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Abstract

In type 1 diabetes (T1D) exogenous insulin is administered to compensate for
the absence of endogenous insulin production by pancreas beta-cells. T1D
subjects must finely tune insulin doses to maintain blood glucose (BG) con-
centration within the normal range (70-180 mg/dl). For such a purpose, ev-
ery day, T1D subjects need to frequently monitor their BG concentration and
make several treatment decisions, e.g. the calculation of insulin and carbohy-
drate (CHO) doses to counterbalance, respectively, high and low BG values.
The safety and effectiveness of T1D insulin therapies are normally assessed
by clinical trials, which unfortunately are usually time-demanding, expensive
and often present constraints of low numerosity and short duration, with con-
sequently low probability of observing rare but risky situations, like severe
hypoglycemia. These limitations can be overcome by the use of in silico clin-
ical trials, based on computer simulations, that allow to test medical device-
based treatments in a large number of subjects, over a long period, under re-
producible conditions, at limited costs, and without implicating any risk for
real subjects. A popular powerful tool to perform in silico clinical trials in
T1D is the UVA/Padova T1D simulator, i.e. a model of glucose, insulin and
glucagon dynamics in T1D subjects. However, to test insulin therapies in a
real-life scenario, the UVA/Padova T1D simulator alone is not sufficient be-
cause a mathematical description of other fundamental components, like the
device used for glucose monitoring and the patient’s behavior in making treat-
ment decisions, is required.

The aim of this thesis is to design a mathematical model of T1D patients
making treatment decisions fully usable for the comprehensive in silico assess-
ment of insulin treatment scenarios. In particular, in the first part of the thesis
we develop three submodels that the UVA/Padova T1D simulator requires
(as complement) to pursue this scope. Specifically, we design a model of self-
monitoring of blood glucose (SMBG) device, a model of minimally-invasive
sensor for continuous glucose monitoring (CGM), and a model of the patient’s
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behavior in tuning CHO intakes and insulin doses according to SMBG and/or
CGM measurements. The parameters of these models are either fitted on real
data or derived from literature studies. The overall model, in the following
called T1D decision-making (T1D-DM) model, can be used for several in silico
experiments. To demonstrate its usefulness, in the second part of this thesis
we apply the T1D-DM model to assess safety and effectiveness of nonadjunc-
tive CGM use, i.e. the use of CGM measurements to make treatment decisions
without requiring confirmatory SMBG measurements collected by fingerstick.
This specific application is currently of great scientific and industrial interest
for the diabetes technology research community because, until clinical evi-
dence of its safety is provided, nonadjunctive CGM use cannot be approved
by U.S. regulatory agencies, like the Food and Drug Administration.

The thesis is organized in six chapters. In Chapter 1, after introducing T1D
therapy, the importance of in silico clinical trials is discussed, both in general
and specifically for the assessment of nonadjunctive CGM use. Then, some
state-of-art simulation techniques are briefly introduced discussing their open
problems. The aim of the thesis is illustrated at the end of the chapter.

In Chapter 2, we analyse more in depth the limitations of the approaches
currently available in the literature for the assessment of insulin treatments.
In particular, we demonstrate that a recently proposed simulation method to
"replay" in silico real-life treatment scenarios has domain of validity limited to
small adjustments of basal insulin, calling for the development of more sophis-
ticated techniques like that proposed in this thesis.

In Chapter 3, our simulation method based on the T1D-DM model is pre-
sented. This model allows to simulate, in a real-life scenario, the glucose pro-
files of T1D subjects using SMBG and/or CGM to make treatment decisions.
The T1D-DM model is composed of four components: A) the UVA/Padova
T1D simulator, B) a model of glucose monitoring devices, C) a model of pa-
tient’s behavior and treatment decisions and D) a model of the insulin pump.
In particular, as far as B) is concerned, two different SMBG error models are
derived by data collected with two popular SMBG devices (One Touch Ul-
tra 2 and Bayer Contour Next USB). Using a recently published methodology
which takes into account the main sensor error components, a CGM model
is derived from data collected by a state-of-art CGM sensor (Dexcom G5 Mo-
bile). Regarding C), a model of the patient’s behavior in making treatment
decisions based on SMBG and/or CGM, such as administration of insulin
boluses and hypotreatments, is designed to simulate treatments based on i)
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SMBG, ii) adjunctive CGM, or iii) nonadjunctive CGM. In order to reproduce a
real-life scenario, the model includes components describing the mistakes real
subjects commonly make, such as miscalculation of meal CHO content and
early/delayed insulin administrations.

In Chapter 4 and Chapter 5, two in silico trials based on the T1D-DM model
are designed to assess nonadjunctive CGM use. In the first trial, nonadjunc-
tive CGM is compared to SMBG and adjunctive CGM over a two-week pe-
riod in 100 virtual subjects. Results show that the use of CGM (both adjunc-
tive and nonadjunctive) significantly improves glycemic control compared to
SMBG, while no significant change is observed between adjunctive CGM and
nonadjunctive CGM. This suggests that CGM is ready to substitute SMBG for
T1D treatment. In the second trial, the impact of thresholds used for CGM
hypo/hyperglycemic alerts on the performance of nonadjunctive CGM use is
assessed. Results show that time in hypoglycemia is reduced by nonadjunctive
CGM use with any alert setting, while time in hyperglycemia is significantly
worsen by nonadjunctive CGM use, compared to SMBG, when the high alert
threshold is set to 350 mg/dl or higher.

Finally, the major findings of the work carried out in this thesis, its possible
applications and margin of improvements are summarized in Chapter 6.
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Sommario

Nella terapia del diabete di tipo 1 viene somministrata insulina esogena per
compensare l’assenza di secrezione di insulina da parte della beta cellule del
pancreas. Per mantenere la glicemia ad un livello normale (70-180 mg/dl), i
soggetti diabetici di tipo 1 devono accuratamente regolare le proprie dosi di
insulina. A questo scopo, essi necessitano ogni giorno di misurare frequente-
mente la loro glicemia e prendere numerose decisioni terapeutiche, per esem-
pio per calcolare le dosi di insulina e carboidrati necessarie a controbilanciare
livelli glicemici rispettivamente elevati e bassi. La sicurezza e l’efficacia di ter-
apie insuliniche per il diabete di tipo 1 sono comunemente valutate in trial
clinici, i quali solitamente necessitano di tempi e costi elevati e presentano li-
miti di bassa numerosità e breve durata, con conseguente ridotta probabilità
di osservare situazioni rare seppur rischiose, come ad esempio l’ipoglicemia
severa. Queste limitazioni posso essere superate mediante trial clinici simulati,
cioè basati su simulazioni al computer, che permettono di testare terapie basate
su dispositivi medici in un vasto numero di soggetti, per un lungo periodo, in
condizioni riproducibili, a costi limitati e senza comportare alcun rischio per i
pazienti reali.

Un popolare strumento per svolgere trial clinici simulati nell’ambito del
diabete di tipo 1 è il simulatore UVA/Padova-T1D, un modello che descrive
le dinamiche di glucosio, insulina e glucagone nei soggetti diabetici di tipo
1. Tuttavia, al fine di testare terapie insuliniche in uno scenario realistico, il
simulatore UVA/Padova-T1D non è da solo sufficiente in quanto necessaria la
descrizione matematica di altre componenti fondamentali, come il dispositivo
utilizzato per il monitoraggio del glucosio e il comportamento del paziente nel
prendere le decisioni terapeutiche.

Lo scopo di questa tesi è la progettazione di un modello matematico del
paziente diabetico di tipo 1 e delle decisioni terapeutiche che esso prende, uti-
lizzabile per una completa valutazione in simulazione di terapie insuliniche.
In particolare, nella prima parte della tesi vengono sviluppati i tre sottomod-
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elli che il simulatore UVA/Padova-T1D necessita (come complemento) per
raggiungere tale scopo. Nello specifico, vengono sviluppati un modello del
dispositivo pungidito per il monitoraggio della glicemia (SMBG), un modello
del sensore minimamente invasivo per il monitoraggio a tempo continuo della
glicemia (CGM) e un modello del comportamento del paziente nel regolare
le somministrazioni di carboidrati e insulina a seconda delle misure SMBG
e/o CGM. I parametri di questi modelli sono fittati su dati reali o derivati
da studi di letteratura. Il modello complessivo, chiamato in seguito modello
decisionale del diabete di tipo 1 (T1D-DM), può essere impiegato per molti
esperimenti simulati. Per dimostrare la sua utilità, nella seconda parte della
tesi il modello T1D-DM viene impiegato per valutare la sicurezza e l’efficacia
dell’uso "nonadjunctive" del sensore CGM, cioè l’uso delle misure CGM per
prendere decisioni terapeutiche senza la necessità di confermarne le letture
mediante misure SMBG raccolte con dispositivi pungidito. Questa specifica
applicazione è attualmente di grande interesse scientifico e industriale nella
comunità della ricerca sulle tecnologie per il diabete poiché, finché non ne
viene dimostrata la sicurezza, l’uso "nonadjunctive" del CGM non può essere
approvato dalle agenzie regolatorie statunitensi, come la Food and Drug Ad-
ministration.

La tesi è organizzata in sei capitoli. Nel capitolo 1, dopo aver introdotto la
terapia del diabete di tipo 1, viene discussa l’importanza dei trial clinici simu-
lati, sia in generale sia in maniera specifica per la valutazione dell’uso "nonad-
junctive" del sensore CGM. In seguito, vengono brevemente introdotte alcune
tecniche di simulazione allo stato dell’arte discutendone i problemi aperti. Lo
scopo della tesi è illustrato alla fine del capitolo.

Nel capitolo 2 vengono analizzate nel dettaglio le limitazioni degli approcci
allo stato dell’arte per la valutazione di terapie insuliniche. In particolare,
viene dimostrato che un metodo di simulazione recentemente proposto per
riprodurre in simulazione scenari terapeutici della vita reale presenta un do-
minio di validità limitato a piccole variazioni della dose basale di insulina,
suggerendo la necessità di sviluppare tecniche più sofisticate come quella pro-
posta in questa tesi.

Nel capitolo 3 viene presentato il nostro metodo di simulazione basato
sul modello T1D-DM. Questo modello consente di simulare, in uno scenario
che riproduce la vita reale, i profili glicemici di soggetti diabetici di tipo 1
che utilizzano dispositivi SMBG e/o CGM a supporto delle decisioni terapeu-
tiche. Il modello T1D-DM è composto da quattro componenti: A) il simula-
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tore UVA/Padova-T1D, B) un modello dei dispositivi per il monitoraggio del
glucosio, C) un modello del comportamento del paziente nel prendere le deci-
sioni terapeutiche e D) un modello della pompa per l’infusione di insulina. Per
quanto riguarda B), due modelli dell’errore delle misure SMBG sono derivati
utilizzando misure raccolte con due popolari dispositivi SMBG (lo One Touch
Ultra 2 e il Bayer Contour Next). Utilizzando un metodo recentemente pub-
blicato che prende in considerazione le componenti principali dell’errore del
sensore, viene derivato un modello delle misure CGM sulla base di dati rac-
colti con un sensore CGM allo stato dell’arte (Dexcom G5 Mobile). Per quanto
concerne C), viene progettato un modello del comportamento del paziente nel
prendere le decisioni terapeutiche sulla base di misure SMBG e/o CGM, come
la somministrazione di boli di insulina e trattamenti per l’ipoglicemia, al fine
di simulare terapie basate su i) SMBG, ii) uso del CGM a supporto dell’SMBG
(uso "adjunctive") o iii) uso "nonadjunctive" del CGM. Per riprodurre uno sce-
nario realistico, il modello include componenti che descrivono gli errori co-
munemente commessi dai pazienti reali, come per esempio gli errori nella
stima della quantità di carboidrati contenuti nel pasto e ritardi/anticipi nella
somministrazione delle dosi di insulina.

Nei capitoli 4 e 5 vengono progettati due trial clinici simulati basati sul
modello T1D-DM per valutare l’uso "nonadjunctive" del sensore CGM. Nel
primo trial, l’uso "nonadjunctive" del sensore CGM è confrontato con l’uso
dell’SMBG e l’uso "adjunctive" del CGM in 100 soggetti virtuali per un
periodo di due settimane. I risultati dimostrano che l’uso del CGM (sia "ad-
junctive", sia "nonadjunctive") migliora significativamente il controllo glicemico
rispetto all’uso dell’SMBG, mentre non si osservano differenze significative tra
l’uso "adjunctive" e "nonadjunctive" del sensore CGM. Questo risultato sug-
gerisce che il CGM è pronto per sostituire l’SMBG nel trattamento del dia-
bete di tipo 1. Nel secondo trial, viene valutato come le soglie impostabili
per le allerte ipo/iperglicemiche del sensore CGM influenzano le performance
dell’uso "nonadjunctive" del CGM. I risultati dimostrano che l’uso "nonadjunc-
tive" del sensore CGM consente di ridurre il tempo in ipoglicemia per qualsiasi
impostazione delle allerte, mentre il tempo in iperglicemia viene significativa-
mente peggiorato dall’uso "nonadjunctive" del sensore CGM, rispetto all’SMBG,
quando la soglia dell’allerta di iperglicemia è impostata ad un valore maggiore
o uguale a 350 mg/dl.

Infine i risultati principali del lavoro svolto in questa tesi, nonché le possi-
bili applicazioni e i margini di miglioramento sono riassunti nel capitolo 6.
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Chapter 1

In silico assessment of insulin
treatment scenarios in type 1
diabetes: opportunities, methods
and open challenges

1.1 Type 1 diabetes (T1D) insulin therapy

Type 1 diabetes (T1D) is an autoimmune disease of metabolism in which pan-
creas beta cells, responsible for the endogenous production of insulin, are de-
stroyed by the body’s own immune system [1] [2]. In healthy subjects, insulin
promotes the movement of glucose from the blood to cells of body’s tissues
where it is metabolized for energy production. Patients with T1D, if not prop-
erly treated, present persistently high blood glucose (BG) concentration. The
standard therapy for the treatment of T1D consists in diet, physical exercise
and exogenous insulin administrations that allow to lower the increase in BG
concentration produced by food ingestion. Insulin doses can be delivered by
multiple daily injections (Figure 1.1, panel A) or insulin pump, which allows
the continuous-time injection of insulin in the subcutaneous tissue (Figure 1.1,
panel B).

An accurate dosing of insulin is important to maintain BG concentration
within the normal range, i.e. 70-180 mg/dl, called also euglycemia. An under-
estimation of insulin doses may drive to hyperglycemia, i.e. BG concentration
greater than 180 mg/dl, which is cause of long-term complications like cardio-
vascular diseases, retinopathy and kidneys diseases. Conversely, when insulin
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doses are overestimated, BG concentration may fall below 70 mg/dl, in the
range of hypoglycemia. Hypoglycemia, if not rapidly detected and mitigated
by hypotreatment, e.g. the intake of 15-20 grams of CHO, can dangerously af-
fect the patient’s health in the short-term, causing seizure, coma or even death.

In the standard T1D insulin therapy, a basal dose is administered to main-
tain the BG concentration in euglycemia during the night and during the day
if a meal is skipped. In addition, bolus doses are administered at meal times
to counterbalance the rise in BG produced by food intake, in this case the dose
is called meal bolus, or after meals to treat high BG levels, in this case the
dose is called correction bolus [3]. The dose of insulin boluses is calculated
by patients themselves according to simple equations based on an estimate
of the meal carbohydrate (CHO) content (for meal boluses only), the BG con-
centration measured at bolus time, insulin on board i.e. the insulin amount
of previously injected boluses that is still acting in the body, and two therapy
parameters called carbohydrate-to-insulin ratio and correction factor. In par-
ticular, the carbohydrate-to-insulin ratio (CR) represents how many grams of
CHO are covered by each unit of insulin [4]. The correction factor (CF) repre-
sents how much BG is lowered by each unit of insulin [5]. These parameters,
as well as the basal insulin dose, are set by the physician according to empiri-
cal rules based on patient’s parameters like age and body weight [6] [7] [8] and
then tuned based on retrospective analysis of BG measurements.

Figure 1.1: Insulin delivery via multiple daily injections (A) or via insulin
pump (B). (Source: http://nursingcrib.com/nursing-notes-reviewer/fundamentals-
of-nursing/12-tips-for-injecting-insulin/, https://www.medtronic-diabetes.ie/what-
insulin-pump-therapy)
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1.2 Glucose monitoring

1.2 Glucose monitoring

1.2.1 Self-monitoring of blood glucose (SMBG)

Typically, BG concentration is measured by self-monitoring of blood glucose
(SMBG) devices that, as shown in Figure 1.2, allow to measure glucose con-
centration in a small drop of capillary blood collected by fingerprick [9]. The
American Diabetes Association suggests that T1D patients monitor BG by SMBG
before meals and snacks, occasionally after meals, at bedtime, when they sus-
pect to have low BG, after treating hypoglycemia until they are back in eug-
lycemia, prior to exercise and critical tasks like driving [10]. The adherence
to these recommendations supposes the collection of 7-9 SMBG measurements
per day or more. However, several studies demonstrated that T1D subjects
test their BG concentration less frequently than recommended, on average 4-5
times per day [11] [12]. The poor adherence to the recommended SMBG test-
ing frequency is caused by the discomfort, and often by the embarrassment,
that the patients feel when collecting SMBG measurements, which require the
prick of a finger by a lancet device. Of course, a low frequency of SMBG testing
significantly deteriorates the quality of glycemic control [12] [13], being more
difficult for the patient to detect hyperglycemia and hypoglycemia.

Figure 1.2: Measuring BG by a SMBG device. (Source:
http://www.farmaquick.it/blog/salute/come-usare-il-glucometro-per-misurare-la-
glicemia/)

Even when performed frequently, SMBG can still fail to detect risky hypo/
hyperglycemic events, because of the sparseness of SMBG measurements. This
can be particularly dangerous for patients with impaired awareness of hypo-
glycemia, in whom the ability to perceive the onset of hypoglycemia is re-
duced or even absent [14]. In these patients the incidence of severe low glucose
episodes that requires external assistance for recovery is up to six fold higher
than in subjects with normal awareness of hypoglycemia [15]. The problem
of the sparseness of SMBG measurements was overcome by the introduction
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of minimally invasive sensors for continuous glucose monitoring (CGM) that
will be presented in the next subsection.

1.2.2 Continuous glucose monitoring (CGM)

In the last decade, the monitoring of glucose in T1D has been revolutionized by
the introduction of CGM sensors, i.e. minimally-invasive sensors that measure
almost continuously glucose concentration in the interstitial fluid of subcutis
[16]. A CGM device includes three main components. The first component is
a needle electrode (A in Figure 1.3) which is implanted in the subcutaneous
tissue of the abdomen or the arm and measures a current signal generated by
the glucose oxidation process. The second component is a transmitter (B in
Figure 1.3) that converts the current signal in a glucose concentration profile
by a calibration process that exploits few SMBG measurements per day. The
transmitter also transfers the calibrated glucose concentration profile to the
third component, i.e. a receiver (C in Figure 1.3) which displays in real-time
glucose concentration measurements and an arrow (evidenced by the red circle
in Figure 1.3) indicating glucose rate of change. The receiver also produces
auditory alerts in correspondence of hypoglycemic and hyperglycemic events.
In last generation CGM systems, the receiver may be either a display device
supplied by the manufacturer with the sensor and the transmitter or a smart
device, like a mobile phone, equipped with a mobile app for CGM.

An example: the Dexcom G5 Mobile

One of the most popular last generation CGM devices is the Dexcom G5 Mo-
bile (Dexcom Inc., San Diego, CA) shown in Figure 1.3 and Figure 1.4. The
Dexcom G5 Mobile, launched in September 2015, provides a glucose mea-
surement every 5 min for up to 7 days, after which the sensor needle need
to be substituted [17]. In addition to glucose readings, the receiver displays
a flat arrow when glucose rate of change is between -1 and 1 mg/dl/min,
one 45◦ up/down arrow when glucose is rising/decreasing between 1 and
2 mg/dl/min, one 90◦ up/down arrow when glucose is rising/decreasing be-
tween 2 and 3 mg/dl/min and two 90◦ up/down arrows when glucose is ris-
ing/decreasing more than 3 mg/dl/min.

The Dexcom G5 Mobile generates a low glucose alarm when glucose con-
centration falls below 55 mg/dl. The alarm is repeated every 30 min until the
CGM reading returns above 55 mg/dl. The low glucose alarm cannot be cus-
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Figure 1.3: Dexcom G5 Mobile system. The system includes a needle sensor
(A), a trasmitter (B) and a receiver (C), which may be either the Dexcom display
device or a mobile phone equipped with the Dexcom G5 Mobile app. (Source:
https://www.dexcom.com/g5-mobile-cgm)

Figure 1.4: Dexcom G5 Mobile system. (Source: https://www.medicalexpo.com)
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tomized or turned off by the user. The system also provides alerts when CGM
glucose reading goes below a low glucose alert threshold and above a high
glucose alert threshold. The alert thresholds are set to the default values of 80
mg/dl and 200 mg/dl. However, the user is allowed to customize the alert
thresholds or even shut down the use of alerts. The Dexcom G5 Mobile sensor
requires a SMBG measurement every 12 hours for the calibration process.

Current use of CGM

Currently, the use of CGM sensors is approved by the U.S. Food and Drug Ad-
ministration (FDA) for adjunctive use, i.e. to complement, not to substitute,
SMBG measurements, which are the only one approved to make treatment de-
cisions, such as calculation of insulin doses. As a consequence, patients in the
United States that wear a CGM sensor are supposed to use CGM information
just to trigger SMBG checks, and make all the treatment decisions based on
SMBG measurements.

Several studies demonstrated that the adjunctive use of CGM can be very
beneficial for glycemic control [18] [19] [20] [21] [22] [23]. Indeed, the continuous-
time nature of CGM allows to detect dangerous hypo/hyperglycemic events
that sparse SMBG measurements may not detect. This is visible in Figure 1.5
where SMBG (red dots) and CGM (blue line) are compared in a representative
subject over a day of monitoring. In this example, CGM is able to track one
hypoglycemic event and one hyperglycemic event not detected by standard
SMBG measurements. Benefits of CGM are even larger thanks to the avail-
ability of alerts that promptly advise the patient of hypo/hyperglycemia, even
when the patient is not caring about his/her glycemia, e.g. during work or
sleep. In particular, low glucose alerts can be life-saving for people with im-
paired awareness of hypoglycemia, in whom symptoms of hypoglycemia are
reduced or even absent.

As far as the use of CGM trend arrows is concerned, there are no officially
approved guidelines because CGM trend cannot be confirmed by SMBG and
nonadjunctive CGM use, i.e. the use of CGM to make treatment decisions
without confirmatory SMBG measurements, has not been approved yet. How-
ever, some non-officially approved guidelines to correct insulin doses accord-
ing to CGM trend arrows are available in the literature. For example, the Di-
abetes Research in Children Network study group and the Juvenile Diabetes
Research Foundation suggest increasing/decreasing the insulin dose of 10%
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Figure 1.5: CGM trace (blue line) and SMBG measurements (red dots) in a represen-
tative subject over a day of monitoring.

or 20% if glucose is rising/decreasing of between 1 and 2 mg/dl/min or more
than 2 mg/dl/min, respectively [24] [25]. Another approach is proposed by
Scheiner [26], who suggests performing the calculation of insulin doses accord-
ing to the standard rules, but using in the formulas a glucose value obtained
from the CGM measurement by applying a correction for the glucose trend.
Specifically, Scheiner suggests increasing/decreasing the CGM reading by 25
mg/dl when glucose is rising/decreasing of between 1 and 2 mg/dl/min, by
50 mg/dl when glucose is rising/decreasing more than 2 mg/dl/min. How-
ever, a recent survey demonstrated that several patients actually use CGM
trend information to make much larger corrections to insulin dose compared to
what recommended [27] [28]. According to this, Pettus et al. recently proposed
an approach similar to that of Scheiner, but with more aggressive corrections
for glucose trend (±50 mg/dl and ±100 mg/dl) [29].

1.3 Assessment of insulin treatment scenarios and

in silico clinical trails (ISCTs)

The safety and effectiveness of treatments based on drugs and medical devices,
e.g. T1D insulin therapies, are normally assessed in clinical trials performed on
human subjects, that often incredibly slow down the process of development
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and regulatory evaluation of these products because too time-demanding and
expensive. As reported in a 2014 briefing of the Tufts Center for the Study
of Drug Development, the cost to bring to the market a new pharmaceutical
product has been increasing exponentially in the last decades and about the
60% of this cost is due to the clinical assessment [30]. To reduce the burden of
time and costs, clinical trials often present a low numerosity and short study
duration, with consequently low probability of observing rare but risky situa-
tions, e.g. severe hypoglycemia in the case of T1D. These limitations of clinical
trials may be overcome by the use of computer simulations in the so-called in
silico clinical trials.

An in silico clinical trial (ISCT) is defined as “The use of individualised
computer simulation in the development or regulatory evaluation of a medic-
inal product, medical device, or medical intervention” [31] [32]. The idea is to
recreate the concept of in vivo clinical trial (i.e. trial performed on real patients)
in a simulation environment, where virtual subjects are modeled by initializing
a disease/intervention model with quantitative information either measured
on an individual (subject-specific model), or inferred from population distri-
butions of those values (population-specific model).

The strength of ISCTs is that they can overcome some limitations of clin-
ical trials, such as long duration, elevated costs and, as a consequence, low
numerosity. Indeed, given the low cost and time required to run computer
simulations, ISCTs can be performed in an incredibly large number of sub-
jects, that would be impossible to enroll in an in vivo clinical trial, because too
expensive and time-demanding. The ability of simulating a large number of
subjects allows ISCTs to test also high risk situations related to the occurrence
of rare events, not observable in in vivo clinical trials because of their limited
size and duration. ISCTs are thus unique procedures to test the safety of treat-
ments based on drugs and medical devices under extreme conditions, without
exposing human patients to any risk.

In addition, ISCTs allow to run multiple tests on the same virtual subject
and thus answer to “what if” questions such as: what if subject A uses a treat-
ment based on drug/device C instead of drug/device B when the same sur-
rounding conditions are maintained? What if subject A uses a treatment based
on device C with settings D instead of settings E when the same surround-
ing conditions are maintained? What if subject A uses a treatment based on
device C with performance F instead of performance G when the same sur-
rounding conditions are maintained? Clearly, these kind of questions cannot
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be answered by in vivo clinical trials since the same surrounding conditions,
including patient’s physiology and behaviors, cannot be exactly repeated in
real life.

In conclusion, ISCTs are powerful investigation instruments that can be
used to reduce, refine or even replace in vivo clinical trials. Of course, an
essential requirement to perform large scale ISCTs is the availability of an in-
dividualized model of patient’s physiological response to the drug- or medical
device-based treatment under test that accounts for the inter-individual vari-
ability and it is able to describe a large number of individual virtual subjects.

1.4 Assessment of nonadjunctive use of CGM via

ISCT

1.4.1 Open questions on nonadjunctive CGM use

So far, CGM sensors have not been approved by U.S. regulatory agencies such
as FDA for nonadjunctive use, i.e. to make treatment decisions directly based
on CGM information without requiring confirmatory SMBG, mostly because
still considered not as accurate as SMBG devices [33]. Several factors were
found to affect the accuracy of CGM sensors, such as imperfect calibration,
compression of the sensor site, which causes artificially low sensor readings
[34], and interfering substances like acetaminophen, which artificially increases
the sensor readings [35]. Moreover, the accuracy of CGM sensors in the first
day of monitoring may be lower than in the other days, because the foreign
body response unleashed by sensor insertion causes a temporary reduction
of the sensor sensitivity [36]. Another issue concerns the site of measure-
ment of CGM sensors, i.e. the interstitial fluid. Indeed, as is known, plasma-
interstitium kinetics give rise to a physiological delay of interstitial glucose
(IG) measurements, e.g. CGM, compared to BG measurements, e.g. SMBG
[37].

However, the impact of these factors on sensor accuracy have been miti-
gated over the years thanks to the progress of CGM technology. For example,
the sensor needle was made smaller, thus reducing the foreign body response
at its insertion, the sensor membrane was improved to reduce the effect of in-
terfering substances and progress in the signal processing allowed to diminish
the effect of artifacts, delay and noise. One of the metrics commonly used
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to assess the accuracy of CGM sensors is the mean absolute relative differ-
ence (MARD) between CGM readings and BG references. As an example, the
MARD of Dexcom CGM sensors was reduced from 26% of the Dexcom STS
3-days [38], released in 2006, to 9% of the Dexcom G5 Mobile [39], released in
2015. Importantly, the accuracy of CGM sensors, and in particular that of the
Dexcom G5 Mobile, is reaching that of SMBG devices, which currently ranges
between 3% and 15% MARD [40] [41] [42] [43].

Thanks to the progress made in CGM sensors’ accuracy, the patients’ confi-
dence in CGM sensors has increased. Data collected in the T1D Exchange [44]
revealed that about 50% of CGM users reduced the frequency of SMBG tests
after starting CGM [45]. This suggests that many people already use CGM to
make some treatment decisions without confirmatory SMBG. Signals that the
situation is changing come also from Europe, where the Abbott Navigator II
(Abbott Diabetes Care, Alameda, CA) has been approved for insulin dose cal-
culation on condition that glucose is not changing rapidly, and the Dexcom G5
Mobile received the CE mark to be used nonadjunctively, unless the symptoms
and expectations of the patient does not match CGM readings [46].

Despite these encouraging indications, safety and effectiveness of nonad-
junctive CGM use has not been tested in a clinical trial yet. The main reason is
that a clinical study that would generate statistically-meaningful clinical data
to support the approval of nonadjunctive CGM use may not be feasible to con-
duct [47]. Indeed, situations that may present risks for the patients, such as
severe hypoglycemia, are so varied and rare that they could not be captured in
a short clinical trial with a small population enrolled.

1.4.2 Possible solution: ISCT

As already mentioned, the limitations of in vivo clinical trials can be overcome
by the use of ISCTs, which can be particularly appropriate for assessing the
safety and effectiveness of nonadjunctive CGM use compared to CGM adjunc-
tive use and SMBG use. Indeed, an ISCT would allow to test T1D treatments
in a large number of subjects not only in the average low risk situation, but
also in a number of rare, but not-so-rare, high risk situations (e.g. insulin dos-
ing in presence of poor sensor accuracy or large error in CHO counting) which
are difficult to observe in small-size in vivo clinical trials because of their low
probability of occurrence.

Moreover, an ISCT would permit to compare e.g. CGM use vs SMBG use in
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the same virtual subjects, i.e. subjects presenting exactly the same physiologi-
cal characteristics and the same meal behavior (e.g. time and amount of meals
and errors in the estimation of meal CHO content). This would ensure that the
differences observed in clinical outcomes of SMBG and CGM treatments are
related exclusively to the use of the specific glucose monitoring device and not
to other factors, like changes in patient physiology (e.g. due to stress or illness)
or eating habits.

Of course, as discussed above, an essential requirement to perform large
scale ISCTs is the availability of an individualized model of the patient’s physi-
ological response to the treatments under test that accounts for the
inter-individual variability and it is able to describe a large number of indi-
vidual virtual subjects.

1.5 ISCTs in T1D: state of art

Diabetes has been an area of intense modeling development in these last 20
years [48] [49]. Several models of T1D physiology were proposed for the in
silico assessment of closed-loop control algorithm, including those of Hovorka
et al. [50], Wilinska et al. [51], Kanderian et al. [52] and Haidar et al. [53]. One
of the most popular models of T1D patient’s physiology is the UVA/Padova
T1D simulator, jointly developed by University of Padova and University of
Virginia, that will be described in Subsection 1.5.1.

1.5.1 The UVA/Padova T1D simulator

The UVA/Padova T1D simulator is a large-scale maximal computer model of
glucose, insulin and glucagon dynamics in patients with T1D including 13 dif-
ferential equations and 36 subject-specific parameters. At difference of previ-
ous average models that were able to describe only the characteristics of an
“average subject” representative of the entire population, the UVA/Padova
T1D simulator is equipped with a cohort of 100 adult, 100 pediatric and 100
adolescent virtual subjects that well span the observed inter-individual vari-
ability of key metabolic parameters in the general population of T1D people.
The structure of the UVA/Padova T1D simulator is schematized in Figure 1.6.
In particular, inputs of the model are CHO intake and insulin infusion, while
BG and IG concentration are returned in output.

The history of the UVA/Padova T1D simulator begins in 2006 when 204
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Figure 1.6: Schematic representation of the UVA/Padova T1D simulator. Note: ex-
ogenous glucagon delivery is not shown in the scheme because not used in this thesis.

healthy subjects were studied with the triple-tracer method that allowed to
measure not only plasma glucose and insulin, but also crucial fluxes of the
glucose-insulin system i.e. plasma rate of appearance of ingested CHO, en-
dogenous glucose production, glucose utilization and insulin secretion [54].
From this unique data set, a large scale maximal mathematical model of glucose-
insulin dynamics generated by meals in healthy subjects was developed [55],
whose core component was the two-compartment glucose minimal model [56].
This model was then adapted to describe T1D subjects originating the UVA/
Padova T1D simulator which in January 2008 was approved by the FDA as
a substitute to animal trials for the preclinical testing of certain insulin treat-
ments, including those based on artificial pancreas [57]. In 2013 an updated
version of the UVA/Padova T1D simulator was released, and approved by
FDA, including an improved model of hypoglycemia and a new model of
glucagon dynamic [58]. The 2013 release of the simulator was then validated
on 96 post-meal glucose traces recorded in 24 T1D subjects [59]. Finally, the
use of the UVA/Padova T1D simulator was extended from a single meal to
multiple days by incorporation of a model of intra- and inter-day variability of
insulin sensitivity [60] derived from data collected in 20 T1D subjects studied
with the triple-tracer method [61]. The 2013 release of the UVA/Padova T1D
simulator with incorporation of the time-variability of insulin sensitivity was
recently validated on 141 glucose traces collected in 47 T1D subjects [62] and

12



1.5 ISCTs in T1D: state of art

will be submitted to FDA for approval in the next months.

From its first release, the UVA/Padova T1D simulator has been used by
32 research groups in academia and 5 companies and has led to 1030 publica-
tions in peer reviewed journals. In particular, the simulator has been widely
adopted by the Juvenile Diabetes Research Foundation Artificial Pancreas Con-
sortium to test closed-loop control algorithms, thus accelerating artificial pan-
creas studies with a number of regulatory approvals achieved based on simu-
lation only, and considerable savings in money and time.

For all its characteristics, the UVA/Padova T1D simulator looks like a suit-
able tool to perform ISCTs to assess safety and effectiveness of insulin treat-
ments for the manual control of BG in T1D, i.e. treatments in which the pa-
tients themselves manage their diabetes and make treatment decisions (e.g.
insulin dosing) based on glucose measurements. However, the UVA/Padova
T1D simulator alone is not sufficient to realize such ISCTs, because, besides
the physiological response of T1D subjects to CHO intakes and insulin doses,
other fundamental components like the glucose measurements collected by
SMBG and CGM devices, and the patient’s behavior in tuning insulin and
CHO doses according to SMBG and/or CGM measurements need to be math-
ematically described. A recent attempt to circumvent these needs is described
in the following subsection.

1.5.2 The net effect method

In 2016, a novel simulation approach was developed by Patek et al. to "replay"
insulin treatment scenarios [63]. This approach is based on the use of a sim-
plified model of patient’s physiology, which is time-invariant, linearized and
with most of model parameters fixed to population values, to estimate from
CGM and insulin delivery data simultaneously recorded in T1D subjects a sig-
nal called (oral glucose) net effect. The net effect is supposed to reflect meals
and other sources of BG variability like exercise and time-variability of insulin
sensitivity not described by the model. This signal is then used as input of the
patient’s model to simulate the effect on IG concentration of modified insulin
treatments.

The expected advantage of the net effect method is that it allows to cir-
cumvent the necessity of mathematically describing sources of glucose vari-
ability, like exercise, which are currently not incorporated in the most popular
T1D simulators, including the UVA/Padova T1D simulator. However, how
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the many assumptions and simplifications on which the method is based in-
fluence the method’s performance is not clear. Indeed, while the net effect
method was only validated by Patek et al. for basal insulin adjustments [63],
the reliability of the method to test other therapy modifications, such as mod-
ification/addition of insulin boluses and hypotreatments that are required to
simulate treatments based on nonadjunctive CGM use, as done by Kovatchev
et al. in [64], was never assessed. Therefore a useful step in developing ISCT
tools for assessing T1D therapies is to precisely define the domain of validity
of the net effect method.

1.6 Aim of the thesis and outline

The primary goal of this thesis is to develop a simulation model of T1D pa-
tients making therapeutic decisions based on SMBG and/or CGM measure-
ments usable to test in ISCTs T1D insulin treatments. The secondary goal is to
use such a model to assess the safety and effectiveness of nonadjunctive CGM
use, in order to provide regulatory agencies, such as FDA, with data for the
evaluation of a possible change of CGM sensor’s labeling.

To achieve these objectives, in Chapter 2 we first review the net effect method
and perform an in silico experiment to assess its validity to test insulin treat-
ment scenarios. Then, in Chapter 3 a new model of T1D patients decision-
making is developed for the in silico assessment of insulin treatment scenarios.
The model, in the following called T1D decision-making (T1D-DM) model, is
constructed by connecting in a common simulation framework the UVA/Padova
T1D simulator with new models of SMBG and CGM measurements and the
patient’s behavior in making treatment decisions based on these glucose mea-
surements. In Chapter 4 the usefulness of the T1D-DM model is shown by
the design of an ISCT to assess the safety and effectiveness of nonadjunctive
CGM use compared to SMBG use and CGM adjunctive use. In Chapter 5 a sec-
ond ISCT is designed to assess the influence of alert settings on nonadjunctive
CGM use performance. To conclude, final considerations on the work carried
out in this thesis as well as its future developments are discussed in Chapter
6.
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Chapter 2

Modeling approaches for in silico
assessment of insulin treatments:
critical review of the net effect
method

In this chapter, we first review the net effect method (Section 2.1), describe its
applications in the literature (Section 2.2) and evidence its critical assumptions
(Section 2.3). Then, by using the UVA/Padova T1D simulator we assess the
validity of the net effect method in four case studies (Section 2.4 and Section
2.5). Our final considerations are reported at the end of the chapter (Section
2.6). 1

2.1 The net effect method

The net effect method is a model-based simulation method proposed by Patek
et al. [63] to test in silico insulin treatment scenarios. The method is schema-
tized in Figure 2.1. Given a model of T1D patient physiology, CGM and insulin
pump data simultaneously recorded in a T1D patient in a certain time win-
dow are used to retrospectively estimate a signature of BG variability, called
net effect (Figure 2.1, panel A). This net effect signal is assumed to reflect a
combination of components contributing to the patient’s glucose variability in
the specific time window studied, including meals, variation in insulin sen-
sitivity and exercise. The net effect signal estimated from the patient’s data

1The present chapter is part of the journal paper [65].
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is then used as a forcing input to the patient model (Figure 2.1, panel B) to
predict the effect of a modified insulin therapy on the patient’s glucose con-
centration in the same time window where data for the net effect estimation
were collected. As already anticipated, the net effect method circumvents the
necessity of mathematically describing sources of glucose variability, like exer-
cise, which are currently not incorporated in the most popular T1D simulators,
including the UVA/Padova T1D simulator. Below the main features and as-
sumptions of the net effect method are summarized.

Figure 2.1: The steps of the net effect method. Step A (retrospective): the net effect
signal is estimated from measured CGM data, insulin therapy and a model of T1D
patient physiology with known parameters. Step B (prospective): The net effect signal,
estimated in step A, is used as forcing input of the T1D patient physiology model to
predict glucose concentration in consequence of a given insulin therapy.

2.1.1 Pre-processing

CGM recordings are divided in multiple segments that include a time frame
of interest, e.g. an entire day. In order to mitigate measurement error affect-
ing CGM data, a retrofitting procedure is applied in which CGM time series
are first interpolated via cubic spline and, then properly scaled and shifted to
force the resulting signal to pass through the available SMBG samples. The op-
eration is done by considering a portion of data before the beginning and after
the end of the time frame of interest to ensure that the net effect estimation in
the time frame of interest is free of edge effects.

2.1.2 Patient model

Continuous-time model

The model used to describe T1D patient physiology in the net effect methodol-
ogy is the subcutaneous oral glucose minimal model (SOGMM). In particular,
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plasma glucose and insulin dynamics are described by the nonlinear glucose
minimal model [66]:

Ġ(t) = −(Sg + X(t)) · G(t) + Sg + Ra(t)/Vg (2.1)

Ẋ(t) = −p2 · X(t) + p2 · SI · (I(t)− Ib) (2.2)

where G(t) [mg/dl] is BG concentration (with basal value Gb [mg/dl]), Ra(t)
[mg/min/kg] is the glucose rate of appearance, I(t) [mU/L] is plasma insulin
concentration (with basal value Ib [mU/L]) and X(t) [1/min] is the deviation
from basal of remote insulin (with basal value X(0) = 0). Model parame-
ters are fractional glucose effectiveness Sg [1/min], the distribution volume
of glucose Vg [kg/dl], the rate constant of the remote insulin compartment p2

[1/min] and insulin sensitivity SI [1/min/mU/L].

The relationship between BG concentration, G(t), and IG concentration,
Gsc(t), (sc for subcutaneous) is described by the following differential equa-
tion:

Ġsc(t) = −ksc · (Gsc(t)− G(t)) (2.3)

where ksc [1/min] is the rate constant of plasma-interstitium exchange.

A two-compartment linear model is used to describe the glucose gastroin-
testinal tract:

Q̇1(t) = −kτ ·Q1(t) + ω(t) (2.4)

Q̇2(t) = −kabs ·Q2(t) + kτ ·Q1(t) (2.5)

where Q1(t) [mg] and Q2(t) [mg] are the amount of glucose in the two com-
partments, ω(t) [mg/min] is the rate of ingested glucose and kτ [1/min] and
kabs are rate constants associated with oral glucose absorption. The mass of
the second compartment of the gastrointestinal submodel Q2(t) is related to
glucose rate of appearance Ra(t) of eq. 2.1 as follows:

Ra(t) =
Q2(t) · kabs · f

BW
(2.6)

where f [dimensionless] is the fraction of intestinal absorption which actually
appears in plasma and BW [kg] is the subject’s body weight.

The transport of insulin from the pump to plasma is described by the fol-
lowing three-compartment linear model:

İsc1(t) = −kd · Isc1(t) + Jctrl(t) (2.7)
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İsc2(t) = −kd · Isc2(t) + kd · Isc1(t) (2.8)

İp(t) = −kcl · Ip(t) + kd · Isc2(t) (2.9)

where Isc1(t) [mU] and Isc2(t) [mU] are insulin mass in two subcutaneous com-
partments, Ip(t) [mU] plasma insulin, Jctlr(t) [mU/min] the pump insulin in-
fusion rate and kd [1/min] and kcl [1/min] are rate constants of subcutaneous
insulin transport. Plasma insulin concentration I(t) of eq. 2.2 is related to
plasma insulin Ip(t) as follows:

I(t) =
Ip(t)

VI · BW
(2.10)

where VI [L/kg] is the distribution volume of insulin.

Model linearization and discretization

In order to define and compute the net effect, eq. 2.1 of SOGMM is first lin-
earized about the steady state corresponding to basal glucose concentration Gb

and basal plasma insulin Ib:

Ġ(t) = −Sg · G(t)− Gb · X(t) + Sg · Gb +
Ra(t)

Vg
(2.11)

From the linearized continuous-time model described by eqs. 2.11 and 2.2-
2.10, the following state-space continuous-time representation is derived:

ẋc(t) = Ac · xc(t) + Bc · uc(t) + Gc ·ω(t) (2.12)

yc(t) = Cc · xc(t) (2.13)

where xc(t) is the 8x1 vector containing the difference between the variables of
the model at time t, i.e. G(t), X(t), Isc1(t), Isc2(t), Ip(t), Gsc(t), Q1(t), Q2(t), and
their steady state values; uc(t) [mU/min] is the difference between the insulin
delivery rate at time t, Jctrl(t), and the basal insulin delivery rate, Jbasal(t); ω(t)
is the rate of ingested glucose (as in eq. 2.4); yc(t) is the difference between
subcutaneous glucose concentration at time t, Gsc(t), and Gb; Ac, Bc, Gc, and
Cc are matrices defined as follows:
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Ac =



−Sg −Gb 0 0 0 0 0 kabs· f
BW·Vg

0 −p2 0 0 p2·SI
VI ·BW 0 0 0

0 0 −kd 0 0 0 0 0
0 0 kd −kd 0 0 0 0
0 0 0 kd −kcl 0 0 0

ksc 0 0 0 0 −ksc 0 0
0 0 0 0 0 0 −kτ 0
0 0 0 0 0 0 kτ −kabs


(2.14)

Bc = [0 0 1 0 0 0 0 0 0]T, Gc = [0 0 0 0 0 0 0 1 0]T, Cc = [0 0 0 0 0 0 1 0 0]T (2.15)

The continuous-time state-space model of eqs. 2.12-2.13 is discretized using a
first-order approximation with step h=5 min, leading to:

x(k + 1) = A · x(k) + B · u(k) + G ·ω(k) (2.16)

y(k) = C · x(k) (2.17)

where x(k), u(k), ω(k), y(k) with k=1,. . . ,T are the samples of xc(t), uc(t),
ωc(t), yc(t), respectively, and matrices A, B, G and C are:

A = h · Ac + I8, B = h · Bc, G = h ·Gc, C = Cc (2.18)

with I8 representing the 8x8 identity matrix.
Finally, having defined vectors ỹ = [y(0) y(1) · · · y(T)]T, ũ = [u(0) u(1) · · ·

u(T − 1)]T and ω̃ = [ω(0) ω(1) · · ·ω(T − 1)]T, assuming that the initial state
vector x(0) is zero (for this reason an appropriate burn-in period is considered
to avoid occurrence of edge effects in the timeframe of interest), eqs. 2.16-2.17
can be rewritten in compact form as:

ỹ = Θ · ũ + Ω · ω̃ (2.19)

where matrices Θ and Ω are:

Θ =


C · B 0 · · · 0

C · A · B C · B . . . ...
...

... . . . 0
C · AT−1 · B C · AT−2 · B · · · C · B

 (2.20)
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Ω =


C ·G 0 · · · 0

C · A ·G C ·G . . . ...
...

... . . . 0
C · AT−1 ·G C · AT−2 ·G · · · C ·G

 (2.21)

Model parameters

Ten out of thirteen parameters required to define matrix Ac, and thus Θ and
Ω, are fixed to population values, i.e. Sg=0.01000 [1/min], Vg=1.60000 [kg/dl],
p2=0.02000 [1/min], kabs=0.01193 [1/min], f =0.90000 [dimensionless],
VI=0.06005 [L/kg], ksc=0.09088 [1/min], kτ=0.08930 [1/min], kd=0.02000 , and
kcl=0.16000 [1/min]. The model only includes three patient-specific parame-
ters i.e. BW (easily measured), Gb and SI that, according to Patek et al. [63],
can be approximated by the following empirical relationships:

Gb = HbA1c · 28.7− 46.7 (2.22)

SI = e−6.4417−0.063546·TDIwhole+0.057944·TDIbasal (2.23)

where HbA1c is the patient glycated haemoglobin, TDIwhole is the patient total
daily insulin whose basal fraction is TDIbasal.

2.1.3 Net effect estimation and simulation

The core idea of the net effect method consists in solving the inverse problem
associated with eq. 2.19 to estimate ω̃ from ỹ and ũ assuming that Θ and Ω

are available. In practice, given a segment of data obtained as in Section 2.1.1,
the vector ỹ is computed as the difference between CGM pre-processed data
and Gb. Similarly, given a parallel segment of insulin pump data, the vector
ũ is obtained as the difference between pump data and basal insulin deliv-
ery rate, Jbasal. This retrospective procedure corresponds to panel A in Figure
2.1. The resulting estimate of the input ω̃, in the following denoted by ˆ̃ω, ide-
ally should represent the rate of ingested glucose, but in practice it is a signal
that comprises not only meals but also other components that contribute to BG
variability and are not taken into account by the patient model, e.g. circadian
insulin sensitivity, physical exercise and discrepancies due to model lineariza-
tion and use of population values for model parameters. For this reason, in
Patek et al. [63] the estimate ˆ̃ω is called (oral glucose) net effect. Details on its
computation are reported in Patek et al. [63].
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Once the net effect has been estimated, it can be used in a prospective way
(Figure 2.1, panel B) to predict in silico the effect on IG concentration of using a
modified insulin therapy, Jmod

ctlr (t), instead of the original one, Jctlr(t). In partic-
ular, a new vector ũmod = [umod(0) umod(1) · · · umod(T− 1)]T is defined, whose
elements are obtained as the difference between samples of the modified in-
sulin therapy and the original basal insulin (umod(k) = Jmod

ctlr (k) − Jbasal(k)).
Then, the net effect, ˆ̃ω , and the modified insulin vector, ũmod, are used as new
inputs in the model of eq. 2.19 to simulate a new glucose profile, ỹmod:

ỹmod = Θ · ũmod + Ω · ˆ̃ω (2.24)

Since every time a modified insulin therapy is tested the net effect ˆ̃ω is not
changed, i.e. it is the same estimated from the original insulin vector ũ, the
net effect simulation method is based on the assumption that the net effect is
independent from insulin.

2.2 Use of the net effect in the literature

In Patek et al. [63], the net effect method was applied to data simulated by the
UVA/Padova T1D simulator in order to validate its ability to predict the effect
of changes in basal insulin on mean glucose concentration. In particular, for
each virtual subject the basal insulin adjustment required to produce a varia-
tion of ±10% and ±20% of average BG concentration was determined by the
net effect method. Then, Patek et al. verified that when the same basal insulin
adjustments are applied to the UVA/Padova T1D simulator, the obtained BG
profiles present a MARD of about 5% and 8% compared to the glucose profiles
predicted by the net effect method.

In another work, the method was applied to a real data set, collected in 56
T1D subjects, to compare insulin therapies calculated directly from CGM data,
i.e. simulating a nonadjunctive use of CGM [64]. In particular, after estimating
the net effect signal for each pair of CGM and insulin segments in each indi-
vidual of the data set, the following modifications were produced in patients’
therapies according to CGM: a) modification of pre-existing boluses that were
recalculated by using CGM measurements and then adjusted to account for
CGM trend; b) addition of post-meal correction boluses whenever the CGM
profile (or its 30 min ahead prediction) went over 180 mg/dl and thus an high
glucose alert would have been generated; and c) addition of 15-g hypotreat-
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ments whenever the CGM profile (or its 20 min ahead prediction) went under
70 mg/dl and thus a low glucose alert would have been generated. The au-
thors evaluated the glycemic control achieved by nonadjunctive use of CGM
for different values of sensor accuracy and found that decreasing the sensor
MARD below 10% does not significantly improve glycemic outcomes. This
result was used in work by Kovatachev et al. [67] and Castle et al. [33] to
comment the improved accuracy of the Dexcom G5 Mobile sensor.

2.3 Critical assumptions

The net effect method is based on several assumptions and simplifications.
First of all, the model used to describe the T1D patient glucose-insulin physiol-
ogy is linearized about the steady state corresponding to basal glucose and in-
sulin concentration. Consequently, the model cannot properly describe the pa-
tient glucose-insulin dynamics when its states significantly move from basal,
e.g. during meals. In addition, the net effect model does not properly consider
either the inter-subject variability, since ten out of thirteen of the model param-
eters are fixed to population values, or the intra-subject variability, because all
model parameters are constant over time. Another critical assumption is the
independence of the net effect signal from the insulin therapy: according to
this assumption, in the net effect method new IG traces are simulated by vary-
ing the insulin therapy while keeping the net effect signal fixed; this is not cor-
rect since the net effect signal is estimated from both CGM and insulin pump
data and, thus, it depends on the insulin therapy.

How these assumptions and simplifications can affect the results obtained
by the net effect method is not clear. Indeed, the use of the net effect method
was validated only to design basal insulin adjustments [63], but not for the
more complex therapy modifications a), b) and c) described in Section 2.2.

2.4 Assessment of the net effect method’s domain

of validity by the UVA/Padova T1D simulator

Since the net effect signal cannot be used to predict the effect of therapy modi-
fications outside the time window where data for its estimation were collected,
in order to assess the domain of validity of the net effect method it would be
necessary to have CGM data collected in the same patient, in the same time
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window, but with different insulin therapies, which is clearly impossible in
real life. For this reason, the domain of validity of the net effect method can
only be assessed in simulation, where the same time window, with identical
patient’s physiological characteristics and behavior, can be reproduced.

Here, the net effect method is tested on glucose and insulin data of virtual
subjects simulated by the updated version of the UVA/Padova T1D simula-
tor obtained by incorporating the model of intra- and inter-day variability of
insulin sensitivity [60] in the last FDA-accepted version of the simulator [58].
For each subject, the test is performed in six steps:

1. IG and insulin profiles are simulated over 2 days with the UVA/Padova
T1D simulator. Meal times are set to 07:00, 13:00, and 19:00. The CHO
content of breakfast, lunch and dinner is sampled from Gaussian distri-
butions with mean equal to 40 g, 80 g and 70 g, respectively, and standard
deviation equal to 20%. Patients are treated by the optimal basal insulin
infusion rate provided by the simulator and meal insulin boluses, which
are calculated using CR and CF parameters of the simulator and SMBG
measurements simulated by the two-zone skew-normal probability den-
sity function model derived from a data set collected by the One Touch
Ultra 2 (LifeScan Inc., Milpitas, CA) device [68], as later described in this
thesis in Section 3.2.

2. As in Patek et al. [63], a 24-h time frame of interest is selected, and IG,
and insulin data simulated between 8 h before the beginning and 4 h after
the ending of the time frame of interest are extracted from the whole
simulated profiles. Then, the net effect profile ˆ̃ω is estimated from the
selected IG data, ỹ, and insulin data, ũ, considering the first 8 h and the
last 4 h as burn-in and burn-out periods. Here, the net effect is estimated
from the true IG profile instead of the retrofitted CGM profile, i.e. the
assumption of no errors in the retrofitting process is made.

3. A modified insulin profile, ũmod, and/or a modified net effect profile,
ˆ̃ωmod, are defined in order to simulate changes in the patient therapy,

like changes in basal/bolus insulin or addition of hypotreatments.

4. A modified IG profile, ỹmod
n.e. , is calculated by using the model of eq. 2.19

with inputs ˆ̃ωmod and ũmod.

5. The same modifications of the therapy performed in step 3 are made on
the insulin therapy and CHO intake in the UVA/Padova T1D simulator
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and a new IG profile is obtained, ỹmod
sim . Then, ỹmod

n.e. , which represents
the effect of therapy modifications made in step 3 predicted by the net
effect method, is compared to ỹmod

sim , which represents the true effect of
the same therapy modifications. If the net effect method works correctly,
ỹmod

n.e. should replicate ỹmod
sim .

6. Finally, the new IG profile, ỹmod
sim , and the modified insulin profile, ũmod,

are used to estimate a new net effect signal, ˆ̃ωmod
sim , i.e. the signature of

BG variability that best explains the relationship between ũmod and ỹmod
sim

according to the model of eq. 2.19. Ideally, if the assumption of indepen-
dence between net effect and insulin therapy is correct, ˆ̃ωmod

sim should be
equal to the net effect estimated from original data, ˆ̃ω (or ˆ̃ωmod if it has
been modified in step 3).

The six-step method described above is used to test the net effect method
in four case studies, in which four therapy modifications are simulated: modi-
fication of basal insulin, modification of pre-existing boluses, addition of new
boluses, addition of new hypotreatments. These four therapy modifications
reflect those applied in the literature applications of the net effect method [63],
[64]. In each case study, IG and insulin data of a representative virtual sub-
ject are used. In particular, a time frame of IG and insulin data suitable for
its application is selected from a larger database in order to test each therapy
modification in a realistic scenario (e.g. to test the addition of new boluses and
hypotreatments, a virtual subject who presents an hyperglycemic and hypo-
glycemic event, respectively, is selected). Note that the representative subjects,
and the associated time frames of data, are not extreme cases since they are
selected before applying the net effect method and, thus, without knowing the
performance of the net effect method on these data. The four case studies and
the related results are presented in the following section.

2.5 Results

2.5.1 Case study 1: modification of basal insulin

The use of the net effect method to predict the effect of modifying basal in-
sulin delivery is tested on the representative virtual subject #1. In the bottom
panel of Figure 2.2A we report the net effect profile that is estimated from the
IG profile (top panel) and the insulin boluses (middle panel) in a 24-h time
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frame of interest. The estimated net effect, which ideally should be the rate
of CHO intake in mg/min, is actually a more complex signal which includes
both oscillations related to meals and other oscillations that result from other
components that contribute to BG variability and are not considered by the
simplified glucose-insulin model used in the net effect method, such as the
inter-subject variability of model parameters, the nonlinearity of the patient
model and the time-variability of insulin sensitivity. For this reason, the net
effect signal presents even negative values (e.g. between time 18:00 and 19:00)
and, thus, it becomes difficult to interpret from a physiological point of view.

The original insulin therapy in the middle panel of Figure 2.2A is then
modified in order to simulate an increase of basal insulin of 10%, 20% and
50%. In Figure 2.2B, the IG profiles resulting from a basal insulin increase of
10% (top), 20% (middle) and 50% (bottom) according to the net effect method
(black solid line) are compared to those obtained when the same basal insulin
modifications are performed in the UVA/Padova T1D simulator (red dashed
line). From this comparison, we can observe that, for modest changes of basal
insulin, like +10% or +20%, the net effect method is able to reproduce quite
faithfully the IG curves generated by the UVA/Padova T1D simulator (the net
effect method underestimates time above 180 mg/dl of 1h for basal insulin in-
crease of 10%, of 1.9 h for basal insulin increase of 20%). However, for larger
modifications of basal insulin, like +50%, the net effect method does not accu-
rately reproduce the effect on IG obtained by the UVA/Padova T1D simulator
and drives to an overestimation of 6.4 h of the time in hypoglycemia (BG<70
mg/dl) and an underestimation of 5.1 h of time in hyperglycemia (BG>180
mg/dl).

This is visible also in Figure 2.2C, where the original net effect (black solid
line) is compared to the net effect profiles estimated after basal insulin is mod-
ified in the UVA/Padova T1D simulator by +10% (red dashed line), +20% (red
dotted line) and +50% (red dash-dot line). A possible reason of the observed
discrepancies is that, while in the UVA/Padova T1D simulator, after a change
of basal insulin, insulin boluses have been recalculated since the glucose con-
centration at the time of the calculation of the bolus has changed, in the net
effect approach insulin boluses remain the same provided in the original in-
sulin therapy. Indeed, since the net effect method operates retrospectively, it
does not allow to introduce additional modifications of the therapy as a conse-
quence of the new glucose profile. For example, in the representative subject
of Figure 2.2, when basal insulin is increased of 50%, in the UVA/Padova T1D
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Figure 2.2: Case study 1 (modification of basal insulin), virtual subject #1. A) IG
data (top), insulin data (middle) and estimated net effect (bottom) in a time frame
of interest. B) IG profile predicted by the net effect method (black solid line) and
IG profile obtained by the UVA/Padova T1D simulator (red dashed line) when basal
insulin is increased by 10% (top), 20% (middle) and 50% (bottom). C) Original net
effect (black solid line) and net effect re-estimated after basal insulin is increased in the
UVA/Padova T1D simulator by 10% (red dashed line), 20% (red dotted line) and 50%
(red dash-dot line). D) IG profile predicted by the net effect method (black solid line)
and IG profile obtained by the UVA/Padova T1D simulator (red dashed line) when
basal insulin is decreased by 10% (top), 20% (middle) and 50% (bottom). E) Original
net effect (black solid line) and net effect re-estimated after basal insulin is decreased
in the UVA/Padova T1D simulator by 10% (red dashed line), 20% (red dotted line)
and 50% (red dash-dot line).
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simulator the meal boluses become 1.2 U, 3.4 U and 7.0 U respectively, i.e.
lower than the original boluses whose values were 3.1 U, 4.3 U and 7.8 U.

In Figure 2.2D, the effect of decreasing basal insulin by 10%, 20% and 50% is
shown in the same virtual subject using the net effect method (black solid line)
and the UVA/Padova T1D simulator (red dashed line). While for a 10% de-
crease of basal insulin the clinical outcomes predicted by the net effect method
are similar to those obtained by the UVA/Padova T1D simulator (the net effect
overestimates time in hyperglycemia by 1.7 h), for basal insulin adjustment of
-20% and -50% the net effect method significantly overestimates time in hy-
perglycemia by 4.3 h and 3.6 h, respectively and time in severe hyperglycemia
(BG>250 mg/dl) by 4.7 h and 7.5 h, respectively. In Figure 2.2E discrepan-
cies can be observed between the net effect estimated from original data (black
solid line) and the net effect estimated after basal insulin is decreased by 10%
(red dashed line), 20% (red dotted line) and 50% (red dash-dot line).

2.5.2 Case study 2: modification of pre-existing boluses

Virtual subject #2 presents a nocturnal hypoglycemia, probably because of an
elevated dose of insulin at dinner time (Figure 2.3A, top panel). The aim here is
to investigate how much the dinner insulin bolus should be reduced in order to
avoid the nocturnal hypoglycemia. For this purpose first, the net effect profile
is estimated from IG and insulin profiles (Figure 2.3A, bottom panel). Then,
the effect of reducing the dinner bolus by 10%, 20% and 30% is tested using
the net effect model.

In Figure 2.3B, the IG profile obtained by the net effect method (black solid
line) for a 10% (top), 20% (middle) and 30% (bottom) reduction of the din-
ner bolus can be compared to the IG profile obtained by the UVA/Padova T1D
simulator (red dashed line) when the same bolus reductions are applied. When
the dinner bolus is reduced by 10% and 20%, the net effect method underes-
timates time in hypoglycemia of 0.5 h and 0.9 h, respectively. When a 30%
reduction is applied to the dinner bolus, while the net effect method predicts
that such a reduction is sufficient to prevent the nocturnal hypoglycemia, in
the UVA/Padova T1D simulator a hypoglycemic event of duration 2.6 h is still
present. The hypoglycemic event is prevented in the UVA/Padova T1D simu-
lator only when the dinner bolus is reduced by at least 50% (results not shown).
This means that the net effect method is significantly underestimating the re-
duction of the insulin bolus required to avoid the nocturnal hypoglycemia.
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Figure 2.3: Case study 2 (modification of pre-existing boluses), virtual subject #2. A)
IG data (top), insulin data (middle) and estimated net effect (bottom) in a time frame
of interest. B) IG profile predicted by the net effect method (black solid line) and IG
profile obtained by the UVA/Padova T1D simulator (red dashed line) when dinner
bolus is decreased by 10% (top), 20% (middle) and 30% (bottom). C) Original net
effect (black solid line) and net effect re-estimated after dinner bolus is decreased in
the UVA/Padova T1D simulator by 10% (red dashed line), 20% (red dotted line) and
30% (red dash-dot line).

This case study confirms the criticality of one of the net effect method as-
sumptions: the independence between the net effect and the insulin therapy.
If this assumption were true, the net effect estimated from the original IG and
insulin profile (Figure 2.3C, black solid line) and the three net effects obtained
after modifying the dinner bolus by -10%, -20% and -30% in the UVA/Padova
T1D simulator (Figure 2.3C, dashed, dotted and dash-dot line, respectively)
would be identical. However, as shown in Figure 2.3C, the assumption of in-
dependence between net effect and insulin therapy is not valid since the four
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net effect profiles are very different from each other.

2.5.3 Case study 3: addition of new boluses

Virtual subject #3 presents hyperglycemia after breakfast (Figure 2.4A, top
panel). Let us use the net effect method to see the effect of adding a correction
bolus, e.g. of 2 U 2 h after breakfast (i.e. at 09:00) in response to a high glucose
alert of the CGM sensor. After estimating the net effect trace (Figure 2.4A, bot-
tom panel) and adding the correction bolus to the original insulin therapy, the
net effect method produces the IG profile reported by black solid line in Fig-
ure 2.4B. When the same correction bolus is added to the insulin therapy used
to generate the subject with the UVA/Padova T1D simulator, the resulting IG
profile is the one represented by red dashed line in Figure 2.4B.

Here the net effect method underestimates time in hyperglycemia of 1 h,
since the correction bolus has a greater impact according to the net effect method
than that it actually has in the UVA/Padova T1D simulator. This discrepancy
is likely due to an overestimation of the patient’s insulin sensitivity in that
particular period of the day and to the limitations of net effect model that is
linearized about the basal state and does not properly take into account the
inter- and intra-subject variability of physiology.

Again, if we compare the net effect profile estimated from original data
(Figure 2.4C, black solid line) and the one estimated from the IG profile ob-
tained in the UVA/Padova T1D simulator after adding the correction bolus
(Figure 2.4C, red dashed line), a significant difference between the two pro-
files can be noted between 09:00 and 11:00, which violates the assumption of
independence between net effect and insulin therapy.

2.5.4 Case study 4: Addition of hypotreatments

Here we test the effect of adding a hypotreatment in response to a low glu-
cose alert of the CGM sensor. Virtual subject #4 is a good candidate for such a
purpose, since presenting a hypoglycemia around midnight (Figure 2.5A, top
panel). The net effect profile estimated from IG and insulin data is reported
in Figure 2.5A, bottom panel. Since no information on how to add hypotreat-
ments to the net effect is provided in Patek et al. [63], we decided to add
an impulse to the net effect signal at the time in which IG crosses the hypo-
glycemic threshold (70 mg/dl) in order to simulate the intake of 15 g of CHO
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Figure 2.4: Case study 3 (addition of new boluses), virtual subject #3. A) IG data (top),
insulin data (middle) and estimated net effect (bottom) in a time frame of interest. B)
IG profile predicted by the net effect method when a 2 U correction bolus is added
at 09:00 (black solid line) and IG profile obtained when the same bolus is added in
the UVA/Padova T1D simulator (red dashed line). C) Original net effect (black solid
line) and net effect re-estimated after a 2-U correction bolus is added at 09:00 in the
UVA/Padova T1D simulator (red dashed line).

(Figure 2.5C, black solid line). The IG profile obtained by the modified net ef-
fect is reported in Figure 2.5B (black solid line), together with the IG profile
simulated adding the 15-g hypotreatment in the UVA/Padova T1D simulator
(red dashed line).

The net effect method performs suboptimally also in this case by overes-
timating the time in hypoglycemia: when the hypotreatment is introduced in
the UVA/Padova T1D simulator the duration of the hypoglycemic event is 21
min, while the time spent in hypoglycemia predicted by the net effect method
is 67 min. This means, for instance, that the hypotreatment seems to be effec-
tive to limit the time spent in hypoglycemia by the patient, while the indication
given by the net effect is the opposite.

In line with the other three case studies, also here the net effect signal esti-
mated from the IG profile obtained by the UVA/Padova T1D simulator after
the addition of the hypotreatment (Figure 2.5C, red dashed line) presents sig-
nificant differences compared to the original net effect (black solid line) both
before and after the time of the hypotreatment.
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Figure 2.5: Case study 4 (addition of hypotreatments), virtual subject #4. A) IG data
(top), insulin data (middle) and estimated net effect (bottom) in a time frame of in-
terest. B) IG profile predicted by the net effect method when a 15-g hypotreatment
is added after IG crosses the hypoglycemic threshold (black solid line) and IG profile
obtained in the UVA/Padova simulator when the same hypotreatment is introduced
(red dashed line). C) Original net effect with addition of a 15-g hypotreatment at 09:00
(black solid line) and net effect re-estimated after the same hypotreatment is added in
the UVA/Padova simulator (red dashed line).

2.6 Discussion, open problems and possible solu-

tions

The net effect method was applied to data simulated using the UVA/Padova
T1D simulator to test its ability to correctly predict the IG concentration that
would result from real-life therapy modifications and, hence, determine the
domain of validity of the method. Specifically, four case studies were investi-
gated: basal insulin modifications, changes of pre-existing boluses, addition of
new boluses and addition of new hypotreatments.

First, we noticed that the net effect signals (Figures 2.2A, 2.3A, 2.4A and
2.4A, bottom panels) are difficult to interpret, e.g. they can take even negative
values. Indeed, the net effect signal reflects physiological perturbations related
to meals and other oscillations deriving from components of glucose variabil-
ity not considered in the core linearized and discretized time-invariant model
employed. The comparison with the reference provided by the UVA/Padova
T1D simulator showed that the net effect method is able to reproduce quite ac-
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curately only the effect on IG concentration due to small adjustments of basal
insulin (e.g. +10%, +20% or -10%). However, when larger adjustments of basal
insulin are performed (e.g. +50% or -20% and -50%) or boluses and hypotreat-
ments are changed, the estimation of the IG profile by the net effect method
is significantly different from that obtained by the UVA/Padova T1D simula-
tor. The discrepancies between the two IG profiles can be so important that
inaccurate inferences on the modified insulin therapies may occur.

The suboptimal behavior of the net effect method is caused by the many
simplifications introduced in the patient model, such as the model lineariza-
tion and absence of inter- and intra-subject variability of physiological param-
eters, and by the unrealistic assumption of independence between net effect
and insulin therapy (see discrepancies observed in Figures 2.2C, Fig. 2.2E,
Fig. 2.3C, Fig. 2.4C and Fig. 2.5C between the original net effect and the one
re-estimated after introducing the therapy modifications in the UVA/Padova
T1D simulator).

Another limiting aspect of the net effect method is the fact that it works ret-
rospectively on real data. Therefore, when testing the effect of a certain therapy
modification, the net effect method does not allow to modify the subsequent
treatment decisions according to the new predicted IG profile, as a real subject
would do in reality.

In conclusion, the domain of validity of the net effect method seems to be
limited to small variations of basal insulin, while in all the other scenarios,
i.e. larger adjustments of basal insulin (e.g. +50% and -50%) or changes of pre-
existing boluses, addition of new boluses and addition of new hypotreatments,
the net effect is providing inaccurate results. As a consequence, the net effect
method is not appropriate to test insulin treatment scenarios for the manual
control of glycemia, e.g. the nonadjunctive use of CGM sensors, but more
sophisticated simulation techniques need to be developed.

In particular, we believe an appropriate model for the in silico testing of in-
sulin treatments should: i) include a non-linearized model of glucose-insulin
dynamics accounting for the inter-individual variability, by patient-specific pa-
rameters, and the intra-individual variability of insulin sensitivity, ii) reliably
describe the variability of the measurement error of glucose monitoring de-
vices, iii) allow a real-time update of patient’s therapeutic decisions during the
assessment according to well defined behavioral rules. These three important
requirements will be considered by our novel simulation approach based on
the T1D decision-making model, which is presented in the next chapter.
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Chapter 3

Development of a T1D patient
decision-making model

3.1 Overview of model development

The T1D decision-making (T1D-DM) model is a mathematical model of T1D
patients making treatment decisions, like insulin dosing or CHO intake, based
on SMBG and/or CGM measurements. The model receives in input the pat-
tern of meals in the specific scenario the user need to simulate and patient-
specific parameters describing patient’s physiology and behavior when deal-
ing with glucose monitoring and making treatment decisions. The model out-
put is the patient’s BG concentration that is simulated every minute, thus re-
sulting in a quasi-continuous-time profile.

The T1D-DM model has been constructed by interconnecting four main
components in the feedback scheme of Figure 3.1. The first component (block
A in Figure 3.1) is the UVA/Padova T1D simulator, which receives in input the
CHO intake and subcutaneous infusion of insulin and generates in output the
BG and IG concentration profiles of a virtual subject defined by a specific set
of physiological parameters. The second component (block B in Figure 3.1) is a
model of the device used for glucose monitoring that, starting from the BG and
the IG concentration profiles generated by the UVA/Padova T1D simulator,
simulates SMBG and CGM measurements by using models of the SMBG and
CGM measurement error. The third component (block C in Figure 3.1) mathe-
matically describes the patient’s behavior in making treatment decisions based
on glucose monitoring by implementing the decision rules normally used by
T1D patients for the calculation of insulin boluses and tuning of CHO intake.
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3 Development of a T1D patient decision-making model

Finally, the last component (block D in Figure 3.1) is a model of the infusion
of insulin via insulin pump which adds to the insulin boluses returned by the
patient’s behavior model the basal insulin dose, delivered at constant infusion
rate.

While the UVA/Padova T1D simulator and the insulin pump model were
previously developed by University of Padova in collaboration with Univer-
sity of Virginia, the models of device for glucose monitoring and patient’s be-
havior and treatment decisions are developed in this thesis as described in the
following sections of this chapter. In particular, the model of SMBG and CGM
measurements implemented in the device for glucose monitoring model are
described in Section 3.2 and Section 3.3, respectively. The model of the pa-
tient’s behavior and treatment decisions is illustrated in Section 3.4.

Figure 3.1: Schematic representation of the T1D-DM model

3.2 Development of the SMBG error model

In order to simulate SMBG measurements, a mathematical model of the SMBG
measurement error is required. Some examples of models of the statistical dis-
tribution of the SMBG measurement error can be found in the literature. These
models normally assume i) uncorrelation between consecutive SMBG (at vari-
ance with CGM, whose quasi-continuous nature allowed descriptions of the
measurement error autocorrelation by using 1st or 2nd order autoregressive
models [69] [70] [71] [72]) and ii) the error to be proportional to the glucose

34



3.2 Development of the SMBG error model

concentration (i.e. relative) all over the entire glucose range and described by
a Gaussian function [73] [74] [75]. However, to the best of our knowledge, this
simple model has never been validated and several evidences in the literature
suggest that this particular model is suboptimal.

While the assumption of uncorrelation between samples is reasonable be-
cause of the sparseness of SMBG measurements (usually collected 4-5 times
per day), the main critical point concerns the use of a single canonical prob-
ability density function (PDF) valid over the entire BG range. As a matter of
fact, the scatter plots reported in [76] [77] [78] show that neither absolute nor
relative error of SMBG data presents constant mean and standard deviation
(SD) over the entire BG range, suggesting that a multi-zone model, i.e. a func-
tion with different parameters in different BG ranges, is properly needed to
describe SMBG error distribution.

Attempts to deal with this issue include the work by Breton and Kovatchev
[79], where a Gaussian model with zero mean and SD dependent on the BG
value was adopted, and that by Karon et al. [80], where SMBG measurements
were simulated by two different strategies (the first exploiting the Gaussian
distribution model with different values of mean and SD, the second based on
a Gaussian distribution model whose mean is sampled from a pool of high-
accuracy reference measurements) which were subsequently empirically val-
idated [81]. In [82] a bivariate kernel density model of SMBG measurements
given reference values was derived for the Abbott Optium Xceed (Abbott Dia-
betes Care, Alameda, CA) device.

Another critical point concerns the symmetry assumption of SMBG mea-
surement error distribution made with the Gaussian model. The histograms
reported in [83] show that some SMBG devices present an asymmetric error
distribution, calling for the use of models of the PDF allowing for non-zero
skewness.

Here, a new methodology, described in detail in Subsection 3.2.3, is pro-
posed to derive a model of the PDF of SMBG measurement error, in which
the variability of SMBG error characteristics with BG is dealt with by the use
of multiple PDF models in different zones of the glucose range. Moreover,
the asymmetry of SMBG error data distribution is taken into account by the
use of PDF models allowing for non-zero skewness. The method is tested on
two databases, presented in Subsection 3.2.1, that comprise One Touch Ultra 2
(OTU2; Lifescan Inc., Milpitas, CA) and Bayer Contour Next USB (BCN; Bayer
HealthCare LLC, Diabetes Care, Whippany, NJ) data and reference BG sam-
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ples measured by a gold standard laboratory instrument. Results of the new
methodology are reported in Subsection 3.2.4 and compared to the use of liter-
ature models. Finally, in Subsection 3.2.5 we illustrate how the models derived
by this methodology can be used in the T1D-DM model to simulate SMBG
measurements 1.

3.2.1 Databases

OTU2 database

The OTU2 database was obtained from a larger database collected in a mul-
ticenter study conducted in 2011 (the original specific aim was to assess the
accuracy of a CGM sensor) [85]. For our purpose it is relevant to report, in par-
ticular, that 72 subjects (60 with T1D, 12 with T2D) participated in three clinical
sessions in which SMBG measurements were collected twice per hour for a 12-
hour period by the OTU2. A total of 6906 SMBG samples were collected (on
average 95 samples per subject). In parallel to SMBG, highly accurate reference
BG measurements were obtained every 15 minutes by using a high accuracy
and precision laboratory equipment, the Yellow Springs Instrument (YSI; YSI
Inc., Yellow Springs, OH). During the clinical sessions, CHO and insulin ad-
ministrations were manipulated in order to make patients’ BG concentration
vary in a wide range, as visible in Figure 3.2, panel A where the SMBG and
the YSI samples collected in a representative subject are represented by blue
triangles and red circles, respectively.

BCN database

The BCN database was extracted from a larger database collected in a mul-
ticenter study conducted in 2014 (the original specific aim was to assess the
accuracy of a CGM sensor) [39]. For our purpose, the study involved 51 sub-
jects (44 with T1D, 7 with T2D) who participated in a 12-hour clinical session in
which BG concentration was monitored every 30 minutes by an SMBG device,
the BCN, and every 15 minutes by YSI. A total of 1410 SMBG measurements
were collected (on average 27 per subject). Similarly, to the OTU2 database,
diet and insulin therapy were manipulated in order to make BG vary in a wide
range. Figure 3.2, panel B shows a representative dataset.

1This section is part of the papers [68] and [84].
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3.2 Development of the SMBG error model

Figure 3.2: Panels A and B illustrate the pre-processing performed on a 12-hour YSI
sequence of OTU2 and BCN database, respectively. The continuous line represents the
quasi continuous-time smoothed profile obtained from YSI measurements (empty cir-
cles) after removing inaccurate samples (full circles). Triangles represent all available
SMBG measurements. SMBG samples within YSI gaps are removed from the analysis
(full triangles). Histograms (absolute frequencies) of the SMBG relative error in OTU2
and BCN database are reported in panels C and D, respectively.

3.2.2 Data pre-processing

To correctly evaluate realizations of SMBG measurement error, each SMBG
sample need to be matched to a corresponding gold standard measurement,
i.e. ideally a YSI value collected at the same time. Unfortunately, since both
the OTU2 and BCN database were originally collected to assess CGM sensors,
thus with a scope different from the present work, here SMBG and YSI mea-
surements are not necessarily temporally aligned. Consequently, the two mea-
surements cannot be directly compared. To circumvent this problem, data are
pre-processed as follows.

First, YSI measurements considered not compatible with the BG pattern are
removed from the analysis (see e.g. the full red circle in Figure 3.2, panels A
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and B). In particular, we adopt an empirical rule according to which the jth

YSI sample (empty red circles in Figure 3.2, panels A and B), YSIj is removed
if YSIj < YSIj−1 − ∆1, YSIj < YSIj+1 − ∆2 and YSIj+1 > YSIj−1 − ∆3, or
YSIj > YSIj−1 + ∆1, YSIj > YSIj+1 + ∆2 and YSIj+1 < YSIj−1 + ∆3. Different
values for ∆1, ∆2 and ∆3 are used in different parts of the BG range: when
YSIj ≤ 100 mg/dl, ∆1 = ∆2 = 15 mg/dl and ∆3 = 5 mg/dl; when YSIj > 100
mg/dl, ∆1 = 15% ·YSIj−1, ∆2 = 15% ·YSIj+1 and ∆3 = 5 mg/dl.

Then, from each 12-hour YSI sequence, a YSI smoothed profile (red line
in Figure 3.2, panels A and B) is reconstructed on a temporal grid with 1-min
step by the nonparametric approach described in De Nicolao et al. [86], assum-
ing measurement error to be uncorrelated, with zero-mean and with constant
coefficient of variation equal to 2%, according to specifications of the YSI glu-
cose analyzer [87]. Notably, the use of a maximum-likelihood (ML) smoothing
criterion in this method limits the risk of introducing distortion/bias in the
profile reconstructed from the YSI samples (as witnessed by the representative
examples of Figure 3.2, panels A and B).

Each SMBG sample (empty blue triangles in Figure 3.2, panels A and B)
is then matched to the nearest (in time) sample of the YSI smoothed pro-
file. In this way, the matching error, i.e. the temporal distance between the
SMBG sample and the reference sample, is no greater than 30 sec. Note that
when one or more YSI samples are missing, and thus two consecutive YSI
measurements are 30 min or more far from each other, the reconstruction of
the YSI smoothed profile over the gaps is considered not reliable and SMBG
measurements falling inside these gaps are excluded from the analysis (full
blue triangles in Figure 3.2, panels A and B). As a result, 4.37% and 3.05% of
available SMBG measurements are excluded from the analysis, respectively
for OTU2 and BCN database. Specifically, for OTU2 and BCN respectively, 20
and 4 SMBG samples are excluded in severe hypoglycemia (BG≤50 mg/dl), 13
and 4 in mid hypoglycemia (50<BG≤70 mg/dl), 144 and 19 in euglycemia (70
mg/dl<BG<180 mg/dl), 66 and 8 in mid hyperglycemia (180 mg/dl≤BG<250
mg/dl) and 59 and 8 in severe hyperglycemia (BG≥250 mg/dl).

At the end of the pre-processing step, the SMBG samples selected for the
analysis result well distributed in the glycemic range, with a number of sam-
ples in hypoglycemia and hyperglycemia sufficiently high to allow an accu-
rate description of SMBG measurement error also in these extreme conditions.
In particular, the SMBG samples selected for the analysis are distributed in
the glycemic range as follows: 356 (OTU2) and 123 (BCN) samples are in se-
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vere hypoglycemia, 930 (OTU2) and 159 (BCN) in mid hypoglycemia, 2958
(OTU2) and 463 (BCN) in euglycemia, 1479 (OTU2) and 399 (BCN) in mid hy-
perglycemia, 881 (OTU2) and 222 (BCN) in severe hyperglycemia.

The obtained SMBG-YSI matched pairs are used to calculate SMBG abso-
lute and relative errors. In the bottom panels of Figure 3.2, the histogram
of SMBG relative error is reported for OTU2 (panel C) and BCN (panel D)
databases. Both meters present a unimodal, positively biased and skewed
distribution. The BCN shows a significantly lower error variability than the
OTU2. Note that the histogram of BCN error presents some outliers, i.e. high
values in the tails (e.g. values lower than -10 and greater than 30 with signif-
icantly greater than zero absolute frequency), which suggests that an efficient
way to describe the PDF of the error in this database should be modeling non-
outlier central part of the distribution separately.

3.2.3 Method for modeling the SMBG error PDF

Absolute and relative error computation

For each SMBG sample xi, i = 1, ..., ntot (ntot indicating the total number of
SMBG measurements selected for the analysis in the pre-processing step) both
absolute and relative (in percentage) errors are computed using the reference
values ri, i = 1, ..., ntot:

eabs
i = xi − ri, erel

i =
xi − ri

ri
· 100 (3.1)

Then, error data are divided into two parts. The first part, with cardinality
ntraining, is used as training set to derive the model of SMBG error PDF. The
second part of the database, with cardinality ntest, is used as test set to validate
the model.

SMBG model derivation (training set)

Absolute and relative errors of training set can be displayed in a scatter plot
vs reference glucose in order to visually assess if the characteristics of error
distribution (e.g. mean and dispersion) significantly vary within the reference
glucose range. Changes in the dispersion of absolute and relative errors with
reference glucose are quantified by analyzing the sample SD. In particular, first
a uniform grid gi i = 1, ..., ng, where ng is the number of points in the grid, is
defined in the glucose range with step S (e.g. S=5 mg/dl). Then, intervals
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centered at points gi i = 1, ..., ng with half-width L (e.g. L=15 mg/dl) are de-
fined. Finally, the sample SD of absolute and relative error samples in each
interval gi ± L is calculated, which approximates the SD of error (absolute or
relative) at the glucose point gi. The plot of sample SD values versus glucose
points gi i = 1, ..., ng allows to analyze how the SD of error (absolute or rel-
ative) varies in the glucose range and identify zones of the glucose range in
which either absolute or relative error presents approximately a constant SD
distribution.

In each constant-SD zone, the distribution of the error (absolute or relative)
in the training set, here represented by the continuous random variable Y, is
fitted by ML using a certain PDF model. In particular, first, a Lilliefors test
of normality is applied to error (absolute or relative) with significance level
ρ. Then, if the Lilliefors test cannot reject the normality hypothesis, the Gaus-
sian PDF model is used. Conversely, if the Lilliefors test rejects the normality
hypothesis, the skew-normal PDF model is employed. The skew-normal PDF
[88] is described by the following equation:

fY(y) =
2
ω
· φ
(y− ξ

ω

)
·Φ
(

α · y− ξ

ω

)
(3.2)

where φ(·) and Φ(·) are, respectively, the PDF and the cumulative distribution
function of the standard Gaussian random variable, while the scalars ξ, ω and
α are, respectively, the location, scale and skewness parameters of the skew-
normal PDF. The skew-normal PDF model allows to describe both positively
(α > 0) or negatively (α < 0) skewed PDF. When α is equal to zero, the skew-
normal PDF becomes the Gaussian PDF.

Let us define y = [y1, ..., yn]T as the vector of n samples of the error (ab-
solute or relative), i.e. n realizations of Y, falling within one of the identified
constant-SD glucose zones. Then, the parameters of the skew-normal PDF that
best reproduces the distribution of data in y are estimated by maximizing the
log-likelihood function:

l(ξ, ω, α) = −n · log(ω)− 1
2

zT z−
n

∑
i=1

log(2Φ(αzi)) (3.3)

where zi, i = 1, ..., n are the n components of z = (y − ξ · 1n)/ω, with 1n

representing the nx1 unitary vector.

If the error (absolute or relative) distribution does not present a significant
number of left or right outliers, i.e. values in the left or right tails of the error
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histogram with significantly greater than zero frequency, the model of eq. 3.2
should be sufficiently accurate to describe the error PDF. On the contrary, if
the SMBG error presents non-negligible left or right outliers, it is more con-
venient to use a composite model in which the distributions of outliers and
non-outliers are described by different PDF models. Here, we propose a model
obtained combining the skew-normal PDF and the exponential PDF. To derive
such a model, two thresholds must be identified, T1 and T2, in order to separate
the non-outlier region, T1 ≤ y ≤ T2, from the left outlier region, y < T1, and
the right outlier region, y > T2. Let us define a discrete random variable V that
can assume three values: 0, with probability pV(0), when the SMBG error y is
not an outlier; 1, with probability pV(1), when y is a left outlier; 2, with prob-
ability pV(2), when y is a right outlier. Then, the model defined for the PDF
of Y, fY(y), is conditioned by the value of V. In particular, when V = 0 the
conditional PDF of Y given V, fY|V(y|0), is the skew-normal PDF model of eq.
3.2, whose parameters are identified by ML as described above. When V = 1,
fY|V(y|1) is described by an exponential PDF model reversed with respect to
the ordinate axis and shifted left of T1:

fY|V(y|1) =

λ1 · eλ1(y+T1) y ≤ T1

0 y > T1

(3.4)

When V = 2, fY|V(y|2) is described by an exponential PDF model shifted right
of T2:

fY|V =

λ2 · e−λ2(y−T2) y ≥ T2

0 y < T2

(3.5)

Parameters λ1 and λ2 are estimated by ML by inverting the sample mean of
left or right outliers properly shifted and reversed. Finally, the PDF of Y is
obtained as:

fY(y) = fY|Y(y|0) · pV(0) + fY|V(y|1) · pV(1) + fY|V(y|2) · pV(2) (3.6)

where the values pV(1) and pV(2) are estimated by dividing the number of
observed left or right outliers for the total number of observed error values in
the specific constant-SD zone, while pV(0) is found as:

pV(0) = 1− pV(1)− pV(2) (3.7)
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Model validation (test set)

The model identified in each constant-SD zone for absolute or relative error
is validated by two-sample Kolmogorov-Smirnov (KS) and Cramér-von Mises
(CvM) goodness-of-fit tests. For such a purpose, M random samples are sim-
ulated by drawing ntest values from the model identified in each zone, being
ntest the cardinality of the test set. In particular, SMBG error values are drawn
from the exponential PDF of left outliers with probability pV(1), from the expo-
nential PDF of right outliers with probability pV(2) and from the skew-normal
PDF of non-outliers with probability pV(0). If the model does not include out-
liers’ description, then pV(1)=pV(2)=0 and all the ntest SMBG error values are
drawn from the skew-normal PDF.

In order to sample a random number y from a skew-normal PDF, with
generic parameters ξ, ω and α, a three step method is provided by Azzalini
[88]. First, two values u0 and u1 having marginal PDF N(0, 1) and correlation
δ = α/

√
1 + α2 are generated by sampling u0 and r from independent N(0, 1)

random variables and defining u1 = δ · u0 +
√

1− δ2 · r. Then, in the second
step, a random number z sampled from a skew-normal PDF with parameters
ξ=0, ω=1 and α 6=0 is obtained as:

z =

u1 i f u0 ≥ 0

−u1 otherwise
(3.8)

As third step, the realization sampled from the skew-normal PDF with param-
eters ξ, ω and α is finally obtained setting y = ξ + ω · z.

Each of the M simulated samples is compared to the test set by performing,
with significance level β, the two-sample KS and CvM tests, i.e. nonparamet-
ric tests for the null hypothesis H0=“the two samples are drawn from the same
distribution” based on a measure of distance between the empirical distribu-
tion functions of the two samples. The empirical distribution function, F̂, of a
generic random sample, Yj j = 1, ..., n, is defined as F̂(y) = 1

n ·∑
n
j=1 I[−∞,y](Yj),

where I[−∞,y] is 1 if Yj ≤ y and 0 otherwise, and represents an estimate of
the cumulative distribution function. The percentage of simulated samples for
which KS and CvM tests reject H0 is calculated, that is expected to be small if
the identified model of SMBG error PDF performs well.

This validation is performed N times (e.g. N=100), to avoid that the re-
sults of the validation can be dependent on the particular realization of ran-
dom samples. Therefore, KS and CvM tests are performed on N groups of
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M random samples and the average, minimum and maximum values of the
percentage of samples for which H0 is rejected are calculated.

3.2.4 Results

For each SMBG sample, absolute and relative errors have been computed as
described by eq. 3.1. Then, the whole set of SMBG error data, with cardinality
ntot, was divided into a training set with cardinality ntraining=2/3·ntot and a
test set with cardinality ntest=1/3·ntot. The scatter plots of Figure 3.3 report,
vs reference glucose values, absolute and relative errors in the training set,
which result positively biased and with non-uniform dispersion over the entire
reference glucose range for both OTU2 (panels A and B respectively) and BCN
(panels C and D respectively).

A) C)

B) D)

Figure 3.3: Scatter plots of absolute and relative error vs reference glucose for the
training set of OTU2 (panels A and B respectively) and BCN (panels C and D respec-
tively) database.

In Figure 3.4 the SD of absolute (top panels) and relative (bottom panels) er-
ror in the training set is displayed for increasing glucose values. In particular,
the sample SD of absolute and relative error in the training set was computed
on glucose intervals of half-width L=15 mg/dl centered at the points of a glu-
cose grid with uniform step S=5 mg/dl. This representation allows to analyze
how the SD of absolute and relative error varies in the glucose range. For the
OTU2, the SD of absolute error (panel A) is approximately constant for glucose
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values lower than 75 mg/dl, while an increasing trend is observed for glucose
values greater than 75 mg/dl; conversely, the SD of relative error (panel B)
presents a decreasing trend for glucose values lower than 75 mg/dl, while
appearing approximately constant for glucose values greater than 75 mg/dl.
Therefore, two constant-SD zones were identified: zone 1, i.e. BG≤75 mg/dl,
with constant-SD absolute error; zone 2, i.e. BG>75 mg/dl, with constant-SD
relative error. For BCN, the SD of absolute and relative error in the training
set is reported respectively in panel C and D. Again, two zones are identified:
zone 1, i.e. BG≤115 mg/dl, with constant-SD absolute error; zone 2, i.e. BG
>115 mg/dl, with constant-SD relative error. Note that, for both the OTU2 and
the BCN database, the absolute or relative error in zone 1 and 2 is not corre-
lated with the reference BG, as visible in the scatter plots of Figure 3.3.

Figure 3.4: Absolute and relative error SD vs reference glucose for the training set of
OTU2 (panels A and B respectively) and BCN (panels C and D respectively) database.
The thresholds to separate zone 1 from zone 2 (75 mg/dl in OTU2 database, 115 mg/dl
in BCN) are evidenced by vertical red lines.

The histograms of Figure 3.5 represent the relative frequency of absolute
error in zone 1 (top panels) and relative error in zone 2 (bottom panels), calcu-
lated in the training set of OTU2 (left panels) and BCN (right panels) database.
For both databases, the Lilliefors test rejected the normality hypothesis for the
absolute error in zone 1 and the relative error in zone 2, using as significance
level ρ=5% (p-value=0.001). This result suggests that the Gaussian PDF is not
a proper model to accurately describe the observed SMBG error distribution.
For OTU2, since the error distributions in zone 1 and 2 do not show significant
outliers, a simple skew-normal PDF model (black line) was fitted by ML both
in zone 1 (panel A) and 2 (panel B). The values of location, scale and skewness
parameters identified in zone 1 and 2 are reported in Table 3.1, while mean

44



3.2 Development of the SMBG error model

and SD are reported in Table 3.2. In particular, both error models present a
significant positive mean (2.01 mg/dl in zone 1, 4.73% in zone 2) and positive
skewness (α=2.72 in zone 1 and α=1.41 in zone 2). For BCN, some outliers are
visible in the error distribution of training set data both in zone 1 (panel C)
and 2 (panel D). In particular, in zone 1 values lower than -7.5 mg/dl were
considered left outliers and values greater than 15.5 mg/dl were considered
right outliers, while in zone 2 we considered left outliers values under -11%,
right outliers values over 17.5%. Left and right outliers’ distributions were
fitted by the exponential PDF models of eqs. 3.4 and 3.5, while non-outliers’
distribution was fitted by the skew-normal PDF of eq. 3.2. The parameters of
the identified models are reported in Table 3.1 (last two rows), while mean and
SD of the models are reported in Table 3.2 (last two rows). Panels C and D of
Figure 3.5 show how the composite PDF obtained by eq. 3.6 (black line) well
approximates the error distribution of training set data respectively in zone 1
and 2.

A)

B)

C)

D)

Figure 3.5: Panels A and B report the ML fit of the skew-normal PDF (black line)
against histrograms of, respectively, absolute and relative error (red bars) in zone 1
and 2 of the training set of OTU2 database. Panel C and D report the ML fit of the PDF
model obtained as combination of the skew-normal and the exponential PDF (black
line) against histrograms of, respectively, absolute and relative error (red bars) in zone
1 and 2 of the training set of BCN database.

For validation purposes, the identified PDF model was used to generate,
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Table 3.1: Model parameters identified in zone 1 and 2 of OTU2 and BCN training
set data.

Database Zone Non-outliers Left outliers Right outliers
ξ ω α λ1 T1 PV(1) λ2 T2 PV(2)

OTU2 1 -5.37 9.86 2.72 - - - - - -
2 -3.83 13.17 1.41 - - - - - -

BCN 1 -0.23 5.05 1.36 0.30 -7.5 0.032 0.13 15.5 0.038
2 -0.71 6.54 1.46 0.46 -11.0 0.005 0.06 17.5 0.011

Table 3.2: Mean and SD of identified models in zone 1 and 2 of OTU2 and BCN
training set data.

Database Zone Mean SD

OTU2 1 2.01 6.54
2 4.73% 10.00%

BCN 1 3.33 4.03
2 3.82% 5.26%

for each zone, M=500 random samples having cardinality equal to the number
of error data available in the test set for the same glucose zone. As visible in
Figure 3.6, the empirical distribution functions of random samples simulated
by the identified PDF model (blue solid lines) are very similar to the empirical
distribution function calculated for test set data (red solid line) both in zone 1
and 2 of OTU2 (panels A and B, respectively) and BCN database (panels C and
D, respectively). Two-sample KS and CvM tests are performed with signifi-
cance level β=5% on N=100 groups each containing M=500 simulated random
samples. In OTU2 database, on average, the KS test rejects H0 for the 0.53%
(0.00%-1.40%) of zone 1 simulated samples and the 1.94% (0.40%-4.6%) of zone
2 simulated samples, while the CvM test rejects H0 for the 0.94% (0.00%-2.20%)
of zone 1 simulated samples and the 4.15% (1.40%-6.60%) of zone 2 simulated
samples. In BCN database, on average, the KS test rejects H0 for the 0.75%
(0.00%-1.80%) and 1.43% (0.40%-2.60%) of zone 1 and 2 simulated samples,
respectively, while the CvM test rejects H0 for the 0.95% (0.20%-2.20%) and
2.56% (1.40%-4.00%) of zone 1 and 2 simulated samples, respectively. Since,
for almost all the simulated random samples, H0 cannot be rejected, we can
conclude that the two-zone skew-normal models derived for OTU2 and BCN
accurately reproduce the SMBG error distribution observed in the test set.

Two-sample KS and CvM tests also demonstrate that the identified two-
zone skew-normal models outperform simpler Gaussian models like the single-
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A)

B)
D)

C)

Figure 3.6: The empirical distribution function of simulated random samples (blue
line) and test set data (red line) is reported for zone 1 and 2 of OTU2 database (panels
A and B respectively) and BCN database (panels C and D respectively).

zone Gaussian model, previously used in the literature to describe SMBG rela-
tive error distribution, and the two-zone Gaussian model in which a Gaussian
(instead of skew-normal and exponential) PDF is used to describe absolute
error in zone 1 and relative error in zone 2. Indeed, when the single-zone
Gaussian model is used, the two tests reject H0 for almost the 100% of sim-
ulated samples (on average, the KS test rejects H0 for the 99.44% of OTU2
simulated samples and 100.00% of BCN simulated samples, while the CvM
test rejects H0 for the 99.85% of OTU2 simulated samples and 100.00% of BCN
simulated samples). When the two-zone Gaussian model is used, H0 is re-
jected for more than 50% of zone 1 simulated samples (on average: 49.80%, for
KS, and 70.00%, for CvM, in OTU2 database; 59.21%, for KS, and 81.63%, for
CvM, in BCN database) and more than 10% of zone 2 simulated samples (on
average: 27.06%, for KS, and 24.03%, for CvM, in OTU2 database; 14.20%, for
KS, and 20.67%, for CvM, in BCN database).

Remark 1. The sparseness of SMBG data (4-5 samples per day) suggests
assuming that measurement errors can be considered uncorrelated. To sup-

47



3 Development of a T1D patient decision-making model

port reliability of this hypothesis, we evaluated, a posteriori, the autocorrela-
tion function for each SMBG error sequence (both absolute and relative) corre-
sponding to a specific subject. Results show that, for both absolute and rela-
tive error, in both OTU2 and BCN databases, the coefficients of the mean nor-
malized autocorrelation function never overtake 0.5, confirming that uncorre-
lation of errors seems a reasonable assumption. Of course, a more detailed
and precise assessment of the autocorrelation of the SMBG measurement error
would require a separate study, with scope different from that of the present
work and, remarkably, ad hoc data sets consisting of SMBG measurements fre-
quently collected in parallel to high accuracy BG reference samples.

Remark 2. The threshold dividing the two constant-SD zones is 75 mg/dl
for OTU2 and 115 mg/dl for BCN. These results are, not surprisingly, coherent
with the requirements (in terms of accuracy) imposed to SMBG devices by the
standard ISO 15197. Indeed, the 2003 standard [89] requires that 95% of the
SMBG values should have an absolute error lower than 15 mg/dl for glucose
concentration lower than 75 mg/dl and a relative error lower than 20% in the
rest of the range, while the 2013 standard [90] requires that 95% of the SMBG
values should have an absolute error lower than 15 mg/dl for glucose concen-
tration lower than 100 mg/dl and a relative error lower than 15% in the rest
of the range. In particular, the 75 mg/dl threshold we found for OTU2, which
was approved by FDA in 2006, reflects the same partition defined by standard
ISO 15197:2003, while the 115 mg/dl threshold we found for BCN, which was
approved by FDA in 2012, is similar to the one defined by the standard ISO
15197:2013.

3.2.5 Simulation of SMBG measurements in the T1D-DM model

Models of the PDF of SMBG measurement error developed by the new method-
ology are of straightforward application in several in silico studies of clini-
cal interest, including the simulation of SMBG measurements in the T1D-DM
model presented in this thesis. In particular, the model of either the OTU2 or
the BCN measurement error PDF can be used in the device for glucose mon-
itoring model to simulate SMBG measurements starting from the BG value
returned by the UVA/Padova T1D simulator, whenever the patient’s behavior
and treatment decisions model requests a BG check by SMBG. Specifically, if
the simulated BG value, BGsim, is in the zone 1 of the SMBG error PDF model,
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the SMBG absolute error, errabs, is sampled from the PDF model identified in
zone 1. Then, the simulated SMBG measurements, SMBGsim, is obtained as
follows:

SMBGsim = errabs + BGsim (3.9)

Conversely, if BGsim is in zone 2, the SMBG relative error, errrel, is sampled
from the PDF model identified in zone 2. Then, SMBGsim is obtained as fol-
lows:

SMBGsim = errrel · BGsim/100 + BGsim (3.10)

3.3 Development of the CGM error model

In order to simulate CGM quasi continuous-time traces a model of the CGM
sensor error is required. Some approaches to model the CGM sensor error
were proposed in the literature. Breton and Kovatchev [69], for instance, pro-
posed a model in which errors due to BG-to-IG kinetics are described by a
first-order linear time-invariant dynamic model with fixed time-constant, cal-
ibration error by a linear first-order time-invariant function, and sensor noise
by a first order autoregressive (AR) model. A second model was proposed by
Lunn et al. [70] in which, at difference of model by Breton and Kovatchev, the
time-constant of the model describing BG-to-IG kinetics is individualized. An-
other approach was developed by Facchinetti et al. [71] in which, at difference
of previous methods, the time variability of sensor calibration error is coped
with by the use of a linear function with time-variant parameters. This method
was first designed using data collected by Dexcom 7 Plus sensor [71], and then
applied to a second data set collected by Dexcom G4 PLATINUM system [72].
However, a model for the generation of CGM sensors presently on the market,
e.g. the Dexcom G5 Mobile, is currently not available in the literature.

Here, the method by Facchinetti et al. is applied to data collected by the
Dexcom G5 Mobile system in order to derive a model of this last generation
CGM sensor, representing the state-of-art in CGM technology. In particular,
data used for model identification are described in Subsection 3.3.1, details on
the modeling method by Facchinetti et al. are given in Subsection 3.3.2, while
results of model identification are presented in Subsection 3.3.3. Eventually, in
Subsection 3.3.4 we describe how the derived CGM error model is used in the
T1D-DM model for CGM traces simulation.
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3.3.1 Database

Data were provided by Dexcom, Inc. and includes the 51 recordings of the
study published by Bailey et al. [39] and additional 25 monitorings acquired
in a pre-pivotal study performed with the same protocol (unpublished). In
particular, data were collected in 76 adults, each monitored for 7 days by the
Dexcom G5 Mobile CGM device calibrated every 12 hours by the BCN SMBG
device. In addition, each subject underwent a 12-h clinical session in which
BG concentration was monitored by high accuracy and precision YSI every 15
min. Clinical sessions were scheduled either on day 1 (23 subjects), day 4 (28
subjects) or day 7 (25 subjects) of CGM monitoring.

3.3.2 Modeling method

A method to model the CGM sensor error was recently developed by Facchinetti
et al. [72], which takes into account the three main sources of CGM sensor er-
ror: the distortion introduced by BG-to-IG kinetics, the calibration error and
the sensor noise. In particular, the CGM trace between two consecutive cali-
brations, yCGM, is described by the following equation:

yCGM(kT) = a(kT) · xIG(kT) + b(kT) + r(kT) k = 1, ..., N (3.11)

where T is the sensor sampling period, xIG(kT) is the IG value at time kT and
a(kT) and b(kT) are linear polynomials in time of order m and l describing the
sensor calibration error:

a(kT) =
m

∑
i=1

ai · (kT)i, b(kT) =
l

∑
j=1

bj · (kT)j (3.12)

The IG profile, xIG(kT), is described by the convolution of the BG profile,
xBG(kT), and the impulse response of the BG-to-IG kinetics system that is de-
scribed by a first-order dynamic system with unitary gain and time constant τ

[1/min]:

xIG(kT) = xBG ⊗
1
τ
· e− kT

τ (3.13)

Finally, r(kT) is the residual trace representing the additive measurement noise
in [mg/dl].

In work published by Facchinetti et al. in 2014 [71] and 2015 [72], the model
of eqs. 3.11-3.13 was identified on databases in which glucose was monitored
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simultaneously by multiple CGM sensors per subject and YSI during 12-h
clinical sessions. Polynomials’ parameters, ai, i = 1, ...m and bj, j = 1, ...l,
and plasma-interstitium time constant, τ, were estimated by non-linear least
squares, while optimal values for the polynomials’ orders, m and l, were se-
lected according to the Bayesian information criterion (BIC), an index that is
much lower much better the goodness of fit and lower the number of model
parameters to identify are. On Dexcom 7 Plus data, the optimal orders selected
by Facchinetti et al. were m = l = 1 regardless of the day of CGM monitoring
[71]. On Dexcom G4 PLATINUM data, where clinical sessions were performed
in day 1, 4 and 7 of CGM monitoring, in day 1 selected optimal orders were
m = l = 1, while in day 4 and 7 selected optimal orders were m = l = 0 [72].

The availability of multiple sensor traces collected in parallel in the same
subject allowed Facchinetti et al. to dissect the additive measurement noise of
each sensor into two components: one common to all the sensors worn by the
same subject and one specific of each sensor. Each of these components was
modeled by an AR model whose order was selected again resorting to BIC.

Here, the method by Facchinetti et al. is applied to data described in Sub-
section 3.3.1 to derive a model the Dexcom G5 Mobile system. Results are
presented in the following section.

3.3.3 Results for Dexcom G5 data

Optimal values for polynomials’ orders are selected according to BIC. Four
candidate combinations of orders are considered i.e. m = l = 0, m = 1 l = 0,
m = 0 l = 1 and m = l = 1. Higher order values are not considered because
previous experiments [71] [72] showed that the use of the quadratic or cubic
terms is superfluous to describe Dexcom CGM sensors’ error.

In Figure 3.7, the difference in BIC values of m = l = 0 vs other orders’
combinations (∆BIC) is displayed via boxplot representation for day 1 (left
panel), 4 (middle panel) and 7 (right panel). Mean of ∆BIC is represented by
black diamond. Looking at ∆BIC in day 1, we can observe that the use of a
linear term in the offset (m = 0, l = 1), in the gain (m = 1, l = 0), or both
(m = 1, l = 1) of eq. 3.11 drives to better performance than using constant
gain and offset (m = l = 0), being ∆BIC in this day on average significantly
positive. Conversely in days 4 and 7, the simpler model with m = l = 0
presents similar performance to the other models, since ∆BIC is on average
close to zero.
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Figure 3.7: Boxplot representation of ∆BIC between model with orders m = l = 0 vs
models with orders m = 0 l = 1, m = 1 l = 0 and m = l = 1 in day 1 (left panel) 4
(middle panel) and 7 (right panel).

In Figure 3.8, the ∆BIC values of m = 1, l = 0 vs other orders’ combinations
is displayed via boxplot representation. Looking at day 1 (left panel of Figure
3.8), the model with orders m = 1, l = 0 performs significantly better than the
model with m = l = 0, slightly better than the model with m = 0, l = 1 and
equivalently to the model with m = l = 1. In day 4 (middle panel of Figure
3.8) and 7 (right panel of Figure 3.8), the compared models present similar
performance.

In conclusion, the model we select is the model with a linear term in the
gain (m = 1) and constant offset (l = 0) described by the following equation:

yCGM(kT) = (a0 + a1 · kT) · xIG(kT) + b0 + r(kT) k = 1, ..., N (3.14)

being this the best model to describe CGM data in day 1 according to BIC, and
presenting equivalent performance to the other models tested in day 4 and 7.
Parameters a0, a1, b0 and τ are estimated by non-linear least squares by fitting
the model of eq. 3.14 using CGM data as samples of yCGM and YSI data as
samples of xBG. Mean and SD of estimated parameters are reported in Table
3.3 separately for day 1, 4 and 7.

Residual traces, r(kT), are then fitted to a model of the sensor noise. Since in
this database each subject wore one sensor only, it is not possible to distinguish
the sensor-specific component from the common component. Therefore, each
residual trace is treated as a single sensor-specific component and modeled by
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Figure 3.8: Boxplot representation of ∆BIC between model with orders m = 1 l = 0
vs models with orders m = 0 l = 0, m = 0 l = 1 and m = l = 1 in day 1 (left panel) 4
(middle panel) and 7 (right panel).

Table 3.3: CGM error model parameters identified on Dexcom G5 Mobile data in day
1, 4 and 7. For sensor-specific parameters (a0, a1, b0, τ and σ2) median and interquartile
range (in brackets) of values estimated for all sensors are reported.

Parameter Day 1 Day 4 Day 7

a0 1.04 1.04 1.02
[dimensionless] (1.00 - 1.10) (0.96 - 1.10) (0.95 - 1.09)

a1 0.02 -0.02 0.06
[1/days] (-0.26 - 0.24) (-0.13 - 0.12) (-0.04 - 0.18)

b0 -8.75 -1.42 0.10
[mg/dl] (-15.80 - 2.20) (-9.50 - 6.20) (-6.18 -7.07)

τ 7.37 6.76 6.53
[min] (5.63 - 11.67) (5.00 - 9.02) (6.04 - 10.83)

σ2 7.64 6.51 6.33
[mg2/dl2] (3.75 - 15.86) (3.98 - 9.04) (4.46 - 11.18)

c1 1.27 1.17 1.10
[dimensionless]

c2 -0.42 -0.36 -0.26
[dimensionless]

AR model of order q. In line with previous studies, the optimal order of the
AR model according to BIC results 2. Residual traces are then fitted with the
AR model of order 2 described by the following equation:

r(kT) = c1 · r((k− 1)T) + c2 · r((k− 2)T) + ε(kT) (3.15)
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where ε(kT) is the input white noise with mean equal to 0 and variance, σ2.
In particular, we assume that model coefficients, c1 and c2 are constant across
sensors, when the same day of monitoring is considered, i.e. all the sensors
present, in the same day, the same degree of autocorrelation of the measure-
ment noise, while σ2, i.e. the magnitude of the input white noise, was allowed
to vary from day to day and from sensor to sensor. Median and interquar-
tile range of estimates of σ2, as well as the values identified for c1 and c2, are
reported in Table 3.3 (last 3 rows).

3.3.4 Simulation of CGM measurements in the T1D-DM model

The model of CGM sensor error derived on Dexcom G5 Mobile data, as il-
lustrated in Section 3.3.3, can be employed to simulate CGM traces. Here, in
particular, the model of eq. 3.14 is implemented in the device for glucose mon-
itoring model of the T1D-DM model to simulate CGM traces starting from the
IG profile returned by the UVA/Padova T1D simulator, as described below.

The insertion of a new sensor is simulated every 7 days. For each sensor,
model parameters a0, a1, b0 and σ2 are updated at sensor calibration times,
scheduled every 12 hours (at 6:00 am and 6:00 pm of each day), as recom-
mended for the Dexcom G5 Mobile sensor. At each calibration time, parame-
ters a0, a1, b0 and σ2 are sampled from a day-specific joint statistical distribu-
tion derived from parameters’ values identified on clinical data. In particular,
a specific joint statistical distribution is derived for days 1, 4 and 7 using the
parameters estimated in these days, as in Subsection 3.3.3, and assuming that
a0, a1, b0 are normally distributed, while σ2 follows a log-normal distribution.
This assumption is supported by the Lilliefors test for normality that, when ap-
plied, with 5% significance level, to samples of a0, a1, b0 and log(σ2) estimated
from data, cannot reject the null hypothesis that data comes from a normally
distributed population.

Since in the clinical data used for CGM model identification the YSI ref-
erences were collected only in day 1, 4 or 7, it is not possible to derive a joint
statistical distribution of model parameters specific for days 2, 3, 5 and 6. How-
ever, it is reasonable to assume that CGM performance in days 2-3 are similar
to CGM performance in day 4 as well as CGM performance in days 5-6 are sim-
ilar to those in day 7. Indeed, at the start of CGM monitoring, sensor perfor-
mance are affected by the foreign body immune response to the sensor needle
insertion. This phenomenon induces a time-variability of sensor sensitivity
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that in general is more pronounced in the first day of monitoring and then
gradually decreases till extinguishing in the last days of monitoring. There-
fore, a0, a1, b0 and σ2 in days 2-3 are simulated by sampling random values
from the model parameters’ distribution derived from day 4 data, while the
same parameters in days 5-6 are simulated by the distribution derived from
day 7 data.

Analogously, coefficients of the AR model c1 and c2 are fixed to day-specific
values using day 1 estimates in day 1, day 4 estimates in days 2-4 and day 7
estimates in days 5-7.

Once the CGM glucose profile has been generated, trend arrows are cal-
culated applying the same algorithm implemented in the Dexcom G5 Mobile
system (proprietary code provided by Dexcom, Inc.). High and low glucose
alerts are also generated whenever the simulated CGM glucose profile crosses
the patient’s high and low glucose alert thresholds, which are set to custom-
able values. Finally, low glucose alarms are generated whenever the simulated
CGM glucose profile goes below 55 mg/dl and are repeated if CGM glucose
readings persist below 55 mg/dl for 30 min after the preceding low glucose
alarm.

3.4 Development of the model of patient’s behavior

and treatment decisions

In this section the patient’s behavior and treatment decisions model is de-
scribed, which simulates the patient’s behavior in using SMBG and/or CGM
information to make treatment decisions like tuning meal insulin doses and
triggering correction boluses and intake of rescue CHO to treat hyperglycemia
and hypoglycemia, respectively 2. In particular, the model inputs are meals,
the BG values returned by the UVA/Padova T1D simulator, and SMBG mea-
surements and CGM output (including glucose readings, trend arrows, alerts
and alarms) which are simulated by the device for glucose monitoring model.
The model outputs are insulin boluses, obtained as the sum of meal boluses
and correction boluses, and CHO intake, obtained as the sum of meals’ CHO
and hypotreatments.

The patient’s behavior and treatment decisions model can have different
configurations depending on the type of glucose monitoring device used for

2This section is part of the works [91] [92].
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T1D therapy. In the following subsections we will describe three configura-
tions of the T1D patient’s behavior and treatment decisions model that repro-
duce the standard treatment based on SMBG, the adjunctive use of CGM sen-
sor and the nonadjunctive use of CGM sensor. It is important to note that to
allow the simulation of a realistic scenario, the patient’s behavior and treat-
ment decision model includes also components describing the mistakes com-
monly made by patients in the management of their diabetes, e.g. errors in
CHO counting and early/delayed meal insulin bolus administrations.

3.4.1 SMBG treatment

When a SMBG-based treatment is simulated the structure of the patient’s be-
havior and treatment decisions model is the one reported in Figure 3.9. In
particular, meals boluses, MBSMBG [U], are calculated based on the patient’s
estimate of meal’s CHO content, ˆCHO [g], and the SMBG measurement simu-
lated at the time of the meal bolus, GSMBG [mg/dl], according to the standard
formula:

MBSMBG =
ˆCHO

CR
+

GSMBG − Gtarget

CF
(3.16)

where CR [g/U] and CF [mg/dl/U] and Gtarget [mg/dl] are patient-specific
parameters of the insulin therapy. In particular, CR is the CHO-to-insulin ratio
and represents how many grams of CHO each unit of insulin covers, CF is the
correction factor and represents the change in BG produced by each unit of
insulin, and Gtarget is the post-meal BG target.

The estimate of meal’s CHO content is simulated by using a model of the
CHO counting error. This model was derived from data published by Brazeau
et al. [93] in which the CHO content of 448 meals was estimated by T1D pa-
tients and in parallel assessed by a dietitian using a computerized analysis
program. In particular, first the percentage error of CHO counting was cal-
culated for each meal using dietitian assessment as reference. Then, a non-
standardized Student’s t PDF was fitted by ML to percentage error data. The
resulting non-standardized Student’s t PDF model presents 3 degrees of free-
dom and location and scale parameters equal to -6.6 and 18.78 respectively.
Such PDF model is reported in Figure 3.10 by red line together with the his-
togram of percentage CHO counting error data. In the T1D-DM model, the
percentage error in CHO counting is generated by drawing random samples
from the identified non-standardized Student’s t model.

Each meal bolus is administered at a time randomly selected with uniform
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Figure 3.9: Schematic representation of the T1D patient’s behavior and treatment
decisions model for standard treatment based on SMBG.

Figure 3.10: Non-standardized Student’s t PDF model (red line) fitted on percentage
CHO counting error extracted from data of Brazeau et al. [93] (grey histogram).

probability between 10 min before and 10 min after the starting of the meal, in
order to simulate early/delayed insulin administrations that commonly occur
in real life.

Correction boluses are simulated whenever a routine SMBG check reveals
hyperglycemia, i.e. the SMBG measurement is greater or equal than 180 mg/dl,
and at least 2 hours passed since the last insulin bolus. This second condition
is necessary to avoid the risk of insulin stacking, i.e. the patient having too
much insulin still acting in the body. Routine SMBG checks include pre-sleep
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SMBG checks, simulated at 10:00 pm, and post-meal SMBG checks simulated
2 h after the meal, whose frequency can be suitably set according to the kind
of population the user is interested in testing. The calculation of correction
boluses, CBSMBG [U], is given by the following equation:

CBSMBG =
GSMBG − Gtarget

CF
· CIOB (3.17)

where CIOB [dimensionless] is a factor that corrects the bolus dose to account
for insulin on board, i.e. the fraction of previously administered boluses still
acting in the body. The value of CIOB is established for each correction bolus
by an empirical rule commonly adopted by the patients: when less than 4 h
passed since last insulin bolus CIOB is set to 0.5, otherwise CIOB is set to 1, i.e.
the entire correction dose is administered.

Hypotreatments are generated in response to the occurrence of
hypoglycemic symptoms. In particular, each virtual subject is associated to a
hypoawareness threshold, i.e. the glucose level at which the patient starts feel-
ing hypoglycemic symptoms. Whenever the BG concentration simulated by
the UVA/Padova T1D simulator falls below this level, hypoglycemic symp-
toms are generated and a SMBG check for hypoglycemia is triggered. If the
SMBG measurement is lower or equal than 70 mg/dl and at least 15 min
passed since last CHO intake, a hypotreatment is given. During waking hours
(06:00 am – 10:00 pm), the amount of the hypotreatment is set to 15 g if SMBG>55
mg/dl or 20 g if SMBG≤55 mg/dl, and a re-check for hypoglycemia is sim-
ulated 15 min after the first hypotreatment with probability 10%. If at the
re-check the SMBG measurement is lower or equal than 70 mg/dl, another hy-
potreatment is given. During sleeping hours (10:01 pm – 05:59 am), the amount
of the hypotreatment is set to 25 g whatever the SMBG measurement is and no
re-checks for hypoglycemia are simulated. Hypotreatments are also generated,
with the same rules, if a SMBG routine check (post-meal or pre-sleep) reveals
hypoglycemia (SMBG≤70 mg/dl).

3.4.2 Adjunctive CGM treatment

When treatment based on adjunctive CGM is simulated, both SMBG measure-
ments and CGM output are given in input to the patient’s behavior and treat-
ment decisions model, as shown in the scheme of Figure 3.11. In particular,
all treatment decisions are made by using SMBG measurements, while CGM
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Figure 3.11: Schematic representation of the T1D patient’s behavior and treatment
decisions model for treatment based on adjunctive use of CGM.

information is only used to trigger SMBG checks. More precisely, whenever
CGM readings, alerts and alarms detect hypo/hyperglycemic events, the pa-
tient checks his/her BG concentration by SMBG and finally makes the treat-
ment decision based on the SMBG measurement. CGM trend arrows are not
used in the adjunctive CGM treatment, because their value cannot be con-
firmed using SMBG.

In the adjunctive CGM treatment scenario, meal boluses are generated as
for the SMBG treatment, according to eq. 3.16.

Correction boluses are given after a pre-sleep check (at 10:00 pm) or after a
SMBG check for hyperglycemia, if the SMBG measurement is greater or equal
than 180 mg/dl. SMBG checks for hyperglycemia are generated 2 h after the
meal if CGM is greater than the high alert threshold and whenever a CGM
high alert goes off and at least 2 h passed since last insulin bolus. The dose of
correction boluses is calculated as in the SMBG treatment by eq. 3.17.

SMBG checks for hypoglycemia are triggered in response to hypoglycemic
symptoms, i.e. when BG goes below the threshold of hypoglycemia awareness,
and in response to CGM low glucose alerts and alarms. Then, hypotreatments
are generated if measured SMBG is lower or equal than 70 mg/dl and at least
15 min passed since last CHO intake. During waking hours (06:00 am – 10:00
pm), the amount of the hypotreatment is set to 15 g if SMBG>55 mg/dl, 20 g
if SMBG≤55 mg/dl, and a re-treatment is provided if at 30 min after the pre-
vious hypotreatment CGM is displaying a glucose value below 70 mg/dl and
a confirmatory SMBG check confirms that BG is lower than 70 mg/dl. During
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sleeping hours (10:01 pm – 05:59 am), the amount of the hypotreatment is set to
25 g whatever the SMBG measurement is and no re-checks for hypoglycemia
are simulated after the first hypotreatment. Hypotreatments are also gener-
ated independently of symptoms and CGM alerts and alarms if a pre-sleep or
post-meal SMBG measurement reveals hypoglycemia.

3.4.3 Nonadjunctive CGM treatment

In the nonadjunctive use of CGM, patients make all the treatment decisions
based on CGM output, including CGM readings, alerts and trend arrow, with-
out using confirmatory SMBG measurements. The structure of the patient’s be-
havior and treatment decisions model with nonadjunctive CGM use is shown
in Figure 3.12.
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Figure 3.12: Schematic representation of the T1D patient’s behavior and treatment
decisions model for treatment based on nonadjunctive use of CGM.

Meal boluses, MBnonadj [U], are calculated by the following equation:

MBnonadj =
ˆCHO

CR
+

G̃CGM − Gtarget

CF
(3.18)

where G̃CGM [mg/dl] is the CGM glucose reading at the time of the bolus cor-
rected according to the CGM trend arrow to account for the glucose rate of
change. This correction is performed according to the guideline proposed by
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Scheiner [26]:

G̃CGM =



GCGM i f |ACGM| < 1

GCGM + 25 mg/dl i f ACGM = 1

GCGM − 25 mg/dl i f ACGM = −1

GCGM + 50 mg/dl i f ACGM ≥ 2

GCGM − 50 mg/dl i f ACGM ≤ −2

(3.19)

where GCGM [mg/dl] and ACGM [mg/dl/min] represent the glucose reading
and the trend arrow, respectively, displayed by CGM at the time of bolus cal-
culation. In particular, ACGM is equal to 0 when the trend arrow is flat, ±1,
±2 and ±3 when CGM displays a 45◦ up/down arrow, a 90◦ up/down arrow
and two 90◦ up/down arrows, respectively. Time variability of meal boluses
administration is simulated as for SMBG and adjunctive CGM treatments.

Correction boluses may be triggered in response to CGM high alerts or
CGM routine checks, which the patient is supposed to perform 2 h after each
meal and before sleeping (at 10:00 pm), according to CGM reading and trend
arrow. More precisely, correction boluses are generated if a CGM high alert
goes off, at post-meal checks if CGM reading is above the high alert thresh-
old or at pre-sleep checks, if one of the following two conditions is verified: i)
CGM reading is between 180 mg/dl and 249 mg/dl with flat or rising trend ar-
row, ii) CGM reading is greater or equal than 250 mg/dl regardless of the trend
arrow. All correction boluses are given if at least 2 h passed since last insulin
bolus. The calculation of correction bolus dose, CBnonadj [U], is performed by
the following formula:

CBnonadj =
G̃CGM − Gtarget

CF
· CIOB (3.20)

where G̃CGM is the CGM glucose reading at the time of the bolus corrected
according to the CGM trend arrow as in eq. 3.19.

Hypotreatments are generated in response to CGM low alerts and alarms
or hypoglycemic symptoms. More precisely, a hypotreatment is triggered if
at least 20 min passed since last CHO intake and a CGM alarm goes off, or a
CGM alert goes off and the CGM reading is lower than 70 mg/dl or between
70 mg/dl and 80 mg/dl with decreasing trend arrow. Hypotreatments are
also generated at CGM routine checks (at 10:00 pm and 2 h after meals) if the
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CGM reading is lower than 70 mg/dl or between 70 mg/dl and 80 mg/dl with
decreasing trend arrow. When symptoms of hypoglycemia are present (i.e. BG
is lower or equal than the hypoawareness threshold), if CGM is consistent with
symptoms, i.e. the CGM reading is lower than 70 mg/dl or between 70 mg/dl
and 80 mg/dl with decreasing trend arrow, then a hypotreatment is given, if at
least 15 min passed since last CHO intake. Otherwise, if CGM is not consistent
with symptoms, then a SMBG check is simulated and the treatment decision
is made according to the rules of the SMBG-based treatment. In addition, we
assume that during waking hours (6:00 am – 10:00 pm) the patients with CGM
low alert set at a glucose values greater than 70 mg/dl keep checking their
CGM after the low alert goes off and, when the CGM reading goes below 70
mg/dl, take a hypotreatment if at least 20 min passed since last CHO intake.
During waking hours, after the first hypotreatment, a re-treatment is given
after 20 min if the CGM reading is below 70 mg/dl and current CGM reading
is lower or equal than the previous reading, after 30 min if the CGM reading
is below 70 mg/dl regardless of the glucose rate of change. The amount of the
hypotreatment is set according to the most recent CGM reading and the time
of the day. During waking hours, the hypotreatment amount is set to 15 g if
the CGM reading is greater than 55 mg/dl, 20 g if the CGM reading is lower
or equal than 55 mg/dl. During night, the hypotreatment amount is set to 25
g regardless of the CGM reading and no re-treatment is simulated.

3.5 Use of the comprehensive T1D-DM model: Sim-

ulation of a representative virtual subject’s day

To show its usefulness here we illustrate how the T1D-DM model can deal with
different treatment scenarios in a representative virtual subject. In particular,
Figure 3.13 displays one day with SMBG treatment, adjunctive use of CGM
and nonadjunctive use of CGM. The considered virtual subject, especially, has
impaired awareness of hypoglycemia, with hypoawareness threshold equal to
41 mg/dl (orange horizontal line in Figure 3.13, panel A), does not test post-
meal glucose in the SMBG treatment after any meal, and uses both high and
low glucose alerts in the adjunctive and nonadjunctive CGM treatment sce-
narios, with high alert threshold equal to 200 mg/dl (green horizontal line in
Figure 3.13, panel B) and low alert threshold equal to 80 mg/dl (light blue
horizontal line in Figure 3.13, panel B).
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Figure 3.13: One-day simulation with the T1D-DM model in a representative virtual
subject. Panel A: Simulated BG [mg/dl] for treatments based on SMBG (red solid line),
adjunctive CGM (black dashed line) and nonadjunctive CGM (blue dash-dot line). The
orange horizontal line represents hypoawareness threshold. Panel B: SMBG measure-
ments [mg/dl] used in the SMBG treatment are reported by red circles. SMBG and
CGM measurements [mg/dl] used in the adjunctive CGM treatment are represented
by black triangles and black dashed line, respectively. The CGM trace [mg/dl] used
in the nonadjunctive CGM treatment is the blue dash-dot line. Thresholds of high and
low glucose alert and low glucose alarm are reported by green, light blue and ma-
genta horizontal lines, respectively. Panel C: CGM trend arrow [mg/dl/min] used in
the nonadjunctive CGM treatment scenario. Panel D: Rate of ingested CHO [g/min]
in the SMBG (red solid line), adjunctive CGM (black dashed line) and nonadjunctive
CGM (blue dash-dot line) treatments. Panel E: Insulin boluses [U] in the SMBG (red
solid line), adjunctive CGM (black dashed line) and nonadjunctive CGM (blue dash-
dot line) treatments.
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Panel A reports the subject’s BG concentration [mg/dl] for treatment based
on SMBG (red solid line), adjunctive CGM (black dashed line) and nonadjunc-
tive CGM (blue dash-dot line). The glucose measurements used in each treat-
ment are represented in Figure 3.13, panel B: red circles are the SMBG mea-
surements used in the SMBG treatment, black triangles and black dashed line
are, respectively, the SMBG and CGM measurements used in adjunctive CGM
treatment, while blue dash-dot line is the CGM trace used in the nonadjunctive
CGM treatment. The black line in Figure 3.13, panel C represents the trend ar-
rows used in the nonadjunctive CGM treatment. Insulin boluses [U] and CHO
intake [g/min] returned in output by the patient’s behavior and treatment de-
cisions model are reported in Figure 3.13, panel D and panel E respectively, for
SMBG treatment (red solid line with circles as markers), adjunctive CGM treat-
ment (black dashed line with triangles as markers) and nonadjunctive CGM
treatment (blue dash-dot line with crosses as markers).

In this example, the subject takes 38 g of CHO for breakfast at 06:57 am and
takes an insulin bolus of about 5 U, 9 min before the start of breakfast, based
on a CHO count of 34 g. In the adjunctive CGM treatment, 2 h after breakfast
CGM displays a glucose value of 215 mg/dl that is greater than the high glu-
cose alert threshold. Therefore, the subject tests his BG by SMBG and takes a
correction bolus since the SMBG measurement is 192 mg/dl, thus greater than
180 mg/dl. A correction bolus is taken at the same time also in the nonad-
junctive CGM scenario, because 2 h after breakfast CGM displays a glucose
reading of 215 mg/dl, i.e. above the high alert threshold, and a 45◦ up trend
arrow. In particular, in the nonadjunctive CGM scenario, the calculation of the
correction bolus is performed using the CGM reading increased by 25 mg/dl
to account for the increasing trend arrow. Thanks to the correction bolus, the
subject spends more time in the euglycemic range (70-180 mg/dl) during late
morning in the scenarios using CGM compared to that using SMBG only.

At 12:02 am the subject takes 90 g of CHO for lunch, estimates that the
lunch contains 112 g of CHO and based on this estimate takes a lunch bolus of
about 15 U, 7 min before the start of lunch. In the adjunctive CGM scenario,
the subject checks his BG by SMBG 2 h after lunch, since CGM is displaying a
glucose value greater than the high alert threshold. Based on that, the subject
takes a correction bolus because the SMBG measurement is equal to 191 mg/dl
and, thus, greater than 180 mg/dl. Conversely, in the nonadjunctive CGM
scenario the subject does not take any post-lunch correction bolus, since 2 h
after lunch CGM displays a glucose reading of 220 mg/dl, i.e. above the high
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alert threshold, but with one 90◦ down trend arrow.
In the SMBG scenario, between 03:12 pm and 05:56 pm the subject experi-

ences a long hypoglycemic event, probably because of the overestimation of
lunch CHO content. Nevertheless, the subject does not take any hypotreat-
ment since he/she is not aware of the hypoglycemia being BG above his/her
hypoawareness threshold (the minimum BG level is 46.11 mg/dl).

In the adjunctive CGM scenario, CGM provides a low glucose alert at 03:05
pm, therefore the subject, even if not experiencing hypoglycemic symptoms,
tests BG by SMBG. Since measured SMBG is equal to 67.41 mg/dl, the subject
takes 15 g of CHO to treat the hypoglycemia. After 30 min, the subject sees
that the CGM reading is still below 70 mg/dl and thus re-check his BG by
SMBG. This time SMBG is above 70 mg/dl and the subject does not take any
additional treatment. The total duration of the hypoglycemic event in this
treatment scenario is 37 min.

In the nonadjunctive CGM treatment, CGM provides a low glucose alert at
03:15 pm, but since CGM is displaying a glucose value of 77 mg/dl with flat
trend arrow the subject does not take any hypotreatment and checks his/her
CGM in the next minutes. After 15 min, the CGM reading becomes 69 mg/dl,
thus the subject decides to take a 15-g hypotreatment. Twenty min after the
hypotreatment, the CGM reading is equal to 73 mg/dl, thus above 70 mg/dl,
and the subject does not take any additional treatment. The total duration of
the hypoglycemic event in this scenario is reduced to 25 min.

In the adjunctive CGM scenario, another low glucose alert goes off at 04:50
pm, but the subject after measuring a BG value of 71.35 mg/dl by SMBG de-
cides not to take any hypotreatment. At 07:14 pm the subject takes 60 g of
CHO for dinner and takes an insulin bolus of about 7 U, 1 min after the start
of dinner, without making errors in CHO counting. A pre-sleep check is per-
formed at 10:00 pm by SMBG in the SMBG and adjunctive CGM scenarios, by
CGM in the nonadjunctive CGM scenario. In all the scenarios, measured BG is
in the euglycemic range thus no correction bolus/hypotreatment is taken. The
subject spends the rest of the night in the euglycemic range in all the treatment
scenarios.

3.6 Discussion

In this chapter, a T1D-DM model has been developed, which describes the
T1D patient making treatment decisions based on glucose monitoring data.
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Such a model includes a reliable and validated T1D physiological model, i.e.
the UVA/Padova T1D simulator, which importantly describes the inter-subject
variability of physiology and the intra-subject time-variability of insulin sensi-
tivity. Starting from the glucose concentration profile generated by the physi-
ological model, the T1D-DM model simulates both SMBG and CGM measure-
ments according to SMBG and CGM error models.

A new methodology to derive a model of the PDF of the SMBG measure-
ment error has been proposed, whose main novelties are the multi-zone ap-
proach, which consists in dividing the glucose range into zones with constant-
SD absolute or relative error, and the use of the skew-normal PDF model,
fitted in each identified zone, which allows to describe both symmetric and
asymmetric PDFs. The distribution of outliers, possibly present in the data, is
described by a separately identified exponential PDF. This methodology was
applied to two databases allowing to derive two-zone PDF models of OTU2
and BCN measurement error, which showed significantly better performance
than simpler Gaussian models used in the literature according to goodness-of-
fit tests.

In order to simulate CGM measurements, a model of the CGM sensor error
has been derived for the Dexcom G5 Mobile device by using a recently pro-
posed methodology which takes into account the principal sensor error com-
ponents. This allowed us to derive a mathematical description of one of the
last generation CGM sensors, previously not available in the literature.

Finally, a model of the patient’s behavior in making treatment decisions,
like insulin dosing and treatment of hypoglycemia, has been built. Thanks to
the incorporation of components describing common mistakes made by the
patients in T1D treatment, like errors in CHO counting and meal bolus ad-
ministration time, the model allows to reproduce a realistic treatment scenario.
Specifically, three configurations have been designed for the model, which rep-
resent the patient’s behavior with treatment based on SMBG use, adjunctive
CGM use and nonadjunctive CGM use.

The potential utility of the T1D-DM model has been shown in the example
of Section 3.5, where we illustrated a day of treatment with SMBG, adjunctive
CGM and nonadjunctive CGM use simulated by the T1D-DM model in a rep-
resentative virtual subject. In particular, the example demonstrated that the
T1D-DM model is suitable to perform ISCTs assessing the efficacy of insulin
treatments. Indeed, the model allows to simulate realistic treatment scenarios,
in which both inaccuracy of glucose monitoring devices and patient’s behav-
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ior in making treatment decisions (including mistakes commonly made by pa-
tients in real-life) are properly considered. Importantly, the T1D-DM model
allows to compare different insulin treatments in the same virtual subjects on
the same meal scenario, which would not possible in real-life trials, thus elimi-
nating the influence of possible confounding factors on the effectiveness of the
assessed insulin treatments. The T1D-DM model also overcomes some limita-
tions of the net effect method, like the linearity and the lack of inter- and intra-
subject variability in the model used to describe patient’s physiology, and the
issues deriving from working retrospectively on real data, e.g. impossibility of
updating the patient’s decisions in real-time after a therapy modification and
impossibility of modifying the meal scenario.

Eventually, we would like to remark that T1D-DM model can be used for
several in silico applications. A straightforward application of the T1D-DM
model is the in silico assessment of safety and effectiveness of nonadjunc-
tive CGM use compared to SMBG and adjunctive CGM use, which is object
of Chapter 4.
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Chapter 4

Use of T1D-DM model in an ISCT
to assess safety and efficacy of
nonadjunctive CGM use vs SMBG
and adjunctive CGM use

The T1D-DM model presented in the previous chapter is a suitable tool to de-
velop ISCTs to assess insulin treatments. The model in particular allows to sim-
ulate realistic scenarios by reproducing the behavior of real subjects in making
treatment decisions, including possible mistakes in the therapy such as mis-
calculation of meal CHO content. A direct application of the T1D-DM model
is its use to design ISCTs to assess the safety and effectiveness of nonadjunc-
tive CGM use. In this chapter, a first ISCT based on the T1D-DM model is
designed for comparing nonadjunctive use of CGM vs adjunctive use of CGM
and standard SMBG treatment in a population of virtual subjects reflecting the
characteristics of a general population of T1D subjects 1.

4.1 Design of the ISCT

A two-week simulation is performed in the population of 100 T1D adult vir-
tual subjects of the UVA/Padova T1D simulator with three treatment scenar-
ios: standard treatment based on SMBG, adjunctive use of CGM and nonad-
junctive use of CGM. In particular, SMBG and CGM measurements are sim-
ulated using the model of measurement error derived for the BCN and the

1This chapter is part of the work [92].
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Dexcom G5 Mobile, respectively, as described in the previous chapter. The pa-
rameters characterizing the virtual subjects’ behavior concerning meals, use of
SMBG/CGM and insulin therapy are set in order to reflect the behavior of a
general population of T1D subjects, as described in Subsection 4.1.1.

4.1.1 Setting of simulation parameters

Three meals per day are randomly generated for each subject assuming meal
time uniformely distributed in the interval 06:30 am – 08:00 am for breakfast,
11:30 am – 01:00 pm for lunch, 06:30 pm – 08:00 pm for dinner. Meal amount
is randomly sampled from a uniform distribution with mean and SD derived
from data published by Brazeau et al. [93]. In particular, mean±SD of the
distribution of meal amount is 58.2±22.5 for breakfast, 77.7±27.0 for lunch,
83.9±32.3 for dinner.

According to evidences reported by Geddes et al. [94], we assume that the
25% of virtual subjects has impaired awareness of hypoglycemia, i.e. they start
feeling the symptoms of hypoglycemia at a glucose level lower than normal,
while the remaining 75% presents normal awareness of hypoglycemia. The
hypoawareness threshold is randomly selected in the range 40-50 mg/dl for
patients with impaired awareness of hypoglycemia, 50-60 mg/dl for patients
with normal awareness of hypoglycemia according to Fanelli et al. [95], where
the hypoawareness threshold was assessed by stepped hypoglycemia clamp
in normal subjects and subjects with impaired awareness of hypoglycemia.

When the SMBG-based treatment is simulated, in all subjects SMBG mea-
surements are generated at the beginning of each meal for the calculation of
meal boluses and at 10:00 pm for pre-sleep checks. In addition, post-meal
SMBG checks are simulated 2 h after meals in a fraction of subjects, accord-
ing to data about frequency of SMBG testing reported in the literature. In par-
ticular, according to Cariou et al. [96], the 33% of subjects tests more than 5
times per day, while in the T1D Exchange [97], 7% of the subjects reports hav-
ing tested more than 9 times per day before starting using CGM. Considering
that the first 5 tests per day are likely related to pre-meal boluses, pre-sleep
check, exercise and hypoglycemia treatments, we assume that post-meal tests
are performed in 33% of the subjects, and in particular, 7% of the subjects tests
after 3 meals per day, 13% after 2 meals per day (randomly chosen) and 13%
after 1 meal per day (randomly chosen).

Concerning CGM high and low alert thresholds, the Dexcom G5 Mobile
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system has default alert settings at 200 mg/dl (high alert) and 80 mg/dl (low
alert) [17]. However, users often customize alert settings based on their needs.
The distribution of alert settings in our virtual subject population was sim-
ulated by exploiting data (gathered by Dexcom, Inc.) about alert thresholds
used by actual Dexcom G5 Mobile users (technical support repository data be-
tween August 2014 and May 2015). Based on these data, the low alert threshold
is set to 70 mg/dl and 80 mg/dl for 26% and 60% of virtual subjects respec-
tively, while the remaining 14% of the virtual subjects does not use the low
alert but only uses the 55 mg/dl alarm. The high alert threshold is set to 180,
200, 250, 300, 350 and 400 mg/dl for 21%, 27%, 24%, 14%, 3% and 1% of the
subjects respectively, while the remaining 10% of the subjects does not use the
high alert.

Therapy parameters CR, CF and basal daily insulin (BDI) have been calcu-
lated for each subject by using the guidelines by Davidson et al. [6] based on
patient body weight (BW) [lb] and total daily insulin (TDI) [U]:

CR = 2.8 · BW
TDI

(4.1)

CF =
1700
TDI

(4.2)

BDI = 0.47 · TDI (4.3)

The TDI of each subject is calculated using the optimal values of CR and BDI
provided by the UVA/Padova T1D simulator for each subject, CRopt [g/U]
and BDIopt [U], assuming an average daily carb dose of 220 g:

TDI =
220g

CRopt + BDIopt
(4.4)

Target BG, Gtarget in eq. 3.16, 3.17, 3.18 and 3.20, is set to the basal glucose level
provided by the UVA/Padova T1D simulator for each subject.

Eventually, it is important to note that for each subject SMBG use, adjunc-
tive CGM use and nonadjunctive CGM use are compared over the same meal
scenario, i.e. the same realization of meals’ amount, time, CHO counting error
and bolus time error is simulated for the three treatments. Also the hypoaware-
ness threshold and the other therapy parameters are the same in the three
treatments when the same subject is considered. Moreover, for each subject re-
alizations of CGM sensor error are the same in treatments based on adjunctive
CGM and nonadjunctive CGM. In this way, we ensure that when comparing

71



4 Use of T1D-DM model in an ISCT to assess safety and efficacy of
nonadjunctive CGM use vs SMBG and adjunctive CGM use

the three treatments, differences in the glycemic outcomes are only generated
by the different treatments tested and are not influenced by other confounding
factors.

4.2 Metrics

The nonadjunctive use of CGM for T1D treatment is compared to use of SMBG
only, and adjunctive CGM based on glycemic outcomes commonly used to as-
sess glycemic control in T1D. In particular, per each subject five time-related
outcomes are assessed, i.e. time spent between 70 mg/dl and 180 mg/dl
(T70−180) [h/day], below 70 mg/dl (T<70) [min/day], below 50 mg/dl (T<50)
[min/day], above 180 mg/dl (T>180) [h/day] and above 250 mg/dl (T>250)
[h/day]. The use of these outcomes was recently recommended by the Ju-
venile Diabetes Research Foundation for the assessment of glycemic control
in artificial pancreas studies [98]. A paired two-tailed sign test is then per-
formed to determine if statistically significant differences are present between
median outcomes of nonadjunctive CGM treatment vs SMBG and nonadjunc-
tive vs adjunctive CGM treatment. In addition, the year rate of events below
70 mg/dl and 50 mg/dl, defined as the total number of events below 70 mg/dl
and 50 mg/dl normalized per subject per year, is also assessed and compared
between treatments, as well as the duration [min] of events below 70 mg/dl
and 50 mg/dl.

All the metrics are first assessed in the entire monitoring period and then
separately on day 1 of CGM monitoring (i.e. on first and eighth day of our
14-day simulation), being the first 12-24 hours after sensor insertion the most
critical for CGM sensor accuracy due to the foreign body response [36].

4.3 Results

Results of the ISCT are shown in this section. First, in Subsection 4.3.1 the
clinical outcomes obtained with treatment based on adjunctive CGM use are
compared to outcomes of a real database in order to understand if the T1D-
DM model is able to well reproduce the glycemic variability observed on real
data. Then, in Subsection 4.3.2 clinical outcomes achieved by nonadjunctive
use of CGM are compared to those achieved by SMBG use and adjunctive use
of CGM to determine if CGM can safely substitute SMBG in T1D treatment.
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4.3.1 Adjunctive CGM: comparison with real data

To determine if the T1D-DM model is able to well reproduce the real-life be-
havior of a general T1D population, glycemic outcomes obtained in the sce-
nario with adjunctive CGM use are compared to those calculated in a database
(courtesy of Dexcom, Inc.) collected in 51 subjects using CGM in adjunct to
SMBG [39]. In this database, which was also used for SMBG and CGM model
derivation (see Section 3.2.1 and Section 3.3.1), the 51 participants wore the
Dexcom G5 Mobile system for 7 days and used the BCN SMBG device to
collect confirmatory fingersticks and calibrate the CGM sensor (twice a day).
Since the original purpose of this study was to evaluate the accuracy of the
Dexcom G5 Mobile, the data set also includes high-accuracy and precision YSI
measurements that were recorded in 12-hour clinical sessions, during which
insulin doses and CHO intake were manipulated in order to have CGM mea-
surements in a wide range of BG concentration, including severe
hyper/hypoglycemia.

The glycemic outcomes described in Section 4.2 are assessed on the 51 CGM
traces collected in this database, removing from the analysis the portion of
data recorded during YSI clinical sessions, since the manipulations performed
in clinic, which include induced hypo/hyperglycemia, would affect glycemic
outcomes. In addition, day 1 of monitoring is also removed from the assess-
ment because notably CGM is less accurate in day 1 than in the rest of the
sensor life, thus significantly high/low CGM values in day 1 may be the result
of bias in the sensor measurements rather than actual high/low BG values.

Median and interquartile range of T70−180, T<70, T<50, T>180 and T>250 are
reported in Table 4.1 for the BG profiles obtained by the T1D-DM model with
adjunctive CGM use (second column) and the CGM traces of the real database
(third column). A good agreement between simulation and data is achieved
for all the metrics, except T<70 which is significantly lower in simulated BG
profiles. A two-tailed Wilkoxon test is applied to determine if medians of time-
related clinical outcomes obtained from our simulations with treatment based
on adjunctive use of CGM are statistically significantly different from those
obtained from data. P-values are reported in the fourth column of Table 4.1.
The only statistical significant difference is found for T<70 (p-value=0.0066),
while no statistically significant difference is found for the other outcomes (p-
value>0.05).

Rate and duration of events below 70 mg/dl and below 50 mg/dl are also
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Table 4.1: Median (interquartile range) of metrics T70−180, T<70, T<50, T>180 and T>250
calculated from the BG profiles simulated by the T1D-DM model with adjunctive
CGM use (second column) and from the CGM traces of a real database (third col-
umn). P-values resulting from the two-tailed Wilkoxon test are reported in the forth
column.

Metric T1D-DM model Real data P-value

T70−180 15.82 15.82 0.5800
[h/day] (13.69 - 18.10) (12.55 - 17.63)

T<70 24.36 44.90 0.0066
[min/day] (10.82 - 50.10) (15.66 - 85.12)

T<50 1.97 2.97 0.6620
[min/day] (0.00 - 7.93) (0.00 - 10.58)

T>180 7.47 7.28 0.5853
[h/day] (5.38 - 9.93) (4.16 - 10.27)

T>250 1.75 1.67 0.9783
[h/day] (0.93 - 2.65) (0.59 - 4.25)

compared between simulation and data. As reported in Table 4.2, 518 events
below 70 mg/dl per year with 30-min median duration and 112 events below
50 mg/dl per year with 25-min median duration are observed in CGM data.
On simulated data, 229 events below 70 mg/dl per year with median duration
of 51 min are identified and 99 events below 50 mg/dl with median duration
of 23 min. While a good agreement is achieved for rate and duration of events
below 50 mg/dl, events below 70 mg/dl are more frequent on data but with
shorter duration.

In conclusion, glycemic outcomes related to euglycemia, hyperglycemia,
severe hyperglycemia and severe hypoglycemia of BG profiles obtained by
the T1D-DM model well match the outcomes calculated on CGM traces in the
database we analyzed. The only difference is found in metrics related to hy-
poglycemia (T<70, rate and duration of events below 70 mg/dl). A possible
reason for this discrepancy could be that, despite including many sources of
errors in the T1D treatment like miscalculation of meal CHO content and er-
rors in meal bolus time and therapy parameters (CR, CF and BDI), the T1D-DM
model, and in particular the UVA/Padova T1D simulator, still does not include
some contributors of real-life glycemic variability, like physical exercise, which
are known to increase the risk of hypoglycemia. However, the discrepancy on
these metrics is not critical for drawing solid conclusions from the simulation
scenarios we designed. In fact, the lower rate of both time below 70 mg/dl and
rate of events below 70 mg/dl influences both SMBG-based and CGM-based
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Table 4.2: Rate [events/year] and median (interquartile range) of duration [min] of
events below 70 mg/dl and 50 mg/dl in BG profiles simulated by the T1D-DM model
with adjunctive CGM use (third column) and in CGM traces of a real database (fourth
column).

Metric T1D-DM model Real data

Rate 229 518Events below [events/year]
70 mg/dl Duration 51 30

[min] (40.25 - 63) (10 - 55)

Rate 99 112Events below [events/year]
50 mg/dl Duration 23 25

[min] (16 - 33) (10 - 40)

treatments in the same way, and thus does not affect our results on the com-
parison of SMBG-based and CGM-based treatments simulated by the T1D-DM
model.

4.3.2 Nonadjunctive CGM use vs SMBG use and adjunctive

CGM use

In this subsection the glycemic outcomes resulting from treatments based on
SMBG use, adjunctive CGM use and nonadjunctive CGM use are compared.
The aim is to understand if nonadjunctive CGM use is as safe as SMBG use and
adjunctive CGM use. Results are analyzed first considering the entire period
of CGM monitoring, and then focusing on day 1 of CGM monitoring, which
represents the worst case for CGM accuracy.

Entire CGM monitoring period

The distribution of time-related glycemic outcomes calculated over the entire
CGM monitoring period (days 1-14 of simulation), using the 100 virtual sub-
jects’ BG profiles, is shown in Figure 4.1 via a boxplot representation in which
the horizontal red line represents the median, the blue box the interquartile
range, black dashed lines the whiskers and red crosses the outliers. In particu-
lar, the distribution of T70−180, T<70, T<50, T>180 and T>250 is reported in panel
A, B, C, D and E, respectively, for SMBG use (left), adjunctive CGM use (mid-
dle) and nonadjunctive CGM use (right). This representation shows that the
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Table 4.3: Metrics T70−180, T<70, T<50, T>180 and T>250 calculated for treatments based
on SMBG, adjunctive CGM use and nonadjunctive CGM use simulated for two-weeks
in 100 adult virtual subjects by the T1D-DM model. Median (interquartile range) of
the outcomes is reported in columns 2-4. P-values of the paired two-tailed sign test
comparing nonadjunctive CGM use vs SMBG use and nonadjunctive CGM use vs
adjunctive CGM use are reported in columns 5-6.

Metric
SMBG adj CGM nonadj CGM P-value P-value

(A) (B) (C) C vs A C vs B

T70−180 15.00 15.82 15.69
<0.00001 0.76418

[h/day] (12.64-17.52) (13.69-18.10) (13.65-17.98)

T<70 26.93 24.36 19.64
<0.00001 <0.00001

[min/day] (12.39-63.43) (10.82-50.10) (8.21-44.11)

T<50 2.72 1.97 1.50
0.00002 0.01866

[min/day] (0.00-11.61) (0.00-7.93) (0.00-6.39)

T>180 8.51 7.47 7.92
0.00004 0.01241

[h/day] (5.80-10.87) (5.38-9.93) (5.35-9.98)

T>250 2.06 1.75 1.78
<0.00001 0.01543

[h/day] (1.06-3.06) (0.93-2.65) (0.92-2.63)

use of CGM (both adjunctive and nonadjunctive) drives to a reduction of the
time spent below 70 mg/dl, below 50 mg/dl, above 180 mg/dl and above 250
mg/dl and an increase of time spent in the euglycemic range (70-180 mg/dl),
compared to the use of SMBG. If we compare adjunctive CGM use to nonad-
junctive CGM use, no difference is visible in the distribution of T70−180, T>180

and T>250, while T<70 and T<50 are concentrated to smaller values with non-
adjunctive CGM use.

Median and interquartile range (in brackets) of time-related outcomes are
reported in Table 4.3 for the three treatment scenarios. In particular, the non-
adjunctive use of CGM (fourth column of Table 4.3), compared to SMBG (sec-
ond column of Table 4.3), increases median T70−180 from 15.00 h/day to 15.69
h/day, reduces median T<70 from 26.93 min/day to 19.64 min/day, almost
halves median T<50 reducing it from 2.72 min/day to 1.5 min/day, decreases
median T>180 from 8.51 h/day to 7.92 h/day and T>250 from 2.06 h/day to 1.78
h/day. The paired two-tailed sign test, with 5% significance level, detects sta-
tistically significant differences between nonadjunctive CGM use and SMBG
use for all the outcomes considered (p-values reported in the fifth column of
Table 4.3).

Compared to adjunctive CGM use, nonadjunctive use of CGM drives to
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Figure 4.1: Boxplot of T70−180 (panel A), T<70 (panel B), T<50 (panel C), T>180 (panel
D) and T>250 (panel E) for treatments based on SMBG (left), adjunctive CGM use (mid-
dle) and nonadjunctive CGM use (right) simulated for two weeks in 100 adult virtual
subjects by the T1D-DM model.
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Table 4.4: Rate [events/year] and median (interquartile range) of the duration [min]
of events below 70 mg/dl and below 50 mg/dl obtained in 100 virtual subjects simu-
lated for two weeks with treatment based on SMBG, CGM adjunctive use and CGM
nonadjunctive use.

Metric SMBG adj CGM nonadj CGM

Rate 225 229 206Events below [events/year]
70 mg/dl Duration 56 51 50

[min] (45 - 73) (40.25 - 63) (36 - 62)

Rate 128 99 84Events below [events/year]
50 mg/dl Duration 26.5 23 22

[min] (19 - 35) (16 - 33) (14 - 32)

equivalent median time T70−180 and median T>250, slightly higher median T>180

(7.47 h/day with adjunctive use, 7.92 h/day with nonadjunctive use), but
lower median T<70 (24.36 min/day with adjunctive use, 19.64 min/day with
nonadjunctive use) and T<50 (1.97 min/day with adjunctive use, 1.5 min/day
with nonadjunctive use). Such differences are because in the treatment based
on nonadjunctive use of CGM, which includes the use of trend arrows, the
treatment of hyperglycemia is less aggressive and the treatment of
hypoglycemia is more preventing. Indeed, in this treatment, when the CGM
reading is between 180 mg/dl and 250 mg/dl correction boluses are given
only if the trend arrow is flat or upward, and when CGM reading is between
80 mg/dl and 70 mg/dl hypotreatments are given if the trend arrow is down-
ward. Conversely, in the treatment based on adjunctive CGM use, correction
boluses and hypotreatments are given when SMBG measurements are above
180 mg/dl and below 70 mg/dl, respectively, regardless of the trend arrow. P-
values obtained by the paired two-tailed sign test between median outcomes
with adjunctive CGM use and nonadjunctive CGM use are reported in the
sixth column of Table 4.3. No statistically significant difference is found in
median T70−180 (p-value>0.05), but statistically significant differences in T<50,
T<70, T>180 and T>250 are found (p-value<0.05).

Finally, in Table 4.4 we report the rate [events/year] of events below 70
mg/dl and events below 50 mg/dl and the median and the interquartile range
(in brackets) of their duration [min], for the three treatment scenarios con-
sidered. Compared to SMBG, nonadjunctive use of CGM reduces both the
rate and the median duration of events below 70 mg/dl and events below 50
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mg/dl, with best results achieved for events below 50 mg/dl, whose rate and
median duration are reduced of about 34% and 17%, respectively. Compared
to adjunctive CGM use, the nonadjunctive use of CGM drives to equivalent
duration but significantly lower rate of both events below 70 mg/dl (event
rate reduced from 229 events/year to 206 events/year) and events below 50
mg/dl (event rate reduced from 99 events/year to 84 events/year).

Day 1 of CGM monitoring

Since CGM sensors generally present the worst performance in the first day
of monitoring, because of the immune response to the sensor insertion and
difficulty in sensor calibration, here the metrics obtained with the three treat-
ments under test are separately assessed on day 1 of CGM monitoring (days
1 and 8 of the entire simulation period). In Figure 4.2 the boxplot of T70−180

(panel A), T<70 (panel B), T<50 (panel C), T>180 (panel D) and T>250 (panel E),
evaluated on day 1 of CGM monitoring, are reported for treatment based on
SMBG use (left), adjunctive CGM use (middle) and nonadjunctive CGM use
(right). From this representation we can observe that nonadjunctive use of
CGM drives to an improvement of the time spent in euglycemia (T70−180) and
severe hypoglycemia (T<50) compared to both SMBG use and adjunctive use
of CGM. Compared to SMBG, the use of CGM allows to improve time in hy-
poglycemia (T<70) with similar performance for adjunctive and nonadjunctive
use. Finally, metrics related to hyperglycemia (T>180 and T>250) with nonad-
junctive use of CGM are slightly worsen in comparison to adjunctive CGM
use, but anyway improved compared to SMBG use.

In Table 4.5 the median and the interquartile range (in brackets) of time-
related glycemic outcomes, calculated on day 1 of CGM monitoring, are re-
ported for SMBG use (second column), adjunctive CGM use (third column)
and nonadjunctive CGM use (fourth column). In particular, both median and
interquartile range of metrics with nonadjunctive use of CGM are improved
compared to SMBG treatment. The improvement is found statistically signif-
icant (p-value<0.05), according to paired two-tailed sign test, for all the out-
comes except for T>180 for which no statistically significant difference is found
between nonadjunctive CGM use and SMBG use (see p-values reported in the
fifth column of Table 4.5). Compared to adjunctive use of CGM, nonadjunctive
CGM use drives to similar median and interquartile range of metrics T70−180,
T<70, T>180, T>250 and equal median but significantly reduced interquartile
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Figure 4.2: Boxplot of T70−180 (panel A), T<70 (panel B), T<50 (panel C), T>180 (panel
D) and T>250 (panel E) calculated on day 1 of CGM monitoring for treatments based
on SMBG (left), adjunctive CGM use (middle) and nonadjunctive CGM use (right)
simulated for two weeks in 100 adult virtual subjects by the T1D-DM model.
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Table 4.5: Metrics T70−180, T<70, T<50, T>180 and T>250 calculated on day 1 of CGM
monitoring for treatments based on SMBG, adjunctive CGM use and nonadjunctive
CGM use, simulated for two-weeks in 100 adult virtual subjects by the T1D-DM
model. Median (interquartile range) of the outcomes is reported in columns 2-4. P-
values of the paired two-tailed sign test comparing nonadjunctive CGM use vs SMBG
use and nonadjunctive CGM use vs adjunctive CGM use are reported in columns 5-6.

Metric
SMBG adj CGM nonadj CGM P-value P-value

(A) (B) (C) C vs A C vs B

T70−180 14.66 16.07 15.79
0.00194 0.19360

[h/day] (12.57-17.67) (13.22-18.27) (13.93-18-09)

T<70 29 23.50 23.00
0.00954 0.34247

[min/day] (0.00-62.50) (0.00-52.00) (0.00-48.50)

T<50 0.00 0.00 0.00
0.00126 0.87463

[min/day] (0.00-16.25) (0.00-14.00) (0.00-9.00)

T>180 8.61 7.49 7.74
0.05743 0.08913

[h/day] (5.70-11.05) (5.15-9.90) (5.63-9.92)

T>250 2.08 1.88 1.80
0.01240 0.04701

[h/day] (0.88-3.40) (0.79-3.04) (0.88-3.18)

Table 4.6: Rate [events/year] and median (interquartile range) of the duration [min]
of events below 70 mg/dl and below 50 mg/dl obtained in day 1 of CGM monitor-
ing in 100 virtual subjects simulated for two weeks with treatment based on SMBG,
adjunctive CGM use and nonadjunctive CGM use.

Metric SMBG adj CGM nonadj CGM

Rate 254 248 232Events below [events/year]
70 mg/dl Duration 56 50 50

[min] (44 - 68.75) (41 - 62) (37.25 - 60)

Rate 135 106 102Events below [events/year]
50 mg/dl Duration 29.5 26.5 23

[min] (20 - 37) (18 - 33) (16 - 30)

range of T<50. The only statistically significant difference on median outcomes
is detected for T>250 (see p-values reported in the sixth column of Table 4.5).

Eventually, in Table 4.6 the year rate and the median and the interquar-
tile range of duration [min] of events below 70 mg/dl and events below 50
mg/dl are reported for the three treatments tested. Concerning events below
70 mg/dl, nonadjunctive CGM use allows to reduce the number of events per

81



4 Use of T1D-DM model in an ISCT to assess safety and efficacy of
nonadjunctive CGM use vs SMBG and adjunctive CGM use

year compared to both SMBG and adjunctive CGM use, while the median du-
ration of events is equal between adjunctive and nonadjunctive use of CGM
and reduced compared to standard treatment based on SMBG. With regard to
events below 50 mg/dl, nonadjunctive CGM use drives to reduced year rate
and event duration compared to SMBG treatment and treatment with adjunc-
tive use of CGM.

4.4 Summary outcome of the ISCT

To summarize, this ISCT demonstrated that, in a population of 100 adult vir-
tual subjects which reflects the characteristics of a general population of T1D
adults, nonadjunctive CGM use is safe and effective in improving glycemic
control compared to standard SMBG treatment, driving to an increase of the
time spent in euglycemia, and a reduction of the time spent in hypoglycemia
and hyperglycemia. Of note, both the year rate and the duration of events
below 50 mg/dl and 70 mg/dl are reduced compared to SMBG use.

The trial also demonstrated that nonadjunctive CGM use drives to equiva-
lent time in euglycemia, slightly increased time in hyperglycemia but reduced
time in hypoglycemia compared to adjunctive use of CGM, suggesting that
nonadjunctive CGM use is as safe as adjunctive CGM use and thus CGM can
safely replace SMBG for making T1D treatment decisions.

These considerations still hold when glycemic control is separately assessed
in day 1 of CGM monitoring, thus suggesting that CGM can be safely used
nonadjunctively also in the first day after sensor insertion.
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Chapter 5

Use of T1D-DM model in ISCT to
assess the influence of alert settings
on nonadjunctive CGM use

In this chapter, the T1D-DM model is used to design a second ISCT whose aim
is to assess how the setting of customized high and low glucose alert influ-
ences the glycemic control achieved by nonadjunctive CGM use compared to
standard treatment based on SMBG.

5.1 Design of the ISCT

Simulations are performed on the 100 adult virtual subjects of the UVA/Padova
T1D simulator over a two-week period. Two treatments are compared: stan-
dard treatment based on SMBG with 4 different frequencies of post-meal checks
vs nonadjunctive use of CGM with 21 different alert settings. The final aim is
to identify if for certain combinations of high and low glucose alert threshold
nonadjunctive use of CGM introduces additional risks compared to standard
SMBG treatment. As in the ISCT of Chapter 4, SMBG and CGM measurements
are simulated using the error models of BCN and the Dexcom G5 Mobile, re-
spectively, derived in Chapter 3.

5.1.1 Setting of simulation parameters

Three meals per day are simulated sampling meals’ amount and time as in
the previous ISCT. As already mentioned, the SMBG treatment is repeated for
all the subjects with 4 different number of post-meal checks per day (PMC),
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i.e. 0, 1, 2 or 3. In case of PMC lower than 3, meals with post-meal checks
are randomly selected. As in the previous ISCT, pre-sleep SMBG checks are
also simulated every day at 10:00 pm. Note that the 4 repetitions of SMBG
treatment differs for the frequency of post-meal checks only. The realizations
of SMBG error, meals’ amount, time, CHO counting error and bolus time error
as well as all the other simulation parameters remain the same when the same
subject is considered. This allows us to isolate the effect of post-meal check
frequency on SMBG treatment performance.

The nonadjunctive CGM use is repeated for 21 representative alert settings
derived by combining 3 values for the low alert (LA) threshold, i.e. 80 mg/dl,
70 mg/dl, and 55 mg/dl, and 7 values for the high alert (HA) threshold, i.e.
180 mg/dl, 200 mg/dl, 250 mg/dl, 300 mg/dl, 350 mg/dl, 400 mg/dl or not
used. It is useful to remark that we do not investigated the use of LA thresh-
olds lower than 55 mg/dl, because in the Dexcom G5 Mobile system, even
when the LA is not used, the low glucose alarm set at 55 mg/dl is still active.
Therefore, the case with LA set to 55 mg/dl actually includes all the cases in
which the LA is set to values lower than 55 mg/dl or not used. Note that at
each repetition we only change the value of alert thresholds, while the other
simulation parameters and realizations of CGM sensor error, meals’ amount,
time, CHO counting errors and bolus time errors remain exactly the same, let-
ting us isolate the effect of alert settings on nonadjunctive CGM performance.

Therapy parameters are set as in the previous ISCT, thus CR, CF, BDI are
calculated according to guidelines by Davidson et al. [6] and Gtarget is set to
the basal BG value specific of each virtual subjects.

Finally, all the simulations are repeated twice, first assuming that subjects
present a normal awareness of hypoglycemia, then assuming subjects suffer
from impaired awareness of hypoglycemia. In the first case, the threshold of
hypoglycemia awareness is uniformely sampled in the interval 50-60 mg/dl,
while in the second case in the interval 40-50 mg/dl. This allows us to analyze
nonadjunctive CGM use performance also in the population of subject with
impaired awareness of hypoglycemia which present the highest risk of severe
hypoglycemia.

Overall, 50 simulations [(4 repetitions of SMBG treatment + 21 repetitions
of CGM treatment) x 2 hypoawareness states] are performed per subjects, for
a total of 5.000 two-week simulations. Note that the meal scenario, including
meals’ time, amount, CHO counting errors and meal bolus time error, is fixed
for each subjects. In this way, for each subject, SMBG and nonadjunctive CGM
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use are compared over the same meal scenario, ensuring that differences in
glycemic outcomes are only caused by the different treatment used and not by
other confounding factors.

5.2 Metrics

The glycemic control achieved in each virtual subject by the treatments under
test is assessed by evaluation of T70−180, T<70, T<50, T>180 and T>250. In ad-
dition for each subject we also calculate ∆T70−180 [h/day], ∆T<70 [min/day],
∆T<50 [min/day], ∆T>180 [h/day] and ∆T>250 [h/day], i.e. the difference be-
tween T70−180, T<70, T<50, T>180 and T>250 with treatment based on nonad-
junctive CGM use and the same metrics with worst-case SMBG treatment.
More precisely, for each metric related to the time spent in a certain zone of
the glycemic range we identify among the four post-meal check frequencies
tested with SMBG treatment the one that represents the worst case for SMBG
treatment. Our expectation is that PMC equal to 0 represents the worst case
for T>180, T>250 and T70−180, while PMC equal to 3 represents the worst case
for T<70 and T<50. Then, for each alert setting tested, the difference between
the metric with nonadjunctive CGM use and the worst-case SMBG treatment
is calculated. A paired sign test on the median is also applied to determine if
differences observed between the metrics are statistically significant. Finally,
the alert settings that drives to statistically significant deterioration of metrics
with nonadjunctive CGM use compared to worst-case SMBG treatment are
identified.

The analysis is performed separately in the population with normal and
impaired awareness of hypoglycemia. First the assessment is performed in the
entire CGM monitoring period, then separately on day 1 of CGM monitoring,
being this day the most critical for CGM accuracy.

5.3 Results

Results of the ISCT designed for assessing the influence of alert settings on
safety and effectiveness of nonadjunctive CGM use are presented in this sec-
tion, first for the entire CGM monitoring period, then separately for day 1 of
CGM monitoring (i.e. days 1 and 8 of simulation).
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5.3.1 Entire CGM monitoring period

In Figure 5.1, panels from top to bottom report the median values of metrics
T70−180, T<70, T<50, T>180 and T>250 calculated in 100 adult virtual subjects
with normal (left) and impaired (right) awareness of hypoglycemia simulated
over a two-week period. In particular, in each panel of Figure 5.1, the red
horizontal lines represent metric’s median value for the SMBG treatment with
PMC equal to 0 (solid line), 1 (dashed line), 2 (dash-dot line) and 3 (dotted
line), while the blue curves represent the metric’s median value obtained using
CGM nonadjunctively with LA threshold equal to 80 mg/dl (dashed line with
squared markers), 70 mg/dl (solid line with circular markers) and 55 mg/dl
(dotted line with triangular markers), on varying HA threshold (values on the
x-axis). Median values of metrics T70−180, T<70, T<50, T>180 and T>250 obtained
for SMBG treatment with different PMC are also reported in Table 5.1 and Ta-
ble 5.2, together with the interquartile range (in brackets), for subjects with
normal and impaired awareness of hypoglycemia, respectively. In Table 5.3
and Table 5.4 median and interquartile range (in brackets) of outcomes ob-
tained for nonadjunctive CGM use with different settings of LA and HA is
tabulated for subjects with normal and impaired awareness of hypoglycemia,
respectively.

From the representation of Figure 5.1 it is immediate to note that, when
CGM is used nonadjunctively, the HA threshold mainly influences metrics
T70−180, T>180 and T>250, while not affecting metrics T<70 and T<50, whose
curves on varying HA threshold appear flat. A complementary behavior is
obtained for the LA threshold, which mainly influences metrics T<70 and T<50,
without showing any impact on metrics T70−180, T>180 and T>250, as demon-
strated by the overlapping of these metrics’ curves with different values of LA
threshold.

Looking at Figure 5.1, we can also observe that, both in the SMBG treat-
ment and in the treatment based on nonadjunctive CGM use, the level of hy-
poglycemia awareness only affects metrics T<70 and T<50, while T70−180, T>180

and T>250 present a similar pattern in the populations with normal and im-
paired awareness of hypoglycemia.

If we compare nonadjunctive CGM use to SMBG use, we can make the
following observations. First of all, median T70−180 is improved compared to
best case with SMBG, i.e. SMBG with PMC=3, only when HA threshold is
180 mg/dl or 200 mg/dl. By increasing HA threshold, T70−180 progressively
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decreases till becoming lower than that obtained with worst-case SMBG treat-
ment, i.e. SMBG treatment with PMC=0, when HA is greater or equal than
350 mg/dl. Similar observations can be made for metrics T>180 and T>250. In
particular, for low values of HA threshold, like 180 mg/dl and 200 mg/dl,
T>180 with nonadjunctive CGM use is lower than best case with SMBG, i.e.
SMBG with PMC=3, and then progressively increases with HA threshold, till
becoming equivalent to or slightly higher than worst-case with SMBG when
HA threshold is greater than 350 mg/dl. The behavior of T>250 is very simi-
lar with the only difference that T>250 with nonadjunctive CGM use becomes
greater than best case with SMBG, i.e. SMBG with PMC=3, only for HA greater
than 250 mg/dl.

Concerning metrics related to hypoglycemia, in the population with nor-
mal awareness of hypoglycemia, T<70 with nonadjunctive CGM use and LA
threshold equal to 55 mg/dl results equivalent to best case with SMBG treat-
ment, i.e. SMBG with PMC=0. When LA is equal to 70 mg/dl or 80 mg/dl,
T<70 with nonadjunctive CGM use is significantly lower than T<70 in the best-
case SMBG scenario, with small differences between LA equal to 70 mg/dl and
80 mg/dl. In the population with normal awareness of hypoglycemia, median
T<50 is very close to 0 both in SMBG and CGM treatment (slightly smaller val-
ues are obtained with CGM treatment and LA threshold equal to 80 mg/dl and
70 mg/dl), since in this population symptoms of hypoglycemia appears at glu-
cose levels greater than 50 mg/dl, thus allowing the patient to act to prevent
severe hypoglycemia even in the SMBG treatment where LA is not available.

In the population with impaired awareness of hypoglycemia, median val-
ues of both T<70 and T<50 are significantly reduced with nonadjunctive CGM
use compared to best case with SMBG for all the values of LA threshold. In-
deed, in this population symptoms of hypoglycemia appears at glucose levels
lower than 50 mg/dl, thus the use of LA, even when set to 55 mg/dl, allows
to reduce the incidence of severe hypoglycemia compared to the SMBG treat-
ment. Also in this population not significant differences are visible in median
T<70 and T<50 with LA threshold equal to 70 mg/dl and 80 mg/dl. The reason
is that according to the behavioral rules of nonadjunctive CGM use adopted
for hypoglycemia treatment (see Section 3.4.3), when LA is set to 80 mg/dl,
the patient takes a hypotreatment after a LA goes off only if CGM is display-
ing a downward trend arrow, otherwise the patient waits till CGM reads a
glucose values lower than 70 mg/dl before treating.
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Figure 5.1: Panels from top to bottom show the median of metrics T70−180, T<70, T<50,
T>180 and T>250 calculated in 100 adult virtual subjects with normal (left) and impaired
(right) awareness of hypoglycemia. In each panel, red horizontal lines represent the
metric’s median value when SMBG treatment is used with PMC equal to 0 (solid line),
1 (dashed line), 2 (dash-dot line) and 3 (dotted line). Blue curves represent metric’s
median value obtained for nonadjunctive CGM use on varying HA threshold with LA
threshold equal to 80 mg/dl (dashed line with squared markers), 70 mg/dl (solid line
with circular markers) and 55 mg/dl (dotted line with triangular markers).
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Table5.1: Median(interquartilerange)of metrics T70−180(secondcolumn),T<70
(thirdcolumn),T<50(fourthcolumn),T>180(fifthcolumn),T>250(sixthcolumn)ob-
tainedin100adultvirtualsubjectswithnormalawarenessofhypoglycemiasimu-
latedfortwoweekswithtreatmentbasedonSMBGanddifferentnumberofpost-meal
checksperday(firstcolumn).

PMC T70 180 T<70 T<50 T>180 T>250
[h/day] [min/day] [min/day] [h/day] [h/day]

3
15.95 34.32 2.07 7.63 1.98

(13.50-17.83) (14.18-57.60) (0.00-9.21) (5.47-10.19) (0.88-2.75)

2
15.28 32.85 1.64 8.02 2.13

(13.12-17.62) (14.28-58.46) (0.00-8.68) (5.52-10.41) (0.92-2.89)

1
15.01 29.50 1.64 8.50 2.20

(12.78-17.62) (12.57-54.42) (0.00-7.86) (5.79-11.10) (1.00-3.13)

0
14.86 29.35 1.64 8.88 2.36

(12.15-17.30) (10.18-53.07) (0.00-7.96) (6.12-11.42) (1.04-3.41)

Table5.2: Median(interquartilerange)of metrics T70−180(secondcolumn),T<70
(thirdcolumn),T<50(fourthcolumn),T>180(fifthcolumn),T>250(sixthcolumn)ob-
tainedin100adultvirtualsubjectswithimpairedawarenessofhypoglycemiasimu-
latedfortwoweekswithtreatmentbasedonSMBGanddifferentnumberofpost-meal
checksperday(firstcolumn).

PMC T70 180 T<70 T<50 T>180 T>250
[h/day] [min/day] [min/day] [h/day] [h/day]

3
15.88 47.00 12.43 7.50 1.99

(13.50-17.66) (18.18-79.88) (3.64-24.75) (5.50-9.69) (0.87-2.70)

2
15.41 43.14 10.43 7.82 2.12

(13.01-17.48) (17.00-74.74) (3.50-24.46) (5.64-10.33) (0.89-2.87)

1
15.04 44.09 9.50 8.32 2.19

(12.77-17.50) (17.21-71.89) (2.96-23.93) (5.73-10.75) (0.95-3.13

0
14.80 44.71 9.57 8.80 2.38

(12.27-17.22) (14.03-71.10) (3.43-22.75) (5.86-11.26) (1.02-3.34)
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Table5.3:Median(interquartilerange)ofmetricsT70−180(thirdcolumn),T<70(fourth
column),T<50(fifthcolumn),T>180(sixthcolumn),T>250(seventhcolumn)obtainedin
100adultvirtualsubjectswithnormalawarenessofhypoglycemiasimulatedfortwo
weekswithtreatmentbasedonnonadjunctiveuseofCGMand21differentcombina-
tionsofLA(firstcolumn)andHA(secondcolumn).

LA HA T70 180 T<70 T<50 T>180 T>250
[mg/dl] [mg/dl] [h/day] [min/day] [min/day] [h/day] [h/day]

80 180
16.29 23.71 0.89 7.29 1.69

(14.01-18.68) (6.82-38.96) (0.00-4.00) (5.04-9.44) (0.76-2.64)

80 200
16.15 21.07 0.71 7.49 1.73

(13.89-18.08) (7.46-38.03) (0.00-4.18) (5.41-9.80) (0.77-2.65)

80 250
15.33 21.25 0.89 8.36 1.84

(13.10-17.47) (7.39-37.89) (0.00-4.29) (6.02-10.44) (0.89-2.73)

80 300
14.93 20.50 0.89 8.72 2.16

(12.54-17.32) (7.39-38.71) (0.00-3.82) (6.25-11.02) (1.02-2.96)

80 350
14.74 22.50 0.71 8.82 2.33

(12.30-17.30) (7.21-38.78) (0.00-3.68) (6.36-11.33) (1.03-3.17)

80 400
14.61 22.68 0.89 8.96 2.39

(12.25-17.37) (7.21-38.46) (0.00-3.54) (6.30-11.40) (1.03-3.29)

80 notused
14.64 22.39 0.89 8.99 2.39

(12.17-17.22) (7.14-37.78) (0.00-3.43) (6.40-11.42) (1.07-3.37)

70 180
16.26 24.53 1.21 7.33 1.67

(13.94-18.47) (8.78-42.07) (0.00-5.57) (5.16-9.47) (0.76-2.62)

70 200
16.17 23.46 1.21 7.56 1.72

(13.92-18.06) (8.50-42.17) (0.00-5.79) (5.36-9.76) (0.78-2.62)

70 250
15.43 22.60 1.29 8.28 1.84

(13.03-17.48) (8.00-39.25) (0.00-6.04) (6.06-10.49) (0.91-2.75)

70 300
14.80 22.71 1.29 8.82 2.15

(12.50-17.37) (7.96-40.10) (0.00-5.43) (6.19-11.08) (1.02-2.97)

70 350
14.66 21.14 1.21 8.94 2.31

(12.32-17.35) (7.68-39.03) (0.00-5.57) (6.31-11.34) (1.04-3.18)

70 400
14.47 21.18 1.21 9.02 2.39

(12.19-17.34) (7.68-39.21) (0.00-5.32) (6.32-11.49) (1.04-3.28)

70 notused
14.45 21.18 1.07 9.02 2.40

(12.23-17.25) (6.89-37.89) (0.00-5.11) (6.35-11.49) (1.09-3.37)

55 180
16.18 30.57 1.57 7.30 1.67

(13.77-18.25) (11.50-51.46) (0.00-7.04) (5.18-9.62) (0.76-2.59)

55 200
16.06 30.53 1.50 7.52 1.73

(13.70-17.98) (14.14-50.10) (0.00-7.00) (5.33-9.76) (0.77-2.62)

55 250
15.22 29.50 1.93 8.35 1.84

(12.90-17.33) (10.36-50.10) (0.00-7.28) (6.00-10.46) (0.91-2.74)

55 300
14.65 28.28 1.71 8.88 2.21

(12.26-17.16) (10.71-48.07) (0.00-7.32) (6.24-11.14) (1.03-3.00)

55 350
14.52 28.46 1.46 8.98 2.33

(11.98-16.99) (10.18-49.53) (0.00-7.18) (6.34-11.41) (1.03-3.29)

55 400
14.32 28.46 1.36 9.00 2.35

(11.94-17.00) (10.18-47.96) (0.00-6.86) (6.34-11.49) (1.04-3.34)

55 notused
14.26 28.46 1.29 9.04 2.37

(11.85-16.98) (8.57-46.92) (0.00-6.61) (6.41-11.53) (1.05-3.44)
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Table5.4:Median(interquartilerange)ofmetricsT70−180(thirdcolumn),T<70(fourth
column),T<50(fifthcolumn),T>180(sixthcolumn),T>250(seventhcolumn)obtained
in100adultvirtualsubjectswithimpairedawarenessofhypoglycemiasimulatedfor
twoweekswithtreatmentbasedonnonadjunctiveuseofCGMand21differentcom-
binationsofLA(firstcolumn)andHA(secondcolumn).

LA HA T70 180 T<70 T<50 T>180 T>250
[mg/dl] [mg/dl] [h/day] [min/day] [min/day] [h/day] [h/day]

80 180
16.35 27.39 2.79 7.24 1.71

(14.02-18.76) (7.46-46.25) (0.00-7.53) (5.07-9.37) (0.76-2.66)

80 200
16.06 27.46 2.68 7.49 1.75

(13.79-18.13) (7.71-46.50) (0.00-8.00) (5.25-9.68) (0.76-2.66)

80 250
15.46 26.50 2.82 8.29 1.84

(13.08-17.60) (7.89-44.00) (0.00-7.57) (5.78-10.32) (0.91-2.74)

80 300
14.98 25.85 2.71 8.73 2.16

(12.60-17.32) (7.86-45.21) (0.00-7.78) (6.24-10.89) (1.02-2.99)

80 350
14.80 25.39 2.61 8.69 2.30

(12.30-17.30) (8.82-41.53) (0.00-8.07) (6.37-11.21) (1.03-3.20)

80 400
14.64 25.89 2.61 8.88 2.35

(12.25-17.36) (8.82-41.64) (0.00-7.71) (6.31-11.28) (1.03-3.30)

80 notused
14.57 25.85 2.61 8.92 2.37

(12.25-17.22) (7.64-41.07) (0.00-7.32) (6.41-11.41) (1.08-3.39)

70 180
16.21 26.07 2.79 7.31 1.69

(13.96-18.55) (9.61-45.89) (0.00-9.00) (5.14-9.40) (0.76-2.62)

70 200
16.14 26.18 2.79 7.58 1.72

(13.82-17.98) (9.71-44.96) (0.00-9.86) (5.25-9.78) (0.76-2.62)

70 250
15.43 26.89 3.00 8.29 1.84

(13.03-17.58) (8.89-44.53) (0.00-9.53) (6.01-10.42) (0.92-2.71

70 300
14.82 26.43 3.00 8.70 2.15

(12.49-17.42) (9.14-43.85 (0.00-9.75) (6.19-10.96) (1.01-2.96)

70 350
14.59 26.07 2.64 8.91 2.29

(12.23-17.43) (9.21-42.46) (0.00-9.86) (6.31-11.16) (1.03-3.18)

70 400
14.55 25.50 2.64 8.94 2.35

(12.19-17.43) (9.46-43.03) (0.00-8.82) (6.31-11.22) (1.03-3.30)

70 notused
14.56 25.39 2.61 8.95 2.37

(12.18-17.34) (8.82-42.71) (0.00-8.82) (6.35-11.41) (1.07-3.40)

55 180
16.20 36.28 6.46 7.39 1.67

(13.74-18.17) (14.18-59.35) (1.61-15.21) (4.98-9.38) (0.77-2.61)

55 200
16.04 34.39 6.39 7.58 1.72

(13.52-17.87) (15.64-59.92) (1.61-15.21) (5.39-9.80) (0.79-2.62)

55 250
15.37 34.53 6.75 8.20 1.84

(12.88-17.29) (12.03-55.10) (1.93-14.78) (5.95-10.41) (0.92-2.75)

55 300
14.87 36.10 6.68 8.68 2.18

(12.30-17.05) (12.43-55.49) (1.71-15.46) (6.20-11.09) (1.01-2.97)

55 350
14.67 34.53 6.82 8.77 2.34

(12.07-16.89) (11.89-54.85) (1.82-14.96) (6.24-11.23) (1.03-3.16)

55 400
14.49 34.39 6.71 8.84 2.39

(11.93-16.90) (11.89-54.49) (1.68-15.07) (6.26-11.29) (1.05-3.30)

55 notused
14.49 34.39 6.50 8.83 2.40

(11.86-16.89) (11.32-54.10) (1.68-14.75) (6.31-11.45) (1.05-3.37)
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5 Use of T1D-DM model in ISCT to assess the influence of alert settings on
nonadjunctive CGM use

To determine when nonadjunctive CGM use introduces additional risks com-
pared to standard SMBG treatment, the difference between glycemic outcomes
with nonadjunctive CGM use and worst-case SMBG treatment, i.e. ∆T70−180,
∆T<70, ∆T<50, ∆T>180 and ∆T>250, is computed. According to the median out-
comes showed in Figure 5.1, SMBG treatment with PMC=0 is considered the
worst case for T70−180, T>180 and T>250, while SMBG treatment with PMC=3 is
considered the worst case for T<70 and T<50. The median values of ∆T70−180,
∆T<70, ∆T<50, ∆T>180 and ∆T>250 are reported from top to bottom in Figure
5.2 for patients with normal (left) and impaired (right) awareness of hypo-
glycemia. In particular, in each panel of Figure 5.2, the three blue curves rep-
resent the difference between the metric with nonadjunctive CGM use and
worst-case SMBG use on varying HA threshold for LA equal to 80 mg/dl
(dashed line with squared markers), 70 mg/dl (solid line with circular mark-
ers) and 55 mg/dl (dotted line with triangular markers). The paired one-tailed
sign test with 5% significance level is applied to determine if the median dif-
ference of outcomes indicates a statistically significant deterioration of the out-
come with nonadjunctive CGM use compared to worst-case SMBG treatment.
In Figure 5.2, we evidence by light blue markers the combinations of LA and
HA thresholds for which the median value of ∆T70−180 is statistically signifi-
cantly lower than 0 and the median values of ∆T<70, ∆T<50, ∆T>180 and ∆T>250

are statistically significantly greater than 0.

In the population with normal awareness of hypoglycemia, ∆T70−180 is sta-
tistically significantly lower than zero, which means a statistically significant
deterioration of T70−180 is achieved by nonadjunctive CGM use compared to
worst case with SMBG (i.e. SMBG with PMC=0 in this case), only when LA
threshold is set to 55 mg/dl and HA threshold is greater or equal than 350
mg/dl. In the population with impaired awareness of hypoglycemia, a statis-
tically significant deterioration of T70−180 is detected again when LA is set to
55 mg/dl and HA threshold is greater or equal than 400 mg/dl.

Concerning T>180, the sign test reveals a statistically significant deteriora-
tion, i.e. a value of ∆T>180 significantly positive, when the HA threshold is
greater or equal than 350 mg/dl, regardless of the LA setting, both in the nor-
mal and impaired hypoawareness population. Similarly, ∆T>250 is found sta-
tistically significantly greater than 0 and, thus a statistically significantly dete-
rioration of T>250 is present, when HA is set to 400 mg/dl or higher, regardless
of the LA threshold, both in the normal and impaired hypoawareness popula-
tion.
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5.3 Results

Finally, both in the normal and impaired hypoawareness population, ∆T<70

and ∆T<50 are never statistically significantly greater than 0, which means for
none alert settings, nonadjunctive CGM use deteriorates T<70 and T<50 com-
pared to worst-case SMBG treatment (i.e. SMBG with PMC=3 in this case).

Figure 5.2: Panels from top to bottom show the median of ∆T70−180, ∆T<70, ∆T<50,
∆T>180 and ∆T>250 calculated in 100 adult virtual subjects with normal (left) and im-
paired (right) awareness of hypoglycemia. In particular, in each panel, blue curves
represent the metric’s median value on varying HA threshold with LA threshold equal
to 80 mg/dl (dashed line with squared markers), 70 mg/dl (solid line with circular
markers) and 55 mg/dl (dotted line with triangular markers). Filled markers indicate
the alert settings for which median ∆T70−180 is statistically significantly lower than 0,
and median ∆T<70 and ∆T<50, ∆T>180 and ∆T>250 are statistically significantly greater
than 0, according to the paired one-tailed sign test with 5% significance level.
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5 Use of T1D-DM model in ISCT to assess the influence of alert settings on
nonadjunctive CGM use

5.3.2 Day 1 of CGM monitoring

Glycemic outcomes are also assessed separately on day 1 of CGM monitoring,
being this day the most critical for CGM accuracy. Median values of metrics
T70−180, T<70, T<50, T>180 and T>250 calculated on day 1 of CGM monitoring for
SMBG treatment and nonadjunctive CGM use are reported in Figure 5.3 for dif-
ferent values of PMC with SMBG and LA and HA thresholds with CGM. From
this representation we can observe that in day 1 of CGM monitoring, glycemic
outcomes present a similar pattern to that obtained in the entire CGM mon-
itoring period and already commented above. The only difference is visible
for T>250, since nonadjunctive CGM use seems to be less effective in reduc-
ing time spent above 250 mg/dl in day 1 of CGM monitoring compared to
the entire monitoring period. Indeed, even when the HA is set to 180 mg/dl,
median T>250 in the CGM scenario results similar, and not significantly infe-
rior as when assessed in the entire monitoring period, to that achieved with
best-case SMBG scenario, i.e. SMBG use with PMC=3. In Figure 5.4, the me-
dian difference between outcomes with nonadjunctive CGM use and worst-
case SMBG use is displayed. Also in this case, the worst-case SMBG scenario
is the one with PMC=0 for T70−180, T>180 and T>250, the one with PMC=3 for
T<70 and T<50. The alert settings for which a statistically significant deterio-
ration of metrics with nonadjunctive CGM use compared to worst-case SMBG
(i.e. median ∆T70−180 is significantly lower than 0 and median ∆T<70, ∆T<50,
∆T>180 and ∆T>250 are significantly greater than 0) is obtained according to the
paired one-tailed sign test with 5% significance level are evidenced by light
blue markers.

From this representation we can observe that the only case in which ∆T70−180

results statistically significantly lower than 0, and thus nonadjunctive CGM
use drives to a statistically significant deterioration of T70−180, is when LA is
set to 55 mg/dl and HA is not used in the population with normal awareness
of hypoglycemia. Regarding metrics related to hyperglycemia, a statistically
significant deterioration of T>180 (i.e. significantly positive value of ∆T>180),
is obtained when setting LA to 55 mg/dl without using HA in the normal hy-
poawareness population, and when setting LA to 55 mg/dl and using a HA
threshold greater or equal than 350 mg/dl or when not using the HA, regard-
less of the LA threshold, in the impaired hypoawareness population. Con-
sidering T>250, the only case in which a statistically significant deterioration
is obtained with nonadjunctive CGM compared to worst-case SMBG is when
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LA is set to 70 mg/dl and HA is not used in subjects with impaired aware-
ness of hypoglycemia. Finally, as already noted in the entire CGM monitoring
period, for none of the alert settings ∆T<70 and ∆T<50 are statistically signif-
icantly greater than 0. This means that, for any alert setting, even in the first
day of monitoring, nonadjunctive CGM use does not increase the risk of hypo-
glycemia and severe hypoglycemia compared to worst-case SMBG treatment.

Figure 5.3: Panels from top to bottom show the median of T70−180, T<70, T<50, T>180
and T>250 calculated on day 1 of monitoring in 100 adult virtual subjects with normal
(left) and impaired (right) awareness of hypoglycemia. In each panel, red horizontal
lines represent the metric’s median value when SMBG treatment is used with PMC
equal to 0 (solid line), 1 (dashed line), 2 (dash-dot line) and 3 (dotted line). Blue curves
represent metric’s median value obtained for nonadjunctive CGM use on varying HA
threshold with LA threshold equal to 80 mg/dl (dashed line with squared markers),
70 mg/dl (solid line with circular markers) and 55 mg/dl (dotted line with triangular
markers).
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nonadjunctive CGM use

Figure 5.4: Panels from top to bottom show the median of ∆T70−180, ∆T<70, ∆T<50,
∆T>180 and ∆T>250 calculated on day 1 of CGM monitoring in 100 adult virtual subjects
with normal (left) and impaired (right) awareness of hypoglycemia. In particular, in
each panel, blue curves represent the metric’s median on varying HA threshold with
LA threshold equal to 80 mg/dl (dashed line with squared markers), 70 mg/dl (solid
line with circular markers) and 55 mg/dl (dotted line with triangular markers). Filled
markers indicate the alert settings for which median ∆T70−180 is statistically signifi-
cantly lower than 0, and median ∆T<70 and ∆T<50, ∆T>180 and ∆T>250 are statistically
significantly greater than 0, according to the paired one-tailed signed test with 5%
significance level.

5.4 Summary outcome of the ISCT

To sum up, this ISCT demonstrated that nonadjunctive CGM use is effective
in increasing time in euglycemia (T70−180) and reducing time in hyperglycemia
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(T>180) and severe hyperglycemia (T>250), compared to SMBG treatment, when
the HA is used and set to a value close to the hyperglycemia threshold, e.g.
180 mg/dl or 200 mg/dl. Conversely, when HA is not used or set to a high
level, e.g. 400 mg/dl, nonadjunctive CGM use drives to an increase of time
in hyperglycemia and severe hyperglycemia, and thus a decrease of time in
euglycemia, compared to the standard SMBG treatment.

The trial also evidenced that nonadjunctive CGM use does not introduce
additional risk of hypoglycemia or severe hypoglycemia compared to SMBG
use, for any alert setting. Indeed, even when the LA is not used, the pres-
ence of the low glucose alarm at 55 mg/dl, which cannot be disabled, and
thus it is equivalent to use a LA set at 55 mg/dl, protects the patient from
too low BG levels and, especially in subjects with impaired awareness of hy-
poglycemia, allows to reduce the time spent in hypoglycemia (T<70) and se-
vere hypoglycemia (T<50). Of course, the effectiveness of nonadjunctive CGM
use in reducing the time spent in hypoglycemia and severe hypoglycemia is
greater when LA is set to a higher value, e.g. 70 mg/dl or 80 mg/dl.

Overall, nonadjunctive CGM use shows the best performance in terms of
glycemic control when LA is set to 80 mg/dl and HA is set to 180 mg/dl.
These considerations apply when the assessment is performed both in the en-
tire CGM monitoring period and separately in day 1 of CGM monitoring. This
means that the use of CGM to make treatment decisions in the first day after
sensor insertion does not introduce additional risks compared to its use in the
other days of CGM monitoring.
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Chapter 6

Conclusions and future
developments

6.1 Summary of the main findings

ISCTs are used more and more by both industries and regulatory agencies to
support or even substitute in vivo clinical trials, since they allow to overcome
some limitations of in vivo clinical trials such as elevated time and costs, low
numerosity and impossibility to test high-risk situations. The primary aim
of this thesis was to develop a simulation model of T1D patients decision-
making, usable to perform ISCTs to assess T1D insulin treatment scenarios.

For such a purpose, we first reviewed the net effect method, a simulation
approach recently proposed by Patek et al. [63] for the in silico assessment
of insulin treatment scenarios (Chapter 2). In particular, by an in silico experi-
ment based on the UVA/Padova T1D simulator, we demonstrated that, despite
some interesting ideas, the net effect method is based on several assumptions
(e.g. independence between insulin therapy and net effect) and simplifications
(e.g. model linearization about basal state and use of population parameters)
that limit its domain of validity to small adjustments of basal insulin, while
more sophisticated techniques need to be developed for assessing other treat-
ment scenarios.

A different simulation approach was proposed in Chapter 3 based on the
T1D-DM model, i.e. a model of T1D patients making treatment decisions ac-
cording to glucose monitoring (SMBG and/or CGM). The model was con-
structed by interconnecting the UVA/Padova T1D simulator and an insulin
pump model, which had been previously developed by University of Padova
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in collaboration with University of Virginia, with models of the device used for
glucose monitoring and the patient’s behavior in making treatment decisions,
which were developed in this thesis.

Given the simplicity of SMBG error’s literature models, which do not accu-
rately describe the variability observed on SMBG error data, in this thesis we
proposed a new methodology to model the PDF of SMBG error (Subsection
3.2.3), which deals with the variability of error dispersion in the glucose range
by dividing the glucose range in zones with constant-SD absolute/relative er-
ror, and the asymmetric nature of SMBG error distribution by fitting in each
zone the skew-normal PDF model. The method was applied to derive models
of OTU2 and BCN devices, which outperformed the simpler models used so
far in the literature according to goodness-of-fit tests. Regarding the model
of CGM error, the accuracy of Dexcom G5 Mobile system was characterized
(Section 3.3) by applying the method recently proposed by Facchinetti et al.
[72], which takes into account the main sources or sensor error, i.e. BG-to-IG
kinetics distortions, calibration error and measurement noise.

In Section 3.4, a model describing the patient’s behavior in making treat-
ment decisions, like meal insulin dose calculation and treatment of hyper-
glycemia and hypoglycemia, was developed. In particular, three configura-
tions were designed representing treatments based on SMBG, adjunctive CGM
use and nonadjunctive CGM use. Remarkably, components describing the
common mistakes patients are used to doing in the manual control of glycemia,
like errors in CHO counting and early/delayed meal bolus administrations,
are included in the model to allow the simulation of a real-life treatment sce-
nario.

The developed T1D-DM model is a suitable tool to perform ISCTs assessing
insulin treatment scenarios, since it properly takes into account the inter- and
intra-subject variability of physiology and it simulates patients’ decisions ac-
cording to glucose measurements real-time generated by the model. In Chap-
ter 4, the T1D-DM model was used to design an ISCT comparing nonadjunc-
tive CGM use to standard SMBG use and adjunctive CGM use in 100 virtual
subjects reflecting the characteristics of a general T1D population. Glycemic
outcomes obtained with adjunctive CGM use were in good agreement with
those of a clinical data set, thus confirming the reliability of scenarios gener-
ated by the T1D-DM model. The only discrepancy was observed for time and
rate of hypoglycemia (higher in real data than simulation), probably because
of the current lack of a model of exercise in the UVA/Padova T1D simula-
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tor. However, this equivalently influences SMBG- and CGM-based treatments
and, thus, does not alter the ISCT outcome. The trial, in particular, demon-
strated that nonadjunctive CGM use is effective in reducing time spent in
hypo/hyperglycemia as well as the year rate and duration of hypoglycemic
events compared to SMBG, while presenting equivalent performance to ad-
junctive CGM use. This suggests that CGM can be safely used to make treat-
ment decisions without the necessity of confirming its readings by SMBG, thus
making T1D management easier and less uncomfortable for the patients.

A second ISCT was performed in Chapter 5 to assess the influence of alert
settings on nonadjunctive CGM use. The trial demonstrated that for all the
considered alert settings nonadjunctive CGM use drives to equivalent or re-
duced time in hypoglycemia compared to SMBG, with major benefits for pa-
tients with impaired awareness of hypoglycemia. Conversely, time in hyper-
glycemia is reduced by nonadjunctive CGM use only when HA is set closely
to 180 mg/dl and significantly increased when HA is not used or set to a very
high value (e.g. 400 mg/dl). Overall, best glycemic control was achieved with
LA and HA set to 80 mg/dl and 180 mg/dl, respectively.

Note that in both the ISCTs, SMBG and CGM measurements were simu-
lated using models of BCN and Dexcom G5 Mobile devices. As a consequence,
the outcome of the ISCTs is valid for these specific monitoring devices and can-
not be generalized to all the SMBG/CGM devices. Of course, as soon as suit-
able data are available, it will be interesting to perform the same ISCTs with
models of different SMBG/CGM devices.

6.2 Possible applications of the T1D-DM model

In this thesis the T1D-DM model has been used to design two ISCTs to assess
nonadjunctive CGM use. Recently, we used the T1D-DM model to perform an
ISCT, similar to the first presented in this thesis, to assess the safety and ef-
fectiveness of Dexcom G5 Mobile nonadjunctive use, whose results were pre-
sented at the FDA Clinical Chemistry and Clinical Toxicology Devices Advi-
sory Panel of July 21st, 2016 to support the regulatory approval of the Dexcom
G5 Mobile for nonadjunctive use. A positive feedback came from the panel
that voted 8/10 in favor of the approval of Dexcom G5 Mobile for nonadjunc-
tive use [99] [100]. The outcome of the panel, in particular, evidenced that
both industries and regulatory agencies are relying more and more on ISCTs
based on simulation models, like the T1D-DM model developed in this thesis,
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to support or even substitute the clinical assessment of medical device-based
treatments.

Another straightforward application of the T1D-DM model is its use for the
in silico comparison of literature guidelines for using CGM trend information
to make treatment decisions, e.g. those proposed by Scheiner [26], which were
implemented in this thesis, Pettus et al. [29], the Diabetes Research in Children
Network [24] and the Juvenile Diabetes Research Foundation [25]. The T1D-
DM model can also be a helpful tool to design and optimize new guidelines for
calculating insulin doses based on CGM information, including CGM trend.

Thanks to its versatility, the T1D-DM model can be used to assess in re-
alistic multiple-day scenarios several other CGM-based algorithms, e.g. al-
gorithms for decision-support systems. For instance, we are currently using
the T1D-DM model for investigating the efficacy of algorithms for CGM-based
real-time automatic optimization of CR, e.g. those proposed by Herrero et al.
[101] [102], and CGM-based basal insulin attenuation, e.g. those proposed by
Hughes et al. [103] and Patek et al. [104].

6.3 Margins for further development of the T1D-

DM model

Despite the T1D-DM model in its current shape is able to reproduce realistic
treatment scenarios, as confirmed by the comparison of simulated data with
real data performed in Subsection 4.3.1, there are still some parts of the model
that can be further improved, provided that suitable data becomes available.
The UVA/Padova T1D simulator, for example, could be enhanced by incor-
porating models of physical exercise and stress, which contributes to glycemic
variability in real life and are currently not included in the model.

Regarding the modeling of SMBG measurement error, in Section 3.2 of this
thesis we proposed a new methodology according to which the variability of
SMBG error dispersion over the glucose range is handled by identifying glu-
cose zones in which SMBG absolute/relative error presents constant SD. An
alternate strategy, which would be interesting to investigate, is the description
of either absolute or relative error of SMBG by a PDF model with parameters
varying with BG concentration. However, such a strategy requires a denser
database of SMBG measurements than those employed in this thesis, to ensure
that the chosen PDF model accurately describes SMBG error at a local level
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6.3 Margins for further development of the T1D-DM model

(i.e. when BG is fixed, and thus the PDF model’s parameters are constant).
As far as the model of CGM error is concerned, in Section 3.3 of this thesis a

model of the Dexcom G5 Mobile is derived by the methodology of Facchinetti
et al. [72], which takes into account the main components of CGM sensor error.
However, this methodology does not include any explicit description of sen-
sor’s artifacts. To reproduce the sensor’s behavior more realistically, a model of
CGM artifacts, e.g. that recently proposed by Facchinetti et al. [105] or Emami
et al. [106], should be incorporated in the T1D-DM model.

One of the most important features of the T1D-DM model is that it includes
a realistic model of patient’s behavior in making treatment decisions, includ-
ing components describing the common mistakes made by patients in real life.
In particular, in Section 3.4 of this thesis, the errors in CHO counting are sim-
ulated by a single non-standardized Student’s t PDF model fitted on real data
collected for different types of meals (breakfast, lunch and dinner). The mod-
eling of CHO counting could be further improved by identifying a specific
model of CHO counting error for each meal of the day (e.g. patients could
be more accurate in CHO counting at breakfast, which presents a less vari-
able CHO content), and by considering a possible correlation between CHO
counting error and meal’s CHO content (e.g. patients may tend to overes-
timate small meals and underestimate bigger meals). Another aspect of pa-
tient’s behavior that could be further investigated is the responsiveness to hy-
poglycemic symptoms and CGM glucose alerts. Indeed, the behavioral model
presently in the T1D-DM model assumes the patient immediately responds to
both the appearance of hypoglycemic symptoms and CGM high/low glucose
alerts. At difference, in real life, patients may react to symptoms or alerts with
a certain delay, e.g. depending on the activity they are involved in. The cur-
rent lack of a model of patient’s responsiveness to hypoglycemic symptoms
and CGM alerts may be one of the causes for which the time spent in hypo-
glycemia in our simulations resulted shorter than that reported in the clinical
trial we used for comparison. However, unfortunately, no data are currently
available to us to derive such a model.

Finally, the T1D-DM model currently simulates insulin delivery via insulin
pump. However, the applicability of the model could be further extended by
incorporating a model of insulin administration via multiple daily injections.
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