixed frame the z-axis of which tends to be aligned to the director of the

potential;

- DF is the probe fixed frame where the dipolar interaction is diagonal;

- CF is the probe fixed frame where the chemical shift tensor is diagonal.

To complete the picture, we have to define the set of Euler angles that transform among the

different frames:

- ΩL transform from LF to VF, while ΩLO transform from LF to OF;

- Ω transform from VF to OF;

- ΩV transform from M1F to VF;
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- ΩO transform from M2F to OF;

- ΩD transform from OF to DF, while ΩOC transform from OF to CF;

- ΩC transform from CF to DF.

Figure 2.1: Definition of frames and Euler angles in the SRLS model applied to NMR.

The system is fully described with two set of stochastic Euler angles and in particular our

choice is on the set of Euler angles ΩL, giving the orientation of the protein respectively to the

laboratory frame, and Ω, which represent the relative orientation of the probe and the protein.

Using this set of stochastic variables, X = (Ω,ΩL), the diffusion operator describing the time

evolution of the density probability of the system is

Γ̂ (X ) = O Ĵ†
(Ω)OD2Peq (X )O Ĵ (Ω)P−1

eq (X )+

+
[

V Ĵ (Ω)−V Ĵ (ΩL)
]† V D1Peq (X )

[
V Ĵ (Ω)−V Ĵ (ΩL)

]
P−1

eq (X )(2.2)

where OD2 is the diffusion tensor of the probe in OF, V D1 is the diffusion tensor of the protein in

VF and the equilibrium distribution, Peq (X ) is given by

(2.3) Peq (X )=N exp[−V (Ω,ΩL) /kT]

with k the Boltzmann constant and T the absolute temperature.

We will assume that the protein is immersed in an isotropic medium, so the equilibrium distribu-

tion is independent on ΩL and the total potential is only the interaction potential between the
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two processes for which we take the following expansion over Wigner matrices:

−V (Ω) /kT = c2
0D2

00 (Ω)+ c2
2
[
D2

0−2 (Ω)+D2
02 (Ω)

]+ c4
0D4

00 (Ω)+

+c4
2
[
D4

0−2 (Ω)+D4
02 (Ω)

]+ c4
4
[
D4

0−4 (Ω)+D4
04 (Ω)

]
(2.4)

Due to the fact that this is a pure rotational problem, observables are expressed as spectral

densities, i.e. Fourier - Laplace transforms of correlation functions of Wigner functions of the

absolute probe Euler angles, ΩLO =Ω+ΩL

(2.5) jk,k′ (ω)= 〈D j
m k (ΩLO)Peq (ΩLO) |(iω− Γ̂)−1 |D j′

m′ k′ (ΩLO)Peq (ΩLO)〉

Considering the symmetry of the magnetic interactions (dipolar and chemical shift anisotropy)

contributing to the spin Hamiltonian of the system for 15N-1H probe, only physical observables

with j = j′ = 2 and m = m′ = 0 have to be considered.

From these spectral densities it is possible to calculate the spectral densities for every magnetic

interaction, µ (dipolar, CSA), as

(2.6) Jµ (ω)=
2∑

k,k′=−2

[
D2∗

k0
(
Ωµ

)
D2

k′ 0
(
Ωµ

)]
jk,k′ (ω)

being Ωµ the set of Euler of angles transforming from OF to the frame where the µ-th magnetic

tensor is diagonal.

Calculation of spectral densities jk,k′ (ω) is achieved by spanning the diffusive operator over a

proper basis set. In such a way one moves the problem of calculating integrals in eq. (2.5) to a

classical linear algebra problem. The basis onto which the operator is spanned is given by the

direct product |Λ〉 = |λ1〉⊗ |λ2〉 = |L1M1K1〉⊗ |L2M2K2〉, where

|L1M1K1〉 =
√

(2L1 +1)
8π2 D

L1
M1 K1

(ΩL)(2.7)

|L2M2K2〉 =
√

(2L2 +1)
8π2 D

L2
M2 K2

(Ω)(2.8)

This basis is infinite and to practically solve the problem the expansion have to be truncated at a

certain value of the principal numbers L1 and L2. For what concerns the basis expansion for the

protein ({λ1}) the truncation is fixed by the symmetry of the physical observables to L1 = 2 and
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M1 = 0. So only one truncation parameter remains, i.e. L2. Given a maximum value, L2,MAX , the

dimension of the basis (in absence of other symmetries) will be

(2.9) N = 5
L2,MAX∑

i=0
(2i+1)2 = 5

3
(
L2,MAX +1

)(
2L2,MAX +1

)(
2L2,MAX +3

)
It is simpler to work with auto-correlation functions so instead of calculating directly spectral

densities in eq. (2.5) we define the function 2Ck,k′ =D2
0k +D2

0k′ and calculate the symmetrized

spectral densities

(2.10) jS
k,k′ (ω)= 〈Ck,k′ (ΩLO)Peq (ΩLO) |(iω− Γ̂)−1 |Ck,k′ (ΩLO)Peq (ΩLO)〉

and then obtain the jk,k′ (ω) functions as linear combinations of the symmetrized spectral densi-

ties:

(2.11) jk,k′ (ω)=
[
2

(
1+δk,k′

)
jS
k,k′ (ω)− jS

k,k (ω)− jS
k′,k′ (ω)

]
/10

The absence of any assumptions on timescale separation between global and local motion and the

intrinsically tensorial description, makes the SRLS model extremely versatile and it has been

extensively applied to the interpretation of NMR relaxation in proteins, and more recently also

to polysaccarides and soft coated metal nanoparticles. [47] In the following we report an example

of interpretation of NMR relaxation measure on E. Coli Ribonuclease HI, taken from Ref. [48].

2.1.3 SRLS analysis of 15N NMR spin relaxation from E. Coli Ribonuclease HI

Ribonuclease HI (RNase H) is an endonuclease that hydrolizes the RNA strand in RNA-DNA

hybrid molecules [49, 50]. E. Coli RNase is a polypeptide chain composed of 155 amino acid

residues. The three-dimensional structure has been resolved both from X-ray crystallography

[51] and NMR [52]. The RNase H is composed by five α-helices (residues 43 to 58, 71 to 80, 81 to

88, 100 to 112, and 127 to 142), and five β-strands (residues 4 to 13, 18 to 27, 32 to 42, 64 to 69

and 115 to 120).The backbone structure of RNase H is shown in Figure 2.2. Results from NMR

spectroscopy suggest that the loops between β1 and β2, αC and αD , and β5 and αE partecipate in

substrate binding. [53, 54] Several analyses of RNase H NMR relaxation data based on model-

free can be found in the literature [51, 55–57]. Nevertheless, several significant inconsistencies
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Figure 2.2: Structure of E. Coli RNase H. α-helices denoted αA to αE and β-strands denoted β1
to β5 (see text). The figure was drawn with the software PyMOL and using the PDB coordinate
file 1RNH. [1]

emerged. For example, 15N relaxation parameters of RNase H were also acquired at 14.1 and

18.8 T [58] to investigate the variability of the 15N chemical shift anisotropy (CSA) tensor. The

methodology used, in addition to good statistics, required that the N-H bonds employed in the

analysis be free of slow local motional effects and conformational excange contributions, Rex.

these requirements were fulfilled by the single-field data. However, it has been found in combined

data acquired at two or three magnetic fields yield different results. [59], Rex contributions,

often associated with different residues at different magnetic fields, emerged for approximately

50% of the relevant N-H bonds. clearly, many of these Rex terms are artificial. Few of them can

be eliminated accounting for an axial global diffusion tensor D1 with D1,∥/D1,⊥ = 1.23 using

standard MF methods. [56] However, it has been shown that such small deviations of D1 from

spherical simmetry can be ignored. [60] Hence, one has to search for effects other than D1 axiality

having been absorbed by the artificial Rex terms.

The tensorial perspective offered by SRLS model can provide quantitative information on the

strength of the local ordering and the magnitudes of the local motional rates at every N-H site in

the protein. Figure 2.3 shows the results of the SRLS analisys on relaxation data measured at

14.1 and 18.8 T.

The profile of the local order parameter, S2
0 (Figure 2.3a, left) suggests that in general, the
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Figure 2.3: Left, best-fit value of S2
0 (S2

0 = 〈D2
0,0 (ΩV F−OF )〉 ) (a), ∆βD (b), ln(D2,∥, 1/s) (c), ln(D2,⊥,

1/s) (d) and ∆βO (e), the tilt angle of the principal axis of the local ordering tensor, S, from the
N-H bond. Results were obtained by allowing c0

2, D2,∥, D2,⊥, βD , βO to vary during the fitting
routine. The errors are estimated at 2% for S0

2, ∆βD , ln(D2,∥) and ∆βO and 5% for ln(D2,⊥). For
the calculations, 15N CSA value of -172 ppm, a bond length rNH = 1.02 Å, and a -17◦ tilt angle
between the 15N-1H dipolar and 15N CSA tensor frames. Right, average values for the various
secondary structure elements and loops calculated from the results on the left.

loops exhibit lower local ordering than the secondary structure elements. In particular, the loops

αC/αD and β5/αE exhibit significantly lower local ordering.

The deviation of the principal axis of the local ordering tensor from the Cα
i−1 −Cα

i axis, ∆βD

(Figure 2.3b, left) does not exceed 6°. Within the seconday structure elements the N-H bond

vector fluctuations, described by D2,∥ are fast, (described as ln(D2,∥,1/s) in Figure 2.3c). The

correlation time, τ∥ = 1/(6D2,∥), extends from 3 to 125 ps. Slower N-H bond vector fluctuations

are detected for the loops. The average values for the αC/αD and β5/αE loops are respectively

344 and 208 ps (Figure 2.3c, right). The perpendicular component of the local diffusion tensor

D2,⊥ is shown as ln(D2,⊥,1/s) in Figure 2.3d. It can be seen that in most cases ln(D2,⊥,1/s)

is virtually the same as ln(D1,1/s). This is consistent with the equilibrium orientation of the

N-H bond being fixed in the protein backbone, with the only local motional mode experienced

being N-H fluctuations. Loops β1/β2 and β2/β3 exhibit values of D2,⊥ higher than D1. This is

consistent with localized ns motion of the protein backbone, taking place in addition to the

collective rocking motions occurring on the 100 ns time scale, detected with solid-state NMR. [61]

These two loops, together with loop β5/αE have been suggested to participate in substrate binding.

18



2.2. INTERPRETATION OF EPR RELAXATION EXPERIMENTS: CHARACTERIZATION OF A
SET OF RIGID 310-HELICAL PEPTIDES WITH TOAC NITROXIDE SPIN LABELS

2.1.3.1 Conclusions

SRLS describes the local restrictions in terms of second-rank ordering tensor and the local

restrictions in term of a second-rank diffusion tensor. When these tensors are taken axial but

their principal axes are tilted, they describe an asymmetric setting, giving an insightful tensorial

description of the N-H structural dynamics. The local ordering is found to be stronger within

secondary structure elements (〈S2
0〉 = 0.89) in respect to the loops (〈S2

0〉 = 0.84). The principal local

ordering axis is nearly parallel to the Cα
i−1 −Cα

i . The parallel component of the local diffusion

tensor is nearly the same of the global tumbling. The parallel component of the local diffusion

tensor represents N-H bond vector fluctuations centered around the equilibrium N-H orientation.

Fluctuations occour with average correlation times of 3-125 ps for secondary structure elements,

125-344 ps for loops, and 125 ps for the C-terminal part.

2.2 Interpretation of EPR relaxation experiments:

characterization of a set of rigid 310-helical peptides with

TOAC nitroxide spin labels

2.2.1 Introduction

Electron paramagnetic resonance (EPR) of spin-labeled compounds has become a powerful tech-

nique in biological structure determination. Most commonly, this latter issue relies on measuring

distances between two paramagnetic centers, often spin labels, covalently linked to well defined

positions in the biomacromolecule of interest. The methodologies to assess such distances by

EPR are limited because: i) they work well for frozen solutions at low temperatures and ii)

distance ranges between 0.8 and 1.5 nm are difficult to address. [62] Physiological conditions

such as liquid solutions at room temperature pose additional challenges. The dipolar interactions

between spins, so far the most reliable indicator for distance, can be partially averaged in liquid

solution. Therefore, the isotropic exchange interaction , being of the short-distance (several tenths
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of nanometer) type, is difficult to interpret in terms of separation between spins. Moreover, in

liquid solution, the spin-spin interaction is extracted from lineshape. More specifically, since

the differences in the spectra of the system of interest are evaluated in the absence/presence of

the spin-spin interaction, weak spin-spin interactions and long separations are challenging to

measure. In previous papers, [63–65] the authors synthesized and experimentally investigated

by EPR a complete series of four 310-helical peptides, based on α-aminoisobutyric acid (Aib) ,

with pairs of TOAC (4-amino-1-oxyl-2,2,6,6-tetramethylpiperidine-4-carboxylic acid) nitroxide

spin labels separated by three, four, five and six residues (see Table 2.1 for the exact amino

acid sequences and the number of covalent bonds between the two TOAC labels). The nitroxide-

containing TOAC is a residue as strongly helicogenic [66] as the well-known Aib,[67] in that they

are both members of the same class of Cα-tetrasubstituted α-amino acids. Moreover, the TOAC

side chain is rigidly connected to the peptide main chain so that the overall TOAC flexibility is

reduced to a minimum. As reference compounds for our EPR analysis, we also investigated three

size-matched mono-TOAC-labeled peptides. The bis-labeled peptides were classified according

to the magnitude of the exchange interactions:i i) class I ( '800 MHz) with HEPTA3,6 (three

intervening residues) and HEXA1,5 (four intervening residues) which show a large exchange

interaction and five-line EPR spectra, and ii) class II ( < 9 MHz) with OCTA2,7 (five intervening

residues) and NONA2,8 (six intervening residues) which exhibit a small exchange interaction and

three-line EPR spectra. In this work, a full computational study is presented of the mentioned

mono- and bis-labeled peptides employing an established integrated computational approach

[68, 69] based on the definition and solution of a proper stochastic Liouville equation (SLE) for

the system under study.[70] Such an approach has been applied with success in the interpretation

of EPR spectroscopy of similar peptides, allowing the determination of molecular properties

such as the main secondary structure in different solvents, proving the power of the interplay

between EPR experiments and proper theoretical/computational modeling.[63, 64, 71] The cou-

pling constant J is also a parameter of the SLE of the biradicals that need to be determined.

One possibility, which would be in line with the philosophy of the ICA, is the calculation of this

parameter. Quantum mechanical methods to access ab inito the value of J in biradicals are

based on the difference in energy of the singlet and triplet states. Approaches based on density
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functional theory [72–74], configuration interaction [75], and asymptotic methods [76, 77] have

been applied to the calculation of J in biradicals for which the interaction is weak, were with

“weak” it is intended that the exchange integral is on the order of 1−0.1 cm−1. This corresponds

to energy differences of 10−3−10−4 kcal/mol. Such an accuracy is not reached in routine quantum

mechanical calculations, for which it is usually of the order of 10−1 kcal/mol [78]. Higher accuracy

can be obtained in configuration interaction-based methods, but those cannot be used to make

calculations in reasonable times on medium-large molecules, like the poly-peptides studied in this

work. Moreover, a coupling constant much smaller than the limits above mentioned is expected

for the octa-, and nona-peptides, by inspection of their experimental EPR spectra. As will be

shown in Section 2.2.3, the entity of the coupling has been found of the order of 0.1 Gauss, i.e.

10−3 cm−1 . This, in turn, means that if J had to be accessed by quantum mechanical calculations,

energies more accurate of 10−6 kcal/mol would have been required: a still prohibitive limit. A

second route, the one we opted for, is to obtain the coupling constant from a fitting procedure of

experimental data. A point of strength of the SLE-based approach is that it allows to exactly

account for inhomogeneous line broadening. Sensitivity on such a feature of the cw-EPR spectrum

is particularly important in the present study since, as found in a previous work over bis-labeled

fullerene moieties, [79] the sign of the constant affects differently (and in a specular way, if sign

is changed) the left and right parts of the spectrum, with respect to the central, electron Larmor,

frequency. As will be discussed in the Results, the sensitivity is sufficiently high such that it is

possible to distinguish the sign even for a small, with respect to the isotropic hyperfine coupling

constant, value of the exchange integral. This makes the SLE-based approach in a preferential

position in the computational approaches to determine the constant from experimental mea-

surements. On the other hand, the integrated computational approach allows at present the

calculation of most of the parameters entering the SLE at a sufficient quality level such that

the difficulties of complex multidimensional fitting procedures are avoided. As will be shown

below, a very limited set of three fitting parameters will be employed, namely a correction to the

isotropic hyperfine interaction of the unpaired electron with the 14N nucleus, the constant and a

homogeneous broadening accounting for secondary effects on spectral lines coming from details

neglected in the model. Table 2.1 reports the chemical formulas and acronyms for the systems
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studies and the distance between the two nitroxide moieties.

compound acronym nCB radical state

(i) Z-(Aib)5-TOAC-Aib-OMe a HEPTA6 - mono
(ii) Z-(Aib)6-TOAC-Aib-OMe OCTA7 - mono
(iii) Fmoc-Aib-TOAC-(Aib)7-OMe b NONA2 - mono
(iv) Fmoc-(Aib)2-TOAC-(Aib)2-TOAC-Aib-OMe HEPTA3,6 15 bis
(v) Fmoc-TOAC-(Aib)3-TOAC-Aib-OMe HEXA1,5 18 bis
(vi) Fmoc-Aib-TOAC-(Aib)4-TOAC-Aib-OMe OCTA2,7 21 bis
(vii) Fmoc-Aib-TOAC-(Aib)5-TOAC-Aib-OMe OCTA2,7 24 bis

aZ, benzyloxycarbonyl; OMe, methyloxy bFmoc, fluorenyl-9-methyloxycarbonyl

Table 2.1: Chemical formulas and acronyms for the peptides investigated

2.2.2 Modeling

2.2.2.1 The Stocastic Liouville Equation

As it was shown in previous works on similar systems,[63, 64, 71] Aib-based short peptides can be

treated as rigid bodies from the point of view of the cw-EPR spectroscopy in solution. The relevant

(slow) coordinates of the molecules are simply the three Euler angles,Ω, that describe the overall

orientation of a molecular-fixed reference frame (MF) with respect to a laboratory-fixed (LF)

frame. The remaining degrees of freedom, i.e. peptide internal dynamics and solvent, are treated

at the level of a thermal bath, providing only fluctuation-dissipation to the angular momentum of

the molecule. Within this level of description, the time behavior of the coordinate Ω. To describe

its time evolution, the quantity ρ (Ω, t|Ω0,0) is introduced, i.e. the conditional probability density

of finding the molecule with an orientation Ω at a time t, if it was in Ω0 at some reference time.

In this case the high friction approximation regime is used, under which the angular momentum

is thought to relax in a time scale much faster with respect to the Euler angles, thus it can be

projected out. Under this assumption, the time evolution of ρ (Ω, t)= ρ (Ω, t|Ω0,0) is

(2.12)
∂

∂t
= ρ (Ω, t)=−Ĵ tr

(Ω)DĴ (Ω)ρ (Ω, t)=−Γ̂ (Ω)ρ (Ω, t)

which is valid in an isotropic medium. In Eq. 2.12, Ĵ (Ω) is the angular momentum operator,

describing the infinitesimal rotation of the molecule, and D is the rotational diffusion tensor. It i)

MF is chosen as the frame that diagonalizes D and ii) and assuming a nearly axially simmetric
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rotational diffusion tensor, then the diffusive operator reads

(2.13) Γ̂' D⊥ Ĵ2 − (
D∥−D⊥

)
Ĵ2

Z

with D∥ = DZZ the principal value of the rotational diffusion tensor about the direction nearly

parallel to the axis of the 310-helix and D⊥ = (DX X +DY Y ) /2 the average of the other two principal

values for the rotation about two perpendicular axes, both nearly perpendicular to the helix axis.

Ĵ2 and Ĵ2
Z are, respectively, the square of the total angular momentum and its projection over

the Z-axis of MF. Since the relaxation time scales characteristic for Ω is likely to be comparable

with spin relaxation rates, the quantum mechanical evolution of spin pseudo variables σ, and

the classical motion need to be treated in a coupled way. The Stochastic Liouville equation [70]

provides the correct framework to describe in complete and exact way the full set of relaxations

in the system.

d
dt
ρ̂ (σ,Ω, t) = −i

[
Ĥ (Ω) , ρ̂ (σ,Ω, t)

]− Γ̂ (Ω) ρ̂ (σ,Ω, t)

= −(
iĤ× (Ω)+ Γ̂ (Ω)

)
ρ̂ (σ,Ω, t)(2.14)

= −L̂ρ̂ (σ,Ω, t)

where now the probability density is an operator (density matrix), Ĥ is the spin Hamiltonian,

Ĥ× a super-operator that returns the commutator of Ĥ and ρ̂ (σ,Ω, t), and L̂ the stochastic

Liouvillean. Since in this work, we deal with both mono- and bis-labelled peptides, each spin

label bearing an unpaired electron coupled with one nitrogen nucleus, the general shape of the

spin hamiltonian (in units of frequency) is

(2.15) Ĥ = βe

~

nprobes∑
i=1

B0 · gi · Ŝ i +
nprobes∑

i=1
Î i · A i · Ŝ i −2γe JŜ1 · Ŝ2 + Ŝ1 ·T · Ŝ1

where βe is the Bohr magneton and ~ the Plank constant. The first term is the Zeeman interaction

of each electron spin with the magnetic field B0, depending of the gi tensor; the second term is

the hyperfine interaction of each 14N/unpaired electron, defined with respect to the hyperfine

tensor A i; the third and fourth terms are the electron exchange and spin-spin dipolar interac-

tions, respectively. J is the exchange constant, while the tensor T is modeled here in the point
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approximation

(2.16) T = µ0

4π
g2

eβ
2
e

hr3

[
13 + 3

r2 r⊗ r
]

where µ0 is the vacuum magnetic permeability, r the distance vector between the position of the

two electrons, r its modulus, and ⊗ stands for the dyadic product. While in principle to evaluate

the tensor T, the distributions of the upaired electrons in their orbitals should be taken into

account, the two N-O moieties in the bis-labeled radicals of this study are sufficiently far away

(> 7 Å) so that is possible to consider electrons as point charges. [63] In the calculations, the

electrons are placed in the center of the N-O bond. In Eq. 2.15, tensors gi and A i are taken

diagonal in their local frames µiF (µ = g, A) rigidly fixed on the i-th nitroxide, and the set Ωµi

is introduced, as the time- indipendent set of Euler angles that transforms from MF to µiF.

Operators Ŝ i and Î i are defined in LF. For monoradicals nprobes = 1 and the third and fourth

term of the Hamiltonian are not present, while for biradicals nprobes = 2 and the full Eq. 2.15

must be considered. Finally, the dependence of the spin Hamiltonian on Ω is implicit due to

the fact that Zeeman, hyperfine and dipolar interactions are modulated by tensorial quantities,

which are constant in MF, but change in LF, which is the reference where the spin operators are

defined. [70, 80]

The EPR spectrum is obtained as Fourier-Laplace transform of the correlation function for the

X-componente of the magnetization, defined as

|v〉 = (2I +1)−nprobes/2
nprobes∑

j=1
|ŜX , j〉

where I is the nuclear spin. following standard definitions,[70] the spectral lineshape is obtained

as

(2.17) G (ω−ω0)= 1
π

R
{〈

v
∣∣∣[i (ω−ω0)+ (

iĤ×+ Γ̂)]−1
∣∣∣vPeq

〉}
where Peq = 1/8π2 is the (isotropic) distribution in the Ω space. Here, ω is the sweep frequency,

ω0 = g0βeB0/h = γeB0 and g0 is the trace of the gi tensor divided by three. The starting vector

|v〉 of Eq. 2.17 is related to the allowed EPR transitions and it is actually an operator acting on

the spin degrees of freedom.[70]

To summarize, the peptide is described as a diffusive rotor, and the TOAC probes are rigidly fixed.
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Parameters are the principal values of the diffusion tensor DX X , DY Y , DZZ ; the principal values

of g and A tensors, and the Euler angles Ωµ describing the orientation of the magnetic local

tensors with respect to MF; in the case of biradicals, the exchange interaction J and the dipolar

tensor T must be added to the set.

2.2.2.2 Structure and magnetic tensors

The geometrical optimization of all the peptides has been carried out using the Gaussian 03

software package [81] at DFT level of theory in acetonitrile solvent, which is modeled at the level

of the polarizable continuum model, PCM. [82] The hybrid counterpart PBE0 of the conventional

functional PBE with the standard 6-31G(d) basis set was employed. Based on previous studies on

Aib-based, TOAC-labeled peptides have been prepared in the 310-helix secondary structure and

assumed a twist geometry for the TOAC rings.

Hyperfine and Zeeman tensors have been computed by the same functional and using the N06

basis set.[83] No vibrational averaging correction has been applied to the isotropic hyperfine term,

A iso = tr{A}/3. Rather, the A iso term has been kept as an adjustable parameter comparing the

calculated spectra with the experimental ones. In biradicals, as described in Subsection 2.2.2.1

the spin-spin dipolar interaction tensor has been calculated within the point approximation in Eq.

2.16, taking the vector connecting the centers of the two N-O bonds as a measure of the distance

between the electrons. Concerning the exchange interactions, calculation of J is still a difficult

task, especially in cases when its absolute value is of few Gauss, or smaller. On the other hand,

due to the inhomogeneous broadening of spectral lines, the spectrum is very sensitive not only to

the absolute value of the electrons exchange constant, but also on its sign. [79]. Thus, J has been

kept as a free parameter of the calculation, to be fitted over the experimental data.

2.2.2.3 Dissipative properties

The evaluation of the diffusion properties of the peptides was based on a hydrodynamic approach.[84]

The melecule is described as a set of N rigid fragments made of atoms or groups of atoms im-

mersed in a homogeneous isotropic fluid of known viscosity. the tensor D can be conveniently

partitioned into translational, rotational, internal and mixed blocks. It is thus obtained as the
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inverse of the friction tensor Ξ using Einstein’s relation[85, 86]

(2.18) D =


DTT DTR DTI

D tr
TR DRR DRI

D tr
TI D tr

RI D I I

= kBTΞ−1

where kB is the Boltzmann constant and T the absolute temperature. The friction tensor for the

constrained system of spheres (the real molecule), Ξ, is calculated from the friction tensor of

non-constrained extended atoms, as described in Ref. [84].

The complete diffusion tensor is represented by a 6×6 matrix. Due to the translational invariance

of the magnetic tensors, one may project out the translational part and reduce the diffusion

tensor to a 3×3 matrix made up only of the rotational tensor, D = DRR . For all the peptides,

the diffusion tensors have been calculated with this set of parameters: viscosity 0.343 cP,[87]

temperature 293 K, an effective radius of 2 Å on all the non-hydrogen atoms and stick boundary

conditions.

2.2.3 Results

The calculation of the cw-EPR spectra has been carried out with the E-SpiRes software package.

[69] Relevant parameters are reported in Tables 2.3 and 2.4, respectively for the three mono-

labeled and for the four bis-labeled peptides. since there was no g-calibration in the experimental

spectra, a fixed correction gcorr, was applied in order to center the theoretical spectra with the

experimental ones. A limited set of parameters have been adjusted via a non-linear least squares

procedure, that is: the isotropic part of the hyperfine tensors (needed because librational effects

were not accounted for in QM calculations), the value of the exchange integral in biradicals, and

an intrinsic linewidth which provides an homogeneous broadening to the spectral lines. The latter

parameter is added in order to simply take into account secondary effects of structure/dynamics

on the spectrum neglected by the stochastic model. The values obtained for J are reported in

Table 2.2, together with the geometric distance between the two nitroxide moieties, and the

distance expressed in terms of the number of covalent bonds (nCB).
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Peptide r / Å nCB J / Gauss

HEXA1,5 11.9 15 250
HEPTA3,6 7.0 18 >300
OCTA2,7 15.0 21 -0.38
NONA2,8 12.9 24 0.31

Table 2.2: Summary of J values obtained by fitting of experimental spectra. Geometric distance
(r) and distance in term of number of covalent bonds (nCB) between the two TOAC labels are also
reported.

Figure 2.4: Experimental (red, solid line) and calculated (black, dashed line) cw-EPR spectra of
the three monoradicals, and their QM-minimized structures. a) HEPTA6, b) OCTA7, c) NONA2.
The principal axes of rotational diffusion are also shown (coloring scheme: X red, Y green, Z blue).

Figure 2.4 reports the comparison between experimental and calculated spectra for the mono-

labeled peptides, while Figures 2.5 and 2.6 show the comparison for the four biradicals. The good

agreement of theoretical lineshapes with the experimental data obtained using a very limited set

of parameters underlines the goodness of the stochastic model employed, i.e. despite its simplicity

it is able to catch the relevant dynamics, with respect to EPR, of the molecules. While for the mono-

radicals, all the the parameters, but the isotropic part of the hyperfine coupling, are all computed

ab initio, for biradicals the most important physical parameter to discuss is the exchange integral.
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Figure 2.5: Experimental (red, solid line) and calculated (black, dashed line) cw- EPR spectra
of the biradicals a) HEXA1,5 and HEPTA3,6, and their QM-minimized structures. The principal
axes of rotational diffusion are also shown (coloring scheme: X red, Y green, Z blue).

2.2.3.1 The effect of the value of J on the spectrum

As underlined in the Introduction, in this study, the molecules showed to lay in two limiting

cases. On one hand, spectra of HEXA1,5 and HEPTA3,6 are constituted of five lines, with the

two extra lines with respect to the normal monoradical pattern placed exactly at ±A iso/2 and

with high intensity (see Figure 2.5. Following Luckurst [88] this indicates that J/A iso >> 1. In

fact, for HEXA1,5 the fit returned 250 Gauss, while for the HEPTA3,6 peptide, the only possible

estimation was that J ≥ 300 Gauss, since beyond this value, the calculated spectrum started

to become insensitive on the value of the exchange integral. To obtain a good agreement with

the experimental spectra the assumption that a certain percentage of mono-radical peptide was

present in the sample has been made (e.g. due to partial degradation of the sample [79]. In

particular, a component 20% and 4% of monoradical for the HEXA1,5 and HEPTA3,6 has been
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Figure 2.6: Experimental (red, solid line) and calculated (black, dashed line) cw- EPR spectra of
the biradicals a) OCTA2,7 and b) NONA2,8, and their QM-minimized structures. The principal
axes of rotational diffusion are also shown (coloring scheme: X red, Y green, Z blue).

used.

On the other hand, experimental spectra of OCTA2,7 and NONA2,8 show only three peaks, sug-

gesting a very weak exchange interaction among the two unpaired electrons. also, due to the

large distance of the electrons (15 and 13 Å, respectively), the dipolar interaction is not able to

contribute to the inhomogeneous broadening of the peaks in a sensible way. Thus, it was not

possible to estimate, if present, the quantity of mono-raical with accuracy, for which, the calcula-

tions were run with the bis-radical contribution only, neglecting any possible contamination by

the mono-radical.

To find the value of J, two fits were run starting from either a positive or a negative value of the

coupling constant. Values reported in Table 2.2 are those that gave the best chi-squared value.

For the sake of completeness, the spectra calculated with both positive and negative values of J

(together with intrinsic linewidth, γ, and the chi-squared, χ2) are reported in Figure 2.7, for the

two peptides. the spectra show that a small but decisive difference is noticeable between the two

29



CHAPTER 2. INTEGRATED COMPUTATIONAL APPROACHES TO THE INTERPRETATION
OF MAGNETIC RESONANCE RELAXATION

calculations with the inverse sign of the exchange integral. Thus, not only the SLE approach is

sensitive to very small, in absolute value J, but it is able to catch also the sign of the exchange

integral. While the first information is in some way “hidden” in the spectral pattern, the sign is

intrinsically related to inhomogeneous broadening, which is exactly taken into account in our

approach, within the limits of the precision of the chosen model for the dynamics.

(a) J = -0.38 Gauss, γ = 0.42 Gauss, χ2 = 1.8 (b) J = -0.33 Gauss, γ = 0.34 Gauss, χ2 = 4.5

(c) J = +0.38 Gauss, γ = 0.40 Gauss, χ2 = 2.1 (d) J = +0.31 Gauss, γ = 0.44 Gauss, χ2 = 2.2

Figure 2.7: Comparison among experimental (red, solid line) and theoretical (black, dashed line)
cw- EPR spectra of (a, c) OCTA2,7 and (b, d) NONA2,8 bis-radicals fitted using a negative or a
positive initial guess for J (intrinsic linewidth was also fitted). χ2 for the fittings are reported.

2.2.4 Conclusions

The combination of different computational methods, from MD to quantum mechanical calcu-

lations and stochastic modeling, has been proved to be a winning strategy to interpret cw-EPR
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HEPTA6 OCTA7 NONA2

D / 109 Hz 1.03, 1.08, 2.75 1.36, 1.38, 3.78 1.08, 1.11, 3.35
g− ge / 10−3 6.41, 3.66, -0.29 6.48, 3.71, -0.22 6.97, 4.14, 0.16
Ωg / deg -2.0, 89.9, -1.6 -107.5, 12.5, 170.2 153.0, 182.1, 249.4
A / Gauss 5.50, 5.64, 33.08 5.52, 5.66, 33.07 5.64, 5.80, 32.75
ΩA / deg 77.7, 172.1, -70.6 151.5, 10.4, 162.7 146.0, 174.5, -102.7
ω / 109 Hz 9.784351 9.784351 9.786595
gcorr / Gauss +11.5 +11.5 +11.5
γ / Gauss 0.73 0.70 0.58

Table 2.3: Dissipative, geometric and magnetic parameters employed in the calculation of cw-EPR
spectra of mono-labeled peptides. Principal values of the tensors are given, together with their
transformation angles with respect to MF. Reported are also the spectrometer frequency (ω), the
g shift correction (gcorr) and the intrinsic linewidth (γ).

HEXA1,5 HEPTA3,6 OCTA2,7 NONA2,8

D / 109 Hz 0.89, 0.92, 1.69 0.83, 0.87, 2.04 1.01, 1.03, 1.93 0.51, 0.53, 1.48
g1 − ge / 10−3 6.90, 4.20, 0.02 6.83, 4.08, 0.13 6.97, 4.14, 0.16 6.70, 3.90, -0.10
Ωg1 / deg -87.4, 116.4, -147.9 171.5, 7.6, -28.0 154.0, 182.1, 249.4 153.0, 182.1, 249.4
A1 / Gauss 5.64, 5.80, 32.75 5.50, 5.64, 33.08 5.64, 5.80, 32.75 5.64, 5.80, 32.75
ΩA1 / deg -157.2, 45.6, -139.3 171.5, 24.5, -98.3 146.0, 174.5, -102.7 146.0, 174.5, -102.7
g2 − ge / 10−3 6.41, 3.66, -0.29 6.97, 4.14, 0.16 6.88, 4.10, 0.18 6.48, 3.71, -0.22
Ωg2 / deg 37.4, 87.2, 133.3 -40.3, 137.6, 169.3 -107.5, 12.5, 170.2 -107.5, 12.5, 170.2
A2 / Gauss 5.50, 5.64, 33.08 5.64, 5.80, 32.75 5.52, 5.66, 33.07 5.52, 5.66, 33.07
ΩA2 / deg 37.4, 87.2, 133.3 -40.3, 137.6, 169.3 151.5, 10.4, 162.7 6.3, 90.0, -180.0
r / Å 11.9 7.0 15.0 12.9
ω / 109 Hz 9.787400 9.787091 9.786611 9.785979
gcorr / Gauss +11.5 +11.5 +11.5 +11.5
γ / Gauss 1.16 0.92 0.42 0.44

Table 2.4: Dissipative, geometric and magnetic parameters employed in the calculation of cw-EPR
spectra of bis-labeled peptides. Principal values of the tensors are given, together with their
transformation angles with respect to MF. Reported are also the spectrometer frequency (ω), the
g shift correction (gcorr) and the intrinsic linewidth (γ).

spectra in bis-labelled polypeptides. [63, 64] It is thus possible to combine covergent and comple-

mentary computational techniques to obtain geometrical and dynamical information. The DFT

geometry optimization procedure led to a 310 helical structure for all the polypeptides studied

in this work, this is consistent with previous theoretical and experimental studies.[63, 64]. For

the systems OCTA2,7 and OCTA2,8 we found that the principal values of the hyperfine tensors

(A1 and A2) are equal. In general, we found Aib/TOAC peptides having a stronger coupling
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than that in the corresponding Ala/TOAC peptides investigated some time ago. [89] This result

is not surprising in view of the known, much less strong helix-supporting properties of Ala

versus Aib.[67] In the studies reported in ref. [89], the authors also determined the relaxation

parameters by power-saturation experiments. They demonstrated that the relaxation parameters

for all four bis-radical peptides differ significantly from those for the mono-radicals, showing

that a different relaxation mechanism is operative in the bis-radicals. The different relaxation is

attributed to the spin-spin interaction occurring in the latter compounds and proposed that it can

be used as a tool for distance determination. In this work, we showed that for specific nitroxide

spin labels in the distance regime of 0.8 to 1.5 nm, electron spin-spin relaxation could be used as

an indicator for distances , thus expanding the tools available so far to EPR spectroscopists even

further towards biologically significant conditions.

32



C
H

A
P

T
E

R

3
BAYESIAN ANALYSIS OF DISPERSION RELAXATION EXPERIMENTS

3.1 Introduction

Nuclear magnetic relaxation has long been known for its unique capability to investigate molec-

ular motions, and it has been used extensively to probe internal dynamics in nonrigid macro-

molecules. Moreover, given the development of two- and higher dimensional NMR experiments,

NMR has become a unique tool to extract dynamical information with atomic resolution.

One of the characteristic features of the technique is the indirect connection between spin re-

laxation and molecular motions. Indeed, these latter appear in spin relaxation rates through

correlation functions of the spatial part of fluctuating hamiltonians.[41] Apart from experimental

issues, there are several fundamental problems when relating spin relaxation measurements to

molecular dynamics. The connection between relaxation rates and the spectral density function

J(ω), (i.e. the Fourier transform of the correlation function) is lacunary, due to the restricted

number of frequencies entering the expression of the relaxation rates. Therefore the analysis

of relaxation data requires models of spectral density functions. These can be built on various

grounds, including physical models of dynamics, or empirical formulations of the correlation

functions. In any case, the practical problem at hand is that of fitting experimental data to a

model. Although the choice of a given model is of fundamental importance, by providing a physical
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interpretation of the data, this question is not the subject of this work. Rather, the point is to

address the question of the capacity, given a model for the dynamics, or the correlation functions,

of NMR relaxation experiments to provide reliable estimates of model parameters. Difficulties

arise from different factors. One is the relatively small number of independent relaxation rates

that can be measured, which limits the number of adjustable parameters and therefore the

complexity of the models to be fitted. Moreover, in addition to what was stated above, most of

the values entering the expressions of the relaxation rates sample the higher frequency region

of the spectrum, leaving largely undeterminate the sampling of the spectral density profile.

Therefore, some of the time constants, such as fast internal time scales, may not be correctly

probed by relaxation experiments. Another issue often overlooked is the correlation between

model parameters during fitting. This is particularly true for overall correlation time(s) and

internal dynamical parameters. This can be ascribed to the fact that contributions from the

part of the correlation function that account for the overall diffusion of the molecule, and for

the usually faster internal dynamics, may not be delineated from NMR measurements. This

typically gives rise to multiple minima of the target function χ2. When an analytical expression

of J(ω) is available, this can be related to the existence of asymptotic expressions of the spectral

density function that are independent of some of the model parameters, therefore leading to some

undeterminacy.

Some of these aspects have been investigated in a recent work,[90] where the authors proposed

a Markov Chain-Monte Carlo (MCMC) approach to analyze NMR relaxation data.[91] There,

it was shown that such a strategy can be used for the determination of all, or a subset only

of parameters of a dynamical model, thereby avoiding the model selection process. Moreover,

the statistical correlation between internal and overall dynamic parameters was investigated

through MCMC approach, which pinpointed the limitations of the use of only high-field relaxation

studies. Indeed, simultaneous fitting of overall diffusion parameters, that contribute most to the

spectral density function, and parameters pertaining to internal motions, contributing a small

fraction of J(ω), leads to the similar kind of under determined minimization problem.

Therefore, the authors investigated the possible advantages of using relaxation measurements

performed at different magnetic fields to extract these parameters simultaneously. Relaxometry,
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i.e. the measurement of relaxation rates over a wide range of magnetic fields, dates back to the

early days of NMR, and has been recently developed by several authors to match the standards

of high-resolution NMR.[92–94] It is thus possible to perform relaxation experiments at magnetic

fields as low as 0.5 T on a high-resolution spectrometer. The use of such a broad spectral

measurement is likely to provide a better sampling of the spectral density functions.

The main purpose of this chapter is to determine the conditions under which both overall

and internal dynamics can be reliably obtained from relaxation data, using a MCMC strategy.

This work has been carried out during a prolonged stay at the École Normale Supérieure in Paris

under the guidance of Dr Daniel Abergel.

3.2 Theory

3.2.1 Spin relaxation and dynamics

According to the Abragam-Redfield theory, [41, 95, 96] spin relaxation is determined by the

nature of the fluctuating spin interactions and the correlation function of the spatial part of

the hamiltonian, which contains information about the “lattice” fluctuations, i.e., the molecular

motions. In the case of relaxation of a spin 1/2 X (X=15N,13C) bonded to a 1H the stochastic

motions of the internucleus X -1H vector induce fluctuations of the dipole-dipole interaction

with the directly attached proton and of the X chemical shift anisotropy (CSA) tensor σ. For

a molecule in solution, NMR relaxation rates are determined by time correlation functions

C(t)= 〈P2(µ(t) ·µ(0))〉, where µ(t) is a unit vector pointing along the X 1H bond and P2(.) is the

second order Legendre polynomial P2(θ)= 1/2(cos(θ)2 −1). The spectral density function J(ω) is

defined as the Fourier transform of the correlation function C(t) as:

(3.1) J(ω)=
∫ ∞

0
C(t)cosωt dt

Longitudinal and transverse 15N relaxation rates (R1, R2), and 15N{1H} heteronuclear Over-

hauser enhancement (ηNH), as reported in Section 2.1.1 are expressed in terms of the spectral

density function J(ω) evaluated at particular values of the Larmor frequencies. For convenience,
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we report here the expressions of Equation 2.1:

ηXH = 1+ γH

γX

d2

R1
(6J(ω H+X)− J(ω H-X))

R1 = d2 (3J(ωX)+ J(ω H-X)+6J(ω H+X))+2c2J(ωX)(3.2)

R2 = d2
[
2J(0)+ 3

2
J(ωX)+ 1

2
J(ω H-X)

+ 3J(ωH)+3J(ω H+X)
]
+ c2

(4
3

J(0)+ J(ωX)
)

where d =µ0~γHγX/4
p

10π〈r3
XH〉, c = γXB0∆σX/

p
15 , and rXH is the XH distance. The parameters

γH and γX are the gyromagnetic ratios of X and 1H atoms, respectively, µ0 is the vacuum

magnetic susceptibility, ~ is the reduced Planck constant, and ∆σX is the 15N chemical shift

anisotropy. The presence of additional mobility on the µs−ms time scale appears as a contribution

Rex to the observed transverse relaxation rate: Rapp
2 = R2 +Rex.[97–99] In order to further the

analysis of relaxation measurements, one therefore must assume a model of the correlation

functions, based on physical considerations that depend on the kind of motions that are expected

to take place. In this work, the fractional brownian dynamics (FBD) model has been used. The

practical goal is then to extract the relevant model parameters from the experiments.

3.2.2 Fractional brownian dynamics

A model of fractional diffusion was recently introduced to account for the presence of long time

tail decays of internal correlation functions appearing in NMR spectroscopy. [100–102] In the

proposed model, overall tumbling and internal motions are statistically decorrelated, which

enables the factorization of the correlation function as:

(3.3) C(t)= CI(t)×CO(t)= e−t/τo ×CI(t),

where overall diffusion is isotropic with correlation time τo. Internal rotational correlation

functions CI(t) were thus modeled as: [100, 103]

(3.4) CI(t)= S2 + (cel −S2)Eα(−[t/τ]α),

Eα(z) is the Mittag-Leffler (ML) function, an entire function in the domain of complex numbers

[104], and defined as:

(3.5) Eα(z)=
∞∑

k=0

zk

Γ(1+αk)
, α ∈C
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The function Eα(−[t/τ]α) in Equation (3.4) can be viewed as a generalization of a stretched

exponential function with α and τ being the shape and scale parameters, respectively. For α= 1

the stretched ML function reduces to the exponential, whereas for 0<α< 1 it exhibits a power law

decay at large times, Eα(−[t/τ]α) ∝ (t/τ)−α, and an infinitely steep decay at t = 0. For 0 <α≤ 1,

the Mittag-Leffler function can be expressed as the continuous superposition of exponential

relaxation functions exp(−λt), with the relaxation rate distribution function pα,τ(λ):

(3.6) Eα(−[t/τ]α)=
∫ ∞

0
dλ pα,τ(λ)exp(−λt).

The spectrum of relaxation rates is positive and has the form: [105, 106]

(3.7) pα,τ(λ)= τ

π

(τλ)α−1 sin(πα)
(τλ)2α+2(τλ)α cos(πα)+1

In Eq.3.7, pα,τ(λ) satisfies the normalization condition
∫ ∞

0 pα,τ(λ)dλ= 1 and reduces to a Dirac

distribution centered at the value τ−1 for α= 1. Moreover, the inverse of the scaling parameter τ

gives the median of the distribution pα,τ(λ), so that λ1/2 = τ−1 [103]. The stretched Mittag-Leffler

function is the solution of a fractional differential equation [105, 107]. The spectral density

function associated with Eqs (3.3-3.4) and (3.6) is given by:[100]

(3.8) J(ω)= S2τ0

1+ (ωτ0)2 + (cel −S2)
1
γ

(γτ)α cosβ+cos[β(1−α)]
(γτ)α+ (γτ)−α+2cosβα

,

where cosβ= (τ0γ)−1, sinβ=ω/γ, γ= (τ−2
0 +ω2)1/2.

As previously noted in Ref. [100], the initial decay of the correlation function, occurring at time

lags typically shorter than ≈ 1 ps, is due to the presence of very fast processes that give rise to

rapidly damped oscillations of the correlation function. These phenomena are not described by

this diffusion process, and are empirically taken into account by introducing the parameter cel < 1

in Eq. 3.4.[100] This parameter is just the value of the correlation function at the minimum time

lag where the theory is assumed valid, what happens at shorter times remaining beyond the

scope of the model. Thus, the use of Mittag-Leffler functions represents a way to account for the

presence of multiple time scale internal dynamical processes, whilst keeping at the same time

the number of model parameters as small as possible.[100]
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3.2.3 Bayesian analysis of relaxation data using MCMC analysis

The usual parameter estimation strategy of spin relaxation measurements involve fitting to

nested models of increasing complexity that are selected based on statistical F-tests.[108, 109]

However, it has been shown that a Bayesian approach may have several advantages in this

context.[90, 91]

Indeed, the latter provides a time effective parameter estimation strategy, because efficient

algorithms that do not use time consuming minimizations allow to perform a search in the

parameter space, rather than in the data space. In addition, a Bayesian approach is probabilistic,

so that the whole statistical information content is retained, which therefore provides marginal

probability distributions of the different model parameters. Moreover, any additional insight or

knowledge of the system at hand can be used as input through the prior probability, and finally,

it avoids the need for model selection strategies, and a may provide estimates of a subset of the

model parameters. This may reveal of particular interest when measurements are insensitive to

certain motional time scales, therefore, model parameters.[90]

In contrast to conventional treatments of experimental data, a Bayesian approach can acco-

modate asymmetrical or even multimodal probability distribution functions (PDFs) of model

parameters that cannot be satisfactorily characterized by a few numbers representing their

averages and spreads. Thus, MCMC provides a way to access the posterior probability P(θ|R, I),

of the parameters θ given the data R. In this expression, I denotes variables accounting for

any additional information about the system. For our purpose, R = {R1,R2, NOE, . . . }, the set of

measured relaxation rates, whereas the model parameters θ depends on the particular dynami-

cal model used for the analysis. The posterior probability P(θ|R, I) is related to the likelihood

P(R|θ, I) through the Bayes theorem of conditional probabilities:

(3.9) P(θ|R, I)∝ P(R|θ, I)×P(θ, I)

Markov chain Monte Carlo (MCMC) methods represent very effective strategies for the simulation

of samples of known probability distributions. A detailed account is beyond the scope of this

work and the interested reader is referred to general references for detailed descriptions (see

for instance Ref. [110]). In brief, the goal is to generate a sequence of random numbers that has
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the posterior probability P(θ|R, I) as its stationary distribution. However, one actually wants to

sample from the unknown distribution P(θ|R, I). But the problem is circumvented by the use of

Eq.3.9 which allows to replace the posterior probability P(θ|R, I) with the likelihood P(R|θ, I).

Indeed, the latter can be calculated from the model by assuming that the measurement error

obeys a Gaussian white noise distribution centered on the experimental values R of the relaxation

rates, with the standard deviation σ:

(3.10) P(R|θ, I)= 1

σ
p

2π
exp

[ f (θ)−R]2

2σ2

where f (θ) is the theoretical relaxation rate. In the calculations, the value of σ was chosen so as

to match a typical 3% relative error made on the relaxation rates in NMR experiments.

3.2.4 Implementation

In this work, we used a standard Metropolis-Hastings algorithm [111, 112] using a random-walk

proposition law for the MCMC simulations, according to the following conventional algorithm

(U (0,1) is the uniform distribution):

• for i = 1, . . . , N generate u from U (0,1) and θ∗ from N (θi−1,σ)

if u ≤ P(R|θ∗, I)
P(R|θi−1, I)

then

θi = θ∗

else

θi = θi−1

Here, the components θi−1
η of θi−1 are sampled from independent normal laws N (θi−1

η ,ση).

MCMC simulations were used to provide estimates of the marginal probabilities of the various

components of the parameter vector θ:

(3.11) P(θη|R, I)=
∫

dθζ 6=ηP(θ|R, I)

The estimated marginal probability distributions of the model parameters θη were computed from

the histograms of values generated by the Markov chains. In order to do so, independent and
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identically distributed (iid) samples must be selected, which is typically achieved by retaining

one every N points in the chain. The value of N was determined based on the correlation function.

Thus, points were considered statistically independent for a decay to less than 10% of the

correlation function. A value of N was determined independently for each of the parameters,

and the retained data points were then used to compute histograms of the marginal probability

distributions of the model parameters.

3.2.5 The prior P(θ, I)

Bayesian statistics provides a natural way to include a priori knowledge about the problem at

hand through the prior probability P(θ, I), which orients the search of the parameter space

towards regions of greater probability. In the framework of the FBD , the prior, P(θ, I) =
P(S2, cel ,α,τ,τ0, I) included constraints to ensure that only physically acceptable parameter

values were retained. Thus, the following constraints 0 ≤ S2 ≤ 1, S2 < cel , and 0 ≤ α ≤ 1 were

imposed, so that P(S2, I)= 0 for S2 ∉ [0,1], P(α, I)= 0 for α ∉ [0,1] and P(S2 ≥ cel , I)= 0.

3.3 MCMC analysis of NMR relaxation rates

The behaviour of the MCMC method was tested on synthetic relaxation rates generated from the

models presented in the previous section. R1, R2 and NOE relaxation rates were calculated for

various selections of magnetic B0 fields in the set given in Table 3.1.

B0(T) 0.329 0.49 0.72 1 1.4 1.99 3 5 7 14.09 18.79 21.14 23.5
ν0 (MHz) 14 21 31 43 60 85 128 213 298 600 800 900 1000

Table 3.1: Set of chosen values of B0 fields

For the FBD model, two cases with different overall correlation time have been studied

respectively with τ0 = 15.1 ns and τ0 = 4.0 ns. Each system is composed by six residues, with S2 =
0.8, α= 0.7, cel = 0.97 and characterized by a different internal correlation time: 10, 50, 100, 200,

500 and 1000 ps. MCMC simulations were typically performed on samples of sizes on the order of

1.506 “time” points. The initial burn-in period, during which the points are not distributed from the
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posterior distribution, was determined by inspection and discarded from the analysis. Following

standard procedure, independent and identically distributed (iid) samples were extracted from

the Markov chains, based on the correlation function of the sequence.[110] Thus, only one every N

points were selected to build the probability distributions of the parameters, where N corresponds

to the “time” lag at which the correlation function has decayed to zero. In this study, a threshold

of 10% was used, so that points of the MC for which the correlation function has decayed by

more than ∼ 90% were considered independent samples of the equilibrium distribution. MCMC

simulations were implemented in the Scilab software.[113]

3.4 Results

Relaxation rates were calculated for different internal mobility parameters. These rates were

then fitted through a Bayesian MCMC approach described in the previous section, from three

subsets of fields were compared: fields larger than 14.09 T (600 MHz), fields larger than 5 T (213

MHz), and all fields.

Simulations were performed with the FBD model of Eq. 3.8, for the chosen sets of parameters.

These are meant to represent typical situations of a more or less fast fluctuating spin bearing

backbone amide N-H moieties, associated with internal time scales τ comprised between 10 ps

and 1 ns, in a macromolecule with overall tumbling time τ0 =4 ns or 15.1 ns.

The present study aims at evaluating a simultaneous estimation strategy of both internal

and overall dynamical parameters. However, in order to reduce the dimension of the parameter

space and make the parameter search easier, cel in Eq. 3.8 was assumed known and kept fixed to

its exact value in all the simulations.

The investigation of FBD involved internal characteristic time (see Eq. 3.8) τ=10, 50, 100, 200,

500, and 1000 ps, whilst motion restriction S2 and the fractionarity α of the FBD, were fixed to

the respective values S2 = 0.8 and α= 0.7.
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3.4.1 Residues with τ0 = 15.1 ns

Markov chain simulations were performed using synthetic relaxation rates obtained for the three

different combinations of field strengths described above. In each case, nine simulation runs with

1.5·106 points were performed. Typical results for residues with internal correlation times ranging

from 10 ps to 1 ns are shown in Figures 3.4 and 3.1 and 3.5. The results are grouped in these

three different figures to emphasize the different behaviours of the Markov chains. For values

of the characteristic time τ = 50 ps to 200 ps, the convergence of the MCMC simulations was

overall very satisfactory. As a matter of fact, the Markov chains reached stationarity during each

run for each of the model parameters (see Fig. 3.1). Interestingly, we found similar behaviours

for all subsets of magnetic fields, although somewhat "noisier" the case where only high fields

(B0 ≥ 14.1 Tesla→ 23.5 Tesla) were used. Observation of the MC does not indicate improvement

through the use of additional lower fields (respectively B0 ≥ 5 Tesla and B0 ≥ 0.33 Tesla).

Figure 3.1: MCMC trajectories of the model parameters for relaxation rates measured for three
sets of fields and τ0 = 15.1 ns. The following cases of internal characteristic times are depicted:
τ= 50 ps (red), τ= 100 ps (green), τ= 200 ps (blue). From left, S2, α, τ, τ0.
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In order to go beyond these qualitative observations, an analysis based on the computation of

marginal probability distribution functions (PDFs) for each model parameter was performed. To

this aim, correlation functions of the Markov chains were calculated to estimate their correlation

lengths and extract approximately iid samples from the trajectories to construct the relevant

PDFs.[114]

For "intermediate" values of the internal characteristic time τ= 50, 100, 200 ps, the marginal

PDFs for each of the parameter θi exhibited well-defined, single-peaked shapes when only fields

larger than B0 = 14 T were used. This is shown in Figure 3.2. In this case, these distributions were

well fitted by Gaussian distributions N (µi,σi) with averages and standard deviations µi, σi that

were computed. Results are indicated in Table 3.2. Importantly, averages of the order parameter

(S
2
) and of the overall correlation time (τ0) were accurate estimates of the true value. Moreover,

the associated standard deviations σS2 and τ0 had values on the order of the pseudo-experimental

error used in the simulations of the relaxation rates. Interestingly, none of the average values

obtained for S2, τ0, α and τ was significantly improved when additional B0 fields were used,

although the standard deviations σθ were slightly lower for the "medium-to-high", with respect to

the "high" field set of fields. This therefore suggested only a modest precision improvement of the

model parameters. Moreover, no additional improvement was noticed in the “all field” case, which

indicates that, overall, fields lower than ∼ 3 T do not provide significant improvement in this case

(compare with Figure 3.3 and Table 3.2). In the case of very short internal characteristic time

τ= 10 ps in Eq. 3.8, the situation is less favorable (see Fig. 3.4), as the Markov chains explore

different regions of the parameter space, all of which are compatible with the simulated relaxation

rates, and therefore correspond to possible solutions of the spectral density model J(ω), although

only one of them corresponds to the true solution. Moreover, correlations between the model

parameters (S2,α,τ,τ0) are clearly visible in these trajectories. Sampling of multiple regions of

the parameter space by the Markov chains therefore involves significantly longer correlations,

which reduces the number of points available for the computation of the marginal PDFs. When

only high magnetic fields are used, model parameters remain largely underdetermined. In

particular, the marginal PDFs obtained for S2 and τ0 show bimodal distributions, indicating two

sets (S2,τ0) of maximum probability, one of them corresponding to the true theoretical values.
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(a)

(b)

(c)

Figure 3.2: From left, PDF distributions of S2, α, τ = a) 50, b) 100, c) 200 ps, τ0 =15.1 ns,
τ0 obtained from MCMC simulations using synthetic measurements at high fields (ω0(1H) =
600,800,900,1000 MHz).

This feature was previously ascribed [90] to the existence of too short τ, which prevents adequate

sampling of such fast internal motions, even using fields as high as 23.5 T. Interestingly, this

ambiguity can be removed by using all field measurements. In this case, unimodal marginal PDFs,

and centered about the true values of these parameters, can be obtained. However, although the

decay of the correlation function of the Markov chains become faster as more fields are used, this

is a particularly demanding situation in terms of simulation length, as only few points of the

simulation remain in order to yield an iid sample of the parameters’ PDFs. Nevertheless, the

distributions of S2 and τ0 could be determined. This is also somewhat surprising, as it shows

that the combination of lower frequency sampling of the spectral density functions may improve

the determination of timescale parameters that are relevant for very fast motions.

Parameters α and τ showed significantly large standard deviations, which gives an indication

of their relative undeterminacy. Results are indicated in Table 3.2. This therefore indicates the
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(a)

(b)

(c)

Figure 3.3: From Left, PDF distributions of the model parameters α, S2, τ, τ0 (from left to right)
obtained from MCMC trajectories using all fields. Synthetic relaxation rates are obtained with
τ0 = 15.1 ns, S2 = 0.8, α= 0.7, a) τ= 50 ps, b) τ= 100 ps, c) τ= 200 ps

relative advantage of using multiple field measurements in this case. In the case where τ= 500 ps,

well constrained Markov chains require "medium-to-high" field rates (see Fig.3.5). Well defined

marginal PDFs for all the parameters of the model can be obtained using the complete set of

fields (see Figure 3.6) . Finally, when τ= 1000 ps, the determination of accurate PDFs remained

challenging, for the same reasons above. Overall, Figure 3.6 illustrates the fact that the use of a

wide range of magnetic fields improves the parameter search in cases where τ= 10 ps and τ= 1

ns, although with much lower efficiency than for the other τ values.

3.4.2 Residues with τ0 = 4.0 ns

This was intended to mimick the case of a faster tumbling molecule, with identical internal para-

meters as in the τ0 =15 ns case (S2 = 0.8, τ= 10 ps to 1 ns α= 0.7). The Bayesian MCMC strategy

was applied and probability distribution functions of the model parameters were computed.

Results are summarized in Figs. 3.7-3.8.

Results are in sharp contrast with the previous simulations. Indeed, in this case, it appears

that the Markov chains explore a significantly larger range of parameter values, irrespective of

the value of the characteristic internal time τ. As expected, this behaviour is associated with slow
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Figure 3.4: MCMC trajectories of the model parameters for relaxation rates measured for three
sets of fields and τ0 = 15.1 ns. The case of short internal characteristic times τ= 10 ps is depicted).
From left, S2, α, τ, τ0.

decays of the parameters’ correlation functions. Therefore, only few points could be selected to

achieve iid samples from which the marginal PDFs were computed. Typically, one point every

104 (or more) was selected, so that more than 35 simulations were needed to achieve the PDF

histograms displayed in Figs. 3.7-3.8. The undeterminacy of the parameters is clearly attested by

the presence of asymmetric, or bimodal distributions (exemplified in Figs. 3.7-3.8 for P(S2) in

the case where τ= 10 ps). Nevertheless, averages and standard deviations associated with the

distributions of these parameters were estimated and are summarized in Table 3.3
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(a) High fields

(b) Medium-to-High fields

(c) All fields

Figure 3.5: MCMC simulations of the model parameters (S2, α, τ, τ0, from left to right) for
relaxation rates measured for three sets of fields and τ0 = 15.1 ns. The case of long internal
characteristic time τ is shown: τ= 500 ps (black), τ= 1000 ps (red).

3.4.3 Use of the probability distribution function of τ0 as prior information

The above discussion shows that the use of a relaxometry strategy may improve in some cases

the determination of internal dynamics parameters. However, possible advantage depends on

several factors, one of them being the magnitude of the overall diffusion. But in any event, the

larger the number of simultaneously free model parameters the lower the estimation efficiency.

This search inside a larger parameter space seems to be in this context one of the main obstacles

to satisfactory.

This state of affairs can nevertheless be improved through a MCMC Bayesian approach, as
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(a)

(b)

(c)

Figure 3.6: From left, PDF distributions of the model parameters S2, α, τ, τ0 obtained from
the simulations of Fig. 3.4 and 3.1 using all fields. Synthetic relaxation rates are obtained with
τ0 = 15.1 ns, S2 = 0.8, α= 0.7, a) τ= 10 ps, b) τ= 500 ps, c) τ0 = 1000 ps

additional knowledge on the model can be included through the use of the prior probability P(θ, I)

(see section 3.2.3).

Indeed, in actual situations, measurements are performed on an ensemble of residues that belong

to the same protein and therefore share the same overall diffusion properties.

Some of these residues can be expected to be amenable to the above MCMC strategy of

relaxation rate analysis. Typically, in cases of less restricted motions, with lower internal charac-

teristic time scales, probability distribution functions of the model parameters can be more easily

extracted. This would be the case, for instance when S2 = 0.8, τ= 50 ps, α= 0.7, and τO =15.1

ns). Therefore, since all residues in the molecule are assumed to share the same overall diffusion,

an estimate of the marginal P(τ0) can be obtained from such residues. Assuming N such residues

with relaxation rates Ri, i = 1, . . . , N, one has P(τ0)∝Π1,...,N Pi(τ0). [91] P(τ0) can then be used

as a prior in the MCMC search for the internal parameters of other residues of the protein. The
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τ high fields medium-to-high fields all fields

10 ps S2 ±σS2 n.a.±n.a. 0.80±0.01 0.8±0.01
α±σα n.a±n.a 0.77±0.20 0.79±0.20
τ±στ n.a±n.a 14.19±16.28 13.34±6.61
τ0 ±στ0 n.a±n.a 14.08±0.17 15.10±0.17

50 ps S2 ±σS2 0.80±0.01 0.80±0.01 0.80±0.01
α±σα 0.69±0.09 0.70±0.05 0.70±0.04
τ±στ 51.35±7.46 51.07±5.63 50.93±4.77
τ0 ±στ0 15.16±0.29 15.11±0.17 15.11±0.16

100 ps S2 ±σS2 0.79±0.02 0.80±0.01 0.80±0.01
α±σα 0.70±0.07 0.70±0.03 0.70±0.03
τ±στ 103.29±15.17 101.95±11.78 101.89±10.49
τ0 ±στ0 15.17±0.32 15.11±0.17 15.11±0.16

200 ps S2 ±σS2 0.78±0.04 0.80±0.01 0.80±0.01
α±σα 0.68±0.12 0.70±0.04 0.70±0.03
τ±στ 212.34±35.50 203.11±21.24 203.03±16.63
τ0 ±στ0 15.28±0.62 15.11±0.20 15.11±0.18

500 ps S2 ±σS2 n.a.±n.a. 0.79±0.02 0.80±0.01
α±σα n.a.±n.a. 0.68±0.07 0.69±0.05
τ±στ n.a.±n.a. 529.13±73.39 511.00±52.77
τ0 ±στ0 n.a.±n.a. 15.21±0.31 15.14±0.0.23

1000 ps S2 ±σS2 n.a.±n.a. 0.75±0.05 0.78±0.03
α±σα n.a.±n.a. 0.60±0.10 0.66±0.07
τ±στ n.a.±n.a. n.a±n.a 1201.30±423.74
τ0 ±στ0 n.a.±n.a. 15.52±0.53 15.25±0.31

Table 3.2: Average and standard deviation of the PDFs for the different sets of magnetic fields.
The overall correlation time is τ0 = 15.1 ns (n.a.: not applicable)

result of such a strategy is illustrated in Figs. 3.10-3.11 and Figs. 3.12-3.13, where the marginal

PDFs of the parameters obtained for τ0 = 15.1 ns and τ0 = 4 ns are depicted.

In the example with τ0 = 15.1 ns, this prior information makes it possible to extract the other

model parameters using only high fields (B0 ≥ 14.1) T. Alternatively, in the case τ0 = 4 ns, using

the prior in the form of a Gaussian with known average and standard deviation, significant

improvement can be achieved in the definition of the marginal parameters of the system model.

However, in contrast with the previous example, the use of measurements at all fields were still

necessary to obtain significant improvement.

The fact that introducing additional information improves the estimation of the parameters’

probability distribution functions is actually not surprising, as it amounts to constrain the

parameter search to a reduced region of the parameter space. Thus, the narrower the prior PDF

of the overall τ0, the easier the search. Of course, in the limit of an infinitely narrow distribution
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τ high fields medium-to-high -high fields all fields

10 ps S2 ±σS2 n.a.±n.a. n.a.±n.a. 0.80±0.03
α±σα n.a.±n.a. n.a.±n.a. 0.49±0.36
τ±στ n.a.±n.a. n.a.±n.a. 178.78±353.33
τ0 ±στ0 n.a.±n.a. n.a.±n.a. 4.02±0.04

50 ps S2 ±σS2 n.a.±n.a. n.a.±n.a. 0.79±0.02
α±σα n.a.±n.a. n.a.±n.a. 0.61±0.16
τ±στ n.a.±n.a. n.a.±n.a. 73.65±62.55
τ0 ±στ0 n.a.±n.a. n.a.±n.a. 4.01±0.04

100 ps S2 ±σS2 n.a.±n.a. n.a.±n.a. 0.79±0.02
α±σα n.a.±n.a. n.a.±n.a. 0.65±0.10
τ±στ n.a.±n.a. n.a.±n.a. 131.03±59.84
τ0 ±στ0 n.a.±n.a. n.a.±n.a. 4.01±0.04

200 ps S2 ±σS2 n.a.±n.a. n.a.±n.a. 0.79±0.02
α±σα n.a.±n.a. n.a.±n.a. 0.67±0.07
τ±στ n.a.±n.a. n.a.±n.a. 245.97±82.76
τ0 ±στ0 n.a.±n.a. n.a.±n.a. 4.01±0.0.04

500 ps S2 ±σS2 n.a.±n.a. n.a.±n.a. 0.79±0.03
α±σα n.a.±n.a. n.a.±n.a. 0.68±0.07
τ±στ n.a.±n.a. n.a.±n.a. 661.10±283.61
τ0 ±στ0 n.a.±n.a. n.a.±n.a. 4.01±0.04

1000 ps S2 ±σS2 n.a.±n.a. n.a.±n.a. 0.80±0.03
α±σα n.a.±n.a. n.a.±n.a. 0.71±0.08
τ±στ n.a.±n.a. n.a.±n.a. 1124.4±452.92
τ0 ±στ0 n.a.±n.a. n.a.±n.a. 4.01±0.04

Table 3.3: Average and standard deviation of the PDFs for the differents sets of magnetic fields.
The overall correlation time is τ0 = 4 ns. (n.a.: not applicable)

of τ0, the search for the n = 4 model parameters is reduced to a region of the parameter space

with a fixed value τ0 (P(τ0)= δ(θ−τ0)), which is equivalent to a space with n−1 dimensions.

The significant difference observed between the MCMC simulations performed with the two

overall correlation times τ0 = 4 ns and τ0 = 15.1 ns was at first surprising, and the fact that using

a large set of magnetic fields does not necessarily improve the “resolving power” of relaxometry

experiments a bit disconcerting. A qualitative explanation can be found if one considers the

contributions to the relaxation rates R1 of the various dynamical parameters. In the case of

fractional brownian dynamics, It is seen from Eq. 3.8 that R1 is the sum of two terms. The first

one, which we denote R1(S2,τ0) depends on S2 and τ0 only, whereas the second one depends on

all model parameters. For each value of the overall correlation time τ0, and for all τs, the relative

contribution R1(S2,τ0)/R1 were computed. It was assumed that the respective contributions of

both these terms can explain part of the behaviour of the relaxation rate analysis. Indeed, when
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(a)

(b)

(c)

Figure 3.7: PDF distributions of the model parameters S2, α, τ, τ0 (from left) for the case of
τ0=4.0 ns extracted from relaxation rates using all fields. Parameter values are S2 = 0.8, α= 0.7.
a) 10, b) 50, c) 100 ps of internal correlation time.

R1(S2,τ0)/R1 ∼ 1, R1 is completely defined by R1(S2,τ0). Consequently, the remaining α and

τ parameters become irrelevant in the fitting process and the Markov chains are expected to

slowly reach stationarity. Results are shown in Figures 3.14(a) and 3.14(b), where the horizontal

line indicates a 90% R1(S2,τ0)/R1 ratio, above which only R1(S2,τ0) predominantly contributes.

Calculations show that, for τ0 = 15.1 ns, R1(S2,τ0) contributes always less than 90% of R1 for

B0 ≥ 14 T, except in the case τ = 10 ps. This means that measurements at high fields tend

to provide sufficient constraint for the determination of the remaining α and τ parameters.

Alternatively, at lower fields, the contributions of the latter to the relaxation rates are moot,

so that these mainly reflect the values of S2 and τ0. Note that when τ= 10 ps, even high-field

relaxation rates fail to correctly sample the associated fast motions, so that parameter extraction

remains difficult to achieve.

This kind of argument can be also applied to the τ0 = 4 ns case, where, in contrast to the above,
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(a)

(b)

(c)

Figure 3.8: PDF distributions of the model parameters S2, α, τ, τ0 (from left) for the case of
τ0=4.0 ns extracted from relaxation rates using all field combinations. Parameter values are
S2 = 0.8, α= 0.7. a) 200, b) 500, c)1000 ps of internal correlation time.

(a) (b)

Figure 3.9: Gaussian distributions extracted for the parameter τ0, from a residue with a) S2 = 0.8,
α= 0.7, τ= 50 ps, τ0 = 15.1 ns, b) S2 = 0.6, α= 0.6, τ= 50 ps, and τ0 = 4.0 ns.

R1(S2,τ0)/R1 is larger than 90%, for most values of τ, so that parameter estimation remains

ambiguous and clearly, combining high and low fields does not significantly improve matters.
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(a)

(b)

(c)

Figure 3.10: PDFs extracted using high fields only and prior information on τ0 =15.1 ns. From
left α, S2, τ, τ0. (a) 10 ps, (b) 50 ps, (c) 100 ps. Compare with Figs 3.2 and 3.3

3.5 Conclusions

In this chapter, we investigated the potential use of a Markov Chain-Monte Carlo (MCMC)

approach to the analysis of NMR relaxometry measurements. The primary goal was to investigate

the possibility to perform simultaneous fitting of all dynamical parameters, i.e., relative to both

internal and overall motions, thereby avoiding . We have shown the potentially beneficial use

of an analysis of NMR relaxation rates along these lines on synthetic data. With respect to the

conventional approach of data fitting, this method is much more time effective since it avoids

time consuming minimization routines. In addition, our use of the MCMC approach allows one to

avoid commonly used model selection strategies. In contrast to conventional fitting, insufficient

characterization of some of the parameters does not imply the rejection of the model in favor

of a simpler one, the method indicates what information may be extracted from the data, but

also what cannot. The Bayesian approach naturally leads to estimates of the total and the
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(a)

(b)

(c)

Figure 3.11: PDFs extracted using high fields only and prior information on τ0 =15.1 ns. From
left α, S2, τ, τ0.(a) 200 ps, (b) 500 ps, (c) 1000 ps. Compare with Figs 3.2 and 3.3

various marginal probability distribution functions of the model parameters. It has been shown

that adding measurements at lower fields helps to better describe the spectral density function,

leading to improvements in the search of the correct parameter distribution. This effect is more

evident in the case of slow overall motion while for faster global tumbling such improvement is not

always present. The introduction of additional knowledge that retain only physically meaningful

solutions through the prior probability allows to better constrain the search within smaller

regions of the parameter space, thereby increasing the search efficiency and PDF determination.

However, it appeared that the use of (synthetic) relaxation rates at several fields improves the

determination of the parameters under certain conditions only. These depend on the relative

values of the internal and overall correlation times, for instance. It was qualitatively argued

that favorable cases correspond to situations where each of the various dynamical parameters

significantly affect the relaxation rates, or the spectral density function in distinct regions of
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(a)

(b)

(c)

Figure 3.12: PDF distributions of the model parameters, from left, α, S2, τ, τ0 extracted from
relaxation rates using all fields and prior information on τ0. Parameter values are S2 = 0.8,
α = 0.7, τ0 = 4 ns, and a) τ = 10 ps, b) τ = 50 ps, c) τ = 100 ps (compare Fig. 3.7). P(τ0) was
estimated from the parameter set S2 = 0.6, α= 0.9, τ0 = 4 ns, and τ= 50 ps.

the frequency spectrum. These temporary conclusions relied on a study based on a particular

physical model. In order to extend our study and test these conclusions to other situations, the

same MCMC analysis will be tested on different models of dynamics, such as the SRLS model,

for instance.
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(a)

(b)

(c)

Figure 3.13: PDF distributions of the model parameters, from left, α, S2, τ, τ0 extracted from
relaxation rates using all fields and prior information on τ0. Parameter values are S2 = 0.8,
α= 0.7, τ0 = 4 ns, and a) τ= 200 ps, b) τ= 500 ps, c) τ= 1000 ps (compare Fig. 3.8). P(τ0) was
estimated from the parameter set S2 = 0.6, α= 0.9, τ0 = 4 ns, τ= 50 ps.

(a) (b)

Figure 3.14: Contribution of the R(o)
1 part to the relaxation rate for a) τ0 = 4 ns and b) τ0 = 15.1 ns. From

top, 10, 50, 100, 200, 500, 1000 ps of τ. In abscissa, field in Tesla.
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4
DECOMPOSITION OF PROTEINS INTO DYNAMIC UNITS FROM

ATOMIC CROSS-CORRELATION FUNCTIONS

4.1 Introduction

Internal mobility of a protein is recognized as a basic factor affecting its mechanism of action at

the molecular level, and therefore its function. This has motivated the development of various

techiques to study protein dynamics, amongst which NMR has the unique capability to provide

dynamical information covering time scales ranging from the pico-second to the microsecond and

beyond, together with localization at atomic resolution. However, an accurate characterization of

internal motions in the protein that goes beyond the mere identification of characteristic time

scales and includes possible correlations across the protein, remains an open issue. Molecular

dynamics (MD) simulations represent a most valuable tool to contribute to shed some light on

these questions.

When analyzing experimental observables of protein dynamics, one of the main issues is to

characterize the underlying key motions in relation with some particular aspect of the dynamics

probed by the experiments. Several methods, such as principal components analysis (PCA)

[115–117] or essential dynamics (ED), [118–120] are based on analyses of the covariance matrix

through the projection of the atomic position fluctuations in an all-atom MD trajectory onto the
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eigenspace of coordinate fluctuations. This allows one to distinguish possibly different domains

and to analyze their motions separately. Alternatively, the dynamic behaviour of a protein can be

described in a coarse-grained manner by clustering together subsets of atoms in the molecule to

form elementary rigid units. As far as coarse-graining is concerned, it is usually performed on

structural (spatial proximity) or energetics (free-energy profiles) bases. [121–124] Since these

approaches are more or less explicitly related to the protein structure and the amplitudes of

the fluctuations thereof, through the covariance matrix, so are the derived methods to identify

motional domains, giving rise to structure-based motional domains. Such approaches do not

explicitly take into account the time scales at which motions occur. And due to the wide range of

time scales usually present, the “correlation maps” obtained by such analyses may significantly

depend on the length of the simulation, which can make it difficult to reach stationary correlation

matrix through MD simulations.[125] In fact, relative motions of such ensembles occur on an

extremely wide range of time scales, including both long times such as those compatible with

allostery, and short ones, in the THz range, where collective motions also seem to exist.[126]

In this chapter, a new clustering approach of the ensemble of atoms representing the protein into

subsets is introduced. This new methodology is based exclusively on the characteristic times of

their position cross-correlation functions.

Atomic correlation is solely defined on the basis of the characteristic times of their correlation

functions, without reference to the amplitudes of the correlated motions. To this aim, we build our

protein motion analysis on suitably chosen cross-correlated functions of the atomic coordinates,

and we show that the characteristic times of these correlation functions, defined as the area

under the curve of that part of the correlation function that decays to zero, can be used to perform

a cluster reduction of the protein.

A metric in the space of correlation times of the protein is introduced, which is used to define

groups of dynamically nearby atoms. This time-windowed clustering analysis was performed on

MD simulation trajectories through implementation of the Affinity Propagation algorithm[127].

This allows one to identify subsets of atoms in the protein belonging to common “motional

units” that are defined without any direct reference to the protein structure and are unrelated

to its structural domains. Our approach is therefore in contrast with widely used covariance
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matrix methods relying on the analysis of the coordinate fluctuation amplitudes[125, 128, 129] to

determine groups of ’linked’ atoms in a protein.

This work has been carried out under the guidance of Dr. Paolo Calligari at the University of

Padova.

4.2 Methodology

In this section, the protocol developed for the determination of time-dependent similarities

between pairs of atoms, in terms of effective correlation times, is described. Such a goal requires

the definition of the atoms that represent the protein (all atoms, heavy atoms, etc), as well as

the type of correlation functions to be used for the analysis (atomic positions, distances, relative

orientations, etc).

4.2.1 Reference atoms

Since there is no unique choice of the atoms representing a protein, this should be tailored

to the problem at hand. In order to reduce the computational burden of the protocol, a few

representative atoms only were selected for each residue to probe the dynamical properties of the

latter. This choice may also depend on the experimental observables (e.g. X-ray diffraction, NMR

spectroscopy). Moreover, if the investigation is focused, for example, on slow backbone motions, a

rather natural set of representative atoms could be the backbone Cα or amide N atoms. In the

present work, backbone motions of different proteins are based on Cα as reference atoms.

4.2.2 Correlation functions

To describe correlated motions several, potentially complementary, observables can be envisaged.

The correlation functions of atomic coordinates represent the most straightforward and natural

tool to analyze internal motions in proteins. However, coordinate cross-correlation functions do

not necessarily decay to zero nor have a constant sign, and are therefore more difficult to handle

from the computational point of view.
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To takle this problem, an alternative useful and computationally cheap set of observables is

introduced, which is provided by normalized distance correlation functions:

(4.1) D i j(t) := 〈ui j(0)|ui j(t)〉
〈u2

i j〉
= 1

〈u2
i j〉TMD

∫ TMD

0
ui j(τ)ui j(t−τ)dτ,

where ui j = r i j − 〈r i j〉 and r i j = |rij| = |ri − r j| is the distance between atoms i and j, of

coordinates r i and r j. The integral in the above equation is normalized with respect to 〈u2
i j〉 =

D i j(0). These quantities suffer much less from non-ideal sampling than coordinate correlation

functions, because they only refer to correlated motions along the direction given by the distance

vector rij. Additionally, they decay monotonously to zero and are easily integrated (see next

Section), and at the same time, still account for cross-correlated motions of pairs of atoms. Finally

their calculation do not require the global motions of the protein to be removed beforehand. This

is particularly interesting, as it prevents the introduction of the additional assumption that

global and local motions are statistically uncorrelated. This condition may not be satisfied for

small molecules in which overall tumbling happens in the same time scale of internal motions.

For these reasons, such distance correlation functions are less prone to statistical and numerical

problems and are therefore good candidates to probe internal motions.

4.2.3 Convergence of correlation functions

An automated and reliable procedure for the assessment of convergence of the correlation

functions is therefore designed, and performed as follows. The numerical correlation functions

(CF) presented in Section 4.2.2 approximate the corresponding ideal correlation functions (TMD =
∞). The analyses of numerical CF are thus restricted to time lags shorter than a maximum value

tmax with TMD/tmax large enough to limit the effects of the finite value of TMD and thus to allow

the correlation functions to be computed with good enough statistics.[130] In the definition of

correlation function Eq. (4.1) has converged if its long-time tail reaches a plateau value around

zero without significant large fluctuations. To automatically detect these properties we evaluated

the average value (α), the standard deviation (σ) and the linear slope (ρ = |D i j(tmax)−D i j(tmax −
tplateau)|/tplateau) of each CF’s long-time tail. These quantities are calculated over the time range
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tplateau, with tplateau ∼ 0.1tmax.

The zero thresholds of α, σ and ρ are given by the set of control parameters {εα,εσ,ερ}.

The procedure applied to each CF is described below and illustrated in the flow-chart in Fig. 4.1.

1 If α< εα, σ< εσ and ρ < ερ then a close-to-zero plateau has been reached and convergence

is assumed if also step 5 is verified.

2 If α≥ εα or σ≥ εtail , then the CF does not reach convergence.

3 Else if α< εα and ρ ≥ ερ, then protocol proceeds to step 4.

4 Compute the integrals ΓCF and Γtail of the CF in the ranges [0 : tmax] and [tmax−ttail : tmax],

respectively (Here and in the following, integrals are numerically calculated as the area

under the curve simply using Simpson’s rule. Then, if ΓCF ≤ 4Γtail , the integral ΓCF is

assumed to be dominated by noise and CF has not reached convergence. Else, if ΓCF ≥ 4Γtail ,

a supplementary verification at the next and final step.

5 The integral of CF is computed at Ncheck different time lags in the interval [0.5tmax : tmax]

and convergence is considered to be reached only if ∆k+1 ≤∆k for all k = 1...Ncheck, where

∆k =ΓCF [k+1]−ΓCF [k].

The automatic detection of CF convergence is compared with the decisions made by visual

inspection on a subset of one hundred CFs randomly selected from the original set. The optimal

value for the set of control parameters {εα,εσ,ερ} is taken as the one that maximizes the corre-

lation between automatic detection and visual inspection. In an iterative procedure, the values

{εα = 0.2, εσ = 5. ·10−5, ερ = 1. ·10−6} are found to give the highest consensus.

4.2.4 Effective correlation times

As mentioned in the Introduction, the usual approach to the study of internal motion correla-

tions in protein makes use of time-independent quantities, such as the covariance matrix, for

instance. However, true time independence cannot always be ascertained, due to the inherent

time limitations of MD simulations. In this respect, it has been pointed out by many authors
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Figure 4.1: Flow Chart of the protocol used to automatically detect the convergence of correlation
function calculated from molecular dynamics simulations.
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that covariance matrix computed on simulations of different durations yield different correlation

patterns.[125, 128, 129] This severely impair the interpretation of MD simulations in terms of

protein dynamics.[125]

Here, a new strategy is proposed, that is, analyze motion correlation in proteins through atom

pair distance correlation functions. The latter provides a characterization of pairwise atomic

motions in the molecule through an effective correlation time τi j, which defines the characteristic

time over which correlated dynamics takes place between a pair of atoms i and j:

(4.2) τi j :=
∫ +∞

0
(D i j(t)−D i j(∞)) dt

Note that for an exponentially decay of D i j(t)−D i j(∞)= e−t/τi j , the characteristic time defined

by Eq. 4.2 is exactly the exponential decay rate. Thus, τi j is computed from the atom pair distance

correlation functions obtained from the MD simulations, leading to a cross-correlation time map

(CCTM). In the following, the analysis is restricted to backbone Cα carbon atoms, which are thus

connected in a pairwise manner through their effective correlation times τi j.

Measures of (Dis)similarity One can reconstruct ensembles of atoms with mutually corre-

lated motions, together with the associated time scales, by using the complete set of effective

cross-correlation times extracted from an MD simulation. In this new framework, the ith atom

is represented by its set Λi of cross-correlation times with all other atoms j = 1, . . . , N, j 6= i:

Λi = {τi1,τi2, ...,τi j,τiN }. Thus, each Λi defines a point in the space of the cross-correlation times

of the protein, in which a metric is defined. A distance between points Λm, Λn, m,n = 1, . . . , N in

this correlation-time space therefore allows to define proximities between atoms according to

their sets of cross-correlated times.

One of the most robust and efficient method of comparing point sets of arbitrary dimension is the

Hausdorff distance,[131, 132] which allows to measure the distance of two set of points by taking

into account also the similarity of their shapes.[131] The Hausdorff distance between atoms n

and m is defined as follows,

(4.3) dH(m,n)= max

{
sup

τm j∈Λm

d(τm j,Λn), sup
τn j∈Λn

d(τn j,Λm)

}
,
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where

(4.4) d(τm j,Λn)= inf
τnk∈Λn

(τm j −τnk)2.

From these pairwise Hausdorff distances, a distance, or similarity, matrix, S = [si j]NxN =
[dH(m,n)]NxN is then constructed for the protein from MD simulations. The similarity matrix is

obviously symmetric and with only zeroes on the diagonal.

Clustering of residues The partitioning of a protein structure into dynamically independent

domains can be essentially treated as a problem of graph clustering. Indeed, one may in this

context represent a protein structure as a graph G(N ,E ), comprising N nodes connected by

E edges. Two nodes of the graph are connected by an edge when a certain degree of similarity

can be defined between them. In the problem at hand, the nodes N represent selected atoms or

residues that represent the structure of the protein.

The clustering of nodes (residues) is performed here by using the Affinity Propagation algorithm

(AP).[127] The latter is recently applied to several kinds of problems, and is shown to be faster

and more accurate than other common clustering algorithms. In the authors’ words, “AP detects

the most representative nodes by exchanging real-valued messages among all nodes in the

graph”.[127] Nodes are then grouped with their most representative exemplar, i.e., around which

nodes will cluster. The main principles of its implementation are briefly presented in the following.

Firstly, each node is labelled by a preference value P according to which this node should, or

should not be chosen as an exemplar by the affinity propagation algorithm. If no prior hypothesis

can be made as to which nodes should be favored as exemplars, all nodes are initially assigned

the same P value. The magnitude of P can be used to control the granularity of clusters, e.g. the

extent to which the algorithm can describe the graph/network in terms of discrete components.

The preliminary search of the optimal value of P is described in the Appendix.

Secondly, AP performs an iterative search of the so-called “responsibility” r(i,k) and “availability”

a(i,k) parameters, for each pair of nodes i and k in the graph G(N ,E ). The responsibility r(i,k)

is a measure of how well suited node k is as an exemplar for node i; and the "availability" a(i,k)

reflects the level of evidence that i should choose k as an exemplar. In the AP search, these
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quantities are iterated according to the following algorithm:

r(i,k)← s(i,k)− max
k′:k′ 6=k

{a(i,k′)+ s(i,k′)}(4.5)

a(i,k)←min

{
0, r(k,k)+ ∑

i′:i′∉{i,k}
max

{
0, r(i′,k)

}}
(4.6)

In Eq. (4.5) s(i,k)=−sik, where sik is the element of the similarity matrix S for the two nodes

i and k, and the diagonal element s(i, i) contains the preference for node i. The node k that

maximizes a(i,k)+ r(i,k) is the exemplar for node i or is itself the exemplar, if k = i. It is worth

noting here that negative values for s(i,k) are used to enhance the quality of clustering, as

prescribed in the original work by Frey et al.[127] Equations (4.5) and (4.6) are iterated for a

fixed number of iteration or until the local assignments remain constant for a given number of

iterations.

4.2.4.1 Assessment of clustering robustness

In order to assess the quality of the clustering protocol we calculated the silhouette, S (i), of each

node (residue) which is defined as follows:[133]

(4.7) S (i)= B(i)−A (i)
max(A (i),B(i))

.

Here A (i) is the “within’ dissimilarity”, e.g the average distance (in the Hausdorff metric)

between residue i and all other residues belonging to the same cluster as i; B(i) is the “between

dissimilarity”, i.e. the smallest average distance between residue i and all other residues be-

longing to other clusters. This definition implies that −1 ≤ S (i) ≤ 1, and it is seen that S (i)

represents a practical and efficient way to classify clusters according to their extent and the

definiteness of their boundaries: S (i) → 1 implies that A (i) is much smaller than B(i) and

therefore means that residue i is ‚Äòwell-clustered‚Äô; on the contrary, if S (i)→−1, then A (i) is

much larger than B(i). In this case, residue i is probably mis-classified, likely because it lies at a

boundary between clusters. In addition, we also use in the following the silhouette overall score

S = 1
N

∑
N S (i), which is just the average silhouette over the residues, to synthetically describe

the overall quality of the clustering.
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4.2.4.2 Through-Space Proximity

The usual segmentation of protein structures in domains on the basis of knowledge of structural

or dynamic properties raises the question as to whether the connectedness of domains should be

assumed “a priori” or should emerge from the clustering algorithm [134]. From the viewpoint

adopted here, there is no fundamental reason why residues sharing the same dynamical properties

should also be contiguous in space or neighbours in the sequence. However, if decomposition

is performed to provide a coarse-grained model, the space contiguity of residues that belong

to the same domain may be taken into account to increase the efficiency of theoretical models.

The introduction of a penalty function assigns larger weights to short range interactions and

therefore emphasizes the effects of local dissimilarities in the resulting clustering procedure.

Here, the effects induced by introducing a penalty function are tested:

(4.8) f (n,m)= 1+ε
[
1− 1

2
(1+ tanh(Rc − rnm))

]
into equation (4.3). Here ε is strength factor, whose value is typically of the same order of

magnitude than the largest dissimilarity in S and Rc is the cut-off distance between atoms n and

m.

4.3 Results

The new methodology has been applied to the analysis of the C-Terminal Headpiece subdomain

of Human Villin (HP35), for which a ∼ 1µs molecular dynamics simulation has been run. The

internal dynamics of this protein has been extensively studied both experimentally[135–139] and

by computational methods.[140, 141] The choice of these rather small proteins was motivated

by the need to explore a wide range of motions while keeping the size of the data to be analysed

to a reasonable value. Moreover the relatively small size of the protein makes the existence

of well defined structural domains a priori unlikely. Nevertheless, as shown in the following

the existence of clearly identified dynamical units or dynamical domains can be determined

solely by the effective times of the associated inter-atomic distance correlation functions. In this

section, the method is presented in its most straightforward implementation. Moreover, for sake

of comparison with alternative, more conventional, approaches based on structural information,
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additional assumptions involving local interactions and space connectedness are also investigated.

And a comparison with a protein clustering technique using a rigid-block decomposition will be

discussed. The 35-residue polypeptide HP35 is composed of three short α-helices that has been

often used as a model system for computational and theoretical methods since the pioneering

work by Duan and Kollman.[142] It has been also extensively investigated experimentally, as

it is a good candidate for folding studies, which in this case occurs in both fast (< 100 ns) and

slower (< 1µs) regimes.[141]

In this work, HP35 is used as a model system to assess if, and to what extent, macromolecules

can be decomposed into structural fragments solely on the basis of, possibly lacunary, internal

dynamics information.

Figure 4.2: Distance cross-correlation map of the protein HP35. Top left: the binary map
of cross-correlation times shows in black the existence of a well-converged correlation function,
as determined according to the criteria discussed in Section 4.2; top right: the time-correlation
map of interatomic distances is color-coded as indicated on the scale (in units of ps); bottom left:
histogram of cross-correlation effective times; bottom right : the similarity matrix as defined by
the distance in Eq. (4.3) in the text.

Among the 595 correlation functions computed from the MD simulation, 43% (257) were
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shown to have reached convergence to a well-defined plateau value. This illustrates that the

1.2µs trajectory captures much of the diversity and heterogeneity of the protein internal motions.

Nevertheless, the fact that ≈ 57% of the cross-correlation functions failed to converge, and were

therefore discarded from the analysis, indicates the presence of slower dynamical processes

in the protein that could not be taken into account in the analysis of the MD simulation. The

binary map on the top left corner of Fig. 4.2 gives a synthetic overview of the converged (black)

and unconverged (white) cross-correlation functions extracted from our MD computations. The

distribution of effective characteristic times (Eq. 4.2) over a wide range of values is represented

by the histogram of all τi j (bottom left graph of Fig. (4.2)). The latter exhibits correlations times

ranging from the ∼ps to several tens of ns. The mapping of this distribution of time scales onto the

protein topology is shown on the top right graph of Fig. 4.2. This plot shows that nearby atoms in

the sequence exhibit very fast cross-correlation times (dark blue points). Alternatively, groups of

atoms regions of the protein, rather that individual atoms, are correlated with long characteristic

correlation times, above 5 ns (green to red). Remarkably, only the region between residues 12-27,

which encompasses two α-helices, clearly displays times far below 5ns also for non-contiguous

atoms. It is also worth noting that the same region has very long effective cross-correlation times

with residues 3 to 8. This behaviour correlates well with the large amplitude and slow motions

performed by the HP35 N-terminus

Before proceeding with the analysis of these correlation times, the relatively low ratio of

converged correlation functions deserves some comment. Indeed, considering the long duration

of the MD simulation (1.2 µs), it may be surprising that no more than 50% of the distance

correlation functions have converged. In the present context, convergence means both satisfactory

statistical averaging, and sufficient decay towards a plateau value. Several papers show that

the computation of reliable correlation functions from MD simulations as well as the extraction

of correlation times are extremely demanding[130, 143], and require large TMD/τ ratios (TMD is

the length the MD simulation and τ the characteristic decay time of the correlation function).

Statistical calculations suggested that numerical correlation functions can be sampled with good

enough statistics only for time lags shorter than approximately 0.1×TMD, [130] whilst more

recent analyses[143] indicate that, on a model of rotational diffusion, a ratio TMD/τ< 50 would
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make a correct estimate of τ difficult. Therefore, in this work, the convergence criterion, which

ensures that a correlation function has reached a plateau value, implies that this plateau is

actually reached for time lags smaller than ∼ 0.1×TMD. And of course, the computation of the

effective correlation time requires such a convergence. For a decaying exponential with time

constant τ, a plateau is reached at a time lag of approximately 5τ, which is verified for τ≈ 30 ns

in our simulations. Thus, the surprisingly small ratio of correlation functions admissible for our

clustering analysis is nevertheless consistent with accepted statistical quality criteria.

The similarity (Hausdorff distance) matrix obtained from these correlation functions is shown

in Fig. 4.2. It is seen that the motions of the residues located in the center of the primary sequence

of HP35 (residues 12-27) form a uniform block of nodes of the protein graph that are characterized

by relative motions taking place on similar time scales. This is indicated by the region in blue

of the similarity matrix S. Alternatively, residues that belong to the N-terminus are (in the

correlation time space of the protein) significantly distant from the latter, as the color scale

(green to red) indicates. Interestingly, these observations are consistent the above analysis of the

cross-correlation time map. Thus, the metric in the space of correlation times of the protein, in

the form of the Hausdorff distance between residues, captures the information conveyed by the

cross-correlation times, and therefore provides a sound mathematical tool for their analyses.

.However, at this point, the similarity matrix (Eq.4.3) between points (atoms/residues), shown in

Fig. 4.2, only provides a qualitative view of HP35 in terms of units of dynamics defined on the

basis of similar time scale properties. The precise extent of these dynamical units must still be

determined. This was achieved through application of the Affinity Propagation (AP) clustering

algorithm presented in section 4.2 to the HP35 similarity matrix.

The result of the clustering protocol on HP35 obtained with these settings are shown in

Figure 4.3, and analysed as follows. HP35 is decomposed into two clusters. One of them (cluster

A) encompasses the central part of the protein, while the second one (cluster B) is essentially

localized near the N- and C- termini. The protein partition into this set of two clusters obtained

here agrees with the fuzzy picture suggested by the correlation-time correlation maps. But

beyond a simple qualitative representation, the approach developed in this work provides a sound
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methodology to perform such an analysis. The relevance and quality of the obtained dynamics

cluster decomposition were assessed by the computation of the silhouette S (i) for each residue of

the protein during the AP procedure. Interestingly, all the S (i) values are positive, and most of

Figure 4.3: Domain decomposition of HP35. Panel A: Pictorial representation of the two clusters A
(blu) and B (red) onto the HP35 structure. Panel B: Silhouette values of each residues representing
the quality of the clusters detected by the AP algorithm. Panel C: Linear representation of the
clusters along the primary sequence of the protein. Secondary structure of HP35 is pictorially
sketched on the bottom of the figure.

them are larger than 0.6, which indicates that residues are clearly well-clustered. Only a small

number of relatively lower values (S (i)< 0.4) were observed. It is also worth noting that in two

regions (Gln8-Ala9 and Lys24-Asn27) lower silhouette values correspond to discontinuities of

both clusters. This may indeed occur and should not be surprising, as no additional continuity

constraint with respect to the residue sequence was imposed on the clusters. However, for residues

Gln8-Ala9 the uncertainty of cluster assignment, as indicated by values of S (i) that are very

close to zero or slightly negative, which is not trivial to interpret, but may be at least in part

ascribed to the lack of data. In fact, as seen in Fig. 4.2, only few cross-correlated functions

could be found for these residues. Alternatively, in region Lys24-Asn27 clustering results exhibit

a strong correlation with the local secondary structure of the protein. Indeed, in the α-helix

encompassed by this region, the pairs of residues Pro21-Gln25 and Trp23-Asn27 are assigned to

cluster A, while Gln26-Lys30 and Lys24-Leu28 are associated to cluster B. The resulting pattern

is reminiscent of the α-helix {i, i+4}-periodicity for the backbone hydrogen bonding network.

This indicates that in Lys24-Asn27 local non-covalent interactions have stronger effect than
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long-range interactions in determining the assignment to a specific domain. These observations

are also consistent with root-mean-squared fluctuations found via MD simulation.

Overall, the results discussed so far suggest that similarities in terms of motional time scales are

strongly correlated to the molecular environment around each pair of residues.

4.3.1 Distribution of cross-correlated times

In order to further understand the origin of the clustering provided by the analysis of the internal

dynamics of the protein, the distributions of the effective cross-correlation times were computed

(Fig. 4.4). The histograms of cross-correlated times relative to each clusters were calculated.

These include all the effective correlation times that were obtained for each clusters node (atom or

residue). On the other hand, histograms where the correlation times involving nodes of different

clusters were excluded; and the histogram of correlation times involving nodes of different clusters

only, were computed. These histograms of correlation times within and between clusters A and B,

are depicted in Figure 4.4.

Inspection of Fig. 4.4(a) shows that the distributions of correlation times scales τi in clusters

A and B are rather different. Cluster B shows a largest contribution at faster (≤ 5 ns) time scales,

whereas cluster A presents a more scattered distribution in the 10−20 ns range. In addition, only

cluster A has very long correlation times, extending over ∼ 30 ns. Alternatively, it is seen from

Fig.4.4(b) that, when intra- and inter-cluster correlation times are distinguished, the histograms

of both clusters become similar on faster time-scales. More interesting is the fact that the short

time scales are common to inter-cluster and to the intra-cluster A, suggesting that the fast time

scale contribution to correlation functions between clusters mainly originates from residues in

cluster A.

This is of particular interest, as it shows that the connectivity of the atoms defined by time

dependence properties, i.e., based on the effective correlation times of the cross-correlation

functions, and provided by the AP clustering algorithm, may rely on some statistical decorrelation

of the internal molecular motions, without actual time scale separation as a basis for subdividing

the molecule into independent parts. Therefore, in the perspective of a coarse-graining description

of the internal protein dynamics, this implies that such dynamical properties as domain motions,
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for instance, could be studied in terms of the respective dynamics of the clusters as distinct

protein units, and without reference to the structure of the protein. These results therefore

suggest that it is possible to empirically characterize distinct motional units in proteins without

invoking a priori assumptions on the motions’ statistics.
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Figure 4.4: Histograms for the distributions of cross-correlation times in HP35. (a) Overall
distributions for cluster A and B (b) The same distribution as in panel a) but with intra- and
inter-domain correlation times plotted separatelly.

4.3.2 Complementarity with other approaches

As shown in the previous Section, this new method is based on information derived from the

time decays of correlation functions, therefore on clearly different grounds than the various

structure-based analyses customarily used to detect correlated motions and quasi-rigid domains

in proteins.[129, 134, 144–146] It may be therefore instructive to compare results from both kinds

of approaches to assess their potential complementarity. A very illustrative example is given in

Figure 4.5, where the normalized covariance map of HP35 (or Dynamic Cross-Correlation Map -

DCCM [147]), is shown along with the cross-correlation time map (CCTM). Both quantities were

cmputed from the same 1.2µs MD simulation of HP35

DCCM is a correlation map, which therefore allows one to identify positively or negatively

correlated motions between pairs of atoms (red/blue regions in the upper map of Figure 4.5.

At a first look, the variability in DCCM seems to have a counterpart in CCTM. For instance,

72



4.3. RESULTS

Figure 4.5: Comparison with other approaches: Dynamic Cross-Correlation Map (a) and Cross-
correlation Time Map (b). The highlighted regions "A", "B" and "C" evidence the complementarity
of the descriptions given by the two maps. (c) Direct comparison of different methods for protein
domain decomposition. The asterisks indicate results obtained from configurations sampled every
2ns (instead of 1ps).

in off-diagonal regions (see for example the highlighted region B in Figure 4.5 ), positive and

negative correlations may be related to short and long time scales, respectively. Alternatively,

in other regions (see highlighted regions A and C in the upper and central panels of Figure 4.5

large areas of positively correlated pairs of atoms are linked to areas of CCTM where insetead

characteristic times may vary from ∼ 100 picoseconds to tens of nanoseconds. Interestingly,

this simple visual inspection shows that while DCCM is effective in detecting groups of atoms

with correlated motions, CCTM completes this information allowing to distinguish the different

time-scales at which such motions occur. Moreover, Figure 4.5 also suggests a strong relation

between the blank areas in CCTM and the negatively correlated areas in DCCM. This may

indicate that the anti-correlated motions in these regions of the protein have larger time-scale

of those spanned by our MD simulation and for this they cannot be correctly sampled and yield

well-converged cross-correlation functions.
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As already mentioned, most decomposition methods of proteins in terms of quasi-rigid domains

are based on the analysis of the covariance matrix or on similarity matrices derived from

it.[129, 144, 145] Although results from these methods may show local significant differences, a

general consensus among them can often be outlined. The results obtained for HP35 from three

such methods are shown in the lower panel of Figure 4.5. The comparison with our method shows

a clear consensus between the two approaches: HP35 can be decomposed into two domains, a

fast-relaxing one localised in the central part of the protein and a slow-relaxing domain which

encompasses the two termini of the molecule. Overall, these observations illustrate the comple-

mentarity of the structure-based and the dynamic-based approaches.

In these structure-based methods, the simulation length may be a limiting factor to obtain sta-

tionary covariance matrices, hence impairing detailed comparison with the new method.[125] In

such cases, it may be useful to investigate alternative structure-based approaches. As an example,

a rigid-block clustering of HP35 through the PiSQRD method[134, 148] was performed (Figure

4.6 panel c)). The latter is a most widespread method for the detection of rigid domains based on

structural information and Gaussian network models. Network models rely on (harmonic) pair

potentials that are defined through the three-dimensional structure of the protein. Therefore,

such an approach explicitly favors the clustering of the protein in terms of regions of the molecule

that are contiguous in space, through the use of a penalty function that truncates the range

of interactions. The quality of the clustering obtained by this method is usually assessed by

comparing the root mean squared fluctuation (rmsf) of the coarse-grained protein model to the

one obtained from the complete network of atoms. The optimal decomposition corresponds to rmsf

value that is 80% of that of the complete network.[134, 148] The analysis is firstly performed on

HP35 using PiSQRD with this usual criterion, which led to a decomposition into four clusters. If

instead one choses to retain five clusters, the result accounts for 86% of the protein mobility. This

is illustrated in Fig.4.6

PiSQRD belongs to a class of clustering methods based on the structure of the protein.[149]

In order to elucidate possible connections between such commonly used approach and the method

introduced in this work, the effect of structure-based information has been investigated. Thus,

the penalty function defined in equation (4.8) has been used for the calculation of the similarity
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matrix S, where the Hausdorff distances between atoms m and n were multiplied by the weight

f (n,m). The strength parameter ε was set to a value that was approximately one order of magni-

tude larger than the maximal dissimilarity found in S. Besides, the cut-off distance was assigned

different values. Results of the effect of changing Rc on the cluster decomposition of the protein

are illustrated in Figure 4.6 (panel A).

When the penalty function is introduced into the distance calculation, the number of clusters

is consistently increased with respect to results shown in Figure 4.3. For values lower than

Rc = 0.6 nm, the quality of the clusters deteriorated, as attested by a low S . However, when

Rc = 0.7 nm, the silhouette score increases and the dispersion over the S (i) is slightly reduced.

As Rc increases beyond 0.7 nm, the number of clusters slowly decreases, whilst S does not

significantly vary.

It is useful to note that Rc = 0.7 nm is the typical distance between neighbouring Cα in proteins,

and for this reason has been used in various structure-based, coarse-grained analyses of protein

dynamics.[121, 123, 124, 150–153] The new correlation time clustering method has been then

performed using this kind of spatial constraint, by introducing the penalty function of Eq. 4.8

with the value Rc = 0.7 nm. In this case S (i) values are quite large (S (i)≥ 0.5) except for four

residues (Thr13, Pro14, Leu20, Leu28), for which S (i)∼ 0.2 and three residues (Thr7,Gln8,Ala9)

for which S (i)∼−0.4. Figure 4.6 (panel B) shows that with this additional ingredient, both new

and the PiSQRD methods lead to similar results.

Here, the two original correlation time distributions are split into five: each of the former

clusters A and B in Figure 4.4 is decomposed in smaller clusters in Figure 4.7 according to the

scheme A → A,B,E and B → C,D. Figure 4.7 shows that clusters detected by introducing the

spatial connectivity may display very similar distributions of correlation times. In particular,

the distinctive contents of within and between cross-correlation times has disappeared from

the histograms. This represents a clear information loss as far as mutual atom dynamics is

concerned. These results show that using a “generic” structural information, such as the cut-off

radius Rc = 0.7 nm, which is related to the typical number of atom neighbours in a protein,

drives the predictions of this new approach towards those of structure-based models. However,
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Figure 4.6: Effects of the through-space proximity in the domain decomposition of HP35. (a)
Number of clusters and Silhouette score as a function of the cut-off value used in the penalty
function in Eq. 4.8. (b) Silhouette per residue obtained by using a cut-off radius Rc = 7nm. (c)
Linear representation of the domain decomposition obtained with Rc = 7nm. Results obtained by
the rigid-domain decomposition method PiSQRD are shown with a similar pictorial representation
for comparison. See text for details.

Figure 4.7: Effects of the through-space proximity: Global distributions of correlation time in
each of the four cluster found in HP35.

the persistent differences between new and PiSQRD model highlights the fact that the three-

dimensional structure of the protein is an important, not the only element of its dynamics. Also, it

shows that mixing these two different and independent kinds of information seems to impair the

specificity of the perspective of our correlation-time based, and “structure-free” model of dynamic

clustering. Therefore, these findings suggest that the introduction of a penalty function to favour

through-space proximity of atoms that belongs to the same domain/cluster should be avoided to

obtain a domain decomposition that is based on relaxation dynamics.
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4.4 Conclusions

In this chapter a new computational approach has been proposed, based on time domain properties

of interatomic correlation functions, in contrast with usual methods based on configurational

characteristics. To our knowledge, this is the first computational approach that performs atom

clustering of proteins in terms of cross-correlation time scales only, without any structural

information. Interatomic distance correlation functions calculated from state-of-the-art molecular

dynamics simulations were used to estimate the effective cross-correlation times between pairs

of atoms. Despite the relatively sparse data obtained from these calculations, our clustering

approach performed well, and possibly misassigned atoms were identified through a low silouhette

score. The proposed method of atom clustering in proteins on the basis of the time scales of the

motions should provide the basis for an adaptive strategy to achieve coarse-graining of proteins

where the identified atom clusters are considered as subunits of the protein, the dynamics of

which are independent of one another. Such clustering could therefore be used in the derivation

of coarse-grained stochastic models for flexible macromolecules, and this approach may serve as

a basis for the development of a unified framework for the derivation of dynamic models allowing

to extend the range of time scales accessed by MD simulations. Thus, in the perspective of protein

dynamics studies, the introduction of time-scale dependent domain decomposition of proteins

seems advantageous as compared with methods based on rigid block approximations.
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5
STOCHASTIC MODELING OF FLEXIBLE SYSTEMS IN SOLUTION

5.1 Introduction

The description of the dynamics of a large object, such as a protein, requires a careful definition of

molecular frames to which the motions can be referred. Therefore, in general, some geometrical

considerations are needed in order to actually relate a dynamic model with a set of observables

amenable to experimental measurement, and care should be taken to accurately account for the

tensorial nature of the magnetic interactions, by defining proper frames of reference. To this aim,

we define the following frames of reference, as shown in Fig. 5.1: i) a laboratory frame (LF), i.e. a

fixed external frame; ii) a molecular frame (MF), i.e. a frame fixed on the molecule, where the

exact way of defining the MF is actually model-dependent and will be left temporarily undefined;

iii) an interaction frame (µF), i.e. a local frame linked to the MF where some specific second

rank tensor spectroscopic property µ is well-represented. This could be for instance frame where

the 15N-1H dipolar tensor is diagonal or a 15N chemical shift (CSA) tensor is diagonal.[41, 154]

For sake of simplicity we shall assume that experimental observables are identified with the

normalized correlation function of 2-nd rank Wigner matrix elements for each interaction frame,

or its associated spectral density (more precisely, the real part of the spectral density):

(5.1) Jµν(ω)= 5
8π2

∫ ∞

0
dte−iωt〈D2

0,0
[
Ωµ (t)

]∗
D2

0,0 [Ων (0)]〉
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Figure 5.1: Scheme of reference frames, structure and an example of local frame (see text) for
Lysozyme; the RF is centered on GLY 67, located between residues ASP 66 and ARG 68.

where µ, ν are indices referring to two tensorial properties and Ωµ(ν) are the sets of Euler angles

defining the orientations of the two interaction frames with respect to the LF. The factor 5/8π2

accounts for normalization in a isotropic medium. It is useful to separate contributions to the

spectral density function that originate from molecular motions, on the one hand, from those

that come from the geometrical features of the interactions involved, on the other hand. This is

achieved using standard algebra[155] of Wigner matrices. DenotingΩ the Euler angles describing

the orientation of the MF with respect to the LF, and Ωµ(ν) the tilt of µ(ν)F with respect to the

MF, the measurable spectral density for auto-correlated relaxation is given by (cfr. Fig. 5.2):

(5.2) Jµν(ω)= 5
2∑

k,k′=−2
D2

k,0

(
Ωµ

)∗
D2

k′,0

(
Ων

)∫ ∞

0
dte−iωtG2

kk′(t)

where

(5.3) G2
kk′(t)= 〈D2

0,k [Ω (t)]∗D2
0,k′ [Ω (0)]〉
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Figure 5.2: Reference frames and Euler angles

A fast and accurate method to evaluate Eq. 5.3 is the main objective of a dynamic modeling

approach. For the study of dynamics of such large and presumably non-rigid objects as proteins,

this requires a rigorous and adapted kinematic and dynamical description of the motions, as well

as consistent stochastic models. Current dynamical models are devised to provide a description of

the dynamics of observables, the time dependence of which is due to the presence of local motions,

and possibly coupled to global protein tumbling or limited domains motions. Within certain

additional approximations, one can give up a detailed parametrization of the local motions (MF

approach). Finally, one can make the simplifying assumption that local motions are due, at least

for semi-rigid systems, to a network of dynamically coupled neighbors (Network Model) [156]

with specific statistical characteristics (diffusive or Brownian dynamics, fractional Brownian

dynamics [100] etc.); or caused by partial local reorientation (SRLS) [157]. With the aim of a

general strategy that possibly combines the respective advantages of the above methods, we find

it crucial to propose a detailed and systematic description of the system geometry, based on its

81



CHAPTER 5. STOCHASTIC MODELING OF FLEXIBLE SYSTEMS IN SOLUTION

molecular structure, as well as of the associated dynamical features.

In essence, we aim at obtaining a well-defined time evolution in the form of a stochastic differential

or master equation, based on a relevant set of degrees of freedom,and that defines, at least

approximately, a Markovian process. In order to do so, one can proceed in a straightforward

manner, by setting up the Liouville equation of motion [158] for a generic flexible body defined as

a set of material points (atoms or extended atoms), in terms of roto-translational and natural

internal coordinates. The general description of a macromolecule in solution is then carried

out in terms of a collection of flexible bodies, to which a standard Nakajima-Zwanzig [159, 160]

projection method is applied in order to eliminate the “irrelevant” i.e. not directly observed,

degrees of freedom. In the next Section we apply this method to the case of a partially rigid

Brownian system, i.e. with only fast relaxing internal modes.

5.2 Semi-flexible Brownian body

5.2.1 Semi-rigid Brownian body: hard internal coordinates

Numerically solving the general case of a flexible body model, is a formidable task, although

manageable in some specific circumstances.

Here, we address to the case of a semi-rigid folded protein, assuming the absence of internal

motions of large amplitude. Single residues are supposed here to undergo “restricted” motions,

without the possibility of large rearrangements. Notice that this implies i) neglecting activated

torsional kinetic and/or ii) crankshaft motions [161, 162]. Instead, we concentrate on the descrip-

tion of internal motions adopting the common view of a harmonic or boson bath, retaining full

coupling with external motion and including dissipative/stochastic effects. We want to show that

a very viable and cost-effective treatment is possible in this limited, but interesting, regime.

Since the total energy is a quadratic form, the model is quite manageable. In particular,

as we shall see in the remaining of this section, neither the neglect of inertial effects due

to the presence of fast relaxing momenta nor the internal-rotational uncoupling hypotheses

need to be invoked in order to calculate observable equivalent to those defined by Eq. 5.3. Let

y= (q, L, p), where q, L, p are respectively internal coordinates, angular momenta and momenta
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associated to internal coordinates of the system. The total energy is H = (y− y(0)) ·k · (y− y(0))/2,

where y(0) = (q(0),0,0). Defining Q = (Ω, y), where Ω are the three Euler angles describing the

orientation of the MF with respect to the LF; the time evolution operator is defined by

(5.4) Γ̂FP = P̂r−∇̂Q · JFPρ(Q) · ∇̂Qρ(Q)−1

and it contains ρ(Q), Boltzmann distribution defined on H, the precessional term P̂r is defined

(5.5) P̂r = L · (∇̂LH×∇̂L
)

and JFP

(5.6) JFP = kBT

 0 −1

1 ξ


In JFP , the friction tensor ξ is supposed constant. The matrix k has the form

(5.7) k =


K 0 0

0 I−1 + Atr gA −Atr g

0 −gA g


Here the inertia tensor I =∑

α Mα(c2
α13−cαctr

α ) and the gauge potential Aµ = I−1 (
∑
α Mαcα×∂cα/∂qµ)

are defined, where cα(q) are the relative position vectors of the particles with respect to the

center of mass ; g is the (contra)variant metric tensor, defined in terms of the internal coordinates

values.[158, 163, 164] All tensor can be evaluated from geometrical considerations, explicitly. It

is convenient to introduce scaled, rotated variables: let us define x = (kBT)−1/2S(y− y(0)), where

S =ΛU tr. U and Λ are defined as U trkT =Λ2, where Λ diagonal. In terms of the new set of

coordinates Q = (Ω, x), we finally get

∂ρ(Q, t)
∂t

= −Γ̂ρ(Q, t)(5.8)

Γ̂ = P̂r−∇̂Q ·ωρ(Q) · ∇̂Qρ(Q)−1(5.9)

where ∇̂Q = (M̂,∇̂x), H =−x2/2, ρ(Q)= ρ(x)= p(x)/8π2 = exp(−x2/2)/(2π)(6n−9)/28π2

(5.10) ω=

 0 −ωint

(ωint)tr ω


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ω and ωint are matrices (with ωint non-symmetric) (6n−9)× (6n−9) and 3× (6n−9) respectively,

with dimensions of frequencies: ω is related to dissipative properties (friction tensors) and it has

the form:

(5.11) ω= S


0 0 −1

0 ξRR ξRS

1 ξSR ξSS

Str

while ωint is

(5.12) Ωint = (kBT)1/2eStr

where e =
(

0 1 0
)

The precessional operator can be written in the general form P̂r =
ωP

i jkxix j
∂
∂xk

, where coefficients ωP
i jk can be found straightforwardly (from now on we neglect

tensorial notation), where frequencies ωP
i jk are obtained as

(5.13) ωP
i jk = (kBT)1/2 ∑

αβγ

εαβγ(eS−1)γi(eStr)α j(eStr)βk

5.2.2 Semi-rigid Brownian body: approximate solution

The model described in the previous section, is the simplest description, recoverable for an initially

atomistic model for the Brownian probe, [165] retaining fully inertial effects on rotation/shape

coupling: it described the semi-rigid macromolecule as a rotator, coupled to 6n−9 (i.e. 3n−6

internal coordinates, 3n−6 internal momenta and 3 components of the L vector) harmonic degrees

of freedom, in a fashion quite similar to standard spin-boson quantum mechanical approaches.

Indeed, the similarity can be exploited and quite manageable expression can be found for the

evaluation of orientational correlation functions, at least in specific dynamic regimes. To clarify,

let us consider the different contributions to the time evolution operator, as weighted by ω, ωint,

ωP ; ω elements are of the order O(Λξ), while ωint, ωP are of the order O(kBT)1/2Λ. We shall limit

our analysis to the case of relatively high friction, i.e. significantly large ξ. This allows to neglect

at least as a first approximation the direct contribution of precession terms. We shall therefore

write the approximate SRB operator in Eq. 5.9 in the form:

(5.14) Γ̂= Γ̂0 + Γ̂int =−∑
i j
ωi j

∂

∂xi
p(x)

∂

∂x j
p(x)−1 +∑

iα
ωint

iα xiM̂α
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where i = 1, . . . ,6n−9= nT , α= 1,2,3. Our purpose is is to estimate spectral densities associated

to correlation functions as in eq. 5.3; for a property of rank j we need to evaluate

(5.15) J j
m,kk′(s)= (2 j+1)〈D j

m,k (Ω)∗ |(s+ Γ̂)−1|Dm
j,k′ (Ω)ρ〉

and j = 2, m = 0 are for instance employed in the case of nuclear magnetic resonance relaxation.

Following a standard expansion of the kernel (s+ Γ̂)−1 ,[166–169] with respect to Γ̂int, we obtain

(5.16) J j
m,kk′(s)= 2 j+1

8π2 〈D j
m,k (Ω)∗ |[s+ R̂(s)

]−1 |Dm
j,k′ (Ω)ρ〉Ω

where

R̂(s) =
∞∑

l=1
R̂ l(s)

R̂1(s) = Γ(5.17)

R̂ l(s) = (−1)l−1〈Γ̂int(s+ Γ̂0)−1(Q̂Γ̂int)l−2(s+ Γ̂0)2−lΓ̂int p(x)〉x l ≥ 2

each term is of l order in Γ̂int. The terms R̂ l(s), not surprisingly, become rapidly very complex. One

can attempt, following analogous treatments in the literature, [166–169] to evaluate the first few

terms and then employ a resummation technique. usually, this approach is employed on quantum

master equations with memory functions which are approximated via Padé or continuous-fraction

expansions. Here, we shall limit our analysis to a restricted regime of relatively high friction,

therefore arresting the expansion to the second order term. For simplicity, we prefer to work

directly on the kernel operator, evaluating only at the end the memory matrix after projecting

on a suitable subspace of rotational basis functions (see below). We sketch here the basic points.

First of all, we define the symmetrized time evolution operator Γ̃= p(x)−1/2Γ̂p(x)−1/2, which is

written as

(5.18) Γ̃= Γ̃0 + Γ̃int =
∑
i j
ωi jŜ+

i Ŝ−
j +

∑
iα
ωint

iα (Ŝ+
i + Ŝ−

i )M̂α

where Ŝ±
i =∓e(∓x2

i /4) ∂
∂xi

e(±x2
i /4) are raising and lowering operators acting on the orthonormal set

in xi |si〉i, with Ŝ+
i |si〉i =

p
si +1 |si +1〉i, Ŝ−

i |si〉i =p
si |si −1〉i, Ŝ+

i Ŝ−
i |si〉i = si|si〉i, 〈si|s′i〉 = δsi ,s′i

.

A state for the nT bath coordinates is indicated in the following with |s〉x = |s1, . . . , snT 〉x, and

〈s|s′〉x = δs,s′ . In particular, we indicate with |0〉x the symmetrized equilibrium distribution
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p(x)1/2, i.e. the eigenstate with null eigenvector Γ̃0|0〉x = 0, and with |1i〉x the first excited state

with respect to the i-th coordinate, i.e. |1i〉x = |0, . . . ,1, . . . ,0〉x. Eqns. (5.17) are now

R̂(s) =
∞∑

l=1
R̂ l(s)

R̂1(s) = 〈0|Γ̃|0〉x(5.19)

R̂ l(s) = (−1)l−1〈0|Γ̃int(s+ Γ̃0)−1(Q̃Γ̃int)l−2(s+ Γ̃0)2−lΓ̃int|0〉x l ≥ 2

where Q̃ = 1−|0〉x〈0|. Using the properties of Γ̃0, Γ̃int, one shows that all odd terms are identically

zero, while the first non-zero contributions is:

(5.20) R̂2(s)=−∑
αβ

D(2)
αβ

(s)M̂αM̂β

where

(5.21) D(2)
αβ

(s)=∑
i j
ωint

iα [ω(s)−1]i jω
int
jβ

here ωi j(s) = 〈1i|s+ Γ̃0|1 j〉x = s1+ω is the matrix representation of s+ Γ̃0 on the set of first

excited states |1i〉x. In the limit of high friction we set R̂(s)= R̂2(s). A numerical estimate of Eq.

(5.16) is now possible. We consider the 2 j+1 subspace of normalized Wigner matrix functions

|k〉Ω =
√

(2 j+1)/8π2 D
j
m,k(Ω). Eq. (5.16) takes the form

(5.22) J j
m,kk′(s)= {

[s1+R(s)]−1}
kk′

i.e. is the kk′ element of the (2 j+1)× (2 j+1) matrix [s1+R(s)]−1; the generic element of the

matrix representation of the resolvent R̂(s) is Rkk′ (s)= 〈k|R̂(s)|k′〉Ω. R(s)≈ R2(s) can be obtained

as follows

(5.23) R(s)=−∑
αβ

D(2)
αβ

(s)MαMβ

i.e. in terms of (complex) matrix elements of the Cartesian components of the rotational operator,

Mα,kk′ = 〈k|M̂α|k′〉Ω, which are found immediately from well-known properties of the Wigner

matrix functions:[155] M1,kk′ = −i(c−j,k′δkk′−1 + c+j,k′δkk′+1), M2,kk′ = −(c−j,k′δkk′−1 − c+j,k′δkk′+1),

M3,kk′ = −ik′δkk′ , where c±j,k = √
j( j+1)−k(k±1) . For the case of second rank properties, for

instance, only 5×5 matrices are involved.
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5.3 Case studies: polyalanine peptides

The semi-rigid model as been applied in an explorative study of the dynamics of a set of short

polyalanine peptides. In particular, nine peptides with 2 to 10 alanine units have been analyzed.

The solution of the Fokker-Plank equation followed the route of the expansion of the resolvent,

as provided in equation 5.17 and stopping to the second order, R̂2(s). While for large molecules

with a large number of internal coordinates and a large range of characteristic frequencies of the

dynamics (ranging from the fast bond librations to the slow global tumbling) such a truncation

may result insufficient, we expect that the approximation is good enough for the small peptides

presented in this preliminary application of the model.

The complete series of calculations has been carried out using the Hessian of the internal energy

(properly converted in internal coordinates) as K. To this purpose, the geometry of each of the

polyalanine peptides has been minimized using a molecular mechanics approach. The MMTK

software [170] has been emplyed for such a minimization procedure. The Amber99ff force field

has been used to describe interactions among nuclei in the peptide.

To perform calculations, the Cα and C atoms of the first residues and the N atom of the second

residue have been used to build the AF reference frame, from which the molecular frame, MF, is

obtained by means of a roto-translation (translation to the center of mass and rotation to align

to the principal axes of inertia). Also, the hydrodynamic parameters that have been chosen are:

effective radius of 0.5 Å, stick boundary conditions, temperature 298.15 K, and viscosity 8.9 ·10−4

Pa s (water). Rank 2 Wigner functions spectral densities have been computed.

As comparison, the same spectral densities have been calculated in the diffusive rigid body

limit. In this case, the diffusion tensor has been calculated with DiTe [84] using the same set of

hydrodynamic parameters and in absence of hydrodynamic interactions (as was implemented

for the semi-rigid body). For all the polyalanines the diffusion tensor is nearly axial symmetric.

By approximation of the tensor to an axial symmetric one, the exact solution of the rigid body

diffusive equation is analytical.

In Figs 5.3-5.4 are shown the real part of the spectral density and the spectral density Cole-
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Figure 5.3: Comparison between diffusive rigid body (black) and intertial semi-rigid body (red)
description of the dynamics of (a) dialanine, (b) tetra-alanine and (c) esa-alanine.
Top: real part of the spectral density of D2

0,0(Ω), inset: energy-minimized structures, atoms used
to build the AF reference system are showed as spheres.
Bottom: Cole-Cole plot of the same spectral density.

Cole plot specifically for the D2
0,0 observable, for selected peptides with 2-, 6-, 8-, and 10-alanine

pepdite. The spectral density of D2
0,0 , in case of the nearly-axial ridig body, is described by a single

relaxation process with characteristic frequency equal to 6D⊥ = 3(DX X +DY Y ). What is observed

is that, on one hand, internal motions affect the total correlation time (value of the zero-frequency

spectral density) by lowering it, i.e. a faster relaxation with respect to the rigid body case. Such

an effect becomes more evident while increasing molecular size due to an increasing separation

of global and local time scales. A second effect, even if less evident, is on the tail of the spectral

density, which is higher in the semi-rigid body model with respect to the rigid body. This effect

can be rationalized as follows: the high frequency region of the spectral density is related to

the short-time relaxation. What happens is that in the initial moments the fast coordinates

relax while the global motion is still ”frozen”. Thus, global motion does not contribute to high

frequencies (i.e., it is a slow motion).

The Cole-Cole plots show that going from the dialanine peptide to the decaalanine peptide an

increasing number of different time scales is affecting relaxation. In the dialanine peptide the
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Figure 5.4: Comparison between diffusive rigid body (black) and intertial semi-rigid body (red)
description of the dynamics of (a) octa-alanine and (b) deca-alanine.
Top: real part of the spectral density of D2

0,0(Ω), inset: energy-minimized structures, atoms used
to build the AF reference system are showed as spheres.
Bottom: Cole-Cole plot of the same spectral density.(a) octa-alanine, (b) deca-alanine.

global and internal motions relax in similar time scales, thus the Cole-Cole plot is very similar

to the single-relaxation time behavior (i.e., that of the rigid body). Concerning the deca-alanine

peptide, the separation of time scales is seen in the shape of the Cole-Cole plot, where a good

separation can be seen between high frequencies (real part of the spectral density tending to 0)

and low frequencies (real part of the spectral density approaching the total correlation time). For

the dialanine only, the same calculation has been conducted by parametrizing the internal energy

from a molecular dynamics trajectory. The simulation has been carried out with the NAMD

software package. The peptide, parametrized with the CHRMM22 force field, has been solvated

with 458 TIP3P water molecules in a cubic box of 24 Åside length. After energy minimization, the

system has been heated to 298.15 K. A 2 ns run of equilibration has been carried out, followed

by 5 ns of production. Calculations have been done using periodic boundary conditions, particle

mesh Ewald for electrostatics with a cutoff at 12 Å, NpT ensemble. Then, water was removed
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from the trajectory and the RMS mass weighted superposition of the peptide on the first snapshot

has been carried out. Here, no clustering has been performed assuming that, because of the short

trajectory, the peptide was only fluctuating about one important local energy minimum.

From the aligned trajectory, the covariance matrix in Cartesian coordinates has been calculated

and then converted in internal coordinates as described above.

Figure 5.5 compares the D2
0,0 spectral densities for the rigid body model and the semi-rigid model

in the two cases where internal energy has been obtained from the Hessian of the internal energy

or from the covariance matrix. What is observed is that in this second case, the molecule is more

”floppy”, i.e. the force constants are smaller with respect to those obtained from the Hessian of

the internal energy in vacuum.

Figure 5.5: Comparison among diffusive rigid body (black), inertial semi-rigid body with internal
energy from Hessian (red), and inertial semi-rigid body with internal energy from covariance
matrix description of the dynamics of dialanine. Left: real part of the spectral density of D2

0,0(Ω).
Right: Cole-Cole plot of the same spectral density.

5.4 Discussion

In this Section we have presented a systematic approach that is able to describe the dynamics

of a non rigid body, based on elaborations from fundamental classical and statistical mechanics.

This is particularly relevant for the description of large molecular objects, such as proteins,

which represent the main domain of application in the our perspective. But of course, it is a

versatile methodology that enables one to tackle virtually any classical non rigid dynamics. The

model therefore provides a physically sound framework, which in addition is well suited for

computational developments. One of the particularly interesting features of our approach, from
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the spectroscopist’s viewpoint, is that it allows one to to build fine- to coarse-grained model of

dynamics of large molecular objects, depending on additional a priori extraneous information that

may guide possible approximation strategies. For instance, as described in the typical situations

envisaged in this Section, the singling out of hard/soft shape variables allows one to subdivide

regions of a molecule into smaller entities (bodies) that are treated in a simplified manner from

the dynamical viewpoint. However, in so doing, the exact same theoreticalframework is used.

Only the relevance or the validity of the approximations should be discussed. In addition, this

versatility remains beyond the sole mechanical description of the molecule. Indeed, the Zwanzig

projection technique introduces a memory kernel, the details of which should also be discussed.

Adequate approximations and assumptions are likely to depend on the kind of coarse graining

itself. Investigation of these aspects are delayed to future work.
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