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Abstract

The use of diagnostic tests to discriminate between disease classes is becoming more and more

popular in medicine, which leads to the urgent need for assessing accuracy of diagnostic tests

before their implementation. To do that, a common tool is receiver operating characteristic (ROC)

analysis. More precisely, the ROC curve and the area under the ROC curve (AUC) are commonly

employed when two disease classes (typically, non-diseased and diseased) are considered, whereas

the ROC surface and the volume under the ROC surface (VUS) are frequently used when the

disease status has three categories (e.g., non-diseased, intermediate and diseased). In estimating

such parameters, we assume that the true disease status of each patient can be determined by means

of a gold standard test. In practice, unfortunately, the true disease status could be unavailable

for all study subjects, due to the expensiveness or invasiveness of the gold standard test. Thus,

often only a subset of patients undergoes disease verification. Statistical evaluations of diagnostic

accuracy of a test based only on data from subjects with verified disease status are typically

biased. This bias is known as verification bias. Various methods have been developed to adjust

for verification bias in estimation of the ROC curve and its area for tests with binary or ordinal or

continuous results. For the ROC surface and its volume, verification bias correction methods exist

for tests with ordinal responses, but not for continuous tests. In this thesis, we propose several

bias–corrected methods for estimating the ROC surface and the VUS of continuous diagnostic tests

in presence of verification bias. In particular, these methods are constructed based on imputation

and re–weighting techniques, and work well when the missingness mechanism of the true disease

status is missing at random or missing not at random. The asymptotic behaviors of the estimators

are also studied. To illustrate how to use the methods in real applications, two datasets dealing

with epithelial ovarian cancer are considered. To support researchers in carrying out the ROC

surface analysis in presence of verification bias, an R package and the corresponding Shiny web

application have been created.
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Sommario

L’uso corrente di test diagnostici per discriminare tra diverse malattie o classi di malattia

pone l’accento sulla necessità di una valutazione attenta e fondata della loro accuratezza. Gli

strumenti più comunemente impiegati a tal scopo sono basati sulla cosidetta receiver operating

characteristic (ROC) analysis. Si utilizzano, in particolare, la curva ROC e l’area sotto la curva

ROC (AUC) quando la diagnosi prevede due possibili esiti (tipicamente, non malato e malato),

e la superficie ROC e il volume sotteso (VUS) quando la diagnosi si articola su tre classi (ad

esempio, sano, stadio iniziale di malattia, stadio avanzato di malattia). Tali strumenti assumono

che la vera diagnosi possa essere stabilita per ciascun paziente con certezza utilizzando un test

gold standard. Nella pratica, purtroppo, la vera diagnosi potrebbe non essere acquisibile tramite

un gold standard per tutti i soggetti coinvolti in uno studio, a causa per esempio del costo o della

invasività del gold standard. Cos̀ı, spesso, la verifica della diagnosi tramite gold standard viene

condotta solo per un sottogruppo di pazienti. La valutazione statistica dell’accuratezza diagnostica

di un test costruita solo utilizzando i dati dei soggetti con stato di malattia verificato è in genere

distorta. Tale effetto è noto come distorsione di verifica. Esistono vari metodi per correggere tale

distorsione nella stima della curva ROC e della area sottesa, sia per test diagnostici binari, che

ordinali, che continui. Per quanto riguarda la superficie ROC ed il volume sotteso, esistono metodi

di correzione della distorsione solo per test diagnostici ordinali. In questa tesi, si propongono

diversi metodi per la correzione della distorsione di verfica per la stima della superficie ROC e

del VUS per test diagnostici continui. Tali metodi sono costruiti su strategie di imputazione

e riponderazione, e sono sviluppati per meccanismi di mancanza del vero stato di malattia sia

casuali che non ignorabili. Viene fornito il comportamento asintotico degli stimatori. A titolo

illustrativo, l’applicazione dei metodi è mostrata su due insiemi di dati relativi al cancro ovarico

epiteliale. Per garantire applicabilità dei metodi, viene fornito un pacchetto R e l’applicazione web

Shiny corrispondente.
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Chapter 1

Introduction

1.1 Overview

Nowadays, diagnostic tests are commonly used to detect medical conditions, and hence, they play

an important role in medical care. The diagnostic tests are often inexpensive, non-invasive and

applied on a large population. A good diagnostic test not only contains medical informations

about patients, but also affects the health care provider’s plan for managing the patient. However,

different diagnostic tests differently distinguish between healthy individuals and diseased subjects.

Therefore, assessing accuracy of diagnostic tests before they enter in the clinical practice is crucial

and required.

In order to assess the accuracy of a diagnostic test, the comparison between the true disease

status and the test results could be performed. To ascertain the true disease status, a perfect test

is employed, which is called gold standard (GS) test. When the disease has two classes (typically,

diseased and healthy), the receiver operating characteristic (ROC) curve and the area under the

ROC curve (AUC) are commonly used for assessing accuracy of diagnostic tests (Pepe, 2003; Zhou

et al., 2009). The ROC surface and the volume under the ROC surface (VUS), a generalization

version of the ROC curve and of the AUC, have been useful in three–class diagnostic problems

(Scurfield, 1996; Mossman, 1999; Dreiseitl et al., 2000). There are some methods for estimating

ROC curves and AUCs, for example empirical, parametric, semi-parametric and nonparametric

approaches, see Pepe (2003) and Zhou et al. (2009) as general references. These methods have

been generalized to ROC surfaces and VUSs (Nakas and Yiannoutsos, 2004; Nakas, 2014; Kang

and Tian, 2013; Li and Zhou, 2009; Li et al., 2012; Xiong et al., 2006).

In some situations, however, some subjects do not have the true disease status verified even

when they have the test results. This basically comes from the fact that some gold standard tests

are too expensive or invasive to be applied to all subjects. Thus, often only a subset of study

subjects undergoes a gold standard evaluation and the decision to send a subject to verification

typically depends on the test results and other subject’s characteristics. Statistical evaluation of

diagnostic accuracy based only on data from subjects with verified disease status usually gives

biased results. This is known as verification bias (Begg and Greenes, 1983) or work–up bias

(Ransohoff and Feinstein, 1978).

Correction for verification bias in two–class diagnostic testing is already discussed in the sta-

tistical literature. The available methods are developed on the basis of the type of diagnostic test

result (e.g. binary, ordinal and continuous) and the missingness mechanism. Among the others,

we cite the papers by Adimari and Chiogna (2015, 2016); Alonzo et al. (2003); Alonzo and Pepe
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(2005); Fluss et al. (2009, 2012); He and McDermott (2012); He et al. (2009); Kosinski and Barn-

hart (2003); Liu and Zhou (2010); Rotnitzky et al. (2006); Zhou and Castelluccio (2003, 2004);

Zhou and Rodenberg (1998). However, the issue of correcting the verification bias in the estimation

of ROC surfaces and VUSs is very scarcely considered in the ROC analysis context. For example,

Chi and Zhou (2008) deal with an ordinal diagnostic test, but there are no methods developed to

correct for verification bias in assessing accuracy of a continuous diagnostic test when there are

three disease status. This thesis aims to fill in this gap. We develop several methods for estimating

ROC surfaces and VUSs of continuous diagnostic tests in presence of verification bias.

The outline of the thesis is as follows. In Chapter 2, we give a quick review on ROC curves

and AUCs, and on ROC surfaces and VUSs. Beside that, the definition and impact of verification

bias in estimation of ROC curves and their area underneath are also mentioned. Some existing

bias–corrected methods for ROC curve analysis of a continuous diagnostic test are also reviewed.

We develop some bias–corrected estimators for the ROC surface in Chapter 3. These methods

are constructed based on imputation and re–weighting techniques and are suitable in cases where

the missingness mechanism of disease status is missing at random. We establish large–sample

properties of the proposed estimators based on estimating functions and multivariate delta method.

Simulation studies are organized to evaluate the performance of the proposed estimators in both

small and large sample size situations. To illustrate the applications of the methods, two distinct

data sets, both dealing with epithelial ovarian cancer (EOC), are used. In Chapter 4, by using

a numerical technique and repeating the ideas used in Chapter 3, we develop some methods for

correcting for verification bias in estimation of the VUS. Consistency and asymptotic distribution

of the estimators are also studied. Simulation studies are conducted to evaluate the performance of

the bias–corrected VUS estimators. In analogy with Chapter 3, the two data sets on EOC study are

used to illustrate the application of the bias–corrected VUS estimators. In Chapter 5, we consider

the case in which the true disease status is missing not at random. Based on a likelihood-based

approach, we propose the correction methods for VUS in presence of verification bias. We also

demonstrate that the proposed estimators are consistent and asymptotically normally distributed.

Simulation studies are designed to assess the accuracy of the estimators corresponding to the

distinct values of VUS (from low to high value). In Chapter 6, we present an R package and the

corresponding Shiny web application, which implement all bias–corrected methods for estimation

of ROC surfaces and VUSs under missing at random assumption. Finally, Chapter 7 contains the

main conclusions drawn from this project up to date and possible directions for future research.

1.2 Main contributions of the Thesis

Main contributions of the thesis can be summarized as follows:

1. Development of bias–corrected methods for estimation of the ROC surface and the VUS

based on the existing methods for the ROC curve analysis, applicable in situations when the

true disease status is missing at random.

2. Application to the prediction of patient’s response to chemotherapy in advanced–stage ep-

ithelial ovarian cancer (EOC).

3. Definition of the approaches to correct for verification bias under missing not at random

when disease status has three categories.
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4. Creation of an R package and web interface to support researchers in carrying out the ROC

surface analysis in presence of verification bias, i.e., when the true disease status is missing

at random. This package is freely available for downloading from CRAN-The Comprehensive

R Archive Network, and easy to use.



4 Introduction



Chapter 2

Assessing the accuracy of a

diagnostic test

In this chapter, definitions of some popular tools used to evaluate of a continuous diagnostic test

will be given. The impact of verification bias when estimating the accuracy of a diagnostic test is

discussed through a hypothetical example. A quick review of the existing bias–corrected methods

for assessing the accuracy of a continuous diagnostic test is also given.

2.1 Measure of accuracy for diagnostic tests

Most medical studies consider a dataset, which often contains a medical diagnostic test and the

true binary disease status (diseased and non-diseased) determined by the GS test. The diagnostic

test can yield a binary, ordinal or continuous result, for which its accuracy could be determined

by various ways and depends on the type of test result.

In case of binary tests (positive or negative), the accuracy of the test under study is usually

evaluated by the true positive rate (TPR) and false positive rate (FPR), see Zhou et al. (2009) and

Pepe (2003). The TPR is the probability that a diseased person is classified as diseased, whereas

the FPR is the probability that a normal person is classified as diseased. In the study, a perfect

diagnostic test has TPR = 1 and FPR = 0. On the other hand, a useless test has TPR = FPR,

i.e., there are no connection between disease and the test outcome.

If the diagnostic tests are measured on ordinal or continuous scales, then they can be di-

chotomized in practice by using a cut point (also called threshold value) and thus the TPR and

FPR could still be applied for measuring the accuracy of the tests. However, in such situations,

each different choice of the cut point possibly yields different values of TPR and FPR, and, hence,

the evaluation of the diagnostic test changes. Usually, the cut point is varied in the range of the

test results, and the entire set of possible values of TPR and FPR is called the receiver operating

characteristic (ROC) curve of the test. More specifically, the ROC curve is a plot, on the unit

square, of the FPRs on x–axis versus the TPRs on y–axis, for each cut point. Usually, the ROC

curve is monotone and lies in the upper triangle of the unit square, which consists of three vertices

(0, 0), (0, 1) and (1, 1). The shape of ROC curve allows to evaluate the ability of the test. For

example, a ROC curve overlapping with a straight line joining points (0, 0) and (1, 1) represents a

diagnostic test which is a random guess. A perfect test has a ROC curve that is along the left and

upper borders of the positive unit quadrant. A commonly used summary measure that aggregates

performance information of the test is the area under the ROC curve (AUC). According to the



6 Assessing the accuracy of a diagnostic test

property of the ROC curve, reasonable values of AUC range from 0.5, suggesting that the test is

no better than chance alone, to 1.0, which indicates a perfect test. However, AUC can take a value

less than 0.5, which indicates an accuracy worse than random guessing of the diagnosis.

In summary, the TPR, FPR, ROC curve and AUC are, currently, the best–developed statistical

tools for measuring the performance of the diagnostic tests. The estimation of these quantities are

presented in the context of Pepe (2003) and Zhou et al. (2009).

There are some medical studies, where the disease status involves three categories. For exam-

ple, the clinical assessment of the presence of HIV–related cognitive dysfunction (AIDS Dementia

Complex–ADC, Nakas and Yiannoutsos, 2004); the study of pancreatic cancer (Leichtle et al.,

2013); the cohort study for the detection of Glycan biomarkers for liver cancer (Ressom et al.,

2008); the study of Alzheimer’s Disease (Xiong et al., 2006; Chi and Zhou, 2008). In such sit-

uations, the ROC surface is a popular tool for describing the ability of the medical tests having

ordinal or continuous results. The ROC surface is defined by plotting three true class fractions

(TCF’s) by varying the cut point (c1, c2) in the unit cube, with c1 < c2. From a theoretical point

of view, the ROC surface is a generalization of the ROC curve in three dimensions. The ROC

surface will be the triangular plane with vertices (0, 0, 1), (0, 1, 0), and (1, 0, 0) if all of three TCF’s

are equal for every pair (c1, c2). In this case, we say that the diagnostic test is the random guess.

In practice, one can imagine that the graph of ROC surface lies in the unit cube and above the

plane of the triangle with three vertices (0, 0, 1), (0, 1, 0), and (1, 0, 0). A summary of the overall

diagnostic accuracy of the test under consideration is the volume under the ROC surface (VUS)

which can be seen as a generalization of the AUC. The VUS varies from 1/6 to 1.0, ranging from

bad to perfect diagnostic tests. More details related to the ROC surface analysis will be discussed

in Section 2.4.

2.2 Verification bias

If all study subjects for which the new diagnostic test is available ultimately have their true

disease status verified via the GS test, then ROC curves and also AUCs could be easily estimated.

In practice, unfortunately, there are many drawbacks to the use of the GS test, which can be too

expensive, or too invasive, or both for regular use. Usually, only a subset of subjects undergoes

disease verification and the decision to send a patient to verify the disease status is often based

on the test result and other patient characteristics. Then, only data from patients with verified

disease status are used to estimate the ROC curve and AUC. This typically leads to a distorted

evaluation of the ability of the diagnostic tests. This bias is known as verification bias (Begg and

Greenes, 1983) or work-up bias (Ransohoff and Feinstein, 1978). In this paragraph, we present an

example to see the impact of verification bias when estimating the accuracy of diagnostic test.

Let us consider a hypothetical medical study that concentrates on a new diagnostic test to

detect an illness having probability of disease equal to 0.2. A sample having 1000 subjects randomly

selected from population is considered. On the basis of the GS test, the number of diseased and

non–diseased subjects are ascertained as 200 and 800, respectively. Of 200 diseased subjects,

160 have a positive test result and the remaining 40 subjects have a negative test result. In the

800 non–diseased people, 80 individuals give a positive and 720 individuals negative test result,

respectively. The complete data are presented in Table 2.1.

For the full data, the TPR and FPR are easily obtained as
160

200
= 0.8 and

80

800
= 0.1, respec-

tively. Now, suppose that the GS test in this study is inherently dangerous and also its cost is
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Table 2.1: Full data for hypothetical example.

Test result
Positive Negative Total

Diseased 160 40 200
Non–Diseased 80 720 800

expensive. Thus, only 75% of patients with a positive test and 10% with a negative test undergo

the verification process. The verified sample is showed in Table 2.2.

Table 2.2: Data from subjects that selected to undergo the GS test.

Test result
Positive Negative Total

Diseased 120 4 124
Non–Diseased 60 72 132

The estimation based on the verified data give rise to the estimate of TPR is
120

124
= 0.968 and of

FPR is
60

132
= 0.454. This shows that the estimation on the verified subjects yields overestimation

for the TPR (0.968 vs. 0.8) and FPR (0.454 vs. 0.1). Generally speaking, if the subjects having

positive test results are more likely to be verified for disease than those having negative test results,

then the bias in the estimation based on verified sample usually increases TPR and FPR (Pepe,

2003; Zhou et al., 2009).

2.3 Existing methods for correcting the ROC curve and

AUC of a continuous test

Consider a study with n subjects, for whom the result of a continuous test T is available. The

patient’s true condition (or disease status), D, is defined by a GS test. D is a binary variable, that

is 0 if the subject is non–disease and 1 in case of disease. Further, let V be a binary verification

status of a patient, such that V = 1 if he/she is underwent the GS test, and V = 0 otherwise. In

practice, some information, other than the test results, can be obtained for each patient. Let A be

a covariate vector for a patient, that may be associated with both D and V .

In order to deal with verification bias, the existing methods usually make an assumption about

the mechanism for the missingness of disease verification. In particular, there are three assumptions

that are commonly used. The first is missing completely at random (MCAR), which occurs when

the verification status V does not depend on any observed measurements (i.e., test result T , the

covariates A) and unobserved measurements (i.e., the true disease status D). In other words,

the mechanism is MCAR if missing values are randomly distributed across all observations. In

medical studies, the selection for disease verification is not controlled by design (i.e., the MCAR

assumption usually does not hold); instead, it is often decided by the physician on the basis of

test results and other observed covariates. In such situations, we can assume that the verification

status V and the response D are mutually independent given the test result T and covariates A,



8 Assessing the accuracy of a diagnostic test

i.e., Pr(V = 1|T,A) = Pr(V = 1|D,T,A) or, equivalently, Pr(D = 1|T,A) = Pr(D = 1|V, T,A).
This assumption is known as the missing at random (MAR) assumption. However, in some cases,

the MAR assumption is not realistic, because the decision to send a patient to verification may

also depend on some hidden information related to disease status, which can not be determined

by the observed measurements. Thus, the missing mechanism is neither MCAR nor MAR, and is

known as missing not at random (MNAR).

Under a technical point of view, MCAR and MAR are usually qualified as ignorable missing

data mechanisms, whereas MNAR is referred as nonignorable (NI) mechanism. In fact, for dealing

with the missing values, we do not need to take into account the missingness mechanism under

MCAR or MAR assumption. But, in order to deal with MNAR, a joint model for the data and

the missingness mechanism is necessary to conduct valid inferences. The bias–corrected estimation

methods for the ROC curve and AUC under MAR assumption are shortly reviewed in Section

2.3.2, whereas the methods for adjusting for NI verification bias is quickly presented in Section

2.3.3.

2.3.1 Full data estimation

When all subjects are verified by the GS test, we have a full (or complete) data set. For a given

cut point c, TPR and FPR are

TPR(c) = Pr(T ≥ c|D = 1) =
Pr(T ≥ c,D = 1)

Pr(D = 1)
=
β1
θ
, (2.1)

FPR(c) = Pr(T ≥ c|D = 0) =
Pr(T ≥ c,D = 0)

Pr(D = 0)
=

β0
1− θ

.

Then, one can employ empirical estimators β̂0, β̂1 and θ̂ to obtain the nonparametric estimators of

TPR and FPR

T̂PR(c) =
β̂1

θ̂
=

n∑
i=1

I(Ti ≥ c)Di

n∑
i=1

Di

, F̂PR(c) =
β̂0

1− θ̂
=

n∑
i=1

I(Ti ≥ c)(1−Di)

n∑
i=1

(1−Di)
, (2.2)

where I(·) is the indicator function.

The AUC is expressed in the following formula (Bamber, 1975; Hanley and McNeil, 1982)

AUC = Pr(Ti < Tj |Di = 0, Dj = 1) +
1

2
Pr(Ti = Tj |Di = 0, Dj = 1),

for i 6= j from 1 to n. The empirical estimator of AUC is the Mann-Whitney U-statistic, i.e.,

ÂUC =

n∑
i=1

n∑
j=1

i 6=j

Iij(1−Di)Dj

n∑
i=1

n∑
j=1

i 6=j

(1−Di)Dj

, (2.3)

where Iij = I(Ti < Tj) +
1
2 I(Ti = Tj).

If not all patients have their disease status verified, the nonparametric estimators (2.2) and

(2.3) can be applied after removal of all missing values. The resulting estimators are called Näıve

estimators. However, they only perform well when the missing mechanism is MCAR. Under MAR

or MNAR, if one tries to use the Näıve estimators, i.e., the expressions (2.2) and (2.3) based only

on verified subjects, then one gets biased and inconsistent estimates.
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2.3.2 Bias–corrected estimators under MAR assumption

In presence of verification bias, Alonzo and Pepe (2005) proposed four partially parametric esti-

mators to assess the continuous diagnostic (or screening) tests under the MAR assumption. In

particular, the authors constructed the estimates based on imputation and re-weighting techniques

(Roberts et al., 1987; Reilly and Pepe, 1995; Horvitz and Thompson, 1952; Robins et al., 1995),

i.e., full imputation (FI), mean score imputation (MSI), inverse probability weighting (IPW) and

semiparameter efficient (SPE) estimators. The FI estimators of TPR(c) and FPR(c) are

T̂PRFI(c) =
β̂1,FI

θ̂FI
=

n∑
i=1

I(Ti ≥ c)ρ̂i

n∑
i=1

ρ̂i

, F̂PRFI(c) =
β̂0,FI

1− θ̂FI
=

n∑
i=1

I(Ti ≥ c)(1− ρ̂i)

n∑
i=1

(1− ρ̂i)
.

Here, the estimates ρ̂i of ρi = Pr(Di = 1|Ti, Ai) are obtained by using some suitable parametric

model (e.g., logistic regression model) estimated on verified subjects. The MSI estimators only

impute the disease status for subjects who did not undergo the GS test, resulting to be

T̂PRMSI(c) =
β̂1,MSI

θ̂MSI

=

n∑
i=1

I(Ti ≥ c) {ViDi + (1− Vi)ρ̂i}
n∑

i=1

{ViDi + (1− Vi)ρ̂i}
, (2.4)

F̂PRMSI(c) =
β̂0,MSI

1− θ̂MSI

=

n∑
i=1

I(Ti ≥ c) {Vi(1−Di) + (1− Vi)(1− ρ̂i)}
n∑

i=1

{Vi(1−Di) + (1− Vi)(1− ρ̂i)}
.

The IPW method weights each verified subject by the inverse of the conditional verification

probability πi = Pr(Vi = 1|Ti, Ai) (i.e. the probability that the subject is selected for verification).

Therefore, the estimators are

T̂PRIPW(c) =
β̂1,IPW

θ̂IPW

=

n∑
i=1

I(Ti ≥ c)ViDiπ̂
−1
i

n∑
i=1

ViDiπ̂
−1
i

, (2.5)

F̂PRIPW(c) =
β̂0,IPW

1− θ̂IPW

=

n∑
i=1

I(Ti ≥ c)Vi(1−Di)π̂
−1
i

n∑
i=1

Vi(1−Di)π̂
−1
i

.

The estimates π̂i need to be obtained by using parametric regression models such as logistic or

probit models. Finally, the SPE estimators are defined as follow

T̂PRSPE(c) =
β̂1,SPE

θ̂SPE

=

n∑
i=1

I(Ti ≥ c)
{
ViDiπ̂

−1
i − (Vi − π̂i)ρ̂iπ̂

−1
i

}

n∑
i=1

{
ViDiπ̂

−1
i − (Vi − π̂i)ρ̂iπ̂

−1
i

} , (2.6)

F̂PRSPE(c) =
β̂0,SPE

1− θ̂SPE

=

n∑
i=1

I(Ti ≥ c)
{
Vi(1−Di)π̂

−1
i − (Vi − π̂i)(1− ρ̂i)π̂

−1
i

}

n∑
i=1

{
Vi(1−Di)π̂

−1
i − (Vi − π̂i)(1− ρ̂i)π̂

−1
i

} .

Alonzo and Pepe (2005) showed that SPE estimators are doubly robust because they are consistent

if either the πi’s or the ρi’s are consistently estimated. However, it is worth noting that SPE esti-
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mates may not be range-respecting, i.e., they could fall outside the interval (0, 1). This happens be-

cause the quantities
{
Vi(1−Di)π̂

−1
i − (Vi − π̂i)(1− ρ̂i)π̂

−1
i

}
or
{
ViDiπ̂

−1
i − (Vi − π̂i)ρ̂iπ̂

−1
i

}
can

be negative.

The four bias–corrected methods mentioned above perform well if and only if the parametric

models are correctly specified (the disease and/or verification model). A wrong specification of

such parametric models can negatively affect the behavior of the estimators, that are no longer

consistent. To reduce the impact of misspecified models, He and McDermott (2012) proposed

to use propensity score stratification; however, this method only applies to a binary diagnostic

test. For a continuous test, a fully nonparametric framework is suggested by Adimari and Chiogna

(2015). Specifically, the authors employed K nearest-neighbor (KNN) imputation (Ning and Cheng,

2012; Cheng, 1994) to obtain the bias-corrected estimators for the ROC curves. In fact, the KNN

estimators are

T̂PRKNN(c) =
β̂1,KNN

θ̂KNN

=

n∑
i=1

I(Ti ≥ c) {ViDi + (1− Vi)ρ̂i,K}
n∑

i=1

{ViDi + (1− Vi)ρ̂i,K}
, (2.7)

F̂PRKNN(c) =
β̂0,KNN

1− θ̂KNN

=

n∑
i=1

I(Ti ≥ c) {Vi(1−Di) + (1− Vi)(1− ρ̂i,K)}
n∑

i=1

{Vi(1−Di) + (1− Vi)(1− ρ̂i,K)}
.

Here, ρ̂i,K is the estimate of ρi obtained by using KNN imputation.

For each of the above methods, an estimated bias-corrected ROC curve can be obtained by

plotting T̂PR∗(c) versus F̂PR∗(c) for all cut points c, where the star ∗ indicates FI, MSI, IPW,

SPE and KNN. Note that, the SPE estimate of the ROC curve could be non monotone, because

of its behavior. Therefore, the authors suggest to use isotonic regression (Robertson et al., 1988),

to force the SPE ROC curve to be monotone.

Based on the bias–corrected ROC curves described above, one can employ the trapezoidal rule

(Bamber, 1975) to get empirical estimators of the AUC. This solution is supported by Alonzo

and Pepe (2005), who suggest to use the bootstrap resampling method to obtain the asymptotic

variance. On the other hand, based on U-statistics and IPW, He and colleagues derived the closed-

form expressions for directly estimating the AUC (He et al., 2009). In fact, they assume that the

verification process πi = Pr(Vi = 1|Ti, Ai) were known and define

ÂUCDIR =

n∑
i=1

n∑
j=1,i 6=j

I(Ti < Tj)I(Di < Dj)ViVjπ
−1
i π−1

j

n∑
i=1

n∑
j=1,i 6=j

I(Di < Dj)ViVjπ
−1
i π−1

j

. (2.8)

However, in practice, the verification probabilities are unknown, hence, in such situations, the

authors suggest to use consistent estimates π̂i. Therefore, the direct estimation (2.8) can be

referred to as parametric framework, in the sense that it requires a parametric model (e.g., logistic

regression) to estimate π. Hence, it also could suffer from the effect of misspecification. The

nonparametric estimators for the AUC in the setting of verification bias is proposed by Adimari

and Chiogna (2016). In fact, the authors used KNN imputation, again, like in the method for the
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ROC curves. The KNN estimator for the AUC is

ÂUCKNN =

n∑
i=1

n∑
j=1,i 6=j

I(Ti < Tj)(1− D̂i)D̂j

n∑
i=1

n∑
j=1,i 6=j

(1− D̂i)D̂j

, (2.9)

where D̂i = ViDi + (1− Vi)ρ̂i,K .

2.3.3 NI verification bias

As we already mentioned in the beginning of this section, the MNAR assumption may be suitable

in some situations. Many publications deal with NI verification bias, for instance, Baker (1995);

Zhou and Castelluccio (2003, 2004); Zhou and Rodenberg (1998); Kosinski and Barnhart (2003)

focus on the binary and ordinal diagnostic test. For the continuous test, Rotnitzky et al. (2006);

Fluss et al. (2009); Liu and Zhou (2010) developed various methods for adjusting for the verification

bias.

In principle, we need to define a joint model of the data and missingness mechanism. According

this idea, Rotnitzky et al. (2006) used the untestable selection model

log

{
Pr(V = 0|T,A,D)

Pr(V = 1|T,A,D)

}
= h(T,A) + q(T,A)D,

where q(T,A) is an arbitrary specified function and h(T,A) is an arbitrary unknown function.

Under this model, the missing mechanism is MAR if q(T,A) = 0 for all T and A; otherwise, it is

NI. Using this model, doubly robust estimators of the AUC and the ROC curves are derived by

Rotnitzky et al. (2006) and Fluss et al. (2009), respectively. However, a drawback of this model

is the fixedness of q(T, V ). To cope with this problem, the authors recommend using a sensitivity

analysis by repeating the estimation of AUC (and also TPR and FPR) under a variety of reasonable

choices of q(T,A). This may work well, but in the general cases, we might face troubles related to

the range of q(T,A), which can be large, and to the computation, which can be heavy.

On the other hand, Liu and Zhou (2010) suggested to use the verification model

Pr(V = 1|T,A,D) =
exp(h(T,A;β) + λD)

1 + exp(h(T,A;β) + λD)
.

Here, h(T,A;β) is an linear predictor; and λ is an unknown parameter called the nonignorable

parameter. To estimate the parameters, Liu and Zhou used a likelihood-based approach, together

with a disease model for the whole sample

Pr(D = 1|T,A) = exp(m(T,A; γ))

1 + exp(m(T,A; γ))
,

where m(T,A; γ) is an arbitrary linear predictor. After that, the authors employed the imputation

and re–weighting techniques to correct the ROC curve and the area underneath, i.e., FI, MSI,

IPW and pseudo doubly robust (PDR) estimators. Unfortunately, this strategy requires both

the disease model and the verification model exactly specified and a large sample size (may be

several thousands). To construct verification and disease models, the authors recommend selecting

covariates based on scientific knowledge in the literature. A small sample size may occur in some

medical studies, because of the cost or other difficulties. In such situations, Liu and Zhou suggest

to use the MAR assumption, instead. But, we have to be careful with this option, because a

distorted result may be generated.
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2.4 The ROC surface analysis

In a three–class diagnostic problem, the ROC surface analysis is frequently used for the evaluation

of diagnostic markers. The theoretical construction of the ROC surface and VUS was introduced for

the first time by Scurfield (1996). However, this article did not provide any application on real data.

After that, in an independent study, Mossman (1999) proposed a similar construction and gave two

applications on window-rating data and psychiatric data. Based on the Mossman’s construction,

Dreiseitl et al. (2000) proposed the three-way ROC surface and derived a nonparametric estimate

of variance for the VUS. The ROC surface construction for a continuous diagnostic test is provided

by Nakas and Yiannoutsos (2004), as a direct generalization of the ROC curve to three–class

diagnostic problems.

We model the disease status by a trinomial random vector D = (D1, D2, D3), where Dk is a

binary variable that takes 1 if the subject belongs to class k, k = 1, 2, 3. Without loss of generality,

we assume that the subjects from class 3 tend to have higher test results than subjects in class 2

and the latter tend to have higher test results than subjects in class 1, i.e., T |D1 < T |D2 < T |D3.

This implies that the disease classes are ordered with respect to the test result, a condition often

referred to as monotone ordering. For given a pair of cut points (c1, c2), with c1 < c2, subjects

are classified into class 1 if T < c1; class 2 if c1 ≤ T < c2; and class 3 otherwise. The true class

fractions of the test T at (c1, c2) are defined as

TCF1(c1) = Pr(T < c1|class 1) = 1− Pr(T ≥ c1|D1 = 1),

TCF2(c1, c2) = Pr(c1 < T < c2|class 2)
= Pr(T ≥ c1|D2 = 1)− Pr(T ≥ c2|D2 = 1),

TCF3(c2) = Pr(T > c2|class 3) = Pr(T ≥ c2|D3 = 1).

The plot of (TCF1, TCF2, TCF3) by varying the pair (c1, c2) produces the ROC surface of T in the

unit cube. Figure 2.1 shows the ROC surface of a given diagnostic test and the triangular plane of

the random guess. According to this figure, the projection of the ROC surface to the plane defined

by TCF2 versus TCF1 yields the ROC curve between classes 1 and 2. Similarly, on projecting the

ROC surface to the plane defined by the axes TCF2 and TCF3, the ROC curve between classes 2

and 3 is produced (see also Nakas (2014)).

The general formula of the VUS of the diagnostic test T , say µ, is defined as (Nakas and

Yiannoutsos, 2004)

µ = Pr (Ti < T` < Tr|D1i = 1, D2` = 1, D3r = 1)

+
1

2
Pr (Ti < T` = Tr|D1i = 1, D2` = 1, D3r = 1)

+
1

2
Pr (Ti = T` < Tr|D1i = 1, D2` = 1, D3r = 1)

+
1

6
Pr (Ti = T` = Tr|D1i = 1, D2` = 1, D3r = 1)

or, equivalently,

µ =
E (D1iD2`D3rIi`r)

E (D1iD2`D3r)
, i 6= ` 6= r, (2.10)

where Ii`r = I(Ti < T` < Tr) +
1
2 I(Ti < T` = Tr) +

1
2 I(Ti = T` < Tr) +

1
6 I(Ti = T` = Tr) and

I(·) is the indicator function. Under correct ordering, a suitable value of µ lies between 1/6 to

1. More specifically, µ = 1/6 indicates the classification rule is uninformative, while the value 1
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Figure 2.1: An example of the ROC surface

indicates the perfect diagnostic test. Moreover, it is worth noting that the VUS is invariant under

monotonically increasing data transformations (Nakas and Yiannoutsos, 2004).

When all subjects are verified, the nonparametric estimators of the true class fractions and

VUS are given by

T̂CF1(c1) = 1−

n∑
i=1

I(Ti ≥ c1)D1i

n∑
i=1

D1i

,

T̂CF2(c1, c2) =

n∑
i=1

{I(Ti ≥ c1)− I(Ti ≥ c2)}D2i

n∑
i=1

D2i

, (2.11)

T̂CF3(c2) =

n∑
i=1

I(Ti ≥ c2)D3i

n∑
i=1

D3i

,

and

µ̂NP =

n∑
i=1

n∑
`=1,` 6=i

n∑
r=1

r 6=`,r 6=i

Ii`rD1iD2`D3r

n∑
i=1

n∑
`=1,` 6=i

n∑
r=1

r 6=`,r 6=i

D1iD2`D3r

. (2.12)

In recent years, many methods have been developed for estimating the ROC surface and VUS in

absence of verification bias. Nakas and Yiannoutsos (2004) and Nakas (2014) gave some interesting

results about the ROC surface analysis. In their context, the ROC surface is formulated by a

functional form and a nonparametric approach for the VUS estimation is also provided. Conversely,

parametric estimation of VUS is given in Xiong et al. (2006), where the assumption of normality

distribution was used, whereas Li and Zhou (2009) tackled the nonparametric and semi-parametric

estimation of the ROC surface. Li et al. (2012) proposed a regression approach to ROC surface, and
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in Kang and Tian (2013) a kernel smoothing based approach for estimation of VUS is employed.

Like the case of two–class diagnostic problem, verification bias occurs when we try to use the

estimators (2.11) for TCFs and (2.12) for VUS when the missing mechanism is MAR or MNAR.

The issue of correcting for the verification bias in ROC surface analysis is very scarcely considered

in the statistical literature. Until now, only Chi and Zhou (2008) discussed about the issue.

The authors proposed maximum likelihood estimates for ROC surface and VUS under the MAR

assumption. However, these results only concern ordinal diagnostic tests.



Chapter 3

Bias–corrected methods for

estimating the ROC surface

ROC surfaces are the 3D plots of true class fractions (TCF1(c1),TCF2(c1, c2),TCF3(c2)) by varying

the cut points (c1, c2). Thus, correcting for verification bias a ROC surface boils down to bias-

corrected estimation for TCFs.

Recall that the disease status is presented as the trinomial vector D = (D1, D2, D3) such that

Dk = 1 if the subject is belong to class k with k = 1, 2, 3. Thus, Dk is a Bernoulli random variable

having mean θk = Pr(Dk = 1), k = 1, 2, 3, with θ1 + θ2 + θ3 = 1. Let βjk = Pr(T ≥ cj , Dk = 1)

with j = 1, 2 and k = 1, 2, 3. In this notation,

TCF1(c1) = 1− Pr(T ≥ c1, D1 = 1)

Pr(D1 = 1)
= 1− β11

θ1
,

TCF2(c1, c2) =
Pr(T ≥ c1, D2 = 1)− Pr(T ≥ c2, D2 = 1)

Pr(D2 = 1)
=
β12 − β22

θ2
, (3.1)

TCF3(c2) =
Pr(T ≥ c2, D3 = 1)

Pr(D3 = 1)
=
β23
θ3
.

Thus, our goal is find bias–corrected estimators of the quantities θ1, θ2, β11, β12, β22 and β23.

In this chapter, we propose five bias–corrected approaches, which work under MAR assumption

and can be seen as an extension of estimators reviewed in Subsection 2.3. In expressions (2.1) and

(3.1), we note that parameters θ and θk, so as β1 and βjk, play, in essence, a similar role. Therefore,

estimators of θk and βjk can be obtained by mimicking what was done in the two-class problem.

3.1 Parametric methods

3.1.1 Full imputation

For each j = 1, 2 and k = 1, 2, 3, the FI estimators of θk and βjk are obtained as

θ̂k,FI = P̂r(Dk = 1) =
1

n

n∑

i=1

ρ̂ki, (3.2)

β̂jk,FI = P̂r(T ≥ cj , Dk = 1) =
1

n

n∑

i=1

I(Ti ≥ cj)ρ̂ki, (3.3)

where ρ̂ki is an estimate of ρki = Pr(Dki = 1|Ti, Ai) given by some suitable model, such as the

multinomial logistic or probit regression model, applied to the verified sample units. Note that in
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what follows we will perform estimation within the framework of maximum likelihood. Therefore,

the full imputation estimators T̂CF1,FI(c1), T̂CF2,FI(c1, c2) and T̂CF3,FI(c2) are

T̂CF1,FI(c1) = 1−

n∑
i=1

I(Ti ≥ c1)ρ̂1i

n∑
i=1

ρ̂1i

,

T̂CF2,FI(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2)ρ̂2i

n∑
i=1

ρ̂2i

,

T̂CF3,FI(c2) =

n∑
i=1

I(Ti ≥ c2)ρ̂3i

n∑
i=1

ρ̂3i

.

It is worth noting that estimators θ̂k,FI and β̂jk,FI in (3.2) and (3.3) are the solutions of the

estimating equations

n∑

i=1

(ρ̂ki − θk) = 0, (3.4)

n∑

i=1

{I(Ti ≥ cj)ρ̂ki − βjk} = 0. (3.5)

3.1.2 Mean score imputation

By inspection of (2.4), we get the MSI estimators of θk, k = 1, 2, 3, as follows

θ̂k,MSI = P̂r(Dk = 1) =
1

n

n∑

i=1

[ViDki + (1− Vi)ρ̂ki] .

The estimators of βjk are given by

β̂jk,MSI = P̂r(T ≥ cj , Dk = 1) =
1

n

n∑

i=1

I(Ti ≥ cj) [ViDki + (1− Vi)ρ̂ki] .

Then, the MSI estimators of TCF1(c1), TCF2(c1, c2) and TCF3(c2) are :

T̂CF1,MSI(c1) = 1−

n∑
i=1

I(Ti ≥ c1) [ViD1i + (1− Vi)ρ̂1i]

n∑
i=1

[ViD1i + (1− Vi)ρ̂1i]
,

T̂CF2,MSI(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2) [ViD2i + (1− Vi)ρ̂2i]

n∑
i=1

[ViD2i + (1− Vi)ρ̂2i]
,

T̂CF3,MSI(c2) =

n∑
i=1

I(Ti ≥ c2) [ViD3i + (1− Vi)ρ̂3i]

n∑
i=1

[ViD3i + (1− Vi)ρ̂3i]
.
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Again, we can obtain θ̂k and β̂jk as solution of the estimating equations

n∑

i=1

{Vi(Dki − θk) + (1− Vi)(ρ̂ki − θk)} = 0, (3.6)

n∑

i=1

{Vi(I(Ti ≥ cj)Dki − βjk) + (1− Vi)(I(Ti ≥ cj)ρ̂ki − βjk)} = 0. (3.7)

3.1.3 Inverse probability weighting

From the IPW estimators of β1 and θ in (2.5), we derive, by analogy,

θ̂k,IPW = P̂r(Dk = 1) =

n∑
i=1

Viπ̂
−1
i Dki

n∑
i=1

Viπ̂
−1
i

,

β̂jk,IPW = P̂r(T ≥ cj , Dk = 1) =

n∑
i=1

I(Ti ≥ cj)Viπ̂
−1
i Dki

n∑
i=1

Viπ̂
−1
i

.

The estimates π̂i are obtained in the same way as in the two-class case, i.e, by using paramet-

ric regression models such as logistic or probit models. Again, in what follows we will employ

maximum likelihood estimation. Then, the IPW estimators T̂CF1,IPW(c1), T̂CF2,IPW(c1, c2) and

T̂CF3,IPW(c2) are

T̂CF1,IPW(c1) = 1−

n∑
i=1

I(Ti ≥ c1)Viπ̂
−1
i D1i

n∑
i=1

Viπ̂
−1
i D1i

,

T̂CF2,IPW(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2)Viπ̂
−1
i D2i

n∑
i=1

Viπ̂
−1
i D2i

,

T̂CF3,IPW(c2) =

n∑
i=1

I(Ti ≥ c2)Viπ̂
−1
i D3i

n∑
i=1

Viπ̂
−1
i D3i

,

and the estimating equations corresponding to θ̂k,IPW and β̂jk,IPW are

n∑

i=1

Viπ̂
−1
i (Dki − θk) = 0, (3.8)

n∑

i=1

Viπ̂
−1
i (I(Ti ≥ cj)Dki − βjk) = 0. (3.9)

Note that the IPW estimators only use verified subjects.
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3.1.4 Semiparametric efficient

Similarly to three previous cases, the SPE estimators of βjk and θk are derived in analogy to β̂1,SPE

and θ̂SPE in (2.6), i.e,

θ̂k,SPE =
1

n

n∑

i=1

{
ViDki

π̂i
− ρ̂ki(Vi − π̂i)

π̂i

}
, (3.10)

β̂jk,SPE =
1

n

n∑

i=1

I(Ti ≥ cj)

{
ViDki

π̂i
− ρ̂ki(Vi − π̂i)

π̂i

}
. (3.11)

Therefore, we obtain

T̂CF1,SPE(c1) = 1−

n∑
i=1

I(Ti ≥ c1)
{

ViD1i

π̂i
− ρ̂1i(Vi−π̂i)

π̂i

}

n∑
i=1

{
ViD1i

π̂i
− ρ̂1i(Vi−π̂i)

π̂i

} ,

T̂CF2,SPE(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2)
{

ViD2i

π̂i
− ρ̂2i(Vi−π̂i)

π̂i

}

n∑
i=1

{
ViD2i

π̂i
− ρ̂2i(Vi−π̂i)

π̂i

} ,

T̂CF3,SPE(c2) =

n∑
i=1

I(Ti ≥ c2)
{

ViD3i

π̂i
− ρ̂3i(Vi−π̂i)

π̂i

}

n∑
i=1

{
ViD3i

π̂i
− ρ̂3i(Vi−π̂i)

π̂i

} .

The estimators θ̂k,SPE and β̂jk,SPE solve the estimating equations

n∑

i=1

{
Vi
π̂i

[I(Ti ≥ cj)Dki − βjk]−
Vi − π̂i
π̂i

[I(Ti ≥ cj)ρ̂ki − βjk]

}
= 0, (3.12)

n∑

i=1

{
Vi
π̂i

(Dki − θk)−
Vi − π̂i
π̂i

(ρ̂ki − θk)

}
= 0. (3.13)

The SPE estimators are also known to be doubly robust estimators, in the sense that they are

consistent if either the ρki’s or the πi’s are estimated consistently. However, SPE estimates could

fall outside the interval (0, 1). This happens because the quantities ViDkiπ̂
−1
i − ρ̂ki(Vi − π̂i)π̂

−1
i

can be negative.

3.1.5 Asymptotic distribution theory

The parameters of interest TCF1(c1),TCF2(c1, c2) and TCF3(c2) are functions of θ1, θ2, β11, β12,

β22, β23 and τ = (τ>ρ , τ
>
π )>, where τ is the vector of parameters of the models used to estimate

ρ = (ρ>1 , ρ
>
2 )

>, or π, or both. Let us denote α = (θ1, θ2, β11, β12, β22, β23, τ
>)>. The estimators

(FI, MSI, IPW, SPE) of α are obtained by solving suitable estimating equations. Hence, we use

results in Alonzo et al. (2003) and Alonzo and Pepe (2005) to give consistency and asymptotic

normality of the proposed bias–corrected estimators.

According to equations (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), (3.12) and (3.13), let Gθs∗ (α) =
n∑

i=1

gθsi,∗(α) and G
βjk

∗ (α) =
n∑

i=1

g
βjk

i,∗ (α) be the estimating functions for θs and βjk, with k = 1, 2, 3, s

and j = 1, 2, for one of the four previously introduced approaches (the star indicates FI, MSI, IPW,

SPE). We assume that τ̂ is the solution to a classic set of estimating equations of the form Gτ (α) =
n∑

i=1

gτi (α) = 0. Specifically, we will employ classic score equations derived from: a multinomial
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logistic regression model for estimation of the disease process; and from a logistic regression model

for estimation of the verification process. The estimate α̂∗ of α is then obtained by solving G∗(α) =
n∑

i=1

gi,∗(α) = 0, where gi,∗(α) =
(
gθ1i,∗(α), g

θ2
i,∗(α), g

β11

i,∗ (α), gβ12

i,∗ (α), gβ22

i,∗ (α), gβ23

i,∗ (α), gτi (α)
>
)>

.

Let α0 =
(
θ10, θ10, β110, β120, β220, β230, τ

>
0

)>
be the true value of α. We assume that

(A1) D is missing at random (MAR);

(A2) the data (Di, Ti, A
>
i , Vi)

> are i.i.d;

(A3) (T,A>)> is a bounded random vector;

(A4) E
[

∂
∂α> gi,∗(α0)

]
is negative definite;

(A5) ρki and πi are bounded away from 0.

We consider also the following standard regularity conditions.

(C1) gi,∗(α0) are i.i.d and E {gi,∗(α0)} = 0.

(C2) Elements of G∗(α), ∂
∂α>G∗(α), and ∂2

∂α∂α>G∗(α) exist in a bounded δ-neighborhood of α0,

Nδ(α0).

(C3) gi,∗(α), ∂
∂α> gi,∗(α), and

∂2

∂α∂α> gi,∗(α) are uniformly bounded in Nδ(α0).

Under the assumptions (A1)–(A5) and conditions (C1)–(C3), we obtain the asymptotic results

summarized in the following theorem.

Theorem 3.1.1. Let TCF10(c1),TCF20(c1, c2),TCF30(c2) be the true parameter values. The FI,

MSI, IPW or SPE bias-corrected estimators T̂CF1,∗(c1), T̂CF2,∗(c1, c2) and T̂CF3,∗(c2) are con-

sistent. Furthermore,

√
n







T̂CF1,∗(c1)

T̂CF2,∗(c1, c2)

T̂CF3,∗(c2)


−




TCF10(c1)
TCF20(c1, c2)
TCF30(c2)





 d→ N3






0
0
0


 ,

∂h(α0)

∂α> Σ
∂h>(α0)

∂α>


 , (3.14)

where h(α) =
(
1− β11

θ1
, β12−β22

θ2
, β23

1−(θ1+θ2)

)>
and

Σ =

[
E

{
∂

∂α> gi,∗(α0)

}]−1

Cov{gi,∗(α0)}
[
E

{
∂

∂α> g
>
i,∗(α0)

}]−1

.

Proof. We apply Theorem 1 and Theorem 2 of Alonzo et al. (2003). Under assumptions (A1)–

(A5) and conditions (C1)–(C3), α̂∗ is consistent and
√
n (α̂∗ − α0)

d→ N (0,Σ). Thus, T̂CF1,∗(c1) =

1− β̂11/θ̂1, T̂CF2,∗(c1, c2) = (β̂12− β̂22)/θ̂2 and T̂CF3,∗(c2) = β̂23/(1− (θ̂1+ θ̂2)) are consistent for

the true TCF10(c1), TCF20(c1, c2) and TCF30(c2) and, by and application of the multivariate delta

method, result (3.14) follows. In next parts, we check conditions (C1)–(C3) for each estimator, i.e.,

FI, MSI, IPW and SPE, under assumptions (A1)–(A5). This is done when a multinomial logistic

regression model is used for the estimation of the disease process and a logistic regression model

or a probit model is used for the estimation of the verification process.

The above theorem gives a general result for all estimates, i.e., FI, MSI, IPW and SPE. In the

last part, the explicit form of the asymptotic variance–covariance matrix is obtained. In practice,

the variance–covariance matrix Σ is replaced by a consistent estimate Σ̂

Σ̂ = n

[
n∑

i=1

∂

∂α> gi,∗(α̂)

]−1 [ n∑

i=1

gi,∗(α̂)gi,∗(α̂)
>
][

n∑

i=1

∂

∂α> g
>
i,∗(α̂)

]−1

.
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It is worth noting that SPE estimators of θk and βjk in (3.10) and (3.11), will inherit the double

robustness property of θ̂SPE and β̂1,SPE in (2.6). That is, θ̂k,SPE and β̂jk,SPE remain consistent if

only one of the disease model Pr(Dk = 1|T,A) or the verification model Pr(V = 1|T,A) is correctly
specified in the estimation process; they are inconsistent if both models are misspecified. Clearly,

this property also holds for the estimators T̂CF1,SPE(c1), T̂CF2,SPE(c1, c2) and T̂CF3,SPE(c2).

Next, we discuss validity of conditions (C1), (C2) and (C3) for the proposed estimators. The

discussion covers first the elements of the estimating functions corresponding to the parameter τ .

Then, we pass on to the elements of the estimating functions corresponding to the parameters

θ1, θ2, θ11, β12, β22, β23, specializing the discussion to the various methods. Finally, we give the

explicit form of the variance-covariance matrix in Theorem 3.1.1. Recall that α0 denotes the true

value of α.

Parameter τ . Note that estimators FI, MSI and SPE require a multinomial logistic or probit

regression model to estimate the disease probabilities ρki = Pr(Dki = 1|Ti, Ai) with k = 1, 2, 3.

In the following, we adopt the multinomial logistic model, but arguments similar to those given

below also hold for the multinomial probit model, despite the rather more complex algebra (see

Daganzo 1979, Chap. 3, as a general reference).

The estimating function for the nuisance parameter τ ≡ τρ =
(
τ>ρ1
, τ>ρ2

)>
,

Gτρ(α) =
(
Gτρ1 (α)>, Gτρ2 (α)>

)> ≡



(

n∑

i=1

g
τρ1
i (α)

)>

,

(
n∑

i=1

g
τρ2
i (α)

)>


>

,

is obtained as the first derivative of the log likelihood function. With the multinomial logistic

model, we get

Gτρ(α) =



(

n∑

i=1

ViUi(D1i − ρ1i)

)>

,

(
n∑

i=1

ViUi(D2i − ρ2i)

)>


>

,

where Ui is an arbitrary regressor; for simplicity, we take Ui = (1, Ti, A
>
i )

>. Under assumption

(A2), condition (C1) trivially holds. Moreover, we get

∂
∂τ>

ρ1

g
τρ1
i (α) = −ViUiU

>
i ρ1i(1− ρ1i),

∂
∂τ>

ρ2

g
τρ1
i (α) = ViUiU

>
i ρ1iρ2i,

∂
∂τ>

ρ2

g
τρ2
i (α) = −ViUiU

>
i ρ2i(1− ρ2i),

∂
∂τ>

ρ1

g
τρ2
i (α) = ViUiU

>
i ρ1iρ2i,

(3.15)

and ∂
∂θs

g
τρ
i (α) = 0, ∂

∂βjk
g
τρ
i (α) = 0 for each s, j, k. The second–order partial derivatives can be

easily derived. Hence, for Gτρ(α), condition (C2) holds and, by assumption (A3)–(A5) condition

(C3) also holds.

The IPW and SPE estimators require estimates of πi = Pr(Vi = 1|Ti, Ai). With T and A as

covariates, we can use the logistic or probit models to this end. In these cases, conditions (C1)–(C3)

are satisfied by the score functions

Gτπ (α) =

n∑

i=1

gτπi (α) =

n∑

i=1

Ui(Vi − πi)

or

Gτπ (α) =

n∑

i=1

gτπi (α) =

n∑

i=1

[
ViUiφ(U

>
i τπ)

Φ(U>
i τπ)

− (1− Vi)
Uiφ(U

>
i τπ)

1− Φ(U>
i τπ)

]
,
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where φ(·) and Φ(·) are the density function and the cumulative distribution function of the stan-

dard normal random variable, respectively. Recall that τπ is the component of the nuisance pa-

rameter τ corresponding the model for estimating π. The first-order derivatives are

∂

∂τ>π
gτπi (α) = −UiU

>
i πi(1− πi), (3.16)

or

∂

∂τ>π
gτπi (α) = −ViUiU

>
i φ(U

>
i τπ)

[
−U>

i τπΦ(U
>
i τπ)− φ(U>

i τπ)
]

Φ2(U>
i τπ)

− (1− Vi)
UiU

>
i φ(U

>
i τπ)

[
U>
i τπ(Φ(U

>
i τπ)− 1) + φ(U>

i τπ)
]

[
1− Φ(U>

i τπ)
]2 . (3.17)

FI and MSI estimators. According to equations (3.4), (3.5), (3.6) and (3.7), the estimating

functions Gθs∗ (α) for FI and MSI estimators can be presented in the form

Gθs
IE(α) ≡

n∑

i=1

gθsi,IE(α) =

n∑

i=1

{Vi [mDsi − θs + (1−m)ρsi] + (1− Vi)(ρsi − θs)} ,

with s = 1, 2. Similarly,

G
βjk

IE (α) ≡
n∑

i=1

g
βjk

i,IE(α) =

n∑

i=1

{
Vi [mI(Ti ≥ cj)Dki − βjk + (1−m)I(Ti ≥ cj)ρki]

+ (1− Vi) [I(Ti ≥ cj)ρki − βjk]

}
,

for j = 1, 2 and k = 1, 2, 3. Here, the notation IE means “imputation estimator”. The estimating

function corresponds to the FI estimator if m = 0, to the MSI estimator if m = 1. Using the

conditional expectation and the assumption (A1), E
[
gθsi,IE(α0)

]
equals

EDs,Ti,Ai

[
E

[
gθsi,IE(α0)|Ti, Ai

]]

= EDsi,Ti,Ai
[E [{Vi [mDsi − θs0 + (1−m)ρsi] + (1− Vi) [ρsi − θs0]} |Ti, Ai]]

= EDsi,Ti,Ai
[πi [mE [Dsi|Ti, Ai]− θs0 + (1−m)ρsi] + (1− πi)(ρsi − θs0)]

= EDsi,Ti,Ai
[πi [mρsi − θs0 + (1−m)ρsi] + (1− πi)(ρsi − θs0)]

= EDsi,Ti,Ai
[πi(ρsi − θs0) + (1− πi)(ρsi − θs0)]

= EDsi,Ti,Ai
[ρsi − θs0] = 0.

Similarly, we compute the expected value of the estimating function components g
βjk

i,IE(α0) as follows

EDk,Ti,Ai

[
E

[
g
βjk

i,IE(α0)|Ti, Ai

]]

= EDki,Ti,Ai

[
E

[{
Vi [mI(Ti ≥ cj)Dki − βjk0 + (1−m)I(Ti ≥ cj)ρki]

+ (1− Vi) [I(Ti ≥ cj)ρki − βjk0]

}∣∣∣∣Ti, Ai

]]

= EDki,Ti,Ai
[πi [mI(Ti ≥ cj)ρki − βjk0 + (1−m)I(Ti ≥ cj)ρki] + (1− πi)(I(Ti ≥ cj)ρki − βjk0)]

= EDki,Ti,Ai
[πi(I(Ti ≥ cj)ρki − βjk0) + (1− πi)(I(Ti ≥ cj)ρki − βjk0)]

= EDki,Ti,Ai
[I(Ti ≥ cj)ρki − βjk0] = 0.

Hence, under assumption (A2), condition (C1) holds for Gθs
IE(α) and G

βjk

IE (α).
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We now verify conditions (C2) and (C3). The partial derivative of Gθs
IE(α) with respect to βjk

equals 0 for all j, k. Moreover,

∂

∂θs′
Gθs

IE(α) =

n∑

i=1

∂

∂θs′
{Vi [mDsi − θs + (1−m)ρsi] + (1− Vi) [ρsi − θs]}

=

n∑

i=1

I(s′ = s) {−Vi − (1− Vi)} = −nI(s′ = s)

and

∂

∂τρ
Gθs

IE(α) =

((
∂

∂τρ1

Gθs
IE(α)

)>
,

(
∂

∂τρ2

Gθs
IE(α)

)>)>

.

For each l = 1, 2 and s = 1, 2, we have

∂

∂τρl

Gθs
IE(α) =

n∑

i=1

(1−mVi)
∂

∂τρl

ρsi.

Recall that, under the multinomial logistic model,

ρsi =
eU

>

i τs

1 + eU
>

i τρ1 + eU
>

i τρ2
, s = 1, 2. (3.18)

Thus, we obtain
∂

∂τρ1
ρ1i = Uiρ1i(1− ρ1i),

∂
∂τρ2

ρ1i = −Uiρ1iρ2i,

∂
∂τρ2

ρ2i = Uiρ2i(1− ρ2i),
∂

∂τρ1
ρ2i = −Uiρ1iρ2i.

(3.19)

The derivatives of G
βjk

IE (α) are

∂

∂θs
G

βjk

IE (α) = 0,
∂

∂βj′k′

G
βjk

IE (α) = −nI(j′k′ = jk)

and
∂

∂τρl

G
βjk

IE (α) =

n∑

i=1

(1−mVi)I(Ti ≥ cj)
∂

∂τρl

ρki,

where ∂
∂τρl

ρsi is in (3.19). Hence, we have the explicit form of the partial derivatives of both Gθs
IE(α)

and G
βjk

IE (α). The only not null elements of the second–order partial derivative of Gθs
IE(α) and

G
βjk

IE (α) are those corresponding to the matrices ∂2

∂τ∂τ>G
θs
IE(α) and

∂2

∂τ∂τ>G
βjk

IE (α). These elements

involve the derivatives with respect to τ of quantities in (3.19). It follows that conditions (C2) and

(C3) hold for Gθs
IE(α) and G

βjk

IE (α) for each s, j, k.

IPW estimator. Recall that the estimating function for θs is

Gθs
IPW(α) =

n∑

i=1

gθsi,IPW(α) =

n∑

i=1

Vi
πi

(Dsi − θs) s = 1, 2,

and for the parameter βjk is

G
βjk

IPW(α) =

n∑

i=1

g
βjk

i,IPW(α) =

n∑

i=1

Vi
πi

(I(Ti ≥ cj)Dki − βjk) j = 1, 2; k = 1, 2, 3.

We show that these estimating functions are unbiased under assumptions (A1) and (A2). In fact,

we get

E
[
Viπ

−1
i (Dsi − θs0)

]
= EDs,T,A

[
E
(
Viπ

−1
i (Dsi − θs0) |, Ti, Ai

)]

= EDs,T,A

[
π−1
i E (Vi|Ti, Ai) (ρsi − θs0)

]

= EDs,T,A [ρsi − θs0] = 0,
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and

EDk,Ti,Ai

[
E

[
g
βjk

i,IPW(α0)|Ti, Ai

]]
= EDki,Ti,Ai

[
E

[{
Vi
πi

(I(Ti ≥ cj)Dki − βjk0)

}∣∣∣∣Ti, Ai

]]

= EDki,Ti,Ai
[I(Ti ≥ cj)ρik − βjk0] = 0.

Therefore, condition (C1) holds for Gθs
IPW(α) and G

βjk

IPW(α), all s, j, k.

Next, we obtain the partial derivatives

∂
∂θs′

Gθs
IPW(α) = −

n∑

i=1

Vi
πi

I(s′ = s), ∂
∂βjk

Gθs
IPW(α) = 0,

∂
∂θs

G
βjk

IPW(α) = 0, ∂
∂βj′k′

G
βjk

IPW(α) = −
n∑

i=1

Vi
πi

I(j′k′ = jk),

and, for the logistic model (used to estimate the verification process)

∂
∂τπ

Gθs
IPW(α) = −

n∑

i=1

Vi(Dsi − θs)Ui

eU
>

i τπ
, ∂

∂τπ
G

βjk

IPW(α) = −
n∑

i=1

Vi(I(Ti ≥ cj)Dki − βjk)Ui

eU
>

i τπ
,

or the probit model

∂

∂τπ
Gθs

IPW(α) = −
n∑

i=1

Vi(Dsi − θs)Uiφ(U
>
i τπ)

Φ2(U>
i τπ)

,

∂

∂τπ
G

βjk

IPW(α) = −
n∑

i=1

Vi(I(Ti ≥ cj)Dki − βjk)Uiφ(U
>
i τπ)

Φ2(U>
i τπ)

.

The computation of the second-order derivatives is similar and the results imply that the conditions

(C2) and (C3) hold.

SPE estimator. Recall that

Gθs
SPE(α) =

n∑

i=1

{
Vi
πi

(Dsi − θs)−
Vi − πi
πi

(ρsi − θs)

}
, s = 1, 2,

G
βjk

SPE(α) =

n∑

i=1

{
Vi
πi

[I(Ti ≥ cj)Dki − βjk]−
Vi − πi
πi

[I(Ti ≥ cj)ρki − βjk]

}
, j = 1, 2; k = 1, 2, 3.

Under assumption (A1), E
[
gθki,SPE(α0)

]
equals

EDs,Ti,Ai

[
E

[
gθsi,SPE(α0)|Ti, Ai

]]

= EDsi,Ti,Ai

[
E

[{
Vi
πi

(Dsi − θs0)−
Vi − πi
πi

(ρsi − θs0)

}
|Ti, Ai

]]

= EDsi,Ti,Ai

[
π−1
i [E [Dsi|Ti, Ai]− θs0]πi

]
− π−1

i EDsi,Ti,Ai
[E [(Vi − πi)(ρsi − θs0)|Ti, Ai]]

= EDsi,Ti,Ai
[ρsi − θs0]− π−1

i EDsi,Ti,Ai
[(ρsi − θs0)E [(Vi − πi)|Ti, Ai]]

= EDsi,Ti,Ai
[ρsi − θs0] = 0.

and

EDk,Ti,Ai

[
E

[
g
βjk

i,SPE(α0)|Ti, Ai

]]

= EDki,Ti,Ai

[
E

[{
Vi
πi

[I(Ti ≥ cj)Dki − βjk0]−
Vi − πi
πi

[I(Ti ≥ cj)ρki − βjk0]

}∣∣∣∣Ti, Ai

]]

= EDki,Ti,Ai
[[I(Ti ≥ cj)E [Dki|Ti, Ai]− βjk0]]

− π−1
i EDki,Ti,Ai

[E [(Vi − πi)(I(Ti ≥ cj)ρki − βjk0)|Ti, Ai]]

= EDki,Ti,Ai
[I(Ti ≥ cj)ρki − βjk0] = 0.
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Therefore, condition (C1) holds for Gθs
SPE(α) and G

βjk

SPE(α), all s, j, k.

Next, we obtain the partial derivatives

∂
∂θs′

Gθs
SPE(α) = −nI(s′ = s) ∂

∂βjk
Gθs

SPE(α) = 0

∂
∂θs

G
βjk

SPE(α) = 0 ∂
∂βj′k′

g
βjk

SPE(α) = −nI(j′k′ = jk)

and the partial derivative with respect to τρ ≡ (τ>ρ1
, τ>ρ2

)>

∂

∂τρl

Gθs
SPE(α) =

n∑

i=1

−Vi − πi
πi

∂

∂τρl

ρsi;
∂

∂τρl

G
βjk

SPE(α) =

n∑

i=1

−Vi − πi
πi

I(Ti ≥ cj)
∂

∂τρl

ρsi,

where ∂
∂τ>

ρl

ρsi is given in (3.19). The partial derivative with respect to τπ, are

∂

∂τπ
Gθs

SPE(α) =

n∑

i=1

ViUi(ρsi −Dsi)

eU
>

i τπ
;

∂

∂τπ
G

βjk

SPE(α) =

n∑

i=1

ViUiI(Ti ≥ cj)(ρki −Dki)

eU
>

i τ
;

when the logistic model is used for the verification process. If the probit model is used, we have

∂

∂τπ
Gθs

SPE(α) =

n∑

i=1

ViUi(Dsi − ρsi)φ(U
>
i τπ)

Φ2(U>
i τπ)

,

∂

∂τπ
G

βjk

SPE(α) =

n∑

i=1

ViUiI(Ti ≥ cj)(Dsi − ρki)φ(U
>
i τπ)

Φ2(U>
i τπ)

.

Also in this case, computation of the second–order partial derivatives develops similarly and the

results imply that the conditions (C2) and (C3) hold.

Asymptotic covariance matrix. Recall that the asymptotic covariance matrix of TCF estima-

tors is obtained as

∂h(α0)

∂α> Σ
∂h>(α0)

∂α> ,

where h(α) =
(
1− β11

θ1
, β12−β22

θ2
, β23

1−(θ1+θ2)

)>
and

Σ =

[
E

{
∂

∂α> gi,∗(α0)

}]−1

E{gi,∗(α0)gi,∗(α0)
>}
[
E

{
∂

∂α> g
>
i,∗(α0)

}]−1

.

It is easy to derive that

∂h(α)

∂α> =




β11

θ2

1

0 − 1
θ1

0 0 0 0

0 −β12−β22

θ2

2

0 1
θ2

− 1
θ2

0 0
β23

(1−θ1−θ2)2
β23

(1−θ1−θ2)2
0 0 0 1

1−θ1−θ2
0


 .

The elements gi,∗(α) of the estimating functions G∗(α) are given in the previous paragraphs. Now,

we derive the explicit form for ∂
∂α> gi,∗(α).
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First, we consider the class of imputation estimators. We get

∂

∂α
gθ1i,IE(α) =

(
−1, 0, 0, 0, 0, 0, A>

11i, A
>
21i

)>
,

∂

∂α
gθ2i,IE(α) =

(
0,−1, 0, 0, 0, 0, A>

12i, A
>
22i

)>
,

∂

∂α
gβ11

i,IE(α) =
(
0, 0,−1, 0, 0, 0, B>

111i, B
>
121i

)>
,

∂

∂α
gβ12

i,IE(α) =
(
0, 0, 0,−1, 0, 0, B>

112i, B
>
122i

)>
,

∂

∂α
gβ22

i,IE(α) =
(
0, 0, 0, 0,−1, 0, B>

212i, B
>
222i

)>
,

∂

∂α
gβ23

i,IE(α) =
(
0, 0, 0, 0, 0,−1, B>

213i, B
>
223i

)>
,

∂

∂α> g
τρ1
i,IE(α) = (0, 0, 0, 0, 0, 0, C11i, C21i) ,

∂

∂α> g
τρ2
i,IE(α) = (0, 0, 0, 0, 0, 0, C12i, C22i) ,

where

Alsi = (1−mVi)
∂

∂τρl

ρsi, Bjlki = (1−mVi)I(Ti ≥ cj)
∂

∂τρl

ρki, Clsi =
∂

∂τ>ρl

g
τρs
i (α),

with j, l, s = 1, 2 and k = 1, 2, 3 (see (3.15) and (3.19) for the multinomial logistic modeling of the

disease process). Thus,

∂

∂α> gi,IE(α) =




−1 0 0 0 0 0 A>
11i A>

21i

0 −1 0 0 0 0 A>
12i A>

22i

0 0 −1 0 0 0 B>
111i B>

121i

0 0 0 −1 0 0 B>
112i B>

122i

0 0 0 0 −1 0 B>
212i B>

222i

0 0 0 0 0 −1 B>
213i B>

223i

0 0 0 0 0 0 C11i C21i

0 0 0 0 0 0 C12i C22i




.

Then, we consider the IPW estimators. Let

Aki =
∂

∂τπ
gθki,IPW(α), Bjki =

∂

∂τπ
g
βjk

i,IPW(α), Ci =
∂

∂τ>π
gτπi (α).

Note that these quantities change according to the model, logit or probit, chosen for the verification

process. We obtain

∂

∂α
gθ1i,IPW(α) =

(
−Viπ−1, 0, 0, 0, 0, 0, A>

1i

)>
,

∂

∂α
gθ2i,IPW(α) =

(
0,−Viπ−1, 0, 0, 0, 0, A>

2i

)>
,

∂

∂α
gβ11

i,IPW(α) =
(
0, 0,−Viπ−1, 0, 0, 0, B>

11i

)>
,

∂

∂α
gβ12

i,IPW(α) =
(
0, 0, 0,−Viπ−1, 0, 0, B>

12i

)>
,

∂

∂α
gβ22

i,IPW(α) =
(
0, 0, 0, 0,−Viπ−1, 0, B>

22i

)>
,

∂

∂α
gβ23

i,IPW(α) =
(
0, 0, 0, 0, 0,−Viπ−1, B>

23i

)>
,

∂

∂α> g
τπ
i (α) = (0, 0, 0, 0, 0, 0, Ci) .
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Summarizing

∂

∂α> gi,IPW(α) =




−Viπ−1
i 0 0 0 0 0 A>

1i

0 −Viπ−1
i 0 0 0 0 A>

2i

0 0 −Viπ−1
i 0 0 0 B>

11i

0 0 0 −Viπ−1
i 0 0 B>

12i

0 0 0 0 −Viπ−1
i 0 B>

22i

0 0 0 0 0 −Viπ−1
i B>

23i

0 0 0 0 0 0 Ci




.

Finally, we consider the SPE estimators. We have

∂

∂α
gθ1i,SPE(α) =

(
−1, 0, 0, 0, 0, 0, H>

11i, H
>
21i, D

>
1i

)>
,

∂

∂α
gθ2i,SPE(α) =

(
0,−1, 0, 0, 0, 0, H>

12i, H
>
22i, D

>
2i

)>
,

∂

∂α
gβ11

i,SPE(α) =
(
0, 0,−1, 0, 0, 0, G>

111i, G
>
121i, E

>
11i

)>
,

∂

∂α
gβ12

i,SPE(α) =
(
0, 0, 0,−1, 0, 0, G>

112i, G
>
122i, E

>
12i

)>
,

∂

∂α
gβ22

i,SPE(α) =
(
0, 0, 0, 0,−1, 0, G>

212i, G
>
222i, E

>
22i

)>
,

∂

∂α
gβ23

i,SPE(α) =
(
0, 0, 0, 0, 0,−1, G>

213i, G
>
223i, E

>
23i

)>
,

∂

∂α> g
τρ1
i,SPE(α) = (0, 0, 0, 0, 0, 0, C11i, C21i, 0) ,

∂

∂α> g
τρ2
i,SPE(α) = (0, 0, 0, 0, 0, 0, C12i, C22i, 0) ,

∂

∂α> g
τπ
i,SPE(α) = (0, 0, 0, 0, 0, 0, 0, 0, Ci) ,

where

Hlki = −Vi − πi
πi

∂

∂τρl

ρki, Gjlki = −Vi − πi
πi

I(Ti ≥ cj)
∂

∂τρl

ρki,

Dsi =
∂

∂τπ
gθsi,SPE(α), Ejki =

∂

∂τπ
g
βjk

i,SPE(α),

and Clsi and Ci are defined above. Therefore

∂

∂α> gi,SPE(α) =




−1 0 0 0 0 0 H>
11i H>

21i D>
1i

0 −1 0 0 0 0 H>
12i H>

22i D>
2i

0 0 −1 0 0 0 G>
111i G>

121i E>
11i

0 0 0 −1 0 0 G>
112i G>

122i E>
12i

0 0 0 0 −1 0 G>
212i G>

222i E>
22i

0 0 0 0 0 −1 G>
213i G>

223i E>
23i

0 0 0 0 0 0 C11i C21i 0
0 0 0 0 0 0 C12i C22i 0
0 0 0 0 0 0 0 0 Ci




.

3.2 Nonparametric estimation

All the verification bias-corrected estimators of TCF1(c1),TCF2(c1, c2) and TCF3(c2) revised in the

previous section belong to the class of (partially) parametric estimators, i.e., they need regression

models to estimate ρki = Pr(Dki = 1|Ti, Ai) and/or πi = Pr(Vi = 1|Ti, Ai). In what follows, we

propose a fully nonparametric approach to the estimation of TCF1(c1),TCF2(c1, c2) and TCF3(c2).

Our approach is based on the K-nearest neighbor (KNN) imputation method.
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3.2.1 The proposed method

Hereafter, we shall assume that A is a continuous random variable. Recall that the true disease

status is a trinomial random vector D = (D1, D2, D3) such that Dk is a n Bernoulli trials with

success probability θk = Pr(Dk = 1), k = 1, 2, 3. Note that θ1 + θ2 + θ3 = 1. Let βjk = Pr(T ≥
cj , Dk = 1) with j = 1, 2 and k = 1, 2, 3. Since parameters θk are the means of the random variables

Dk, we can use the KNN imputation discussed in Ning and Cheng (2012) to obtain nonparametric

estimates θ̂k,KNN. More precisely, we define

θ̂k,KNN =
1

n

n∑

i=1

[ViDki + (1− Vi)ρ̂ki,K ] , K ∈ N,

where ρ̂ki,K =
1

K

K∑
l=1

Dki(l), and
{
(Ti(l), Ai(l), Dki(l)) : Vi(l) = 1, l = 1, . . . ,K

}
is a set of K ob-

served data pairs and (Ti(l), Ai(l)) denotes the j-th nearest neighbor to (Ti, Ai) among all (T,A)’s

corresponding to the verified patients, i.e., to those Dkh’s with Vh = 1. Similarly, we can define

the KNN estimates of βjk as follows

β̂jk,KNN =
1

n

n∑

i=1

I(Ti ≥ cj) [ViDki + (1− Vi)ρ̂ki,K ] ,

each j, k. Therefore, the KNN imputation estimators for TCFk are

T̂CF1,KNN(c1) =

n∑
i=1

I(Ti < c1) [ViD1i + (1− Vi)ρ̂1i,K ]

n∑
i=1

[ViD1i + (1− Vi)ρ̂1i,K ]
,

T̂CF2,KNN(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2) [ViD2i + (1− Vi)ρ̂2i,K ]

n∑
i=1

[ViD2i + (1− Vi)ρ̂2i,K ]
, (3.20)

T̂CF3,KNN(c2) =

n∑
i=1

I(Ti ≥ c2) [ViD3i + (1− Vi)ρ̂3i,K ]

n∑
i=1

[ViD3i + (1− Vi)ρ̂3i,K ]
.

3.2.2 Asymptotic distribution

Let ρk(t, a) = Pr(Dk = 1|T = t, A = a) and π(t, a) = Pr(V = 1|T = t, A = a). The KNN

imputation estimators of TCF1(c1),TCF2(c1, c2) and TCF3(c2) are consistent and asymptotically

normal. In fact, we have the following theorems.

Theorem 3.2.1. Assume the functions ρk(t, a) and π(t, a) are finite and first-order differentiable.

Moreover, assume that the expectation of 1/π(T,A) exists. Then, for a fixed pair cut of points

(c1, c2) such that c1 < c2, the KNN imputation estimators T̂CF1,KNN(c1), T̂CF2,KNN(c1, c2) and

T̂CF3,KNN(c2) are consistent.

Proof. Since the disease status Dk is a Bernoulli random variable, its second-order moment, E(D2
k),

is finite. According to the first assumption, we can show that the conditional variance of Dk given

the test results T and A, Var(Dk|T = t, A = a) is equal to ρk(t, a) [1− ρk(t, a)] and is clearly finite.

Thus, by an application of Theorem 1 in Ning and Cheng (2012), the KNN imputation estimators

θ̂k,KNN are consistent.
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Now, observe that,

β̂jk,KNN − βjk

=
1

n

n∑

i=1

I(Ti ≥ cj) [ViDki + (1− Vi)ρki] +
1

n

n∑

i=1

I(Ti ≥ cj)(1− Vi)(ρ̂ki,K − ρki)− βjk

=
1

n

n∑

i=1

I(Ti ≥ cj)Vi [Dki − ρki] +
1

n

n∑

i=1

[I(Ti ≥ cj)ρki − βjk]

+
1

n

n∑

i=1

I(Ti ≥ cj)(1− Vi)(ρ̂ki,K − ρki)

= Sjk +Rjk + Tjk.

Here, the quantities Rjk, Sjk and Tjk are similar to the quantities R,S and T in the proof of

Theorem 2.1 in Cheng (1994) and Theorem 1 in Ning and Cheng (2012). Thus, we have that

√
nRjk

d→ N (0,Var [I(T ≥ cj)ρk(T,A)]) and
√
nSjk

d→ N
(
0,E

[
π(T,A)δ2jk(T,A)

])
,

where δ2jk(T,A) is the conditional variance of I(T ≥ cj , Dk = 1) given T,A. Also, by using a similar

technique to that of proof of Theorem 1 in Ning and Cheng (2012), we get Tjk =Wjk + op(n
−1/2),

where

Wjk =
1

n

n∑

i=1

I(Ti ≥ cj)(1− Vi)

[
1

K

K∑

l=1

(
Vi(l)Dki(l) − ρki(l)

)
]
.

Moreover, E(Wjk) = 0 and the asymptotic variance is:

asVar(
√
nWjk) =

1

K
E
[
(1− π(T,A))δ2jk(T,A)

]
+ E

[
(1− π(T,A))2δ2jk(T,A)

π(T,A)

]
.

Then, the Markov’s inequality implies that Wjk
p→ 0 as n goes to infinity. This, together with

the fact that Rjk and Sjk converge in probability to zero, leads to the consistency of β̂jk,KNN,

i.e, β̂jk,KNN
p→ βjk. It follows that T̂CF1,KNN(c1) = 1 − β̂11

θ̂1
, T̂CF2,KNN(c1, c2) = β̂12−β̂22

θ̂2
and

T̂CF3,KNN(c2) =
β̂23

θ̂3
are consistent.

Theorem 3.2.2. Assume that the conditions in Theorem 3.2.1 hold, we get

√
n







T̂CF1,KNN(c1)

T̂CF2,KNN(c1, c2)

T̂CF3,KNN(c2)


−




TCF1(c1)
TCF2(c1, c2)
TCF3(c2)





 d→ N (0,Ξ), (3.21)

where Ξ is a suitable matrix.

Proof. A direct application of Theorem 1 in Ning and Cheng (2012) gives the result that the

quantity
√
n(θ̂k,KNN − θk) converges to a normal random variable with mean 0 and variance σ2

k =[
θk(1− θk) + ω2

k

]
. Here,

ω2
k =

(
1 +

1

K

)
E [ρk(T,A)(1− ρk(T,A))(1− π(T,A))]

+ E

[
ρk(T,A)(1− ρk(T,A))(1− π(T,A))2

π(T,A)

]
. (3.22)

In addition, from the proof of Theorem 3.2.1, we have

β̂jk,KNN − βjk ' Sjk +Rjk +Wjk + op(n
−1/2),
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with

√
nRjk

d→ N (0,Var [I(T ≥ cj)ρk(T,A)]) ,
√
nSjk

d→ N
(
0,E

[
π(T,A)δ2jk(T,A)

])

and √
nWjk

d→ N (0, σ2
Wjk

).

Therefore,
√
n(β̂jk,KNN − βjk)

d→ N (0, σ2
jk). Here, the asymptotic variance σ2

jk is obtained by

σ2
jk = βjk (1− βjk) + ω2

jk,

with

ω2
jk =

(
1 +

1

K

)
E [I(T ≥ cj)ρk(T,A)(1− ρk(T,A))(1− π(T,A))]

+ E

[
I(T ≥ cj)ρk(T,A)(1− ρk(T,A))(1− π(T,A))2

π(T,A)

]
. (3.23)

This result follows by the fact that Rjk and Sjk + Wjk are uncorrelated and the asymptotic

covariance between Sjk and Wjk is obtained by

asCov (Sjk,Wjk) = E
[
(1− π(T,A))δ2jk(T,A)

]
.

Moreover, we get that the vector
√
n(θ̂1,KNN, θ̂2,KNN, β̂11,KNN, β̂12,KNN, β̂22,KNN, β̂23,KNN)

> is jointly

asymptotically normally distributed with mean vector (θ1, θ2, β11, β12, β22, β23)
> and suitable co-

variance matrix Ξ∗. Then, result (3.21) follows by applying the multivariate delta method to

h(θ̂1, θ̂2, β̂11, β̂12, β̂22, β̂23) =

(
1− β̂11

θ̂1
,
(β̂12 − β̂22)

θ̂2
,

β̂23

(1− θ̂1 − θ̂2)

)>

.

The asymptotic covariance matrix of
√
n(T̂CF1,KNN, T̂CF2,KNN, T̂CF3,KNN)

>, Ξ, is obtained by

Ξ = h′Ξ∗h′>, (3.24)

where h′ is the first-order derivative of h, i.e.,

h′ =




β11

θ2

1

0 − 1
θ1

0 0 0

0 − (β12−β22)
θ2

2

0 1
θ2

− 1
θ2

0
β23

(1−θ1−θ2)2
β23

(1−θ1−θ2)2
0 0 0 1

(1−θ1−θ2)


 . (3.25)

3.2.3 The asymptotic covariance matrix

Let

Ξ =



ξ21 ξ12 ξ13
ξ12 ξ22 ξ23
ξ13 ξ23 ξ23


 .

The asymptotic covariance matrix Ξ∗ is a 6×6 matrix such that its diagonal elements are the asymp-

totic variances of
√
nθ̂k,KNN and

√
nβ̂jk,KNN. Let us define σ∗

12 = asCov(
√
nθ̂1,KNN,

√
nθ̂2,KNN),

σsjk = asCov(
√
nθ̂s,KNN,

√
nβ̂jk,KNN) and σjkls = asCov(

√
nβ̂jk,KNN,

√
nβ̂ls,KNN). We write

Ξ∗ =




σ2
1 σ∗

12 σ111 σ112 σ122 σ123
σ∗
12 σ2

2 σ211 σ212 σ222 σ223
σ111 σ211 σ2

11 σ1112 σ1122 σ1123
σ112 σ212 σ1112 σ2

12 σ1222 σ1223
σ122 σ222 σ1122 σ1222 σ2

22 σ2223
σ123 σ223 σ1123 σ1223 σ2223 σ2

23



.
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Hence, from (3.24) and (3.25),

ξ21 = asVar
(√

nT̂CF1,KNN(c1)
)

=
β2
11

θ41
σ2
1 +

σ2
11

θ21
− 2

β11
θ31
σ111,

ξ22 = asVar
(√

nT̂CF2,KNN(c1, c2)
)

= σ2
2

(β12 − β22)
2

θ42
+
σ2
12 + σ2

22 − 2σ1222
θ22

− 2
β12 − β22

θ32
(σ212 − σ222),

ξ23 = asVar
(√

nT̂CF3,KNN(c2)
)

=
β2
23

(1− θ1 − θ2)4
(
σ2
1 + 2σ∗

12 + σ2
2

)
+

σ2
23

(1− θ1 − θ2)2

+ 2
β23

(1− θ1 − θ2)3
(σ123 + σ223) . (3.26)

Let λ2 = asVar(
√
nβ̂12,KNN −√

nβ̂22,KNN). Hence, σ2
12 + σ2

22 − 2σ1222 = λ2, and

ξ22 = σ2
2

(β12 − β22)
2

θ42
+
λ2

θ22
− 2

β12 − β22
θ32

(σ212 − σ222).

Observe that θ̂3,KNN = 1− (θ̂1,KNN + θ̂2,KNN). Thus,

asVar(
√
nθ̂3,KNN) = asVar(

√
nθ̂1,KNN +

√
nθ̂2,KNN)

= asVar(
√
nθ̂1,KNN) + asVar(

√
nθ̂2,KNN) + 2asCov(

√
nθ̂1,KNN,

√
nθ̂2,KNN).

This leads to the expression σ2
3 = σ2

1 + 2σ∗
12 + σ2

2 . In addition,

σ123 + σ223 = asCov(
√
nθ̂1,KNN,

√
nβ̂23,KNN) + asCov(

√
nθ̂2,KNN,

√
nβ̂23,KNN)

= asCov(
√
nθ̂1,KNN +

√
nθ̂2,KNN,

√
nβ̂23,KNN)

= −asCov(
√
n− (

√
nθ̂1,KNN +

√
nθ̂2,KNN),

√
nβ̂23,KNN)

= −σ323.

Therefore, from (3.26), the asymptotic variance of
√
nT̂CF3,KNN(c2) is

ξ23 =
β2
23σ

2
3

(1− θ1 − θ2)4
+

σ2
23

(1− θ1 − θ2)2
− 2

β23σ323
(1− θ1 − θ2)3

.

Recall that σ2
k =

[
θk(1− θk) + ω2

k

]
and σ2

jk =
[
βjk(1− βjk) + ω2

jk

]
, where ω2

k and ω2
jk are given

in (3.22) and (3.23), respectively. To obtain σkjk, we observe that

βjk = Pr (T ≥ cj , Dk = 1) = Pr (Dk = 1)Pr (T ≥ cj |Dk = 1)

= Pr (Dk = 1) [1− Pr (T < cj |Dk = 1)]

= Pr (Dk = 1)− Pr (Dk = 1)Pr (T < cj |Dk = 1)

= Pr (Dk = 1)− Pr (T < cj , Dk = 1)

= θk − γjk,

for k = 1, 2, 3 and j = 1, 2. Then, we define

γ̂jk,KNN =
1

n

n∑

i=1

I(Ti < cj) [ViD
′
ki + (1− Vi)ρ̂ki,K ] .

The asymptotic variance of
√
nγ̂jk,KNN, ζ

2
jk, is obtained as that of

√
nβ̂jk,KNN. In fact, we get

ζ2jk =
[
γjk(1− γjk) + η2jk

]
, where

η2jk =
K + 1

K
E [I(T < cj)ρk(T,A){1− ρk(T,A)}{1− π(T,A)}]

+ E

[
I(T < cj)ρk(T,A){1− ρk(T,A)}{1− π(T,A)}2

π(T,A)

]
.
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It is straightforward to see that γ̂jk,KNN = θ̂k,KNN−β̂jk,KNN. Thus, we can compute the asymptotic

covariances σkjk for j = 1, 2 and k = 1, 2, 3, using the fact that

asVar(
√
nγ̂jk,KNN) = asVar(

√
nθ̂k,KNN −√

nβ̂jk,KNN)

= asVar(
√
nθ̂k,KNN) + asVar(

√
nβ̂jk,KNN)− 2asCov(

√
nθ̂k,KNN,

√
nβ̂jk,KNN).

This leads to

σkjk =
1

2

(
σ2
k + σ2

jk − ζ2jk
)
.

Hence,

σ111 =
1

2

(
σ2
1 + σ2

11 − ζ211
)
; σ212 =

1

2

(
σ2
2 + σ2

12 − ζ212
)
;

σ222 =
1

2

(
σ2
2 + σ2

22 − ζ222
)
; σ323 =

1

2

(
σ2
3 + σ2

23 − ζ223
)
.

As for λ2, one can show that

λ2 = (β12 − β22) [1− (β12 − β22)] + ω2
12 − ω2

22. (3.27)

In fact, according the proof of Theorem 3.2.2, we have

(
β̂12,KNN − β̂22,KNN

)
−(β12 − β22) ' (S12 − S22)+(R12 −R22)+(W12 −W22)+op(n

−1/2). (3.28)

Here, we have

S12 − S22 =
1

n

n∑

i=1

ViI(c1 ≤ Ti < c2) (D2i − ρ2i) ,

R12 −R22 =
1

n

n∑

i=1

[I(c1 ≤ Ti < c2)ρ2i − (β12 − β22)] ,

W12 −W22 =
1

n

n∑

i=1

I(c1 ≤ Ti < c2)(1− Vi)

[
1

K

K∑

l=1

(
Vi(l)D2i(l) − ρ2i(l)

)
]
.

Under that, we realize that quantities S12−S22 and Sjk, so as R12−R22 and Rjk, and W12−W22

andWjk, play, in essence, a similar role. Therefore, the quantities in the right hand side of equation

(3.28) have approximately normal distributions with mean 0 and variances

Var
(√
n(S12 − S22)

)
= E

{
π(T,A)δ2(T,A)

}
,

Var
(√
n(R12 −R22)

)
= Var [I(c1 ≤ Ti < c2)ρ2(T,A)] ,

Var
(√
n(W12 −W22)

)
=

1

K
E
[
(1− π(T,A))δ2(T,A)

]
+ E

[
(1− π(T,A))2δ2(T,A)

π(T,A)

]
.

where, δ2(T,A) is the conditional variance of I(c1 ≤ Ti < c2, D2i = 1) given T,A. Then, we get

√
n
[(
β̂12,KNN − β̂22,KNN

)
− (β12 − β22)

]
d→ N (0, λ2).

To obtain λ2, we notice that the quantities R12−R22 and (S12−S22)+(W12−W22) are uncorrelated

and the asymptotic covariance of S12 − S22 and W12 −W22 equals to E
[
(1− π(T,A))δ2(T,A)

]
.

Taking the sum of this covariance and the above variances, the desired asymptotic variance λ2 is

approximately as (3.27).

Therefore, suitable explicit expressions for the asymptotic variances of KNN estimators can

be found. Such expressions will depend on quantities as θk, βjk ω2
k, ω

2
jk, γjk and η2jk only. As
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a consequence, to obtain consistent estimates of the asymptotic variances, ultimately we need to

estimate the quantities ω2
k, ω

2
jk and η2jk.

In the last paragraph, we show that suitable expressions can be obtained also for the elements

ξ12, ξ13 and ξ23 of the covariance matrix Ξ. Such expressions will depend, among others, on certain

quantities ψ2
1212, ψ

2
112, ψ

2
213, ψ

2
12, ψ

2
113, ψ

2
223 and ψ2

1223 similar to ω2
k, ω

2
jk or η2jk.

Here, we focus on the elements ξ12, ξ13 and ξ23 of the covariance matrix Ξ. We can write

ξ12 = − 1

θ1θ2
(σ1112 − σ1122) +

β11
θ21θ2

(σ112 − σ122)−
β12 − β22

θ22

(
β11
θ21
σ∗
12 −

σ211
θ1

)
, (3.29)

ξ13 =
1

1− θ1 − θ2

(
β11
θ21
σ123 −

σ1123
θ1

)

+
β23

θ1(1− θ1 − θ2)2

[
β11
θ1

(
σ2
1 + σ∗

12

)
− (σ111 + σ211)

]
, (3.30)

and

ξ23 =
1

θ2(1− θ1 − θ2)

[
(σ1223 − σ2223)−

β12 − β22
θ2

σ223

]

+
β23

θ2(1− θ1 − θ2)2

[
(σ112 − σ122 + σ212 − σ222)−

β12 − β22
θ2

(
σ2
2 + σ∗

12

)]
. (3.31)

Recall that

θ̂k,KNN − θk =
1

n

n∑

i=1

[ViDki + (1− Vi)ρki] +
1

n

n∑

i=1

(1− Vi)(ρ̂ki,K − ρki)− θk

=
1

n

n∑

i=1

Vi [Dki − ρki] +
1

n

n∑

i=1

[ρki − θk]

+
1

n

n∑

i=1

[
1

K

K∑

l=1

(
Vi(l)Dki(l) − ρki(l)

)
]
+ op

(
n−1/2

)

= Sk +Rk +Wk + op

(
n−1/2

)
;

and

β̂jk,KNN − βjk

=
1

n

n∑

i=1

I(Ti ≥ cj) [ViDki + (1− Vi)ρki] +
1

n

n∑

i=1

I(Ti ≥ cj)(1− Vi)(ρ̂ki,K − ρki)− βjk

=
1

n

n∑

i=1

I(Ti ≥ cj)Vi [Dki − ρki] +
1

n

n∑

i=1

[I(Ti ≥ cj)ρki − βjk]

+
1

n

n∑

i=1

I(Ti ≥ cj)(1− Vi)

[
1

K

K∑

l=1

(
Vi(l)Dki(l) − ρki(l)

)
]
+ op

(
n−1/2

)

= Sjk +Rjk +Wjk + op

(
n−1/2

)
.
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Considering the term σ1112 − σ1122 in (3.29), we have

σ1112 − σ1122 = asCov(
√
nβ̂11,KNN,

√
nβ̂12,KNN)− asCov(

√
nβ̂11,KNN,

√
nβ̂22,KNN)

= asCov(
√
nβ̂11,KNN,

√
nβ̂12,KNN −√

nβ̂22,KNN)

= asCov
(√
n(S11 +R11 +W11),

√
n(S12 − S22) +

√
n(R12 −R22)

+
√
n(W12 −W22)

)

= asCov
(√
nS11,

√
n(S12 − S22)

)
+ asCov

(√
nS11,

√
n(W12 −W22)

)

+ asCov
(√
nR11,

√
n(R12 −R22)

)
+ asCov

(√
nW11,

√
n(S12 − S22)

)

+ asCov
(√
nW11,

√
n(W12 −W22)

)
.

This result follows from the fact that
√
nR11 and

√
n(S12 −S22)+

√
n(W12 −W22), and

√
n(S11 +

W11) and
√
n(R12 −R22) are uncorrelated (see also Cheng, 1994). By arguments similar to those

used in Ning and Cheng (2012), we also obtain

asCov
(√
nS11,

√
n(S12 − S22)

)
= E {π(T,A)Cov(I(T ≥ c1)D1, I(c1 ≤ T < c2)D2|T,A)}
= E {π(T,A)I(c1 ≤ T < c2)Cov(D1, D2|T,A)}
= −E {π(T,A)I(c1 ≤ T < c2)ρ1(T,A)ρ2(T,A)} .

Similarly, we have that

asCov
(√
nS11,

√
n(W12 −W22)

)
= −E {[1− π(T,A)]I(c1 ≤ T < c2)ρ1(T,A)ρ2(T,A)} ,

asCov
(√
nR11,

√
n(R12 −R22)

)
= −β11(β12 − β22) + E {I(c1 ≤ T < c2)ρ1(T,A)ρ2(T,A)} ,

asCov
(√
nW11,

√
n(S12 − S22)

)
= −E {[1− π(T,A)]I(c1 ≤ T < c2)ρ1(T,A)ρ2(T,A)} ,

asCov
(√
nW11,

√
n(W12 −W22)

)
= − 1

K
E {[1− π(T,A)]I(c1 ≤ T < c2)ρ1(T,A)ρ2(T,A)}

−E

{
[1− π(T,A)]2I(c1 ≤ T < c2)ρ1(T,A)ρ2(T,A)

π(T,A)

}
.

This leads to

σ1112 − σ1122 = −ψ2
1212 − β11(β12 − β22), (3.32)

where

ψ2
1212 =

(
1 +

1

K

)
E {[1− π(T,A)]I(c1 ≤ T < c2)ρ1(T,A)ρ2(T,A)}

+ E

{
[1− π(T,A)]2I(c1 ≤ T < c2)ρ1(T,A)ρ2(T,A)

π(T,A)

}
.

Considering σ112 − σ122 in (3.29), we have

σ112 − σ122 = asCov(
√
nθ̂1,KNN,

√
nβ̂12,KNN)− asCov(

√
nθ̂1,KNN,

√
nβ̂22,KNN)

= asCov
(√

nθ̂1,KNN,
√
n(β̂12,KNN − β̂22,KNN)

)

= asCov
(√
n(S1 +R1 +W1),

√
n(S12 − S22) +

√
n(R12 −R22) +

√
n(W12 −W22)

)

= asCov
(√
nS1,

√
n(S12 − S22)

)
+ asCov

(√
nS1,

√
n(W12 −W22)

)

+ asCov
(√
nR1,

√
n(R12 −R22)

)
+ asCov

(√
nW1,

√
n(S12 − S22)

)

+ asCov
(√
nW1,

√
n(W12 −W22)

)
.
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We obtain

asCov
(√
nS1,

√
n(S12 − S22)

)
= −E {π(T,A)I(c1 ≤ T < c2)ρ1(T,A)ρ2(T,A)} ,

asCov
(√
nS1,

√
n(W12 −W22)

)
= −E {[1− π(T,A)]I(c1 ≤ T < c2)ρ1(T,A)ρ2(T,A)} ,

asCov
(√
nR1,

√
n(R12 −R22)

)
= −θ1(β12 − β22) + E {I(c1 ≤ T < c2)ρ1(T,A)ρ2(T,A)} ,

asCov
(√
nW1,

√
n(S12 − S22)

)
= −E {[1− π(T,A)]I(c1 ≤ T < c2)ρ1(T,A)ρ2(T,A)} ,

asCov
(√
nW1,

√
n(W12 −W22)

)
= − 1

K
E {[1− π(T,A)]I(c1 ≤ T < c2)ρ1(T,A)ρ2(T,A)}

−E

{
[1− π(T,A)]2I(c1 ≤ T < c2)ρ1(T,A)ρ2(T,A)

π(T,A)

}
,

and then

σ112 − σ122 = −ψ2
1212 − θ1(β12 − β22). (3.33)

Similarly, it is straightforward to obtain

σ211 = −ψ2
112 − θ2β11 (3.34)

and

σ123 = −ψ2
213 − θ1β23, (3.35)

with

ψ2
112 =

(
1 +

1

K

)
E {[1− π(T,A)]I(T ≥ c1)ρ1(T,A)ρ2(T,A)}

+ E

{
[1− π(T,A)]2I(T ≥ c1)ρ1(T,A)ρ2(T,A)

π(T,A)

}

and

ψ2
213 =

(
1 +

1

K

)
E {[1− π(T,A)]I(T ≥ c2)ρ1(T,A)ρ3(T,A)}

+ E

{
[1− π(T,A)]2I(T ≥ c2)ρ1(T,A)ρ3(T,A)

π(T,A)

}
.

The covariance between
√
nθ̂1,KNN and

√
nθ̂2,KNN is computed analogously, i.e.,

σ∗
12 = −θ1θ2 − ψ2

12, (3.36)

where

ψ2
12 =

(
1 +

1

K

)
E {[1− π(T,A)]ρ1(T,A)ρ2(T,A)}

+ E

{
[1− π(T,A)]2ρ1(T,A)ρ2(T,A)

π(T,A)

}
.

By using results (3.32), (3.33), (3.34) and (3.36) into (3.29), we can obtain a suitable expression

for asCov
(√

nT̂CF1,KNN(c1),
√
nT̂CF2,KNN(c1, c2)

)
, which depends on easily estimable quanties.

Clearly, a similar approach can be used to get suitable expressions for ξ13 and ξ23 too. In

particular, the estimable version of ξ13 can be obtained by using suitable expressions for σ123,

σ1123 and σ111 + σ211. The quantity σ123 is already computed in (3.35), and the formula for σ1123

can be obtained as

σ1123 = −ψ2
213 − β11β23.
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To compute σ111 + σ211, we notice that

asCov
(√

nθ̂3,KNN,
√
nβ̂11,KNN

)
= asCov

(√
n−√

n(θ̂1,KNN + θ̂1,KNN),
√
nβ̂11,KNN

)

= −asCov
(√

n(θ̂1,KNN + θ̂1,KNN),
√
nβ̂11,KNN

)
.

It leads to σ111 + σ211 = −σ311. Similarly to (3.34), we have that

σ311 = −ψ2
113 − θ3β11,

where

ψ2
113 =

(
1 +

1

K

)
E {[1− π(T,A)]I(T ≥ c1)ρ1(T,A)ρ3(T,A)}

+ E

{
[1− π(T,A)]2I(T ≥ c1)ρ1(T,A)ρ3(T,A)

π(T,A)

}
.

For the last term ξ23, we need to make some other calculations. First, the quantity σ1223−σ2223
is obtained as σ1112 − σ1122. We have

σ1223 − σ2223 = −β23(β12 − β22),

because I(c1 ≤ T < c2)I(T ≥ c2) = 0. Second, the term σ223 is obtained as

σ223 = −ψ2
223 − θ2β23,

where

ψ2
223 =

(
1 +

1

K

)
E {[1− π(T,A)]I(T ≥ c2)ρ2(T,A)ρ3(T,A)}

+ E

{
[1− π(T,A)]2I(T ≥ c2)ρ2(T,A)ρ3(T,A)

π(T,A)

}
.

Moreover, it is straightforward to show that

−(σ312 − σ322) = σ112 − σ122 + σ212 − σ222,

and that

σ312 − σ322 = −ψ2
1223 − θ3(β12 − β22),

with

ψ2
1223 =

(
1 +

1

K

)
E {[1− π(T,A)]I(c1 ≤ T < c2)ρ2(T,A)ρ3(T,A)}

+ E

{
[1− π(T,A)]2I(c1 ≤ T < c2)ρ2(T,A)ρ3(T,A)

π(T,A)

}
.

3.2.4 Choice of K and the distance measure

The proposed method is based on nearest-neighbor imputation, which requires the choice of a value

for K as well as a distance measure.

In practice, the selection of a suitable distance is typically dictated by features of the data

and possible subjective evaluations; thus, a general indication about an adequate choice is difficult

to express. In many cases, the simple Euclidean distance may be appropriate. Other times,
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the researcher may wish to consider specific characteristics of data at hand, and then make a

different choice. For example, the diagnostic test result T and the auxiliary covariates A could be

heterogeneous with respect to their variances (which is particularly true when the variables are

measured on heterogeneous scales). In this case, the choice of the Mahalanobis distance may be

suitable.

As for the choice of the size of the neighborhood, Ning and Cheng (2012) argue that nearest-

neighbor imputation whit a small value of K typically yields negligible bias of the estimators, but a

large variance; the opposite happens with a large value of K. The authors suggest that the choice

of K ∈ {1, 2} is generally adequate when the aim is to estimate an average. A similar comment

is also raised by Adimari and Chiogna (2015, 2016), i.e., a small value of K, within the range

1–3, may be a good choice to estimate ROC curves and AUC. However, the authors stress that,

in general, the choice of K may depend on the dimension of the feature space, and propose to use

cross–validation to find K in case of high–dimensional covariates. Specifically, the authors indicate

that a suitable value for the number of neighbors could be found by

K∗ = argmin
K=1,...,nver

1

nver
‖D − ρ̂K‖1 ,

where D is the binary disease status, ‖ · ‖1 denotes the L1 norm for vectors and nver is the number

of verified subjects. The formula above can be generalized to our multi–class case. In fact, when

the disease status D has q categories (q ≥ 3), the difference between D and ρ̂K is a nver × (q − 1)

matrix. In such situations, the selection rule could be

K∗ = argmin
K=1,...,nver

1

nver(q − 1)
‖D − ρ̂K‖1,1 , (3.37)

where ‖A‖1,1 denotes L1,1 norm of matrix A, i.e.,

‖A‖1,1 =

q−1∑

j=1

(
nver∑

i=1

|aij |
)
.

3.2.5 Variance-covariance estimation

Consider first the problem of estimating of the variances of T̂CF1,KNN, T̂CF2,KNN and T̂CF3,KNN.

In a nonparametric framework, quantities as ω2
k, ω

2
jk and η2jk can be estimated by their empirical

counterparts, using also the plug–in method. Here, we consider an approach that uses a nearest-

neighbor rule to estimate both the functions ρk(T,A) and the propensity score π(T,A), that are

present in the expressions of ω2
k, ω

2
jk and η2jk. In particular, for the conditional probabilities of

disease, we can use KNN estimates ρ̃ki = ρ̂ki,K̄ , where the integer K̄ must be greater than one to

avoid estimates equal to zero. For the conditional probabilities of verification, we can resort to the

KNN procedure proposed in Adimari and Chiogna (2015), which considers the estimates

π̃i =
1

K∗
i

K∗

i∑

l=1

Vi(l),

where
{
(Ti(l), Ai(l), Vi(l)) : l = 1, . . . ,K∗

i

}
is a set of K∗

i observed pairs and (Ti(l), Ai(l)) denotes

the j-th nearest neighbor to (Ti, Ai) among all (T,A)’s. When Vi equals 0, K∗
i is set equal to

the rank of the first verified nearest neighbor to the unit i, i.e., K∗
i is such that Vi(K∗

i )
= 1 and

Vi = Vi(1) = Vi(2) = . . . = Vi(K∗

i −1) = 0. In case of Vi = 1, K∗
i is such that Vi = Vi(1) = Vi(2) =
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. . . = Vi(K∗

i −1) = 1, and Vi(K∗

i )
= 0, i.e., K∗

i is set equal to the rank of the first non–verified nearest

neighbor to the unit i. Such a procedure automatically avoids zero values for the π̃i’s.

Then, based on the ρ̃ki’s and π̃i’s, we obtain the estimates

ω̂2
k =

K + 1

nK

n∑

i=1

ρ̃ki (1− ρ̃ki) (1− π̃i) +
1

n

n∑

i=1

ρ̃ki (1− ρ̃ki) (1− π̃i)
2

π̃i
,

ω̂2
jk =

K + 1

nK

n∑

i=1

I(Ti ≥ cj)ρ̃ki (1− ρ̃ki) (1− π̃i)

+
1

n

n∑

i=1

I(Ti ≥ cj)ρ̃ki (1− ρ̃ki) (1− π̃i)
2

π̃i
,

η̂2jk =
K + 1

nK

n∑

i=1

I(Ti < cj)ρ̃ki (1− ρ̃ki) (1− π̃i)

+
1

n

n∑

i=1

I(Ti < cj)ρ̃ki (1− ρ̃ki) (1− π̃i)
2

π̃i
,

from which, along with θ̂k,KNN, β̂jk,KNN and γ̂jk,KNN, one derives the estimates of the variances of

the proposed KNN imputation estimators.

To obtain estimates of covariances, we need to estimate also the quantities ψ2
1212, ψ

2
112, ψ

2
213,

ψ2
12, ψ

2
113, ψ

2
223 and ψ2

1223 given in Appendix 2. However, estimates of such quantities are similar

to those given above for ω2
k, ω

2
jk and η2jk. For example,

ψ̂2
1212 =

K + 1

nK

n∑

i=1

I(c1 ≤ Ti < c2)ρ̃1iρ̃2i (1− π̃i)

+
1

n

n∑

i=1

I(c1 ≤ Ti < c2)ρ̃1iρ̃2i (1− π̃i)
2

π̃i
.

Of course, there are other possible approaches to obtain variance and covariance estimates.

For instance, one could resort to a standard bootstrap procedure. From the original observations

(Ti, Ai, D1i, D2i, D3i, Vi), i = 1, . . . , n, consider B bootstrap samples (T ∗b
i , A∗b

i , D
∗b
1i , D

∗b
2i , D

∗b
3i , V

∗b
i ),

b = 1, . . . , B, and i = 1, . . . , n. For the b-th sample, compute the bootstrap estimates T̂CF
∗b
1,KNN(c1),

T̂CF
∗b
2,KNN(c1, c2) and T̂CF

∗b
3,KNN(c2) as

T̂CF
∗b
1,KNN(c1) =

n∑
i=1

I(T ∗b
i < c1)

[
V ∗b
i D∗b

1i + (1− V ∗b
i )ρ̂∗b1i,K

]

n∑
i=1

[
V ∗b
i D∗b

1i + (1− V ∗b
i )ρ̂∗b1i,K

] ,

T̂CF
∗b
2,KNN(c1, c2) =

n∑
i=1

I(c1 ≤ T ∗b
i < c2)

[
V ∗b
i D∗b

2i + (1− V ∗b
i )ρ̂∗b2i,K

]

n∑
i=1

[
V ∗b
i D∗b

2i + (1− V ∗b
i )ρ̂∗b2i,K

] ,

T̂CF
∗b
3,KNN(c2) =

n∑
i=1

I(T ∗b
i ≥ c2)

[
V ∗b
i D∗b

3i + (1− V ∗b
i )ρ̂∗b3i,K

]

n∑
i=1

[
V ∗b
i D∗b

3i + (1− V ∗b
i )ρ̂∗b3i,K

] ,

where ρ̂∗bki,K , k = 1, 2, 3, denote the KNN imputation values for missing labels D∗b
ki in the bootstrap

sample. Then, the bootstrap estimator of the variance of T̂CFk,KNN(c1, c2) is

V̂ar(T̂CFk,KNN(c1, c2)) =
1

B − 1

B∑

b=1

(
T̂CF

∗b
k,KNN(c1, c2)− T̂CF

∗
k,KNN(c1, c2)

)2

,
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where T̂CF
∗
k,KNN(c1, c2) is the mean of the B bootstrap estimates T̂CF

∗b
k,KNN(c1, c2). More gener-

ally, the bootstrap estimate of the covariance matrix Ξ is

Ξ̂B =
1

B − 1

(
T̂CF

∗B
KNN(c1, c2)− T̂CF

∗
KNN(c1, c2)

)(
T̂CF

∗B
KNN(c1, c2)− T̂CF

∗
KNN(c1, c2)

)>
,

where T̂CF
∗B
KNN(c1, c2) is a B × 3 matrix, whose element in the b–th row and the k–th column

corresponds to T̂CF
∗b
k,KNN(c1, c2), and T̂CF

∗
KNN(c1, c2) is a column vector that consist of the means

of the B bootstrap estimates T̂CF
∗b
k,KNN(c1, c2), k = 1, 2, 3.

3.3 Simulation studies

3.3.1 Simulation studies for the parametric approaches

In this section, the ability of FI, MSI, IPW and SPE methods to estimate TCF1, TCF2 and TCF3

are evaluated by using Monte Carlo experiments. Also, the square root of the estimates of the

variances are compared with Monte Carlo and bootstrap standard deviations.

Note that, the bias-corrected estimators of TCF1, TCF2 and TCF3 require a parametric re-

gression model to estimate ρki = Pr(Dki = 1|Ti, Ai), or πi = Pr(Vi = 1|Ti, Ai), or both. A wrong

specification of such models may affect the estimation. Therefore, in the simulation study we

consider four scenarios:

(i) the disease model and the verification model are both correctly specified;

(ii) the verification model is misspecified;

(iii) the disease model is misspecified;

(iv) the disease model and the verification model are both misspecified.

All scenarios allow to evaluate the behavior of the proposed estimators in finite samples. In

particular, we consider 5000 Monte Carlo replications, and three sample sizes, i.e., 250, 500 and

1000 in scenario (i) and a sample size equal to 1000 in scenarios (ii)–(iv). The choice of such

sample size in scenarios (ii)–(iv) allows to dig up expected bad behaviors of the estimators under

misspecification, when a great amount of information is available, i.e., in large samples.

Study 1

The true disease D is generated by a trinomial random vector (D1, D2, D3), such that Dk is a

Bernoulli random variable with mean θk, k = 1, 2, 3. We set θ1 = 0.4, θ2 = 0.35 and θ3 = 0.25.

The continuous test results T and A are generated from the following conditional models

T,A|Dk ∼ N2 (µk,Λ) , k = 1, 2, 3,

where µk = (2k, k)>. We consider three different values for Λ, specifically

(
1.75 0.1
0.1 2.5

)
,

(
2.5 1.5
1.5 2.5

)
,

(
5.5 3
3 2.5

)
,

giving rise to a correlation between T and A equal to 0.36, 0.69 and 0.84, respectively.
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In this scenario -and also in the next one- we consider six pairs for cut points (c1, c2), i.e.,

(2, 4), (2, 5), (2, 7), (4, 5), (4, 7) and (5, 7). Since the conditional distribution of T given Dk is the

normal distribution, the true values of TCF’s are obtained as

TCF1(c1) = Φ

(
c1 − 2

σT |D

)
,

TCF2(c1, c2) = Φ

(
c2 − 4

σT |D

)
− Φ

(
c1 − 4

σT |D2

)
,

TCF3(c2) = 1− Φ

(
c2 − 6

σT |D

)
,

where σT |D denotes the entry in the 1-st row and 1-st column of Λ and φ(·) and Φ(·) are the

density function and the cumulative distribution function of the standard normal random variable,

respectively.

Under our data–generating process, the true conditional disease model is a multinomial logistic

model

Pr(Dk = 1|T,A) = exp (τρ1k
+ τρ2k

T + τρ3k
A)

1 + exp (τρ11
+ τρ21

T + τρ31
A) + exp (τρ12

+ τρ22
T + τρ32

A)
,

for suitable τρ1k
, τρ2k

, τρ3k
, where k = 1, 2. The verification status V is generated by the following

model

logit {Pr(V = 1|T,A)} = 0.5− 0.3T + 0.75A.

This choice corresponds to a verification rate of about 0.65. In this study, the FI, MSI, IPW and

SPE estimators are computed under correct working models for both the disease and the verification

status. Therefore, in particular, the conditional verification probabilities πi are estimated from a

logistic model for V given T and A.

Tables 3.1–3.9 show Monte Carlo means, Monte Carlo standard deviations (MC.sd), the square

roots of the variance estimated via asymptotic results (asy.sd) and bootstrap standard deviations

(boot.sd) of T̂CF1, T̂CF2 and T̂CF3. Here, and in the following, bootstrap estimates are obtained

from 250 bootstrap replications. Overall, the estimators FI, MSI, IPW and SPE behave similarly

in this scenario, with the IPW estimator showing a slightly larger standard deviation. Simulation

results, in this and in the following scenarios, also show that, excluding the SPE approach, boot-

strap estimates of standard deviations are generally more accurate than estimates obtained via

asymptotic theory.

Study 2

In this study, the true disease status D and the test results T and A are generated in the same

way as in the first scenario. The true conditional verification process π, instead, is chosen to be

the following function of T and A

π(T,A) = 0.35 + 0.3I
(
T > t(0.8)

)
+ 0.35I

(
A > a(0.8)

)
,

where t(0.8) and a(0.8) correspond to the 80-th percentile of distribution of T and A, respectively.

In this case, the verification probabilities are 1 for subjects with T > t(0.8) and A > a(0.8); 0.7

for subjects with T ≤ t(0.8) and A > a(0.8); 0.65 for subjects with T > t(0.8) and A ≤ a(0.8); 0.35

otherwise. In our setting, the verification rate is approximately 0.48.

The aim in this scenario is to evaluate the behavior of the estimators, in particular that of

IPW and SPE, under misspecification of the verification process. Therefore, π̂i is estimated from
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Table 3.1: Simulation results from 5000 replications when both models for ρk and π are correctly specified (Study 1) and the first value of Λ is considered.
“True” denotes the true parameter value. Sample size = 250.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3 boot.sd1 boot.sd2 boot.sd3
cut point = (2,4)

True 0.5000 0.4347 0.9347
FI 0.5008 0.4357 0.9342 0.0529 0.0472 0.0272 0.0486 0.0440 0.0512 0.0530 0.0488 0.0276

MSI 0.5007 0.4353 0.9341 0.0544 0.0536 0.0318 0.0500 0.0501 0.0538 0.0542 0.0542 0.0324
IPW 0.5017 0.4352 0.9341 0.0714 0.0721 0.0371 0.0687 0.0697 0.0398 0.0704 0.0711 0.0373
SPE 0.5008 0.4352 0.9343 0.0574 0.0648 0.0364 0.0562 0.0632 0.0340 0.0596 0.1497 0.0425

cut point = (2,5)
True 0.5000 0.7099 0.7752

FI 0.5008 0.7122 0.7756 0.0529 0.0464 0.0537 0.0486 0.0454 0.0618 0.0530 0.0467 0.0533
MSI 0.5007 0.7112 0.7747 0.0544 0.0511 0.0568 0.0500 0.0503 0.0644 0.0542 0.0514 0.0563
IPW 0.5017 0.7123 0.7739 0.0714 0.0683 0.0666 0.0687 0.0658 0.0704 0.0704 0.0677 0.0655
SPE 0.5008 0.7116 0.7751 0.0574 0.0619 0.0630 0.0562 0.0597 0.0603 0.0596 0.1219 0.1033

cut point = (2,7)
True 0.5000 0.9230 0.2248

FI 0.5008 0.9231 0.2229 0.0529 0.0236 0.0520 0.0486 0.0327 0.0437 0.0530 0.0243 0.0525
MSI 0.5007 0.9230 0.2230 0.0544 0.0285 0.0530 0.0500 0.0361 0.0447 0.0542 0.0287 0.0534
IPW 0.5017 0.9234 0.2216 0.0714 0.0376 0.0748 0.0687 0.0341 0.0706 0.0704 0.0368 0.0727
SPE 0.5008 0.9234 0.2236 0.0574 0.0361 0.0571 0.0562 0.0334 0.0559 0.0596 0.0474 0.4185

cut point = (4,5)
True 0.9347 0.2752 0.7752

FI 0.9350 0.2765 0.7756 0.0244 0.0408 0.0537 0.0224 0.0350 0.0618 0.0247 0.0415 0.0533
MSI 0.9351 0.2759 0.7747 0.0270 0.0467 0.0568 0.0247 0.0411 0.0644 0.0271 0.0467 0.0563
IPW 0.9356 0.2770 0.7739 0.0413 0.0690 0.0666 0.0343 0.0645 0.0704 0.0395 0.0663 0.0655
SPE 0.9356 0.2764 0.7751 0.0378 0.0587 0.0630 0.0333 0.0560 0.0603 0.0471 0.1566 0.1033

cut point = (4,7)
True 0.9347 0.4883 0.2248

FI 0.9350 0.4874 0.2229 0.0244 0.0523 0.0520 0.0224 0.0494 0.0437 0.0247 0.0537 0.0525
MSI 0.9351 0.4877 0.2230 0.0270 0.0559 0.0530 0.0247 0.0528 0.0447 0.0271 0.0567 0.0534
IPW 0.9356 0.4881 0.2216 0.0413 0.0741 0.0748 0.0343 0.0708 0.0706 0.0395 0.0723 0.0727
SPE 0.9356 0.4882 0.2236 0.0378 0.0661 0.0571 0.0333 0.0640 0.0559 0.0471 0.1745 0.4185

cut point = (5,7)
True 0.9883 0.2132 0.2248

FI 0.9880 0.2109 0.2229 0.0075 0.0432 0.0520 0.0066 0.0387 0.0437 0.0081 0.0436 0.0525
MSI 0.9881 0.2118 0.2230 0.0098 0.0460 0.0530 0.0075 0.0423 0.0447 0.0101 0.0468 0.0534
IPW 0.9885 0.2111 0.2216 0.0203 0.0634 0.0748 0.0097 0.0601 0.0706 0.0185 0.0625 0.0727
SPE 0.9883 0.2117 0.2236 0.0191 0.0569 0.0571 0.0117 0.0542 0.0559 0.0180 0.1382 0.4185
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Table 3.2: Simulation results from 5000 replications when both models for ρk and π are correctly specified (Study 1) and the first value of Λ is considered.
“True” denotes the true parameter value. Sample size = 500.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3 boot.sd1 boot.sd2 boot.sd3
cut point = (2,4)

True 0.5000 0.4347 0.9347
FI 0.5007 0.4357 0.9343 0.0373 0.0339 0.0190 0.0343 0.0309 0.0360 0.0372 0.0340 0.0193

MSI 0.5008 0.4357 0.9343 0.0382 0.0378 0.0225 0.0353 0.0354 0.0380 0.0381 0.0380 0.0227
IPW 0.5020 0.4357 0.9345 0.0506 0.0508 0.0260 0.0493 0.0502 0.0280 0.0499 0.0507 0.0262
SPE 0.5012 0.4357 0.9345 0.0401 0.0456 0.0256 0.0399 0.0450 0.0249 0.0409 0.0457 0.0259

cut point = (2,5)
True 0.5000 0.7099 0.7752

FI 0.5007 0.7115 0.7747 0.0373 0.0329 0.0372 0.0343 0.0321 0.0436 0.0372 0.0329 0.0374
MSI 0.5008 0.7111 0.7743 0.0382 0.0361 0.0395 0.0353 0.0355 0.0455 0.0381 0.0362 0.0396
IPW 0.5020 0.7111 0.7743 0.0506 0.0496 0.0464 0.0493 0.0479 0.0500 0.0499 0.0487 0.0463
SPE 0.5012 0.7112 0.7744 0.0401 0.0434 0.0442 0.0399 0.0425 0.0433 0.0409 0.0436 0.0448

cut point = (2,7)
True 0.5000 0.9230 0.2248

FI 0.5007 0.9228 0.2241 0.0373 0.0167 0.0377 0.0343 0.0229 0.0310 0.0372 0.0169 0.0370
MSI 0.5008 0.9230 0.2242 0.0382 0.0199 0.0382 0.0353 0.0253 0.0317 0.0381 0.0202 0.0376
IPW 0.5020 0.9232 0.2242 0.0506 0.0266 0.0534 0.0493 0.0251 0.0520 0.0499 0.0263 0.0525
SPE 0.5012 0.9235 0.2245 0.0401 0.0255 0.0416 0.0399 0.0244 0.0403 0.0409 0.0253 0.0545

cut point = (4,5)
True 0.9347 0.2752 0.7752

FI 0.9349 0.2758 0.7747 0.0176 0.0285 0.0372 0.0161 0.0246 0.0436 0.0174 0.0289 0.0374
MSI 0.9348 0.2754 0.7743 0.0194 0.0326 0.0395 0.0179 0.0291 0.0455 0.0191 0.0328 0.0396
IPW 0.9352 0.2754 0.7743 0.0299 0.0472 0.0464 0.0263 0.0466 0.0500 0.0284 0.0472 0.0463
SPE 0.9353 0.2755 0.7744 0.0270 0.0407 0.0442 0.0249 0.0399 0.0433 0.0291 0.0404 0.0448

cut point = (4,7)
True 0.9347 0.4883 0.2248

FI 0.9349 0.4872 0.2241 0.0176 0.0375 0.0377 0.0161 0.0347 0.0310 0.0174 0.0375 0.0370
MSI 0.9348 0.4872 0.2242 0.0194 0.0396 0.0382 0.0179 0.0373 0.0317 0.0191 0.0398 0.0376
IPW 0.9352 0.4876 0.2242 0.0299 0.0520 0.0534 0.0263 0.0511 0.0520 0.0284 0.0516 0.0525
SPE 0.9353 0.4877 0.2245 0.0270 0.0462 0.0416 0.0249 0.0456 0.0403 0.0291 0.0463 0.0545

cut point = (5,7)
True 0.9883 0.2132 0.2248

FI 0.9882 0.2114 0.2241 0.0051 0.0310 0.0377 0.0047 0.0274 0.0310 0.0054 0.0306 0.0370
MSI 0.9882 0.2118 0.2242 0.0069 0.0330 0.0382 0.0058 0.0299 0.0317 0.0069 0.0329 0.0376
IPW 0.9886 0.2121 0.2242 0.0137 0.0467 0.0534 0.0088 0.0441 0.0520 0.0130 0.0452 0.0525
SPE 0.9886 0.2123 0.2245 0.0133 0.0398 0.0416 0.0097 0.0387 0.0403 0.0127 0.0398 0.0545
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Table 3.3: Simulation results from 5000 replications when both models for ρk and π are correctly specified (Study 1) and the first value of Λ is considered.
“True” denotes the true parameter value. Sample size = 1000.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3 boot.sd1 boot.sd2 boot.sd3
cut point = (2,4)

True 0.5000 0.4347 0.9347
FI 0.5001 0.4346 0.9348 0.0265 0.0235 0.0133 0.0242 0.0217 0.0254 0.0262 0.0238 0.0135

MSI 0.5002 0.4349 0.9349 0.0273 0.0264 0.0157 0.0250 0.0250 0.0268 0.0269 0.0268 0.0160
IPW 0.5006 0.4357 0.9349 0.0362 0.0357 0.0184 0.0352 0.0358 0.0198 0.0353 0.0360 0.0185
SPE 0.5004 0.4353 0.9349 0.0287 0.0321 0.0180 0.0282 0.0320 0.0180 0.0283 0.0322 0.0182

cut point = (2,5)
True 0.5000 0.7099 0.7752

FI 0.5001 0.7096 0.7758 0.0265 0.0232 0.0260 0.0242 0.0227 0.0308 0.0262 0.0232 0.0263
MSI 0.5002 0.7095 0.7756 0.0273 0.0256 0.0276 0.0250 0.0251 0.0321 0.0269 0.0256 0.0279
IPW 0.5006 0.7104 0.7756 0.0362 0.0349 0.0325 0.0352 0.0342 0.0354 0.0353 0.0345 0.0327
SPE 0.5004 0.7100 0.7757 0.0287 0.0309 0.0307 0.0282 0.0303 0.0308 0.0283 0.0305 0.0310

cut point = (2,7)
True 0.5000 0.9230 0.2248

FI 0.5001 0.9228 0.2250 0.0265 0.0117 0.0260 0.0242 0.0160 0.0220 0.0262 0.0119 0.0262
MSI 0.5002 0.9230 0.2252 0.0273 0.0141 0.0265 0.0250 0.0178 0.0226 0.0269 0.0142 0.0266
IPW 0.5006 0.9233 0.2258 0.0362 0.0187 0.0383 0.0352 0.0181 0.0374 0.0353 0.0186 0.0375
SPE 0.5004 0.9235 0.2256 0.0287 0.0180 0.0286 0.0282 0.0176 0.0286 0.0283 0.0180 0.0291

cut point = (4,5)
True 0.9347 0.2752 0.7752

FI 0.9346 0.2749 0.7758 0.0124 0.0203 0.0260 0.0115 0.0173 0.0308 0.0123 0.0203 0.0263
MSI 0.9345 0.2746 0.7756 0.0137 0.0232 0.0276 0.0128 0.0205 0.0321 0.0136 0.0231 0.0279
IPW 0.9346 0.2748 0.7756 0.0213 0.0337 0.0325 0.0196 0.0332 0.0354 0.0205 0.0335 0.0327
SPE 0.9344 0.2747 0.7757 0.0190 0.0286 0.0307 0.0183 0.0283 0.0308 0.0187 0.0285 0.0310

cut point = (4,7)
True 0.9347 0.4883 0.2248

FI 0.9346 0.4882 0.2250 0.0124 0.0262 0.0260 0.0115 0.0245 0.0220 0.0123 0.0264 0.0262
MSI 0.9345 0.4881 0.2252 0.0137 0.0279 0.0265 0.0128 0.0263 0.0226 0.0136 0.0280 0.0266
IPW 0.9346 0.4876 0.2258 0.0213 0.0365 0.0383 0.0196 0.0364 0.0374 0.0205 0.0366 0.0375
SPE 0.9344 0.4882 0.2256 0.0190 0.0325 0.0286 0.0183 0.0324 0.0286 0.0187 0.0326 0.0291

cut point = (5,7)
True 0.9883 0.2132 0.2248

FI 0.9881 0.2132 0.2250 0.0036 0.0217 0.0260 0.0033 0.0194 0.0220 0.0037 0.0216 0.0262
MSI 0.9881 0.2135 0.2252 0.0048 0.0234 0.0265 0.0044 0.0212 0.0226 0.0049 0.0232 0.0266
IPW 0.9882 0.2129 0.2258 0.0100 0.0325 0.0383 0.0077 0.0317 0.0374 0.0097 0.0320 0.0375
SPE 0.9880 0.2135 0.2256 0.0097 0.0282 0.0286 0.0080 0.0276 0.0286 0.0094 0.0278 0.0291
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Table 3.4: Simulation results from 5000 replications when both models for ρk and π are correctly specified (Study 1) and the second value of Λ is considered.
“True” denotes the true parameter value. Sample size = 250.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3 boot.sd1 boot.sd2 boot.sd3
cut point = (2,4)

True 0.5000 0.3970 0.8970
FI 0.4995 0.3966 0.8972 0.0502 0.0419 0.0357 0.0461 0.0375 0.0502 0.0506 0.0429 0.0362

MSI 0.4996 0.3966 0.8970 0.0519 0.0498 0.0409 0.0479 0.0463 0.0536 0.0522 0.0506 0.0410
IPW 0.5001 0.3972 0.8979 0.0659 0.0700 0.0523 0.0646 0.0677 0.0504 0.0658 0.0687 0.0510
SPE 0.4996 0.3968 0.8980 0.0565 0.0623 0.0508 0.0559 0.0617 0.0469 0.0576 0.1619 0.0502

cut point = (2,5)
True 0.5000 0.6335 0.7365

FI 0.4995 0.6340 0.7378 0.0502 0.0431 0.0580 0.0461 0.0410 0.0619 0.0506 0.0440 0.0580
MSI 0.4996 0.6335 0.7370 0.0519 0.0502 0.0617 0.0479 0.0485 0.0653 0.0522 0.0510 0.0616
IPW 0.5001 0.6330 0.7379 0.0659 0.0679 0.0733 0.0646 0.0660 0.0737 0.0658 0.0671 0.0721
SPE 0.4996 0.6335 0.7377 0.0565 0.0616 0.0686 0.0559 0.0610 0.0665 0.0576 0.1438 0.0686

cut point = (2,7)
True 0.5000 0.8682 0.2635

FI 0.4995 0.8679 0.2640 0.0502 0.0307 0.0559 0.0461 0.0333 0.0499 0.0506 0.0314 0.0558
MSI 0.4996 0.8680 0.2644 0.0519 0.0362 0.0588 0.0479 0.0387 0.0523 0.0522 0.0372 0.0580
IPW 0.5001 0.8678 0.2659 0.0659 0.0492 0.0695 0.0646 0.0472 0.0682 0.0658 0.0492 0.0690
SPE 0.4996 0.8684 0.2649 0.0565 0.0467 0.0615 0.0559 0.0451 0.0591 0.0576 0.0593 0.0610

cut point = (4,5)
True 0.8970 0.2365 0.7365

FI 0.8974 0.2374 0.7378 0.0284 0.0368 0.0580 0.0274 0.0318 0.0619 0.0288 0.0371 0.0580
MSI 0.8972 0.2369 0.7370 0.0320 0.0441 0.0617 0.0306 0.0395 0.0653 0.0320 0.0439 0.0616
IPW 0.8978 0.2358 0.7379 0.0377 0.0603 0.0733 0.0361 0.0574 0.0737 0.0372 0.0586 0.0721
SPE 0.8975 0.2368 0.7377 0.0364 0.0538 0.0686 0.0352 0.0519 0.0665 0.0363 0.2833 0.0686

cut point = (4,7)
True 0.8970 0.4711 0.2635

FI 0.8974 0.4713 0.2640 0.0284 0.0504 0.0559 0.0274 0.0467 0.0499 0.0288 0.0510 0.0558
MSI 0.8972 0.4714 0.2644 0.0320 0.0554 0.0588 0.0306 0.0525 0.0523 0.0320 0.0562 0.0580
IPW 0.8978 0.4706 0.2659 0.0377 0.0693 0.0695 0.0361 0.0677 0.0682 0.0372 0.0687 0.0690
SPE 0.8975 0.4716 0.2649 0.0364 0.0635 0.0615 0.0352 0.0627 0.0591 0.0363 0.1949 0.0610

cut point = (5,7)
True 0.9711 0.2347 0.2635

FI 0.9710 0.2339 0.2640 0.0121 0.0404 0.0559 0.0118 0.0369 0.0499 0.0127 0.0409 0.0558
MSI 0.9708 0.2345 0.2644 0.0165 0.0458 0.0588 0.0151 0.0431 0.0523 0.0167 0.0465 0.0580
IPW 0.9710 0.2348 0.2659 0.0203 0.0569 0.0695 0.0178 0.0556 0.0682 0.0201 0.0569 0.0690
SPE 0.9710 0.2348 0.2649 0.0201 0.0526 0.0615 0.0179 0.0521 0.0591 0.0199 0.1084 0.0610
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Table 3.5: Simulation results from 5000 replications when both models for ρk and π are correctly specified (Study 1) and the second value of Λ is considered.
“True” denotes the true parameter value. Sample size = 500.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3 boot.sd1 boot.sd2 boot.sd3
cut point = (2,4)

True 0.5000 0.3970 0.8970
FI 0.4999 0.3974 0.8965 0.0356 0.0294 0.0253 0.0326 0.0263 0.0355 0.0355 0.0298 0.0256

MSI 0.4999 0.3975 0.8961 0.0368 0.0355 0.0291 0.0339 0.0326 0.0380 0.0367 0.0355 0.0291
IPW 0.5000 0.3977 0.8962 0.0470 0.0492 0.0373 0.0460 0.0484 0.0369 0.0464 0.0487 0.0368
SPE 0.5000 0.3976 0.8963 0.0402 0.0446 0.0363 0.0397 0.0438 0.0348 0.0400 0.0442 0.0356

cut point = (2,5)
True 0.5000 0.6335 0.7365

FI 0.4999 0.6342 0.7360 0.0356 0.0303 0.0410 0.0326 0.0287 0.0439 0.0355 0.0306 0.0409
MSI 0.4999 0.6339 0.7358 0.0368 0.0356 0.0437 0.0339 0.0342 0.0463 0.0367 0.0357 0.0435
IPW 0.5000 0.6336 0.7363 0.0470 0.0477 0.0528 0.0460 0.0471 0.0529 0.0464 0.0474 0.0514
SPE 0.5000 0.6341 0.7362 0.0402 0.0440 0.0494 0.0397 0.0434 0.0479 0.0400 0.0437 0.0483

cut point = (2,7)
True 0.5000 0.8682 0.2635

FI 0.4999 0.8677 0.2631 0.0356 0.0222 0.0388 0.0326 0.0233 0.0352 0.0355 0.0219 0.0391
MSI 0.4999 0.8678 0.2633 0.0368 0.0263 0.0401 0.0339 0.0272 0.0370 0.0367 0.0261 0.0407
IPW 0.5000 0.8677 0.2638 0.0470 0.0354 0.0477 0.0460 0.0341 0.0486 0.0464 0.0349 0.0484
SPE 0.5000 0.8679 0.2635 0.0402 0.0336 0.0420 0.0397 0.0326 0.0420 0.0400 0.0331 0.0424

cut point = (4,5)
True 0.8970 0.2365 0.7365

FI 0.8972 0.2368 0.7360 0.0205 0.0257 0.0410 0.0195 0.0223 0.0439 0.0203 0.0258 0.0409
MSI 0.8968 0.2364 0.7358 0.0229 0.0310 0.0437 0.0219 0.0279 0.0463 0.0226 0.0308 0.0435
IPW 0.8969 0.2359 0.7363 0.0268 0.0421 0.0528 0.0261 0.0411 0.0529 0.0265 0.0415 0.0514
SPE 0.8967 0.2365 0.7362 0.0260 0.0374 0.0494 0.0254 0.0370 0.0479 0.0257 0.0373 0.0483

cut point = (4,7)
True 0.8970 0.4711 0.2635

FI 0.8972 0.4703 0.2631 0.0205 0.0356 0.0388 0.0195 0.0328 0.0352 0.0203 0.0356 0.0391
MSI 0.8968 0.4703 0.2633 0.0229 0.0398 0.0401 0.0219 0.0370 0.0370 0.0226 0.0394 0.0407
IPW 0.8969 0.4699 0.2638 0.0268 0.0492 0.0477 0.0261 0.0483 0.0486 0.0265 0.0486 0.0484
SPE 0.8967 0.4703 0.2635 0.0260 0.0454 0.0420 0.0254 0.0445 0.0420 0.0257 0.0449 0.0424

cut point = (5,7)
True 0.9711 0.2347 0.2635

FI 0.9710 0.2335 0.2631 0.0086 0.0283 0.0388 0.0084 0.0260 0.0352 0.0088 0.0284 0.0391
MSI 0.9711 0.2339 0.2633 0.0116 0.0327 0.0401 0.0111 0.0304 0.0370 0.0117 0.0325 0.0407
IPW 0.9711 0.2341 0.2638 0.0144 0.0402 0.0477 0.0136 0.0397 0.0486 0.0143 0.0400 0.0484
SPE 0.9711 0.2339 0.2635 0.0142 0.0376 0.0420 0.0135 0.0370 0.0420 0.0141 0.0373 0.0424
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Table 3.6: Simulation results from 5000 replications when both models for ρk and π are correctly specified (Study 1) and the second value of Λ is considered.
“True” denotes the true parameter value. Sample size = 1000.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3 boot.sd1 boot.sd2 boot.sd3
cut point = (2,4)

True 0.5000 0.3970 0.8970
FI 0.4997 0.3967 0.8966 0.0248 0.0208 0.0177 0.0230 0.0185 0.0250 0.0250 0.0209 0.0180

MSI 0.4997 0.3965 0.8966 0.0257 0.0251 0.0202 0.0240 0.0230 0.0268 0.0259 0.0250 0.0205
IPW 0.4994 0.3967 0.8967 0.0323 0.0349 0.0259 0.0327 0.0343 0.0263 0.0327 0.0344 0.0260
SPE 0.4997 0.3966 0.8967 0.0279 0.0317 0.0251 0.0281 0.0311 0.0250 0.0282 0.0311 0.0252

cut point = (2,5)
True 0.5000 0.6335 0.7365

FI 0.4997 0.6330 0.7364 0.0248 0.0215 0.0286 0.0230 0.0203 0.0310 0.0250 0.0216 0.0288
MSI 0.4997 0.6327 0.7361 0.0257 0.0253 0.0304 0.0240 0.0241 0.0327 0.0259 0.0252 0.0307
IPW 0.4994 0.6326 0.7365 0.0323 0.0339 0.0360 0.0327 0.0335 0.0375 0.0327 0.0335 0.0363
SPE 0.4997 0.6328 0.7362 0.0279 0.0314 0.0338 0.0281 0.0308 0.0340 0.0282 0.0309 0.0341

cut point = (2,7)
True 0.5000 0.8682 0.2635

FI 0.4997 0.8679 0.2640 0.0248 0.0153 0.0274 0.0230 0.0164 0.0249 0.0250 0.0154 0.0275
MSI 0.4997 0.8680 0.2643 0.0257 0.0183 0.0286 0.0240 0.0192 0.0262 0.0259 0.0184 0.0287
IPW 0.4994 0.8682 0.2645 0.0323 0.0248 0.0343 0.0327 0.0244 0.0345 0.0327 0.0246 0.0341
SPE 0.4997 0.8682 0.2644 0.0279 0.0236 0.0299 0.0281 0.0232 0.0297 0.0282 0.0234 0.0298

cut point = (4,5)
True 0.8970 0.2365 0.7365

FI 0.8971 0.2363 0.7364 0.0144 0.0180 0.0286 0.0138 0.0157 0.0310 0.0143 0.0182 0.0288
MSI 0.8971 0.2362 0.7361 0.0160 0.0217 0.0304 0.0155 0.0197 0.0327 0.0160 0.0217 0.0307
IPW 0.8972 0.2359 0.7365 0.0188 0.0297 0.0360 0.0186 0.0291 0.0375 0.0187 0.0293 0.0363
SPE 0.8972 0.2362 0.7362 0.0183 0.0264 0.0338 0.0181 0.0262 0.0340 0.0182 0.0262 0.0341

cut point = (4,7)
True 0.8970 0.4711 0.2635

FI 0.8971 0.4712 0.2640 0.0144 0.0252 0.0274 0.0138 0.0232 0.0249 0.0143 0.0250 0.0275
MSI 0.8971 0.4715 0.2643 0.0160 0.0280 0.0286 0.0155 0.0261 0.0262 0.0160 0.0278 0.0287
IPW 0.8972 0.4715 0.2645 0.0188 0.0348 0.0343 0.0186 0.0342 0.0345 0.0187 0.0343 0.0341
SPE 0.8972 0.4717 0.2644 0.0183 0.0321 0.0299 0.0181 0.0316 0.0297 0.0182 0.0316 0.0298

cut point = (5,7)
True 0.9711 0.2347 0.2635

FI 0.9709 0.2350 0.2640 0.0061 0.0201 0.0274 0.0060 0.0184 0.0249 0.0062 0.0200 0.0275
MSI 0.9709 0.2353 0.2643 0.0082 0.0229 0.0286 0.0080 0.0216 0.0262 0.0082 0.0229 0.0287
IPW 0.9709 0.2356 0.2645 0.0101 0.0285 0.0343 0.0099 0.0282 0.0345 0.0102 0.0283 0.0341
SPE 0.9710 0.2354 0.2644 0.0100 0.0266 0.0299 0.0098 0.0263 0.0297 0.0100 0.0264 0.0298
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Table 3.7: Simulation results from 5000 replications when both models for ρk and π are correctly specified (Study 1) and the third value of Λ is considered.
“True” denotes the true parameter value. Sample size = 250.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3 boot.sd1 boot.sd2 boot.sd3
cut point = (2,4)

True 0.5000 0.3031 0.8031
FI 0.4997 0.3037 0.8055 0.0498 0.0338 0.0498 0.0453 0.0294 0.0529 0.0498 0.0348 0.0489

MSI 0.4999 0.3035 0.8046 0.0519 0.0453 0.0554 0.0480 0.0412 0.0578 0.0522 0.0453 0.0542
IPW 0.5003 0.3033 0.8042 0.0617 0.0632 0.0655 0.0616 0.0617 0.0633 0.0624 0.0627 0.0639
SPE 0.5001 0.3034 0.8044 0.0564 0.0588 0.0636 0.0564 0.0573 0.0615 0.0570 0.0579 0.0624

cut point = (2,5)
True 0.5000 0.4682 0.6651

FI 0.4997 0.4697 0.6684 0.0498 0.0381 0.0617 0.0453 0.0339 0.0608 0.0498 0.0390 0.0608
MSI 0.4999 0.4691 0.6675 0.0519 0.0503 0.0670 0.0480 0.0460 0.0654 0.0522 0.0499 0.0653
IPW 0.5003 0.4687 0.6675 0.0617 0.0688 0.0763 0.0616 0.0668 0.0741 0.0624 0.0676 0.0742
SPE 0.5001 0.4690 0.6674 0.0564 0.0641 0.0735 0.0564 0.0621 0.0706 0.0570 0.0627 0.0715

cut point = (2,7)
True 0.5000 0.7027 0.3349

FI 0.4997 0.7037 0.3370 0.0498 0.0378 0.0591 0.0453 0.0353 0.0545 0.0498 0.0384 0.0592
MSI 0.4999 0.7037 0.3367 0.0519 0.0482 0.0626 0.0480 0.0451 0.0588 0.0522 0.0476 0.0632
IPW 0.5003 0.7033 0.3371 0.0617 0.0642 0.0709 0.0616 0.0614 0.0715 0.0624 0.0624 0.0721
SPE 0.5001 0.7038 0.3367 0.0564 0.0603 0.0660 0.0564 0.0581 0.0661 0.0570 0.0587 0.0670

cut point = (4,5)
True 0.8031 0.1651 0.6651

FI 0.8037 0.1660 0.6684 0.0393 0.0277 0.0617 0.0366 0.0236 0.0608 0.0388 0.0282 0.0608
MSI 0.8033 0.1656 0.6675 0.0425 0.0369 0.0670 0.0400 0.0333 0.0654 0.0420 0.0369 0.0653
IPW 0.8033 0.1654 0.6675 0.0486 0.0497 0.0763 0.0469 0.0486 0.0741 0.0475 0.0496 0.0742
SPE 0.8032 0.1656 0.6674 0.0469 0.0460 0.0735 0.0457 0.0454 0.0706 0.0460 0.0458 0.0715

cut point = (4,7)
True 0.8031 0.3996 0.3349

FI 0.8037 0.4000 0.3370 0.0393 0.0419 0.0591 0.0366 0.0383 0.0545 0.0388 0.0430 0.0592
MSI 0.8033 0.4002 0.3367 0.0425 0.0513 0.0626 0.0400 0.0480 0.0588 0.0420 0.0519 0.0632
IPW 0.8033 0.4000 0.3371 0.0486 0.0639 0.0709 0.0469 0.0643 0.0715 0.0475 0.0652 0.0721
SPE 0.8032 0.4004 0.3367 0.0469 0.0604 0.0660 0.0457 0.0605 0.0661 0.0460 0.0612 0.0670

cut point = (5,7)
True 0.8996 0.2345 0.3349

FI 0.9000 0.2340 0.3370 0.0271 0.0348 0.0591 0.0255 0.0313 0.0545 0.0269 0.0356 0.0592
MSI 0.8998 0.2346 0.3367 0.0312 0.0441 0.0626 0.0296 0.0407 0.0588 0.0310 0.0441 0.0632
IPW 0.8998 0.2347 0.3371 0.0359 0.0553 0.0709 0.0347 0.0545 0.0715 0.0355 0.0555 0.0721
SPE 0.8998 0.2348 0.3367 0.0351 0.0521 0.0660 0.0347 0.0516 0.0661 0.0348 0.0521 0.0670
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Table 3.8: Simulation results from 5000 replications when both models for ρk and π are correctly specified (Study 1) and the third value of Λ is considered.
“True” denotes the true parameter value. Sample size = 500.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3 boot.sd1 boot.sd2 boot.sd3
cut point = (2,4)

True 0.5000 0.3031 0.8031
FI 0.5001 0.3027 0.8034 0.0356 0.0240 0.0348 0.0320 0.0206 0.0373 0.0350 0.0242 0.0346

MSI 0.5001 0.3031 0.8034 0.0375 0.0322 0.0384 0.0340 0.0291 0.0408 0.0367 0.0318 0.0383
IPW 0.5004 0.3031 0.8037 0.0454 0.0444 0.0454 0.0438 0.0439 0.0451 0.0440 0.0441 0.0452
SPE 0.5002 0.3032 0.8036 0.0410 0.0411 0.0441 0.0400 0.0406 0.0438 0.0401 0.0407 0.0440

cut point = (2,5)
True 0.5000 0.4682 0.6651

FI 0.5001 0.4681 0.6656 0.0356 0.0266 0.0438 0.0320 0.0237 0.0430 0.0350 0.0271 0.0428
MSI 0.5001 0.4679 0.6654 0.0375 0.0348 0.0469 0.0340 0.0325 0.0461 0.0367 0.0350 0.0459
IPW 0.5004 0.4676 0.6655 0.0454 0.0475 0.0538 0.0438 0.0474 0.0526 0.0440 0.0476 0.0524
SPE 0.5002 0.4678 0.6654 0.0410 0.0440 0.0513 0.0400 0.0440 0.0500 0.0401 0.0442 0.0503

cut point = (2,7)
True 0.5000 0.7027 0.3349

FI 0.5001 0.7033 0.3346 0.0356 0.0268 0.0424 0.0320 0.0246 0.0383 0.0350 0.0267 0.0412
MSI 0.5001 0.7033 0.3346 0.0375 0.0336 0.0455 0.0340 0.0318 0.0414 0.0367 0.0334 0.0441
IPW 0.5004 0.7031 0.3352 0.0454 0.0439 0.0515 0.0438 0.0437 0.0505 0.0440 0.0440 0.0504
SPE 0.5002 0.7034 0.3347 0.0410 0.0416 0.0481 0.0400 0.0413 0.0465 0.0401 0.0414 0.0468

cut point = (4,5)
True 0.8031 0.1651 0.6651

FI 0.8033 0.1654 0.6656 0.0278 0.0196 0.0438 0.0260 0.0166 0.0430 0.0274 0.0196 0.0428
MSI 0.8030 0.1648 0.6654 0.0303 0.0256 0.0469 0.0284 0.0236 0.0461 0.0297 0.0259 0.0459
IPW 0.8030 0.1645 0.6655 0.0344 0.0346 0.0538 0.0335 0.0346 0.0526 0.0337 0.0349 0.0524
SPE 0.8030 0.1645 0.6654 0.0334 0.0317 0.0513 0.0325 0.0321 0.0500 0.0326 0.0322 0.0503

cut point = (4,7)
True 0.8031 0.3996 0.3349

FI 0.8033 0.4007 0.3346 0.0278 0.0300 0.0424 0.0260 0.0268 0.0383 0.0274 0.0299 0.0412
MSI 0.8030 0.4002 0.3346 0.0303 0.0367 0.0455 0.0284 0.0339 0.0414 0.0297 0.0364 0.0441
IPW 0.8030 0.4000 0.3352 0.0344 0.0458 0.0515 0.0335 0.0456 0.0505 0.0337 0.0458 0.0504
SPE 0.8030 0.4002 0.3347 0.0334 0.0431 0.0481 0.0325 0.0429 0.0465 0.0326 0.0430 0.0468

cut point = (5,7)
True 0.8996 0.2345 0.3349

FI 0.8996 0.2353 0.3346 0.0192 0.0245 0.0424 0.0182 0.0220 0.0383 0.0190 0.0248 0.0412
MSI 0.8996 0.2354 0.3346 0.0221 0.0307 0.0455 0.0212 0.0288 0.0414 0.0219 0.0310 0.0441
IPW 0.8997 0.2355 0.3352 0.0253 0.0384 0.0515 0.0249 0.0388 0.0505 0.0252 0.0391 0.0504
SPE 0.8997 0.2356 0.3347 0.0249 0.0364 0.0481 0.0246 0.0366 0.0465 0.0247 0.0367 0.0468
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Table 3.9: Simulation results from 5000 replications when both models for ρk and π are correctly specified (Study 1) and the third value of Λ is considered.
“True” denotes the true parameter value. Sample size = 1000.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3 boot.sd1 boot.sd2 boot.sd3
cut point = (2,4)

True 0.5000 0.3031 0.8031
FI 0.5003 0.3030 0.8040 0.0242 0.0169 0.0243 0.0226 0.0145 0.0264 0.0247 0.0170 0.0243

MSI 0.5001 0.3030 0.8038 0.0256 0.0222 0.0270 0.0240 0.0206 0.0288 0.0259 0.0224 0.0270
IPW 0.5001 0.3032 0.8038 0.0310 0.0310 0.0320 0.0310 0.0311 0.0320 0.0311 0.0311 0.0319
SPE 0.5001 0.3030 0.8040 0.0281 0.0285 0.0312 0.0283 0.0288 0.0310 0.0283 0.0287 0.0311

cut point = (2,5)
True 0.5000 0.4682 0.6651

FI 0.5003 0.4682 0.6663 0.0242 0.0193 0.0301 0.0226 0.0167 0.0304 0.0247 0.0191 0.0301
MSI 0.5001 0.4681 0.6663 0.0256 0.0248 0.0320 0.0240 0.0230 0.0326 0.0259 0.0247 0.0324
IPW 0.5001 0.4683 0.6664 0.0310 0.0337 0.0368 0.0310 0.0336 0.0373 0.0311 0.0336 0.0370
SPE 0.5001 0.4682 0.6665 0.0281 0.0311 0.0350 0.0283 0.0312 0.0355 0.0283 0.0312 0.0355

cut point = (2,7)
True 0.5000 0.7027 0.3349

FI 0.5003 0.7028 0.3359 0.0242 0.0188 0.0289 0.0226 0.0173 0.0271 0.0247 0.0188 0.0290
MSI 0.5001 0.7025 0.3359 0.0256 0.0236 0.0307 0.0240 0.0225 0.0293 0.0259 0.0236 0.0311
IPW 0.5001 0.7023 0.3360 0.0310 0.0311 0.0350 0.0310 0.0310 0.0358 0.0311 0.0311 0.0356
SPE 0.5001 0.7024 0.3358 0.0281 0.0292 0.0324 0.0283 0.0293 0.0329 0.0283 0.0293 0.0330

cut point = (4,5)
True 0.8031 0.1651 0.6651

FI 0.8034 0.1652 0.6663 0.0193 0.0139 0.0301 0.0184 0.0117 0.0304 0.0193 0.0138 0.0301
MSI 0.8032 0.1652 0.6663 0.0211 0.0184 0.0320 0.0201 0.0167 0.0326 0.0209 0.0183 0.0324
IPW 0.8034 0.1651 0.6664 0.0241 0.0248 0.0368 0.0237 0.0246 0.0373 0.0237 0.0247 0.0370
SPE 0.8032 0.1653 0.6665 0.0233 0.0229 0.0350 0.0230 0.0228 0.0355 0.0230 0.0228 0.0355

cut point = (4,7)
True 0.8031 0.3996 0.3349

FI 0.8034 0.3998 0.3359 0.0193 0.0207 0.0289 0.0184 0.0189 0.0271 0.0193 0.0210 0.0290
MSI 0.8032 0.3995 0.3359 0.0211 0.0253 0.0307 0.0201 0.0240 0.0293 0.0209 0.0256 0.0311
IPW 0.8034 0.3991 0.3360 0.0241 0.0319 0.0350 0.0237 0.0323 0.0358 0.0237 0.0323 0.0356
SPE 0.8032 0.3994 0.3358 0.0233 0.0299 0.0324 0.0230 0.0303 0.0329 0.0230 0.0304 0.0330

cut point = (5,7)
True 0.8996 0.2345 0.3349

FI 0.8998 0.2346 0.3359 0.0134 0.0172 0.0289 0.0129 0.0155 0.0271 0.0134 0.0174 0.0290
MSI 0.8997 0.2343 0.3359 0.0157 0.0216 0.0307 0.0150 0.0204 0.0293 0.0155 0.0218 0.0311
IPW 0.8998 0.2340 0.3360 0.0180 0.0273 0.0350 0.0177 0.0274 0.0358 0.0177 0.0275 0.0356
SPE 0.8997 0.2342 0.3358 0.0178 0.0256 0.0324 0.0174 0.0258 0.0329 0.0174 0.0259 0.0330
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a logistic regression model with V as the response and T as predictor, while ρ̂ki is still obtained

from the multinomial logistic model (similarly to the first scenario). Clearly, the model used for

verification status is misspecified.

Table 3.11–3.12 show Monte Carlo means and standard deviations for the estimators of the true

class fractions TCF1, TCF2 and TCF3. Moreover, estimated standard deviations (via asymptotic

theory) and bootstrap standard deviations are also presented. The results clearly show the effect of

misspecification on IPW estimates, despite the high sample size. In particular, in terms of bias, the

IPW method performs almost always poorly, with high distortion in some cases (values highlighted

in bold). On the other hand, the SPE estimator behaves well, due to its doubly robustness property.

Study 3

Starting from two independent random variables Z1 ∼ N (0, 0.5) and Z2 ∼ N (0, 0.5), the true

conditional disease D is generated by a trinomial random vector (D1, D2, D3) such that

D1 =

{
1 if Z1 + Z2 ≤ h1
0 otherwise

, D2 =

{
1 if h1 < Z1 + Z2 ≤ h2
0 otherwise

,

D3 =

{
1 if Z1 + Z2 > h2
0 otherwise

.

Here, h1 and h2 are two thresholds. We choose h1 and h2 to make θ1 = 0.4 and θ3 = 0.25. The

continuous test result T and the covariate A are generated to be related to D through Z1 and Z2.

More precisely,

T = 0.5(Z1 + Z2) + ε1, A = Z1 + Z2 + ε2,

where ε1 and ε2 are two independent normal random variables with mean 0 and the common

variance 0.25, independent also from Z1 and Z2. The verification status V is simulated by the

following logistic model

logit {Pr(V = 1|T,A)} = 0.1− 1.53T +A.

Under this model, the verification rate is roughly 0.52. We consider the cut points as the pairs

(−1,−0.5), (−1, 0.7), (−1, 1.3), (−0.5, 0.7), (−0.5, 1.3) and (0.7, 1.3). In this set–up, we determine

the true values of TCF’s as

TCF1(c1) =
1

Φ(h1)

∫ h1

−∞
Φ

(
c1 − 0.5z√

0.25

)
φ(z)dz,

TCF2(c1, c2) =
1

Φ(h2)− Φ(h1)

∫ h2

h1

[
Φ

(
c2 − 0.5z√

0.25

)
− Φ

(
c1 − 0.5z√

0.25

)]
φ(z)dz,

TCF3(c2) = 1− 1

1− Φ(h2)

∫ ∞

h2

Φ

(
c2 − 0.5z√

0.25

)
φ(z)dz.

The aim in this scenario is to evaluate the behavior of the estimators, in particular that of FI,

MSI and SPE, when the estimators ρ̂ki are inconsistent, whereas π̂i are consistent. Therefore, ρ̂ki

are obtained from a multinomial logistic regression model with (D1, D2, D3) as the response and

T as predictor. As the correct process is a multinomial probit process, the chosen model is clearly

misspecified. To estimate the conditional verification process π, we use a generalized linear model

for V given T and A with logit link. Clearly, this model is correctly specified.

Table 3.13 shows Monte Carlo means and standard deviations for the estimators of the true

class fractions TCF1, TCF2 and TCF3. Moreover, estimated standard deviations (via asymptotic
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Table 3.10: Simulation results from 5000 replications when the model for the verification process is misspecified (Study 2) and the first value of Λ is used.
“True” indicates the true parameter value. Sample size = 1000.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3 boot.sd1 boot.sd2 boot.sd3
cut point = (2,4)

True 0.5000 0.4347 0.9347
FI 0.5011 0.4345 0.9351 0.0277 0.0238 0.0152 0.0239 0.0203 0.0262 0.0275 0.0241 0.0153

MSI 0.5011 0.4344 0.9351 0.0280 0.0259 0.0169 0.0243 0.0226 0.0271 0.0279 0.0260 0.0169
IPW 0.5822 0.4436 0.9375 0.0381 0.0407 0.0213 0.0380 0.0400 0.0255 0.0381 0.0401 0.0212
SPE 0.5011 0.4345 0.9352 0.0304 0.0334 0.0218 0.0304 0.0330 0.0214 0.0305 0.0331 0.0216

cut point = (2,5)
True 0.5000 0.7099 0.7752

FI 0.5011 0.7105 0.7765 0.0277 0.0227 0.0297 0.0239 0.0223 0.0334 0.0275 0.0228 0.0298
MSI 0.5011 0.7101 0.7762 0.0280 0.0245 0.0305 0.0243 0.0241 0.0343 0.0279 0.0245 0.0309
IPW 0.5822 0.6815 0.8046 0.0381 0.0376 0.0325 0.0380 0.0370 0.0381 0.0381 0.0371 0.0327
SPE 0.5011 0.7099 0.7760 0.0304 0.0309 0.0328 0.0304 0.0306 0.0330 0.0305 0.0307 0.0331

cut point = (2,7)
True 0.5000 0.9230 0.2248

FI 0.5011 0.9233 0.2256 0.0277 0.0144 0.0270 0.0239 0.0193 0.0250 0.0275 0.0143 0.0270
MSI 0.5011 0.9234 0.2258 0.0280 0.0161 0.0275 0.0243 0.0204 0.0256 0.0279 0.0158 0.0275
IPW 0.5822 0.9009 0.2306 0.0381 0.0276 0.0306 0.0380 0.0268 0.0316 0.0381 0.0270 0.0308
SPE 0.5011 0.9234 0.2258 0.0304 0.0225 0.0279 0.0304 0.0218 0.0280 0.0305 0.0220 0.0281

cut point = (4,5)
True 0.9347 0.2752 0.7752

FI 0.9352 0.2760 0.7765 0.0135 0.0218 0.0297 0.0127 0.0168 0.0334 0.0135 0.0215 0.0298
MSI 0.9352 0.2757 0.7762 0.0143 0.0237 0.0305 0.0135 0.0191 0.0343 0.0143 0.0233 0.0309
IPW 0.9540 0.2379 0.8046 0.0139 0.0335 0.0325 0.0138 0.0330 0.0381 0.0139 0.0331 0.0327
SPE 0.9352 0.2754 0.7760 0.0161 0.0279 0.0328 0.0160 0.0275 0.0330 0.0161 0.0275 0.0331

cut point = (4,7)
True 0.9347 0.4883 0.2248

FI 0.9352 0.4888 0.2256 0.0135 0.0290 0.0270 0.0127 0.0259 0.0250 0.0135 0.0287 0.0270
MSI 0.9352 0.4889 0.2258 0.0143 0.0302 0.0275 0.0135 0.0273 0.0256 0.0143 0.0300 0.0275
IPW 0.9540 0.4574 0.2306 0.0139 0.0391 0.0306 0.0138 0.0387 0.0316 0.0139 0.0388 0.0308
SPE 0.9352 0.4890 0.2258 0.0161 0.0328 0.0279 0.0160 0.0327 0.0280 0.0161 0.0328 0.0281

cut point = (5,7)
True 0.9883 0.2132 0.2248

FI 0.9883 0.2128 0.2256 0.0040 0.0216 0.0270 0.0038 0.0190 0.0250 0.0040 0.0215 0.0270
MSI 0.9884 0.2133 0.2258 0.0050 0.0231 0.0275 0.0046 0.0208 0.0256 0.0050 0.0231 0.0275
IPW 0.9912 0.2195 0.2306 0.0060 0.0305 0.0306 0.0054 0.0301 0.0316 0.0059 0.0302 0.0308
SPE 0.9885 0.2135 0.2258 0.0065 0.0256 0.0279 0.0060 0.0256 0.0280 0.0064 0.0257 0.0281
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Table 3.11: Simulation results from 5000 replications when the model for the verification process is misspecified (Study 2) and the second value of Λ is
used. “True” indicates the true parameter value. Sample size = 1000.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3 boot.sd1 boot.sd2 boot.sd3
cut point = (2,4)

True 0.5000 0.3970 0.8970
FI 0.4998 0.3970 0.8977 0.0267 0.0211 0.0207 0.0231 0.0172 0.0268 0.0268 0.0213 0.0204

MSI 0.4997 0.3970 0.8978 0.0272 0.0240 0.0220 0.0237 0.0202 0.0279 0.0274 0.0239 0.0219
IPW 0.5983 0.3743 0.9150 0.0364 0.0407 0.0257 0.0368 0.0399 0.0284 0.0369 0.0399 0.0258
SPE 0.4996 0.3971 0.8980 0.0314 0.0342 0.0268 0.0314 0.0336 0.0267 0.0315 0.0336 0.0268

cut point = (2,5)
True 0.5000 0.6335 0.7365

FI 0.4998 0.6340 0.7381 0.0267 0.0218 0.0332 0.0231 0.0198 0.0344 0.0268 0.0219 0.0326
MSI 0.4997 0.6338 0.7381 0.0272 0.0246 0.0344 0.0237 0.0226 0.0356 0.0274 0.0243 0.0338
IPW 0.5983 0.5749 0.7965 0.0364 0.0406 0.0348 0.0368 0.0401 0.0387 0.0369 0.0402 0.0346
SPE 0.4996 0.6338 0.7383 0.0314 0.0341 0.0368 0.0314 0.0335 0.0364 0.0315 0.0336 0.0364

cut point = (2,7)
True 0.5000 0.8682 0.2635

FI 0.4998 0.8690 0.2639 0.0267 0.0175 0.0295 0.0231 0.0190 0.0280 0.0268 0.0176 0.0290
MSI 0.4997 0.8689 0.2639 0.0272 0.0197 0.0308 0.0237 0.0211 0.0292 0.0274 0.0198 0.0302
IPW 0.5983 0.8307 0.3054 0.0364 0.0342 0.0347 0.0368 0.0341 0.0358 0.0369 0.0343 0.0343
SPE 0.4996 0.8688 0.2639 0.0314 0.0283 0.0316 0.0314 0.0282 0.0308 0.0315 0.0284 0.0310

cut point = (4,5)
True 0.8970 0.2365 0.7365

FI 0.8975 0.2370 0.7381 0.0159 0.0191 0.0332 0.0153 0.0147 0.0344 0.0162 0.0191 0.0326
MSI 0.8974 0.2368 0.7381 0.0168 0.0215 0.0344 0.0162 0.0175 0.0356 0.0171 0.0213 0.0338
IPW 0.9216 0.2006 0.7965 0.0165 0.0315 0.0348 0.0167 0.0308 0.0387 0.0168 0.0309 0.0346
SPE 0.8974 0.2367 0.7383 0.0189 0.0266 0.0368 0.0191 0.0261 0.0364 0.0191 0.0262 0.0364

cut point = (4,7)
True 0.8970 0.4711 0.2635

FI 0.8975 0.4721 0.2639 0.0159 0.0276 0.0295 0.0153 0.0247 0.0280 0.0162 0.0276 0.0290
MSI 0.8974 0.4719 0.2639 0.0168 0.0300 0.0308 0.0162 0.0269 0.0292 0.0171 0.0296 0.0302
IPW 0.9216 0.4564 0.3054 0.0165 0.0395 0.0347 0.0167 0.0387 0.0358 0.0168 0.0388 0.0343
SPE 0.8974 0.4717 0.2639 0.0189 0.0339 0.0316 0.0191 0.0331 0.0308 0.0191 0.0333 0.0310

cut point = (5,7)
True 0.9711 0.2347 0.2635

FI 0.9712 0.2351 0.2639 0.0069 0.0208 0.0295 0.0067 0.0185 0.0280 0.0070 0.0209 0.0290
MSI 0.9712 0.2351 0.2639 0.0083 0.0237 0.0308 0.0080 0.0214 0.0292 0.0084 0.0234 0.0302
IPW 0.9752 0.2558 0.3054 0.0092 0.0319 0.0347 0.0091 0.0315 0.0358 0.0092 0.0316 0.0343
SPE 0.9713 0.2350 0.2639 0.0101 0.0273 0.0316 0.0100 0.0266 0.0308 0.0101 0.0267 0.0310
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Table 3.12: Simulation results from 5000 replications when the model for the verification process is misspecified (Study 2) and the third value of Λ is used.
“True” indicates the true parameter value. Sample size = 1000.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3 boot.sd1 boot.sd2 boot.sd3
cut point = (2,4)

True 0.5000 0.3031 0.8031
FI 0.4998 0.3026 0.8043 0.0257 0.0172 0.0280 0.0221 0.0124 0.0293 0.0259 0.0171 0.0278

MSI 0.4999 0.3027 0.8044 0.0264 0.0204 0.0297 0.0230 0.0166 0.0308 0.0267 0.0204 0.0293
IPW 0.6267 0.2614 0.8259 0.0345 0.0371 0.0371 0.0346 0.0364 0.0372 0.0348 0.0366 0.0365
SPE 0.5000 0.3031 0.8047 0.0322 0.0323 0.0361 0.0324 0.0321 0.0352 0.0326 0.0322 0.0354

cut point = (2,5)
True 0.5000 0.4682 0.6651

FI 0.4998 0.4681 0.6667 0.0257 0.0192 0.0341 0.0221 0.0151 0.0342 0.0259 0.0192 0.0343
MSI 0.4999 0.4681 0.6664 0.0264 0.0227 0.0354 0.0230 0.0195 0.0357 0.0267 0.0229 0.0358
IPW 0.6267 0.3884 0.7253 0.0345 0.0403 0.0396 0.0346 0.0400 0.0413 0.0348 0.0402 0.0401
SPE 0.5000 0.4684 0.6665 0.0322 0.0352 0.0389 0.0324 0.0353 0.0391 0.0326 0.0355 0.0393

cut point = (2,7)
True 0.5000 0.7027 0.3349

FI 0.4998 0.7035 0.3360 0.0257 0.0201 0.0318 0.0221 0.0184 0.0311 0.0259 0.0203 0.0320
MSI 0.4999 0.7035 0.3360 0.0264 0.0237 0.0337 0.0230 0.0224 0.0331 0.0267 0.0240 0.0339
IPW 0.6267 0.6157 0.4102 0.0345 0.0417 0.0386 0.0346 0.0416 0.0398 0.0348 0.0417 0.0386
SPE 0.5000 0.7038 0.3360 0.0322 0.0360 0.0350 0.0324 0.0361 0.0350 0.0326 0.0364 0.0352

cut point = (4,5)
True 0.8031 0.1651 0.6651

FI 0.8032 0.1655 0.6667 0.0207 0.0139 0.0341 0.0189 0.0099 0.0342 0.0207 0.0141 0.0343
MSI 0.8031 0.1654 0.6664 0.0217 0.0165 0.0354 0.0200 0.0135 0.0357 0.0216 0.0169 0.0358
IPW 0.8512 0.1270 0.7253 0.0217 0.0245 0.0396 0.0215 0.0251 0.0413 0.0215 0.0253 0.0401
SPE 0.8030 0.1653 0.6665 0.0239 0.0225 0.0389 0.0237 0.0228 0.0391 0.0238 0.0229 0.0393

cut point = (4,7)
True 0.8031 0.3996 0.3349

FI 0.8032 0.4009 0.3360 0.0207 0.0226 0.0318 0.0189 0.0194 0.0311 0.0207 0.0227 0.0320
MSI 0.8031 0.4008 0.3360 0.0217 0.0261 0.0337 0.0200 0.0234 0.0331 0.0216 0.0262 0.0339
IPW 0.8512 0.3544 0.4102 0.0217 0.0358 0.0386 0.0215 0.0362 0.0398 0.0215 0.0363 0.0386
SPE 0.8030 0.4008 0.3360 0.0239 0.0326 0.0350 0.0237 0.0325 0.0350 0.0238 0.0327 0.0352

cut point = (5,7)
True 0.8996 0.2345 0.3349

FI 0.8997 0.2354 0.3360 0.0144 0.0183 0.0318 0.0135 0.0156 0.0311 0.0144 0.0184 0.0320
MSI 0.8995 0.2354 0.3360 0.0158 0.0223 0.0337 0.0149 0.0197 0.0331 0.0157 0.0220 0.0339
IPW 0.9149 0.2274 0.4102 0.0163 0.0303 0.0386 0.0160 0.0299 0.0398 0.0161 0.0301 0.0386
SPE 0.8995 0.2355 0.3360 0.0175 0.0273 0.0350 0.0173 0.0268 0.0350 0.0174 0.0269 0.0352
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theory) and bootstrap standard deviations are also presented. The results clearly show the effect

of misspecification on FI and MSI estimates, despite the high sample size. In particular, in terms

of bias, the two methods performs almost always poorly, with high distortion in some cases (values

highlighted in bold). Again, the SPE estimator behaves well due to its doubly robustness property.

Study 4

We generate data exactly as in Study 3. The aim in this scenario is to evaluate the behavior of FI,

MSI, IPW and SPE estimators when the estimates ρ̂ki and π̂i are inconsistent. Therefore, ρ̂ki are

obtained from a multinomial logistic regression model with (D1, D2, D3) as the response and T as

predictor. This model is misspecified. To estimate the conditional verification disease π, we use a

generalized linear model for V given T and A2/3 with logit link. Clearly, this model is misspecified.

Table 3.14 shows Monte Carlo means and standard deviations for the estimators of the true

class fractions TCF1, TCF2 and TCF3. Moreover, estimated standard deviations (via asymptotic

theory) and bootstrap standard deviations are also presented. The results clearly show that when

both the disease and verification models are misspecified, all estimators may behave poorly, with

high distortion in some cases (values highlighted in bold).

3.3.2 Simulation studies for the KNN estimator

To assess the performance of the KNN approach in finite samples under MAR assumption, we

conducted the following simulation experiments. The first study uses the same setting as in Study

1 of the parametric approaches, and aims to investigate the effect of the choice of K for the bias

and variance of the estimates. In particular, we use K = 1, 3, 5, 10, 20 and the Euclidean distance.

The asymptotic variances are estimated by using the procedure discussed in Section 3.2.3, with

K̄ = 2. The results obtained with the three different values of Λ are respectively presented in

Tables 3.15–3.17, 3.18–3.20 and 3.21–3.23. As shown in the results, the KNN estimators seem to

be working well, and also the estimates of asymptotic variances. It is easy to realize that the bias

of estimates are increasing when K changes from 1 to 20, whereas, the variances are decreasing. In

this study, a choice of a small value ofK (within the range 1 to 3) seems a good choice; nevertheless,

it is worth noting that, in practice, the best choice of K might depend upon the dimension of the

feature space as we already mentioned.

The second study concerns the advantage of the KNN estimator in the setting of misspecification

models. The set–up of the disease status D, diagnostic test T and covariate A presented in Study 3

of previous part are repeated. The verification status V is simulated through the following logistic

model

logit{Pr(V = 1|T,A)} = −1.5− 0.35T − 1.5A.

Under this model, the verification rate is roughly 0.276. This has led us to the choice of n = 1000.

For the cut point, we still consider the six pairs that employed in Study 3, i.e., (−1.0,−0.5),

(−1.0, 0.7), (−1.0, 1.3), (−0.5, 0.7), (−0.5, 1.3) and (0.7, 1.3). Note that, in this study, both the

estimates for ρ̂ki and π̂i obtained through parametric approaches are inconsistent, as ρ̂ki could be

obtained by from a multinomial logistic regression model with D = (D1, D2, D3) as the response

and T as predictor; and π̂i could be estimated by a generalized linear model for V given T and

A2/3 with logit link. Clearly, the two fitted models are misspecified. The KNN estimators are

obtained by using K = 1 and K = 3 and the Euclidean distance. Again, we use K̄ = 2 in the

KNN procedure to estimate standard deviations of KNN estimators. Table 3.24 presents Monte
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Table 3.13: Simulation results from 5000 replications when only model for ρk is misspecified (Study 3). “True” indicates the true parameter value. Sample
size = 1000.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3 boot.sd1 boot.sd2 boot.sd3
cut point = (-1,-0.5)

True 0.1812 0.1070 0.9817
FI 0.2144 0.1318 0.9813 0.0230 0.0152 0.0051 0.0243 0.0135 0.0200 0.0230 0.0150 0.0052

MSI 0.2172 0.1328 0.9800 0.0237 0.0182 0.0074 0.0250 0.0166 0.0207 0.0237 0.0179 0.0075
IPW 0.1819 0.1072 0.9817 0.0258 0.0197 0.0091 0.0258 0.0194 0.0135 0.0260 0.0196 0.0092
SPE 0.1818 0.1073 0.9816 0.0208 0.0206 0.0093 0.0207 0.0202 0.0090 0.0208 0.0204 0.0094

cut point = (-1,0.7)
True 0.1812 0.8609 0.4469

FI 0.2144 0.8879 0.4010 0.0230 0.0149 0.0284 0.0243 0.0153 0.0242 0.0230 0.0146 0.0284
MSI 0.2172 0.8931 0.4035 0.0237 0.0165 0.0292 0.0250 0.0172 0.0251 0.0237 0.0165 0.0292
IPW 0.1819 0.8606 0.4462 0.0258 0.0350 0.0437 0.0258 0.0342 0.0447 0.0260 0.0348 0.0437
SPE 0.1818 0.8608 0.4462 0.0208 0.0311 0.0455 0.0207 0.0305 0.0449 0.0208 0.0310 0.0482

cut point = (-1,1.3)
True 0.1812 0.9732 0.1171

FI 0.2144 0.9672 0.0949 0.0230 0.0063 0.0161 0.0243 0.0099 0.0104 0.0230 0.0062 0.0161
MSI 0.2172 0.9708 0.0960 0.0237 0.0079 0.0164 0.0250 0.0110 0.0109 0.0237 0.0078 0.0164
IPW 0.1819 0.9734 0.1164 0.0258 0.0167 0.0358 0.0258 0.0130 0.0347 0.0260 0.0160 0.0354
SPE 0.1818 0.9734 0.1169 0.0208 0.0158 0.0281 0.0207 0.0128 0.0263 0.0208 0.0151 0.0333

cut point = (-0.5,0.7)
True 0.4796 0.7539 0.4469

FI 0.5497 0.7561 0.4010 0.0302 0.0196 0.0284 0.0284 0.0183 0.0242 0.0301 0.0192 0.0284
MSI 0.5502 0.7603 0.4035 0.0312 0.0220 0.0292 0.0295 0.0211 0.0251 0.0310 0.0219 0.0292
IPW 0.4801 0.7534 0.4462 0.0390 0.0373 0.0437 0.0384 0.0371 0.0447 0.0387 0.0374 0.0437
SPE 0.4801 0.7535 0.4462 0.0327 0.0344 0.0455 0.0322 0.0339 0.0449 0.0324 0.0343 0.0482

cut point = (-0.5,1.3)
True 0.4796 0.8661 0.1171

FI 0.5497 0.8354 0.0949 0.0302 0.0189 0.0161 0.0284 0.0185 0.0104 0.0301 0.0186 0.0161
MSI 0.5502 0.8380 0.0960 0.0312 0.0207 0.0164 0.0295 0.0204 0.0109 0.0310 0.0204 0.0164
IPW 0.4801 0.8661 0.1164 0.0390 0.0248 0.0358 0.0384 0.0238 0.0347 0.0387 0.0245 0.0354
SPE 0.4801 0.8660 0.1169 0.0327 0.0250 0.0281 0.0322 0.0239 0.0263 0.0324 0.0245 0.0333

cut point = (0.7,1.3)
True 0.9836 0.1122 0.1171

FI 0.9933 0.0793 0.0949 0.0023 0.0133 0.0161 0.0021 0.0119 0.0104 0.0023 0.0131 0.0161
MSI 0.9930 0.0777 0.0960 0.0038 0.0145 0.0164 0.0032 0.0135 0.0109 0.0038 0.0145 0.0164
IPW 0.9839 0.1128 0.1164 0.0183 0.0324 0.0358 0.0122 0.0319 0.0347 0.0173 0.0325 0.0354
SPE 0.9839 0.1125 0.1169 0.0180 0.0283 0.0281 0.0122 0.0280 0.0263 0.0170 0.0285 0.0333
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Table 3.14: Simulation results from 5000 replications when both models for ρk and π are misspecified (Study 4). “True” indicates the true parameter value.
Sample size = 1000.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3 boot.sd1 boot.sd2 boot.sd3
cut point = (-1,-0.5)

True 0.1812 0.1070 0.9817
FI 0.2143 0.1320 0.9814 0.0231 0.0149 0.0051 0.0243 0.0135 0.0200 0.0230 0.0150 0.0052

MSI 0.2170 0.1330 0.9801 0.0238 0.0179 0.0074 0.0250 0.0166 0.0207 0.0237 0.0179 0.0075
IPW 0.2185 0.1339 0.9792 0.0284 0.0234 0.0102 0.0282 0.0232 0.0105 0.0283 0.0233 0.0102
SPE 0.2183 0.1339 0.9792 0.0247 0.0220 0.0101 0.0245 0.0219 0.0098 0.0246 0.0219 0.0102

cut point = (-1,0.7)
True 0.1812 0.8609 0.4469

FI 0.2143 0.8887 0.4002 0.0231 0.0143 0.0285 0.0243 0.0153 0.0242 0.0230 0.0146 0.0285
MSI 0.2170 0.8940 0.4029 0.0238 0.0164 0.0290 0.0250 0.0171 0.0251 0.0237 0.0165 0.0292
IPW 0.2185 0.8994 0.4078 0.0284 0.0237 0.0397 0.0282 0.0232 0.0410 0.0283 0.0234 0.0397
SPE 0.2183 0.8998 0.4071 0.0247 0.0223 0.0323 0.0245 0.0219 0.0325 0.0246 0.0220 0.0326

cut point = (-1,1.3)
True 0.1812 0.9732 0.1171

FI 0.2143 0.9675 0.0947 0.0231 0.0061 0.0160 0.0243 0.0099 0.0104 0.0230 0.0062 0.0161
MSI 0.2170 0.9711 0.0958 0.0238 0.0078 0.0163 0.0250 0.0110 0.0108 0.0237 0.0078 0.0164
IPW 0.2185 0.9742 0.0977 0.0284 0.0112 0.0269 0.0282 0.0107 0.0270 0.0283 0.0111 0.0273
SPE 0.2183 0.9742 0.0978 0.0247 0.0110 0.0174 0.0245 0.0105 0.0175 0.0246 0.0108 0.0177

cut point = (-0.5,0.7)
True 0.4796 0.7539 0.4469

FI 0.5510 0.7567 0.4002 0.0306 0.0190 0.0285 0.0285 0.0183 0.0242 0.0301 0.0192 0.0285
MSI 0.5514 0.7610 0.4029 0.0316 0.0219 0.0290 0.0295 0.0211 0.0251 0.0310 0.0219 0.0292
IPW 0.5509 0.7655 0.4078 0.0360 0.0313 0.0397 0.0357 0.0310 0.0410 0.0358 0.0311 0.0397
SPE 0.5509 0.7659 0.4071 0.0336 0.0286 0.0323 0.0329 0.0286 0.0325 0.0329 0.0287 0.0326

cut point = (-0.5,1.3)
True 0.4796 0.8661 0.1171

FI 0.5510 0.8355 0.0947 0.0306 0.0186 0.0160 0.0285 0.0186 0.0104 0.0301 0.0186 0.0161
MSI 0.5514 0.8380 0.0958 0.0316 0.0205 0.0163 0.0295 0.0204 0.0108 0.0310 0.0204 0.0164
IPW 0.5509 0.8403 0.0977 0.0360 0.0255 0.0269 0.0357 0.0251 0.0270 0.0358 0.0252 0.0273
SPE 0.5509 0.8403 0.0978 0.0336 0.0240 0.0174 0.0329 0.0237 0.0175 0.0329 0.0238 0.0177

cut point = (0.7,1.3)
True 0.9836 0.1122 0.1171

FI 0.9934 0.0788 0.0947 0.0022 0.0129 0.0160 0.0021 0.0119 0.0104 0.0023 0.0131 0.0161
MSI 0.9930 0.0771 0.0958 0.0038 0.0145 0.0163 0.0032 0.0134 0.0108 0.0037 0.0145 0.0164
IPW 0.9925 0.0748 0.0977 0.0075 0.0213 0.0269 0.0057 0.0208 0.0270 0.0073 0.0211 0.0273
SPE 0.9925 0.0744 0.0978 0.0074 0.0201 0.0174 0.0058 0.0196 0.0175 0.0073 0.0198 0.0177



56 Bias–corrected methods for estimating the ROC surface

Table 3.15: Simulation results of the KNN estimators for TCFs. The sample size equals to 250
and the first value of Λ is considered. “True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut point = (2, 4)
True 0.5000 0.4347 0.9347
1NN 0.4989 0.4334 0.9331 0.0592 0.0665 0.0387 0.0555 0.0626 0.0382
3NN 0.4975 0.4325 0.9322 0.0567 0.0617 0.0364 0.0545 0.0608 0.0372
5NN 0.4965 0.4320 0.9315 0.0559 0.0600 0.0360 0.0543 0.0604 0.0372

10NN 0.4943 0.4306 0.9297 0.0551 0.0580 0.0357 0.0542 0.0600 0.0376
20NN 0.4902 0.4278 0.9258 0.0542 0.0557 0.0358 0.0541 0.0595 0.0384

cut point = (2, 5)
True 0.5000 0.7099 0.7752
1NN 0.4989 0.7068 0.7738 0.0592 0.0627 0.0652 0.0555 0.0591 0.0625
3NN 0.4975 0.7038 0.7714 0.0567 0.0576 0.0615 0.0545 0.0574 0.0610
5NN 0.4965 0.7016 0.7698 0.0559 0.0558 0.0607 0.0543 0.0571 0.0609

10NN 0.4943 0.6967 0.7662 0.0551 0.0535 0.0599 0.0542 0.0568 0.0612
20NN 0.4902 0.6881 0.7595 0.0542 0.0535 0.0594 0.0541 0.0567 0.0612

cut point = (2, 7)
True 0.5000 0.9230 0.2248
1NN 0.4989 0.9201 0.2233 0.0592 0.0372 0.0577 0.0555 0.0366 0.0570
3NN 0.4975 0.9177 0.2216 0.0567 0.0340 0.0558 0.0545 0.0355 0.0563
5NN 0.4965 0.9157 0.2205 0.0559 0.0330 0.0550 0.0543 0.0355 0.0561

10NN 0.4943 0.9112 0.2184 0.0551 0.0318 0.0542 0.0542 0.0358 0.0560
20NN 0.4902 0.9031 0.2145 0.0542 0.0318 0.0531 0.0541 0.0366 0.0559

cut point = (4, 5)
True 0.9347 0.2752 0.7752
1NN 0.9322 0.2734 0.7738 0.0374 0.0572 0.0652 0.0342 0.0553 0.0625
3NN 0.9303 0.2712 0.7714 0.0328 0.0526 0.0615 0.0332 0.0538 0.0610
5NN 0.9288 0.2696 0.7698 0.0315 0.0512 0.0607 0.0332 0.0534 0.0609

10NN 0.9255 0.2662 0.7662 0.0301 0.0489 0.0599 0.0335 0.0529 0.0612
20NN 0.9196 0.2603 0.7595 0.0291 0.0467 0.0594 0.0342 0.0522 0.0612

cut point = (4, 7)
True 0.9347 0.4883 0.2248
1NN 0.9322 0.4867 0.2233 0.0374 0.0680 0.0577 0.0342 0.0633 0.0570
3NN 0.9303 0.4852 0.2216 0.0328 0.0630 0.0558 0.0332 0.0615 0.0563
5NN 0.9288 0.4837 0.2205 0.0315 0.0615 0.0550 0.0332 0.0611 0.0561

10NN 0.9255 0.4807 0.2184 0.0301 0.0597 0.0542 0.0335 0.0606 0.0560
20NN 0.9196 0.4753 0.2145 0.0291 0.0577 0.0531 0.0342 0.0602 0.0559

cut point = (5, 7)
True 0.9883 0.2132 0.2248
1NN 0.9868 0.2133 0.2233 0.0177 0.0567 0.0577 0.0172 0.0532 0.0570
3NN 0.9860 0.2139 0.2216 0.0151 0.0519 0.0558 0.0168 0.0516 0.0563
5NN 0.9851 0.2141 0.2205 0.0142 0.0502 0.0550 0.0170 0.0512 0.0561

10NN 0.9833 0.2145 0.2184 0.0135 0.0479 0.0542 0.0174 0.0508 0.0560
20NN 0.9800 0.2150 0.2145 0.0131 0.0453 0.0531 0.0183 0.0505 0.0559
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Table 3.16: Simulation results of the KNN estimators for TCFs. The sample size equals to 500
and the first value of Λ is considered. “True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut point = (2, 4)
True 0.5000 0.4347 0.9347
1NN 0.5000 0.4343 0.9333 0.0419 0.0464 0.0285 0.0393 0.0443 0.0269
3NN 0.4991 0.4343 0.9329 0.0401 0.0430 0.0266 0.0386 0.0431 0.0262
5NN 0.4984 0.4339 0.9324 0.0396 0.0419 0.0262 0.0385 0.0429 0.0261

10NN 0.4971 0.4332 0.9315 0.0391 0.0407 0.0258 0.0384 0.0426 0.0262
20NN 0.4948 0.4317 0.9296 0.0386 0.0394 0.0256 0.0383 0.0424 0.0265

cut point = (2, 5)
True 0.5000 0.7099 0.7752
1NN 0.5000 0.7077 0.7732 0.0419 0.0450 0.0466 0.0393 0.0417 0.0442
3NN 0.4991 0.7066 0.7722 0.0401 0.0415 0.0437 0.0386 0.0406 0.0431
5NN 0.4984 0.7053 0.7712 0.0396 0.0404 0.0430 0.0385 0.0403 0.0429

10NN 0.4971 0.7025 0.7693 0.0391 0.0391 0.0423 0.0384 0.0402 0.0430
20NN 0.4948 0.6975 0.7656 0.0386 0.0391 0.0417 0.0383 0.0401 0.0430

cut point = (2, 7)
True 0.5000 0.9230 0.2248
1NN 0.5000 0.9214 0.2235 0.0419 0.0261 0.0407 0.0393 0.0256 0.0401
3NN 0.4991 0.9199 0.2225 0.0401 0.0240 0.0392 0.0386 0.0248 0.0396
5NN 0.4984 0.9186 0.2218 0.0396 0.0235 0.0388 0.0385 0.0248 0.0395

10NN 0.4971 0.9160 0.2205 0.0391 0.0229 0.0384 0.0384 0.0248 0.0394
20NN 0.4948 0.9115 0.2183 0.0386 0.0229 0.0379 0.0383 0.0251 0.0394

cut point = (4, 5)
True 0.9347 0.2752 0.7752
1NN 0.9332 0.2734 0.7732 0.0269 0.0398 0.0466 0.0242 0.0391 0.0442
3NN 0.9317 0.2723 0.7722 0.0242 0.0371 0.0437 0.0235 0.0381 0.0431
5NN 0.9308 0.2713 0.7712 0.0233 0.0360 0.0430 0.0234 0.0379 0.0429

10NN 0.9287 0.2693 0.7693 0.0225 0.0350 0.0423 0.0235 0.0376 0.0430
20NN 0.9254 0.2658 0.7656 0.0215 0.0337 0.0417 0.0237 0.0373 0.0430

cut point = (4, 7)
True 0.9347 0.4883 0.2248
1NN 0.9332 0.4871 0.2235 0.0269 0.0465 0.0407 0.0242 0.0447 0.0401
3NN 0.9317 0.4855 0.2225 0.0242 0.0434 0.0392 0.0235 0.0436 0.0396
5NN 0.9308 0.4847 0.2218 0.0233 0.0424 0.0388 0.0234 0.0433 0.0395

10NN 0.9287 0.4829 0.2205 0.0225 0.0414 0.0384 0.0235 0.0431 0.0394
20NN 0.9254 0.4798 0.2183 0.0215 0.0403 0.0379 0.0237 0.0428 0.0394

cut point = (5, 7)
True 0.9883 0.2132 0.2248
1NN 0.9875 0.2136 0.2235 0.0129 0.0400 0.0407 0.0120 0.0376 0.0401
3NN 0.9867 0.2133 0.2225 0.0113 0.0369 0.0392 0.0118 0.0365 0.0396
5NN 0.9861 0.2133 0.2218 0.0107 0.0359 0.0388 0.0118 0.0363 0.0395

10NN 0.9850 0.2135 0.2205 0.0102 0.0345 0.0384 0.0120 0.0361 0.0394
20NN 0.9833 0.2140 0.2183 0.0098 0.0332 0.0379 0.0123 0.0359 0.0394
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Table 3.17: Simulation results of the KNN estimators for TCFs. The sample size equals to 1000
and the first value of Λ is considered. “True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut point = (2, 4)
True 0.5000 0.4347 0.9347
1NN 0.5002 0.4349 0.9340 0.0295 0.0336 0.0194 0.0278 0.0313 0.0189
3NN 0.4997 0.4346 0.9336 0.0283 0.0318 0.0183 0.0273 0.0305 0.0183
5NN 0.4993 0.4344 0.9333 0.0280 0.0313 0.0180 0.0272 0.0304 0.0183

10NN 0.4985 0.4341 0.9328 0.0276 0.0304 0.0178 0.0272 0.0302 0.0182
20NN 0.4973 0.4333 0.9318 0.0273 0.0296 0.0176 0.0271 0.0301 0.0183

cut point = (2, 5)
True 0.5000 0.7099 0.7752
1NN 0.5002 0.7093 0.7741 0.0295 0.0319 0.0331 0.0278 0.0295 0.0312
3NN 0.4997 0.7083 0.7733 0.0283 0.0297 0.0312 0.0273 0.0287 0.0304
5NN 0.4993 0.7075 0.7728 0.0280 0.0292 0.0306 0.0272 0.0285 0.0303

10NN 0.4985 0.7057 0.7715 0.0276 0.0282 0.0301 0.0272 0.0284 0.0302
20NN 0.4973 0.7028 0.7694 0.0273 0.0282 0.0298 0.0271 0.0283 0.0302

cut point = (2, 7)
True 0.5000 0.9230 0.2248
1NN 0.5002 0.9223 0.2239 0.0295 0.0187 0.0292 0.0278 0.0179 0.0283
3NN 0.4997 0.9213 0.2234 0.0283 0.0173 0.0283 0.0273 0.0174 0.0280
5NN 0.4993 0.9206 0.2229 0.0280 0.0169 0.0281 0.0272 0.0173 0.0279

10NN 0.4985 0.9190 0.2220 0.0276 0.0164 0.0279 0.0272 0.0173 0.0279
20NN 0.4973 0.9163 0.2208 0.0273 0.0164 0.0276 0.0271 0.0174 0.0278

cut point = (4, 5)
True 0.9347 0.2752 0.7752
1NN 0.9337 0.2745 0.7741 0.0198 0.0286 0.0331 0.0172 0.0277 0.0312
3NN 0.9329 0.2737 0.7733 0.0179 0.0268 0.0312 0.0166 0.0270 0.0304
5NN 0.9323 0.2731 0.7728 0.0173 0.0263 0.0306 0.0166 0.0269 0.0303

10NN 0.9310 0.2717 0.7715 0.0166 0.0256 0.0301 0.0166 0.0267 0.0302
20NN 0.9289 0.2695 0.7694 0.0159 0.0248 0.0298 0.0166 0.0266 0.0302

cut point = (4, 7)
True 0.9347 0.4883 0.2248
1NN 0.9337 0.4874 0.2239 0.0198 0.0342 0.0292 0.0172 0.0316 0.0283
3NN 0.9329 0.4867 0.2234 0.0179 0.0322 0.0283 0.0166 0.0308 0.0280
5NN 0.9323 0.4861 0.2229 0.0173 0.0316 0.0281 0.0166 0.0307 0.0279

10NN 0.9310 0.4849 0.2220 0.0166 0.0308 0.0279 0.0166 0.0305 0.0279
20NN 0.9289 0.4830 0.2208 0.0159 0.0300 0.0276 0.0166 0.0304 0.0278

cut point = (5, 7)
True 0.9883 0.2132 0.2248
1NN 0.9876 0.2130 0.2239 0.0096 0.0289 0.0292 0.0085 0.0266 0.0283
3NN 0.9871 0.2130 0.2234 0.0084 0.0268 0.0283 0.0083 0.0259 0.0280
5NN 0.9869 0.2131 0.2229 0.0080 0.0263 0.0281 0.0083 0.0257 0.0279

10NN 0.9862 0.2132 0.2220 0.0075 0.0253 0.0279 0.0083 0.0256 0.0279
20NN 0.9851 0.2135 0.2208 0.0072 0.0244 0.0276 0.0084 0.0255 0.0278
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Table 3.18: Simulation results of the KNN estimators for TCFs. The sample size equals to 250
and the second value of Λ is considered. “True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut point = (2, 4)
True 0.5000 0.3970 0.8970
1NN 0.4982 0.3953 0.8976 0.0587 0.0642 0.0537 0.0561 0.0618 0.0487
3NN 0.4960 0.3933 0.8970 0.0556 0.0595 0.0494 0.0548 0.0600 0.0472
5NN 0.4941 0.3917 0.8966 0.0548 0.0578 0.0484 0.0545 0.0596 0.0471

10NN 0.4904 0.3885 0.8955 0.0540 0.0561 0.0473 0.0542 0.0591 0.0473
20NN 0.4841 0.3834 0.8926 0.0533 0.0539 0.0467 0.0540 0.0587 0.0479

cut point = (2, 5)
True 0.5000 0.6335 0.7365
1NN 0.4982 0.6304 0.7400 0.0587 0.0645 0.0721 0.0561 0.0615 0.0672
3NN 0.4960 0.6283 0.7396 0.0556 0.0600 0.0670 0.0548 0.0597 0.0654
5NN 0.4941 0.6260 0.7392 0.0548 0.0587 0.0661 0.0545 0.0594 0.0652

10NN 0.4904 0.6212 0.7378 0.0540 0.0569 0.0649 0.0542 0.0591 0.0653
20NN 0.4841 0.6133 0.7345 0.0533 0.0569 0.0641 0.0540 0.0590 0.0653

cut point = (2, 7)
True 0.5000 0.8682 0.2635
1NN 0.4982 0.8672 0.2672 0.0587 0.0495 0.0629 0.0561 0.0458 0.0609
3NN 0.4960 0.8657 0.2671 0.0556 0.0452 0.0610 0.0548 0.0442 0.0601
5NN 0.4941 0.8642 0.2671 0.0548 0.0442 0.0605 0.0545 0.0440 0.0601

10NN 0.4904 0.8608 0.2667 0.0540 0.0430 0.0602 0.0542 0.0441 0.0602
20NN 0.4841 0.8539 0.2655 0.0533 0.0430 0.0598 0.0540 0.0444 0.0604

cut point = (4, 5)
True 0.8970 0.2365 0.7365
1NN 0.8958 0.2352 0.7400 0.0388 0.0540 0.0721 0.0373 0.0524 0.0672
3NN 0.8946 0.2350 0.7396 0.0362 0.0502 0.0670 0.0361 0.0510 0.0654
5NN 0.8933 0.2343 0.7392 0.0355 0.0490 0.0661 0.0360 0.0507 0.0652

10NN 0.8905 0.2328 0.7378 0.0348 0.0474 0.0649 0.0360 0.0503 0.0653
20NN 0.8857 0.2299 0.7345 0.0343 0.0455 0.0641 0.0364 0.0499 0.0653

cut point = (4, 7)
True 0.8970 0.4711 0.2635
1NN 0.8958 0.4719 0.2672 0.0388 0.0666 0.0629 0.0373 0.0630 0.0609
3NN 0.8946 0.4724 0.2671 0.0362 0.0627 0.0610 0.0361 0.0611 0.0601
5NN 0.8933 0.4725 0.2671 0.0355 0.0612 0.0605 0.0360 0.0607 0.0601

10NN 0.8905 0.4723 0.2667 0.0348 0.0600 0.0602 0.0360 0.0604 0.0602
20NN 0.8857 0.4705 0.2655 0.0343 0.0584 0.0598 0.0364 0.0600 0.0604

cut point = (5, 7)
True 0.9711 0.2347 0.2635
1NN 0.9701 0.2368 0.2672 0.0217 0.0549 0.0629 0.0213 0.0533 0.0609
3NN 0.9695 0.2375 0.2671 0.0200 0.0519 0.0610 0.0206 0.0517 0.0601
5NN 0.9689 0.2382 0.2671 0.0197 0.0507 0.0605 0.0205 0.0515 0.0601

10NN 0.9675 0.2395 0.2667 0.0194 0.0492 0.0602 0.0207 0.0512 0.0602
20NN 0.9648 0.2406 0.2655 0.0192 0.0478 0.0598 0.0212 0.0510 0.0604
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Table 3.19: Simulation results of the KNN estimators for TCFs. The sample size equals to 500
and the second value of Λ is considered. “True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut point = (2, 4)
True 0.5000 0.3970 0.8970
1NN 0.4987 0.3958 0.8975 0.0419 0.0466 0.0379 0.0396 0.0438 0.0347
3NN 0.4975 0.3947 0.8971 0.0400 0.0431 0.0349 0.0388 0.0425 0.0335
5NN 0.4965 0.3937 0.8968 0.0395 0.0423 0.0342 0.0386 0.0423 0.0334

10NN 0.4945 0.3918 0.8962 0.0391 0.0412 0.0335 0.0384 0.0420 0.0334
20NN 0.4909 0.3886 0.8951 0.0386 0.0400 0.0328 0.0383 0.0418 0.0336

cut point = (2, 5)
True 0.5000 0.6335 0.7365
1NN 0.4987 0.6318 0.7376 0.0419 0.0466 0.0510 0.0396 0.0436 0.0477
3NN 0.4975 0.6306 0.7372 0.0400 0.0433 0.0472 0.0388 0.0423 0.0464
5NN 0.4965 0.6294 0.7371 0.0395 0.0426 0.0464 0.0386 0.0420 0.0462

10NN 0.4945 0.6268 0.7366 0.0391 0.0416 0.0456 0.0384 0.0419 0.0461
20NN 0.4909 0.6222 0.7355 0.0386 0.0416 0.0448 0.0383 0.0418 0.0461

cut point = (2, 7)
True 0.5000 0.8682 0.2635
1NN 0.4987 0.8675 0.2634 0.0419 0.0352 0.0441 0.0396 0.0325 0.0425
3NN 0.4975 0.8667 0.2633 0.0400 0.0324 0.0427 0.0388 0.0313 0.0420
5NN 0.4965 0.8661 0.2634 0.0395 0.0316 0.0424 0.0386 0.0311 0.0419

10NN 0.4945 0.8644 0.2634 0.0391 0.0307 0.0423 0.0384 0.0311 0.0420
20NN 0.4909 0.8610 0.2632 0.0386 0.0307 0.0422 0.0383 0.0311 0.0421

cut point = (4, 5)
True 0.8970 0.2365 0.7365
1NN 0.8964 0.2360 0.7376 0.0279 0.0388 0.0510 0.0263 0.0372 0.0477
3NN 0.8954 0.2359 0.7372 0.0264 0.0362 0.0472 0.0255 0.0362 0.0464
5NN 0.8947 0.2357 0.7371 0.0259 0.0353 0.0464 0.0253 0.0360 0.0462

10NN 0.8932 0.2350 0.7366 0.0254 0.0343 0.0456 0.0253 0.0358 0.0461
20NN 0.8905 0.2335 0.7355 0.0250 0.0332 0.0448 0.0254 0.0356 0.0461

cut point = (4, 7)
True 0.8970 0.4711 0.2635
1NN 0.8964 0.4717 0.2634 0.0279 0.0480 0.0441 0.0263 0.0446 0.0425
3NN 0.8954 0.4720 0.2633 0.0264 0.0448 0.0427 0.0255 0.0433 0.0420
5NN 0.8947 0.4723 0.2634 0.0259 0.0439 0.0424 0.0253 0.0431 0.0419

10NN 0.8932 0.4726 0.2634 0.0254 0.0430 0.0423 0.0253 0.0429 0.0420
20NN 0.8905 0.4723 0.2632 0.0250 0.0421 0.0422 0.0254 0.0427 0.0421

cut point = (5, 7)
True 0.9711 0.2347 0.2635
1NN 0.9707 0.2357 0.2634 0.0150 0.0400 0.0441 0.0148 0.0376 0.0425
3NN 0.9701 0.2360 0.2633 0.0142 0.0373 0.0427 0.0144 0.0366 0.0420
5NN 0.9697 0.2367 0.2634 0.0139 0.0366 0.0424 0.0143 0.0364 0.0419

10NN 0.9690 0.2376 0.2634 0.0137 0.0358 0.0423 0.0143 0.0362 0.0420
20NN 0.9676 0.2388 0.2632 0.0136 0.0350 0.0422 0.0145 0.0361 0.0421



3.3 Simulation studies 61

Table 3.20: Simulation results of the KNN estimators for TCFs. The sample size equals to 500
and the second value of Λ is considered. “True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut point = (2, 4)
True 0.5000 0.3970 0.8970
1NN 0.4989 0.3958 0.8974 0.0291 0.0328 0.0279 0.0280 0.0310 0.0246
3NN 0.4981 0.3950 0.8974 0.0279 0.0307 0.0258 0.0274 0.0301 0.0238
5NN 0.4975 0.3943 0.8973 0.0275 0.0301 0.0252 0.0273 0.0300 0.0236

10NN 0.4962 0.3931 0.8972 0.0271 0.0294 0.0246 0.0272 0.0298 0.0236
20NN 0.4940 0.3910 0.8966 0.0268 0.0288 0.0242 0.0271 0.0297 0.0236

cut point = (2, 5)
True 0.5000 0.6335 0.7365
1NN 0.4989 0.6322 0.7372 0.0291 0.0325 0.0369 0.0280 0.0308 0.0338
3NN 0.4981 0.6312 0.7372 0.0279 0.0303 0.0345 0.0274 0.0299 0.0328
5NN 0.4975 0.6305 0.7372 0.0275 0.0298 0.0338 0.0273 0.0298 0.0327

10NN 0.4962 0.6289 0.7371 0.0271 0.0291 0.0332 0.0272 0.0296 0.0326
20NN 0.4940 0.6261 0.7367 0.0268 0.0291 0.0328 0.0271 0.0296 0.0326

cut point = (2, 7)
True 0.5000 0.8682 0.2635
1NN 0.4989 0.8684 0.2643 0.0291 0.0247 0.0313 0.0280 0.0229 0.0300
3NN 0.4981 0.8678 0.2643 0.0279 0.0228 0.0304 0.0274 0.0221 0.0297
5NN 0.4975 0.8674 0.2644 0.0275 0.0223 0.0301 0.0273 0.0220 0.0296

10NN 0.4962 0.8665 0.2645 0.0271 0.0217 0.0299 0.0272 0.0219 0.0296
20NN 0.4940 0.8648 0.2645 0.0268 0.0217 0.0299 0.0271 0.0219 0.0297

cut point = (4, 5)
True 0.8970 0.2365 0.7365
1NN 0.8963 0.2364 0.7372 0.0198 0.0276 0.0369 0.0185 0.0263 0.0338
3NN 0.8958 0.2362 0.7372 0.0186 0.0260 0.0345 0.0179 0.0256 0.0328
5NN 0.8954 0.2361 0.7372 0.0183 0.0254 0.0338 0.0178 0.0255 0.0327

10NN 0.8945 0.2358 0.7371 0.0179 0.0248 0.0332 0.0178 0.0254 0.0326
20NN 0.8930 0.2351 0.7367 0.0177 0.0242 0.0328 0.0178 0.0253 0.0326

cut point = (4, 7)
True 0.8970 0.4711 0.2635
1NN 0.8963 0.4726 0.2643 0.0198 0.0342 0.0313 0.0185 0.0316 0.0300
3NN 0.8958 0.4728 0.2643 0.0186 0.0320 0.0304 0.0179 0.0307 0.0297
5NN 0.8954 0.4731 0.2644 0.0183 0.0314 0.0301 0.0178 0.0305 0.0296

10NN 0.8945 0.4734 0.2645 0.0179 0.0307 0.0299 0.0178 0.0304 0.0296
20NN 0.8930 0.4737 0.2645 0.0177 0.0302 0.0299 0.0178 0.0303 0.0297

cut point = (5, 7)
True 0.9711 0.2347 0.2635
1NN 0.9709 0.2362 0.2643 0.0111 0.0281 0.0313 0.0104 0.0266 0.0300
3NN 0.9707 0.2366 0.2643 0.0103 0.0262 0.0304 0.0100 0.0259 0.0297
5NN 0.9704 0.2369 0.2644 0.0101 0.0257 0.0301 0.0100 0.0258 0.0296

10NN 0.9700 0.2376 0.2645 0.0099 0.0252 0.0299 0.0100 0.0257 0.0296
20NN 0.9692 0.2386 0.2645 0.0098 0.0247 0.0299 0.0100 0.0256 0.0297
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Table 3.21: Simulation results of the KNN estimators for TCFs. The sample size equals to 250
and the third value of Λ is considered. “True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut point = (2, 4)
True 0.5000 0.3031 0.8031
1NN 0.4997 0.3021 0.8047 0.0592 0.0602 0.0682 0.0571 0.0584 0.0621
3NN 0.4984 0.3018 0.8043 0.0561 0.0565 0.0632 0.0556 0.0566 0.0601
5NN 0.4975 0.3016 0.8039 0.0554 0.0552 0.0621 0.0553 0.0562 0.0598

10NN 0.4956 0.3006 0.8029 0.0549 0.0539 0.0611 0.0550 0.0558 0.0597
20NN 0.4915 0.2986 0.8005 0.0543 0.0523 0.0605 0.0549 0.0555 0.0600

cut point = (2, 5)
True 0.5000 0.4682 0.6651
1NN 0.4997 0.4676 0.6668 0.0592 0.0661 0.0780 0.0571 0.0634 0.0717
3NN 0.4984 0.4670 0.6666 0.0561 0.0619 0.0729 0.0556 0.0614 0.0695
5NN 0.4975 0.4665 0.6664 0.0554 0.0606 0.0717 0.0553 0.0610 0.0692

10NN 0.4956 0.4652 0.6654 0.0549 0.0593 0.0706 0.0550 0.0606 0.0691
20NN 0.4915 0.4623 0.6630 0.0543 0.0593 0.0698 0.0549 0.0604 0.0691

cut point = (2, 7)
True 0.5000 0.7027 0.3349
1NN 0.4997 0.7024 0.3366 0.0592 0.0633 0.0712 0.0571 0.0592 0.0675
3NN 0.4984 0.7016 0.3362 0.0561 0.0590 0.0680 0.0556 0.0572 0.0660
5NN 0.4975 0.7011 0.3361 0.0554 0.0578 0.0674 0.0553 0.0568 0.0657

10NN 0.4956 0.6995 0.3353 0.0549 0.0565 0.0666 0.0550 0.0565 0.0656
20NN 0.4915 0.6959 0.3332 0.0543 0.0565 0.0659 0.0549 0.0564 0.0656

cut point = (4, 5)
True 0.8031 0.1651 0.6651
1NN 0.8032 0.1655 0.6668 0.0487 0.0481 0.0780 0.0472 0.0466 0.0717
3NN 0.8020 0.1651 0.6666 0.0460 0.0450 0.0729 0.0457 0.0451 0.0695
5NN 0.8011 0.1649 0.6664 0.0453 0.0439 0.0717 0.0455 0.0448 0.0692

10NN 0.7996 0.1646 0.6654 0.0446 0.0427 0.0706 0.0453 0.0446 0.0691
20NN 0.7965 0.1637 0.6630 0.0441 0.0412 0.0698 0.0454 0.0443 0.0691

cut point = (4, 7)
True 0.8031 0.3996 0.3349
1NN 0.8032 0.4003 0.3366 0.0487 0.0660 0.0712 0.0472 0.0619 0.0675
3NN 0.8020 0.3998 0.3362 0.0460 0.0617 0.0680 0.0457 0.0600 0.0660
5NN 0.8011 0.3995 0.3361 0.0453 0.0604 0.0674 0.0455 0.0596 0.0657

10NN 0.7996 0.3989 0.3353 0.0446 0.0594 0.0666 0.0453 0.0592 0.0656
20NN 0.7965 0.3973 0.3332 0.0441 0.0581 0.0659 0.0454 0.0589 0.0656

cut point = (5, 7)
True 0.8996 0.2345 0.3349
1NN 0.9000 0.2348 0.3366 0.0373 0.0556 0.0712 0.0361 0.0531 0.0675
3NN 0.8992 0.2346 0.3362 0.0349 0.0520 0.0680 0.0349 0.0515 0.0660
5NN 0.8987 0.2346 0.3361 0.0345 0.0510 0.0674 0.0347 0.0511 0.0657

10NN 0.8974 0.2343 0.3353 0.0340 0.0499 0.0666 0.0346 0.0508 0.0656
20NN 0.8952 0.2335 0.3332 0.0336 0.0485 0.0659 0.0348 0.0506 0.0656
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Table 3.22: Simulation results of the KNN estimators for TCFs. The sample size equals to 500
and the third value of Λ is considered. “True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut point = (2, 4)
True 0.5000 0.3031 0.8031
1NN 0.4994 0.3024 0.8036 0.0428 0.0441 0.0489 0.0403 0.0412 0.0442
3NN 0.4990 0.3020 0.8033 0.0409 0.0412 0.0454 0.0394 0.0399 0.0427
5NN 0.4984 0.3017 0.8032 0.0403 0.0402 0.0447 0.0391 0.0397 0.0425

10NN 0.4971 0.3010 0.8028 0.0398 0.0392 0.0438 0.0390 0.0395 0.0423
20NN 0.4951 0.3000 0.8019 0.0394 0.0384 0.0433 0.0388 0.0393 0.0424

cut point = (2, 5)
True 0.5000 0.4682 0.6651
1NN 0.4994 0.4677 0.6653 0.0428 0.0476 0.0545 0.0403 0.0447 0.0509
3NN 0.4990 0.4672 0.6650 0.0409 0.0447 0.0512 0.0394 0.0434 0.0494
5NN 0.4984 0.4668 0.6648 0.0403 0.0437 0.0505 0.0391 0.0431 0.0491

10NN 0.4971 0.4659 0.6645 0.0398 0.0428 0.0498 0.0390 0.0429 0.0490
20NN 0.4951 0.4645 0.6638 0.0394 0.0428 0.0493 0.0388 0.0427 0.0490

cut point = (2, 7)
True 0.5000 0.7027 0.3349
1NN 0.4994 0.7018 0.3353 0.0428 0.0448 0.0495 0.0403 0.0418 0.0477
3NN 0.4990 0.7018 0.3353 0.0409 0.0419 0.0473 0.0394 0.0404 0.0466
5NN 0.4984 0.7014 0.3352 0.0403 0.0410 0.0469 0.0391 0.0401 0.0464

10NN 0.4971 0.7004 0.3349 0.0398 0.0403 0.0466 0.0390 0.0399 0.0463
20NN 0.4951 0.6988 0.3342 0.0394 0.0403 0.0463 0.0388 0.0399 0.0464

cut point = (4, 5)
True 0.8031 0.1651 0.6651
1NN 0.8027 0.1653 0.6653 0.0357 0.0342 0.0545 0.0334 0.0328 0.0509
3NN 0.8024 0.1652 0.6650 0.0335 0.0319 0.0512 0.0324 0.0319 0.0494
5NN 0.8020 0.1652 0.6648 0.0329 0.0313 0.0505 0.0322 0.0317 0.0491

10NN 0.8010 0.1648 0.6645 0.0325 0.0304 0.0498 0.0320 0.0315 0.0490
20NN 0.7995 0.1645 0.6638 0.0322 0.0295 0.0493 0.0320 0.0314 0.0490

cut point = (4, 7)
True 0.8031 0.3996 0.3349
1NN 0.8027 0.3994 0.3353 0.0357 0.0469 0.0495 0.0334 0.0436 0.0477
3NN 0.8024 0.3997 0.3353 0.0335 0.0438 0.0473 0.0324 0.0423 0.0466
5NN 0.8020 0.3997 0.3352 0.0329 0.0432 0.0469 0.0322 0.0421 0.0464

10NN 0.8010 0.3994 0.3349 0.0325 0.0424 0.0466 0.0320 0.0418 0.0463
20NN 0.7995 0.3988 0.3342 0.0322 0.0416 0.0463 0.0320 0.0417 0.0464

cut point = (5, 7)
True 0.8996 0.2345 0.3349
1NN 0.8990 0.2341 0.3353 0.0271 0.0397 0.0495 0.0256 0.0374 0.0477
3NN 0.8988 0.2345 0.3353 0.0254 0.0374 0.0473 0.0247 0.0363 0.0466
5NN 0.8985 0.2345 0.3352 0.0249 0.0368 0.0469 0.0246 0.0361 0.0464

10NN 0.8979 0.2345 0.3349 0.0246 0.0361 0.0466 0.0245 0.0359 0.0463
20NN 0.8968 0.2343 0.3342 0.0244 0.0353 0.0463 0.0245 0.0358 0.0464
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Table 3.23: Simulation results of the KNN estimators for TCFs. The sample size equals to 1000
and the third value of Λ is considered. “True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut point = (2, 4)
True 0.5000 0.3031 0.8031
1NN 0.4999 0.3023 0.8027 0.0295 0.0313 0.0341 0.0285 0.0291 0.0313
3NN 0.4994 0.3023 0.8030 0.0281 0.0295 0.0316 0.0278 0.0283 0.0302
5NN 0.4991 0.3021 0.8030 0.0277 0.0290 0.0309 0.0277 0.0281 0.0300

10NN 0.4986 0.3018 0.8029 0.0274 0.0284 0.0303 0.0276 0.0279 0.0299
20NN 0.4975 0.3012 0.8026 0.0271 0.0280 0.0299 0.0275 0.0278 0.0299

cut point = (2, 5)
True 0.5000 0.4682 0.6651
1NN 0.4999 0.4677 0.6650 0.0295 0.0344 0.0384 0.0285 0.0316 0.0360
3NN 0.4994 0.4676 0.6653 0.0281 0.0324 0.0363 0.0278 0.0307 0.0349
5NN 0.4991 0.4674 0.6653 0.0277 0.0319 0.0356 0.0277 0.0305 0.0346

10NN 0.4986 0.4670 0.6652 0.0274 0.0313 0.0350 0.0276 0.0303 0.0345
20NN 0.4975 0.4662 0.6649 0.0271 0.0313 0.0346 0.0275 0.0302 0.0345

cut point = (2, 7)
True 0.5000 0.7027 0.3349
1NN 0.4999 0.7029 0.3351 0.0295 0.0323 0.0340 0.0285 0.0295 0.0336
3NN 0.4994 0.7027 0.3351 0.0281 0.0302 0.0328 0.0278 0.0286 0.0328
5NN 0.4991 0.7025 0.3351 0.0277 0.0296 0.0325 0.0277 0.0284 0.0327

10NN 0.4986 0.7021 0.3350 0.0274 0.0291 0.0323 0.0276 0.0282 0.0326
20NN 0.4975 0.7014 0.3348 0.0271 0.0291 0.0321 0.0275 0.0282 0.0326

cut point = (4, 5)
True 0.8031 0.1651 0.6651
1NN 0.8029 0.1653 0.6650 0.0245 0.0240 0.0384 0.0236 0.0232 0.0360
3NN 0.8025 0.1652 0.6653 0.0233 0.0226 0.0363 0.0229 0.0225 0.0349
5NN 0.8023 0.1653 0.6653 0.0229 0.0222 0.0356 0.0227 0.0224 0.0346

10NN 0.8019 0.1652 0.6652 0.0226 0.0218 0.0350 0.0226 0.0223 0.0345
20NN 0.8011 0.1650 0.6649 0.0224 0.0213 0.0346 0.0226 0.0222 0.0345

cut point = (4, 7)
True 0.8031 0.3996 0.3349
1NN 0.8029 0.4006 0.3351 0.0245 0.0323 0.0340 0.0236 0.0308 0.0336
3NN 0.8025 0.4003 0.3351 0.0233 0.0304 0.0328 0.0229 0.0299 0.0328
5NN 0.8023 0.4004 0.3351 0.0229 0.0300 0.0325 0.0227 0.0298 0.0327

10NN 0.8019 0.4003 0.3350 0.0226 0.0295 0.0323 0.0226 0.0296 0.0326
20NN 0.8011 0.4001 0.3348 0.0224 0.0292 0.0321 0.0226 0.0295 0.0326

cut point = (5, 7)
True 0.8996 0.2345 0.3349
1NN 0.8997 0.2352 0.3351 0.0186 0.0274 0.0340 0.0181 0.0264 0.0336
3NN 0.8994 0.2351 0.3351 0.0175 0.0258 0.0328 0.0175 0.0257 0.0328
5NN 0.8992 0.2351 0.3351 0.0172 0.0254 0.0325 0.0173 0.0255 0.0327

10NN 0.8989 0.2351 0.3350 0.0170 0.0250 0.0323 0.0173 0.0254 0.0326
20NN 0.8983 0.2351 0.3348 0.0168 0.0247 0.0321 0.0172 0.0253 0.0326
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Carlo means and standard deviations (across 5000 replications) for the estimators of the true class

fractions, TCF1, TCF2 and TCF3. The table also gives the means of the estimated standard

deviations (of the estimators), based on the asymptotic theory. The table clearly shows limitations

of the (partially) parametric approaches in case of misspecified models for Pr(Dk = 1|T,A) and

Pr(V = 1|T,A). More precisely, in term of bias, the FI, MSI, IPW and SPE approaches perform

almost always poorly, with high distortion in mostly all cases. As we mentioned in Section 3.1.4,

the SPE estimators could fall outside the interval (0, 1). In our simulations, in the worst case,

the estimator T̂CF3,SPE(−1.0,−0.5) gives rise to 20% of the values greater than 1. Moreover, the

Monte Carlo standard deviations shown in the table indicate that the SPE approach might yield

unstable estimates. Finally, the misspecification also has a clear effect on the estimated standard

deviations of the estimators. On the other side, the estimators 1NN and 3NN seem to perform

well in terms of both bias and standard deviation. In fact, KNN estimators yield estimated values

that are near to the true values. In addition, we observe that the estimator 3NN has larger bias

than 1NN, but with slightly less variance.

Finally, some results of simulation experiments performed to explore the effect of a multidi-

mensional vector of auxiliary covariates are given. In particular, we consider A = (A1, A2, A3)
>.

The data are generated in a similar way as in Study 1 of Section 3.3.1. More precisely, the disease

status D is a trinomial random vector (D1, D2, D3), such that Dk is a Bernoulli random variable

with success probability θk, k = 1, 2, 3. We set θ1 = 0.4, θ2 = 0.35 and θ3 = 0.25. The continuous

test results T and covariates A1, A2, A3 are generated by the following conditional models

T,A1, A2, A3|Dk ∼ N4 (µk,Σ) , k = 1, 2, 3,

where µk = (2k, k, 1.5k, 0.5k)> and

Σ =




1.75 0.1 −0.2 0.5
0.10 2.5 0.5 −0.3

−0.20 0.5 1.0 0.7
0.50 −0.3 0.7 1.2


 .

The verification status V is generated by the model

logit {Pr(V = 1|T,A1, A2, A3)} = −0.7− 0.35T + 0.2A1 + 0.8A2 − 0.6A3.

This choice corresponds to a verification rate of about 0.51. We consider six pairs of cut points

(c1, c2), i.e., (2, 4), (2, 5), (2, 7), (4, 5), (4, 7) and (5, 7). For the (partially) parametric estimators

FI, MSI, IPW and SPE, disease probabilities and verification probabilities are estimated by using

correctly specified models. For the KNN estimators, the Mahalanobis distance is employed, because

the variability of T and covariates A1, A2, A3 is relatively large. In addition, we use K̄ = 2 for

the estimation of standard deviations. The number of replicates in each simulation experiment is

5000. The sample size is 500.

As expected, results given in Table 3.25, show a certain loss of efficiency of KNN estimators,

compared to parametric competitors.

3.4 Real data examples

To illustrate the application of the proposed methods, in this section we consider two quite distinct

real data examples, both dealing with epithelial ovarian cancer (EOC). In the first illustration, we

consider diagnosis of EOC in one of three classes i.e., benign disease, early stage and late stage
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Table 3.24: Simulation results in case where both models for ρk(t, a) and π(t, a) are misspecified
and sample size equals to 1000. “True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut point = (−1.0,−0.5)
True 0.1812 0.1070 0.9817

FI 0.1290 0.0588 0.9888 0.0153 0.0133 0.0118 0.0154 0.0087 0.0412
MSI 0.1299 0.0592 0.9895 0.0154 0.0153 0.0131 0.0157 0.0110 0.0417
IPW 0.1231 0.0576 0.9889 0.0178 0.0211 0.0208 0.0175 0.0207 0.3694
SPE 0.1407 0.0649 0.9877 0.0173 0.0216 0.0231 0.0176 0.0212 0.0432
1NN 0.1809 0.1036 0.9817 0.0224 0.0304 0.0255 0.0211 0.0262 0.0242
3NN 0.1795 0.0991 0.9814 0.0214 0.0258 0.0197 0.0208 0.0244 0.0240

cut point = (−1.0, 0.7)
True 0.1812 0.8609 0.4469

FI 0.1290 0.7399 0.5850 0.0153 0.0447 0.1002 0.0154 0.0181 0.0739
MSI 0.1299 0.7423 0.5841 0.0154 0.0453 0.1008 0.0157 0.0188 0.0666
IPW 0.1231 0.7690 0.5004 0.0178 0.0902 0.2049 0.0175 0.0844 0.2018
SPE 0.1407 0.7635 0.5350 0.0173 0.0702 0.2682 0.0176 0.0668 2.0344

1NN 0.1809 0.8452 0.4406 0.0224 0.0622 0.1114 0.0211 0.0544 0.1079
3NN 0.1795 0.8285 0.4339 0.0214 0.0521 0.0882 0.0208 0.0516 0.1066

cut point = (−1.0, 1.3)
True 0.1812 0.9732 0.1171

FI 0.1290 0.9499 0.1900 0.0153 0.0179 0.0550 0.0154 0.0133 0.0422
MSI 0.1299 0.9516 0.1902 0.0154 0.0184 0.0552 0.0157 0.0142 0.0389
IPW 0.1231 0.9645 0.1294 0.0178 0.0519 0.1795 0.0175 0.0466 0.1344
SPE 0.1407 0.9567 0.1760 0.0173 0.0425 0.3383 0.0176 0.0402 3.4770

1NN 0.1809 0.9656 0.1124 0.0224 0.0218 0.0448 0.0211 0.0317 0.0710
3NN 0.1795 0.9604 0.1086 0.0214 0.0172 0.0338 0.0208 0.0305 0.0716

cut point = (−0.5, 0.7)
True 0.4796 0.7539 0.4469

FI 0.3715 0.6811 0.5850 0.0270 0.0400 0.1002 0.0151 0.0145 0.0739
MSI 0.3723 0.6831 0.5841 0.0271 0.0409 0.1008 0.0162 0.0172 0.0666
IPW 0.3547 0.7114 0.5004 0.0325 0.0883 0.2049 0.0322 0.0831 0.2018
SPE 0.3949 0.6986 0.5350 0.0318 0.0687 0.2682 0.0331 0.0657 2.0344

1NN 0.4783 0.7416 0.4406 0.0361 0.0610 0.1114 0.0311 0.0551 0.1079
3NN 0.4756 0.7294 0.4339 0.0341 0.0499 0.0882 0.0304 0.0523 0.1066

cut point = (−0.5, 1.3)
True 0.4796 0.8661 0.1171

FI 0.3715 0.8910 0.1900 0.0270 0.0202 0.0550 0.0151 0.0142 0.0422
MSI 0.3723 0.8924 0.1902 0.0271 0.0211 0.0552 0.0162 0.0165 0.0389
IPW 0.3547 0.9068 0.1294 0.0325 0.0535 0.1795 0.0322 0.0492 0.1344
SPE 0.3949 0.8918 0.1760 0.0318 0.0451 0.3383 0.0331 0.0435 3.4770

1NN 0.4783 0.8620 0.1124 0.0361 0.0349 0.0448 0.0311 0.0390 0.0710
3NN 0.4756 0.8613 0.1086 0.0341 0.0285 0.0338 0.0304 0.0371 0.0716

cut point = (0.7, 1.3)
True 0.9836 0.1122 0.1171

FI 0.9618 0.2099 0.1900 0.0122 0.0317 0.0550 0.0043 0.0132 0.0422
MSI 0.9613 0.2093 0.1902 0.0125 0.0320 0.0552 0.0048 0.0135 0.0389
IPW 0.9548 0.1955 0.1294 0.0339 0.0831 0.1795 0.0323 0.0784 0.1344
SPE 0.9582 0.1932 0.1760 0.0332 0.0618 0.3383 0.0320 0.0605 3.4770

1NN 0.9821 0.1204 0.1124 0.0144 0.0494 0.0448 0.0133 0.0487 0.0710
3NN 0.9804 0.1319 0.1086 0.0138 0.0404 0.0338 0.0131 0.0464 0.0716
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Table 3.25: Simulation results in case dimension of covariate A is 3. KNN estimators are based in
the Mahalanobis distance.“True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut point = (2, 4)
True 0.5000 0.4347 0.9347
FI 0.5001 0.4361 0.9344 0.0369 0.0383 0.0222 0.0310 0.0333 0.0507
MSI 0.5000 0.4358 0.9344 0.0370 0.0387 0.0227 0.0310 0.0335 0.0508
IPW 0.5017 0.4370 0.9340 0.0625 0.0566 0.0247 0.0600 0.0557 0.0297
SPE 0.4999 0.4355 0.9344 0.0372 0.0404 0.0230 0.0369 0.0403 0.0226
1NN 0.5009 0.4401 0.9304 0.0388 0.0418 0.0239 0.0393 0.0435 0.0262
3NN 0.5006 0.4420 0.9278 0.0384 0.0404 0.0232 0.0390 0.0425 0.0259

cut point = (2, 5)
True 0.5000 0.7099 0.7752
FI 0.5001 0.7106 0.7756 0.0369 0.0358 0.0383 0.0310 0.0374 0.0504
MSI 0.5000 0.7101 0.7754 0.0370 0.0362 0.0385 0.0310 0.0376 0.0506
IPW 0.5017 0.7113 0.7739 0.0625 0.0627 0.0453 0.0600 0.0597 0.0528
SPE 0.4999 0.7096 0.7751 0.0372 0.0380 0.0392 0.0369 0.0375 0.0384
1NN 0.5009 0.7085 0.7671 0.0388 0.0401 0.0404 0.0393 0.0417 0.0421
3NN 0.5006 0.7060 0.7620 0.0384 0.0380 0.0394 0.0390 0.0406 0.0417

cut point = (2, 7)
True 0.5000 0.9230 0.2248
FI 0.5001 0.9226 0.2246 0.0369 0.0200 0.0377 0.0310 0.0409 0.0275
MSI 0.5000 0.9225 0.2247 0.0370 0.0204 0.0377 0.0310 0.0410 0.0276
IPW 0.5017 0.9230 0.2216 0.0625 0.0318 0.0630 0.0600 0.0300 0.0622
SPE 0.4999 0.9226 0.2250 0.0372 0.0217 0.0388 0.0369 0.0220 0.0385
1NN 0.5009 0.9121 0.2155 0.0388 0.0233 0.0395 0.0393 0.0274 0.0402
3NN 0.5006 0.9054 0.2106 0.0384 0.0220 0.0383 0.0390 0.0270 0.0395

cut point = (4, 5)
True 0.9347 0.2752 0.7752
FI 0.9347 0.2745 0.7756 0.0193 0.0327 0.0383 0.0096 0.0262 0.0504
MSI 0.9347 0.2743 0.7754 0.0194 0.0332 0.0385 0.0097 0.0264 0.0506
IPW 0.9373 0.2742 0.7739 0.0518 0.0550 0.0453 0.0460 0.0542 0.0528
SPE 0.9348 0.2742 0.7751 0.0223 0.0355 0.0392 0.0226 0.0364 0.0384
1NN 0.9299 0.2685 0.7671 0.0236 0.0347 0.0404 0.0266 0.0384 0.0421
3NN 0.9261 0.2640 0.7620 0.0214 0.0326 0.0394 0.0263 0.0375 0.0417

cut point = (4, 7)
True 0.9347 0.4883 0.2248
FI 0.9347 0.4866 0.2246 0.0193 0.0380 0.0377 0.0096 0.0341 0.0275
MSI 0.9347 0.4867 0.2247 0.0194 0.0383 0.0377 0.0097 0.0343 0.0276
IPW 0.9373 0.4860 0.2216 0.0518 0.0589 0.0630 0.0460 0.0581 0.0622
SPE 0.9348 0.4871 0.2250 0.0223 0.0401 0.0388 0.0226 0.0407 0.0385
1NN 0.9299 0.4720 0.2155 0.0236 0.0416 0.0395 0.0266 0.0441 0.0402
3NN 0.9261 0.4633 0.2106 0.0214 0.0399 0.0383 0.0263 0.0430 0.0395

cut point = (5, 7)
True 0.9883 0.2132 0.2248
FI 0.9879 0.2121 0.2246 0.0080 0.0317 0.0377 0.0036 0.0216 0.0275
MSI 0.9880 0.2124 0.2247 0.0080 0.0319 0.0377 0.0037 0.0218 0.0276
IPW 0.9893 0.2117 0.2216 0.0280 0.0599 0.0630 0.0236 0.0575 0.0622
SPE 0.9882 0.2130 0.2250 0.0112 0.0338 0.0388 0.0115 0.0340 0.0385
1NN 0.9831 0.2035 0.2155 0.0120 0.0348 0.0395 0.0162 0.0369 0.0402
3NN 0.9802 0.1994 0.2106 0.0105 0.0322 0.0383 0.0162 0.0358 0.0395
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cancer on the basis of a well known tumor marker, i.e., CA125. We make use of a publicly available

dataset in which the disease status is known for all subjects. Then, we simulate a verification

process and apply our estimators. This allows to compare results obtained in the complete data

case with those obtained in the incomplete data case after correcting for verification bias. In

the second illustration, we focus on prediction of patients’ response to chemotherapy, classified as

sensitive, partially sensitive and resistant. Data are available for late stage EOC patients. In this

second example, the response is missing for about 25% of the subjects involved in the study.

3.4.1 Diagnosis of EOC

We use data from the Pre-PLCO Phase II Dataset from the SPORE/ Early Detection Network/

Prostate, Lung, Colon, and Ovarian Cancer Ovarian Validation Study. The study protocol and

data are publicly available at the address1, along with descriptions of the study aims and analytic

methods. In particular, we consider the following three classes of EOC, i.e., benign disease, early

stage (I and II) and late stage (III and IV) cancer, and 2 of the 59 available biomarkers, i.e.

CA125 and CA153, measured at Harvard laboratories. In detail, we use CA125 as the test T and

CA153 as a covariate. Reasons for using CA153 as a covariate come from the medical literature

that suggests that the concomitant measurement of CA153 with CA125 could be advantageous

in the pre-operative discrimination of benign and malignant ovarian tumors. In addition, age of

patients is also considered. Here, we have 134 patients with benign disease, 67 early stage samples

and 77 late stage samples. After performing exploratory analysis, we have the mean of CA125

corresponding to three classes are 0.192, 1.810 and 3.214. Thus, it implies that the order of three

classes is monotone ordering, i.e., Benign < Early < Late under the results of CA125 marker. The

boxplots are depicted in Figure 3.1.

Figure 3.1: Boxplots of CA125 marker measurements for three classes under study of EOC.

1https://edrn.nci.nih.gov/protocols/119-spore-edrn-pre-plco-ovarian-phase-ii-validation
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To mimic verification bias, a subset of the complete dataset is constructed using the test T and

the vector A = (A1, A2)
> of the two covariates, namely the marker CA153 (A1) and age (A2). In

this subset, T and A are known for all samples, but the true status (benign, early stage or late

stage) is available only for some samples, that we select according to the following mechanism. We

select all samples having a value for both T and A above their respective medians, i.e. 0.87 and

(0.30, 45); as for the others, we apply the following selection process

Pr(V = 1) = 0.05 + δ1I(T > 0.87) + δ2I(A1 > 0.30) + δ3I(A2 > 45),

with δ1 = 0.35, δ2 = 0.25 and δ3 = 0.35, leading to a marginal probability of selection equal to

0.634. With such a choice, the verification probability is equal to about 0.65 for subjects with

T > 0.87, A1 > 0.30 and A2 < 45; 0.75 for subjects with T > 0.87, A1 < 0.30 and A2 > 45; 0.65

for subjects with T < 0.87, A1 > 0.30 and A2 > 45; 0.4 for subjects with T > 0.87, A1 < 0.30 and

A2 < 45; 0.3 for subjects with T < 0.87, A1 > 0.30 and A2 < 45; 0.4 for subjects with T < 0.87,

A1 < 0.30 and A2 > 45; 0.05 otherwise.

To apply FI, MSI and SPE estimators, we employ a multinomial logistic model to estimate ρki =

Pr(Dki = 1|Ti, A1i, A2i), where Dk = 1, k = 1, 2, 3 refers to benign, early and late, respectively.

On the other hand, SPE and IPW methods require estimates of πi = Pr(Vi = 1|Ti, A1i, A2i).

For estimating such quantities, we make use, firstly, of a correctly specified model, i.e., a linear

threshold regression model and, then, of a misspecified model, i.e., a logistic model. For the

KNN estimator, we use the Mahalanobis distance, since the test T and the covariates A1, A2 are

heterogeneous with respect to their variances. Following discussion in Subsection 3.2.4, we use the

selection rule (3.37) to find the size K of the neighborhood. This leads to the choice of K = 1 for

our data. In addition, we also employ K = 3 for the sake of comparison with 1NN result.

The estimated ROC surfaces for the test T (CA125) obtained by applying the proposed methods

are shown in Figure 3.3 and 3.4. For the sake of comparison, we also produced the ROC surface

with full data (Full estimate), reported in Figure 3.2.

Figure 3.2: Estimated ROC surface for the CA125 marker, based on full data.
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(a) FI (b) MSI

(c) IPW-threshold model (d) SPE-threshold model

(e) 1NN (f) 3NN

Figure 3.3: Bias–corrected estimated ROC surfaces for CA125 marker, based on incomplete data.
The IPW and SPE estimators are obtained by using the threshold model.
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(a) IPW-logit model (b) SPE-logit model

Figure 3.4: IPW and SPE estimated ROC surfaces for CA125 marker using the logistic regression
model, based on incomplete data.

In Figures 3.3 and 3.4, we also give the 95% ellipsoidal confidence regions (green color) for true

class fractions (TCF1,TCF2,TCF3) at cut point (−0.56, 2.31). These regions are built using the

asymptotic normality of the estimators. Compared with the Full estimate, all the bias-corrected

methods proposed in this chapter seem to behave well, yielding reasonable estimates of the ROC

surface with incomplete data.

3.4.2 Prediction of response to chemotherapy

A major challenge in advanced-stage EOC is prediction of response to platinum chemotherapy

on the basis of markers measured at molecular level. Indeed, several genomic profiling studies

have shown that gene expressions relate with different aspects of ovarian cancer (tumor subtype,

stage, grade, prognosis, and therapy resistance), although the measured association is usually very

low. Here, we consider a cohort of 99 snap-frozen tumor biopsies taken from a frozen tissue bank,

located at the Department of Oncology, IRCCS-Mario Negri Institute, Milan, Italy. Biopsies were

collected from late stage (III and IV) cancer patients who underwent surgery at the Obstetrics

and Gynaecology Department, San Gerardo Hospital, Monza, Italy between September 1992 and

March 2010. For 75 of the 99 subjects, the three-class response to platinum therapy is available,

being 31 patients sensitive, 11 partially sensitive and 33 resistant. For all the subjects, we consider

as test predictive of the response to therapy the marker (T ) resulting as a given linear combination

of the logarithm of the expression levels of six genes, i.e., Entrez Gene ID: 23513, 7284, 128408,

56996, 2969, 6170. As a covariate, we consider age at onset of patients.

The estimated ROC surfaces for T obtained by applying the proposed methods are shown in

Figure 3.5. FI, MSI, IPW and SPE estimators are based on the multinomial logistic model for the

disease process and/or the logistic model for the verification process. KNN estimator is obtained

by using K = 1, 3 and the Mahalanobis distance.
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(a) FI (b) MSI

(c) IPW (d) SPE

(e) 1NN (f) 3NN

Figure 3.5: Bias–corrected estimated ROC surfaces for the test T predicting the response to therapy
of late stage EOC patients.
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3.5 Discussion

This chapter proposed five verification bias-corrected estimators of the ROC surface (and the VUS)

of a continuous diagnostic test, namely, FI, MSI, IPW, SPE and KNN. The first four estimators,

which can be considered an extension to the three-class case of estimators in Alonzo and Pepe

(2005), are partially parametric in that they require the choice of a parametric model for the

estimation of the disease process, or of the verification process, or of both processes. In some

cases, wrong specifications of such models can visibly affect the produced estimates, as highlighted

also by our results in the simulation studies. In fact, FI and MSI estimators are inconsistent if the

model for the disease process is misspecified. On the contrary, the IPW estimator is inconsistent

if the model for the verification process is incorrect. Thanks to the property of doubly robustness,

inconsistency of SPE estimators occurs only if both models for the two processes are misspecified.

A suitable solution for reducing the effects of model misspecification in statistical inference is to

resort to fully nonparametric methods. That is reason why the KNN estimator is proposed. This

approach is based on nearest-neighbor imputation and works under MAR assumption.

As in Adimari and Chiogna (2015, 2016), a simple extension of the KNN estimator, that

could be used when categorical auxiliary variables are also available, is possible. Without loss of

generality, we suppose that a single factor C, with m levels, is observed together with T and A.

We also assume that C may be associated with both D and V . In this case, the sample can be

divided into m strata, i.e., m groups of units sharing the same level of C. Then, for example, if

the MAR assumption and first-order differentiability of the functions ρk(t, a) and π(t, a) hold in

each stratum, a consistent and asymptotically normally distributed estimator of TCF1 is

T̂CF
S

1,KNN(c1) =
1

n

m∑

j=1

njT̂CF
cond

1j,KNN(c1),

where nj denotes the size of the j-th stratum and T̂CF
cond

1j,KNN(c1) denotes the KNN estimator of

the conditional TCF1, i.e., the KNN estimator in (3.20) obtained from the patients in the j-th

stratum. Of course, we must assume that, for every j, ratios nj/n have finite and nonzero limits

as n goes to infinity.

Verification bias occurs not only in the estimation of ROC surface, but also in VUS. Thus,

finding the bias–corrected methods for estimation of VUS under the missing data is needed. It is

worth noting that the proposed methods for the ROC surface can be valid for VUS, provided that

the missingness mechanism is MAR. The details of this work will be presented in the next chapter.
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Chapter 4

Estimation of the VUS in presence

of verification bias

In this chapter, we develop various methods for estimating the VUS in presence of verification bias.

These methods are particularly useful when the missing mechanism is MAR.

4.1 The parametric estimation scheme

4.1.1 Methods

We apply the four partially parametric estimators (FI, MSI, IPW, SPE) to estimate VUS in

presence of verification bias. More precisely, FI, MSI, IPW and SPE estimators of VUS take the

form

µ̂∗ =

n∑
i=1

n∑
`=1,` 6=i

n∑
r=1

r 6=`,r 6=i

Ii`rD̂1i,∗D̂2`,∗D̂3r,∗

n∑
i=1

n∑
`=1,` 6=i

n∑
r=1

r 6=`,r 6=i

D̂1i,∗D̂2`,∗D̂3r,∗

,

where the star again stands for FI, MSI, IPW, SPE, and

D̂ki,FI = ρ̂ki, D̂ki,MSI = ViDki + (1− Vi)ρ̂ki,

D̂ki,IPW = ViDkiπ̂
−1
i , D̂ki,SPE = ViDkiπ̂

−1
i − ρ̂ki(Viπ̂

−1
i − 1),

for k = 1, 2, 3. It is worth noting that the bias–corrected VUS estimators are unbiased. The

following remarks support the sentence.

Remark 4.1.1 (Expectation). We have

E(D1iD2`D3rIi`r) = ET,A {Ii`rE(D1iD2`D3r|Ti, Ai, T`, A`, Tr, Ar)} ,
= ET,A {Ii`rE(D1i|Ti, Ai)E(D2`|T`, A`)E(D3r|Tr, Ar)} ,
= ET,A (ρ1iρ2`ρ3rIi`r) .

The first identity follows because Ii`r is function of Ti, T`, Tr, and the second identity follows be-

cause, the observed data are i.i.d. By analogy, we show that

E(D1iD2`D3r) = ET,A (ρ1iρ2`ρ3r) .
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Therefore, we have that

µ =
E (D1iD2`D3rIi`r)

E (D1iD2`D3r)
=

ET,A (ρ1iρ2`ρ3rIi`r)

ET,A (ρ1iρ2`ρ3r)
, (4.1)

Remark 4.1.2 (Unbiasedness).

• FI estimators. Under the disease model, we have

E {Gi`r,FI(µ0, τρ0
, τπ)} = E {ρ1i(τρ0

)ρ2r(τρ0
)ρ3`(τρ0

)(Ii`r − µ0)}
= E {ρ1iρ2rρ3`(Ii`r − µ0)} .

Since the relevant terms in the above expression depend on the test result T and covariates

A, the Remark 4.1.1 can be applied. That is to say, E {Gi`r,FI(µ0, τρ0
, τπ)} = 0 when the

disease model holds.

• MSI estimators. Under the disease model, we can verify that E {Dki,MSI(τρ0
)|Ti, Ai} = ρki.

In fact, we have that

E {Dki,MSI(τρ0
)|Ti, Ai} = E {ViDki + (1− Vi)ρki(τρ0

)|Ti, Ai}
= E [E {ViDki + (1− Vi)ρki(τρ0

)|Ti, Ai, Vi} |Ti, Ai]

= Pr(Vi = 1|Ti, Ai)E (Dki|Ti, Ai)

+ Pr(Vi = 0|Ti, Ai)E (ρki(τρ0
)|Ti, Ai)

= Pr(Vi = 1|Ti, Ai)Pr(Dki = 1|Ti, Ai)

+ Pr(Vi = 0|Ti, Ai)Pr(Dki = 1|Ti, Ai)

= Pr(Dki = 1|Ti, Ai) = ρki.

Therefore,

E {Gi`r,MSI(µ0, τρ0
, τπ)} = E {ρ1iρ2`ρ3r(Ii`r − µ0)} .

And hence, the MSI–estimating function is unbiased under the disease model.

• IPW estimators. The expression,

E

{
Vi

πi(τπ0
)

∣∣∣∣Ti, Ai

}
=

E {Vi|Ti, Ai}
πi

= 1,

is correct provided that the verification model holds. Therefore, it is not too difficult to prove

that

E

{
ViDki

πi(τπ0
)

∣∣∣∣Ti, Ai

}
= ρki.

Thus,

E {Gi`r,IPW(µ0, τρ, τπ0
)} = E

{
ViV`VrD1iD2`D3r

πi(τπ0
)π`(τπ0

)πk(τπ0
)
(Ii`r − µ0)

}

= E

{
(Ii`r − µ0)E(ViD1iπ

−1
i (τπ0

)|Ti, Ai)E(V`D2`π
−1
` (τπ0

)|T`, A`)

× E(VrD3rπ
−1
r (τπ0

)|Tr, Ar)
}

= E {ρ1iρ2`ρ3r(Ii`r − µ0)} .



4.1 The parametric estimation scheme 77

• SPE estimators. First, note that

E {Dki,SPE(τρ0
, τπ)|Ti, Ai} = E

{
Vi

πi(τπ)

∣∣∣∣Ti, Ai

}
{E(Dki|Ti, Ai)− ρki(τρ0

)}+ ρki(τρ0
)

= E

{
Vi

πi(τπ)

∣∣∣∣Ti, Ai

}
{E(Dki|Ti, Ai)− ρki}+ ρki

= ρki.

On the other hand, we also have

E {Dki,SPE(τρ, τπ0
)|Ti, Ai} = E

{
Vi

πi(τπ0
)

∣∣∣∣Ti, Ai

}
E(Dki|Ti, Ai)

− ρki(τρ)E

{
Vi

πi(τπ0
)
− 1

∣∣∣∣Ti, Ai

}

= E(Dki|Ti, Ai)− ρki(τρ)× 0

= ρki.

Hence, we conclude that these imply

E {Gi`r,SPE(µ0, τρ0
, τπ)} = E {Gi`r,SPE(µ0, τρ, τπ0

)} = E {ρ1iρ2`ρ3r(Ii`r − µ0)} = 0,

under the disease or verification model. When both models hold, it is easy to show that

E {Gi`r,SPE(µ0, τρ0
, τπ0

)} equals to 0.

4.1.2 Asymptotic distribution

Recall that τ = (τ>ρ , τ
>
π )> is the vector of parameters of the models used to estimate ρ = (ρ1, ρ2)

>,

or π, or both. According to the formula of bias-corrected estimators of VUS, it is easy to realize

that the proposed VUS estimators could be found as solution of appropriate estimating equations.

The estimating functions of the VUS for FI, MSI, IPW and SPE estimators are denoted by

Gi`r,FI(µ, τρ, τπ) = ρ1i(τρ)ρ2`(τρ)ρ3r(τρ) (Ii`r − µ) ,

Gi`r,MSI(µ, τρ, τπ) = D1i,MSI(τρ)D2`,MSI(τρ)D3r,MSI(τρ) (Ii`r − µ) ,

Gi`r,IPW(µ, τρ, τπ) =
ViV`Vr

πi(τπ)π`(τπ)πr(τπ)
D1iD2`D3r (Ii`r − µ) ,

Gi`r,SPE(µ, τρ, τπ) = D1i,SPE(τρ, τπ)D2`,SPE(τρ, τπ)D3r,SPE(τρ, τπ) (Ii`r − µ) ,

and

Dki,MSI(τρ) = ViDki + (1− Vi)ρki(τρ),

Dki,SPE(τρ, τπ) = ViDkiπ
−1
i (τπ)− ρki(τρ)(Viπ

−1
i (τπ)− 1),

for k = 1, 2, 3. For simplicity, we denote these estimating functions with Gi`r,∗(µ, τρ, τπ).

For studying consistency and asymptotic normality of the bias-corrected VUS estimators, we

need the following assumptions. Note that the estimating functions Gi`r,∗(µ, τρ, τπ) require esti-

mates of τρ and/or τπ for the working, so the existence of unique solutions τ̂ρ and τ̂π is necessary.

Let Gτ
i (τρ, τπ) =

(
g
τρ
i (τρ)

>, gτπi (τπ)
>)>, (τ>ρ , τ>π )> ∈ τρ × τπ, where τρ and τπ are the parameter

spaces of τρ and τπ. The regularity conditions are:

(R1) the parameter space τρ × τπ has finite dimension and is compact;
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(R2) the true value (τρ0
, τπ0

) exists and is interior to the parameter space τρ × τπ such that

E {Gτ
i (τρ, τπ)} 6= 0 if (τρ, τπ) 6= (τρ0

, τπ0
) and E {Gτ

i (τρ0
, τπ0

)} = 0;

(R3) the variance of Gτ
i (τρ0

, τπ0
) exists and is finite;

(R4) E

{
∂Gτ

i (τρ, τπ)/∂(τρ, τπ)
>|(τρ,τπ)=(τρ0 ,τπ0

)

}
exists and is invertible;

(R5) There exists a neighborhoodN of (τρ0
, τπ0

) such that the quantities sup(τρ,τπ)∈N ‖Gτ
i (τρ, τπ)‖,

sup(τρ,τπ)∈N ‖∂Gτ
i (τρ, τπ)/∂(τρ, τπ)

>‖ and sup(τρ,τπ)∈N ‖Gτ
i (τρ, τπ)G

τ
i (τρ, τπ)

>‖ have finite

expected values, where ‖X‖ ≡∑i

∑
j X

2
ij .

In addition, we assume that the predictors of the disease and verification regression models are

the sufficient smooth functions with the existence of the moment condition the first derivatives, so

that the following conditions hold.

(C1) The U–process

Un,∗(µ, τρ, τπ) =
√
n {G∗(µ, τρ, τπ)− e(µ, τρ, τπ)}

is stochastically equicontinuous, where

G∗(µ, τρ, τπ) =
1

6n(n− 1)(n− 2)

n∑

i=1

n∑

`=1,` 6=i

n∑

k=1

r 6=`,r 6=i

{
Gi`r,∗(µ, τρ, τπ) +Gir`,∗(µ, τρ, τπ)

+G`ir,∗(µ, τρ, τπ) +G`ri,∗(µ, τρ, τπ) +Gri`,∗(µ, τρ, τπ) +Gr`i,∗(µ, τρ, τπ)

}

and

e(µ, τρ, τπ) =
1

6
E

{
Gi`r,∗(µ, τρ, τπ) +Gir`,∗(µ, τρ, τπ) +G`ir,∗(µ, τρ, τπ)

+G`ri,∗(µ, τρ, τπ) +Gri`,∗(µ, τρ, τπ) +Gr`i,∗(µ, τρ, τπ)

}
.

(C2) e(µ, τρ, τπ) is differentiable in (µ, τρ, τπ).

(C3) G∗(µ, τρ, τπ) and
∂G∗(µ,τρ,τπ)
∂(τρ,τπ)>

converge uniformly to e(µ, τρ, τπ) and
∂e(µ,τρ,τπ)
∂(τρ,τπ)>

.

Theorem 4.1.3 (Consistency). Suppose that the regularity conditions (R1)–(R5) and (C1)–(C3)

hold. If the disease model and/or verification model holds, then µ̂∗
p→ µ0.

Proof. Let (τρ0
, τπ0

) be defined as in condition (R2). Note that the parameters τρ and τπ are

estimated by using the classic estimating equations, thus the condition (R1)–(R5) certify that the

estimators τ̂ρ and τ̂π are consistent (Newey and McFadden, 1994).

We can show that

E{Gi`r,∗(µ0, τρ0
, τπ)} = E{Gi`r,∗(µ0, τρ, τπ0

)} = E{Gi`r,∗(µ0, τρ0
, τπ0

)} = 0

(see Remark 4.1.2). Therefore, e(µ0, τρ0
, τπ0

) = 0 if the disease model or verification model or

both hold. By condition (C2) and the implicit function theorem, there exists a neighborhood of

(τρ0
, τπ0

) in which it is uniquely defined a continuously differentiable function m(τρ, τπ), such that

m(τρ0
, τπ0

) = µ0 and e∗(m(τρ, τπ), τρ, τπ) = 0. In cause of the consistency of estimators τ̂ρ and

τ̂π, we have that µ̃∗ = m(τ̂ρ, τ̂π)
p→ µ0. On the other hand, G∗(µ̂∗, τ̂ρ, τ̂π) = 0 and condition (C3)

implies that e∗(µ̂∗, τ̂ρ, τ̂π)
p→ 0. Thus, µ̂∗

p→ µ̃∗. This implies the consistency of the bias-corrected

estimators µ̂∗.
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Theorem 4.1.4 (Asymptotic normality). Suppose the conditions in Theorem 4.1.3 are satisfied.

If the disease model and/or verification model holds, then

√
n (µ̂∗ − µ0)

d→ N (0,Λ∗), (4.2)

where the star indicates FI, MSI, IPW, SPE; and Λ∗ is a suitable asymptotic variance.

Proof. We have

0 =
√
nG∗(µ̂∗, τ̂ρ, τ̂π)

0 =
√
nG∗(µ̂∗, τ̂ρ, τ̂π) +

√
ne(µ̂∗, τ̂ρ, τ̂π)−

√
ne(µ̂∗, τ̂ρ, τ̂π).

Since e(µ0, τρ0
, τπ0

) = 0, so we get

0 =
√
nG∗(µ̂∗, τ̂ρ, τ̂π) +

√
ne(µ̂∗, τ̂ρ, τ̂π)−

√
ne(µ̂∗, τ̂ρ, τ̂π) +

√
ne(µ0, τρ0

, τπ0
)−√

ne(µ0, τρ0
, τπ0

)

0 =
√
n {G∗(µ̂∗, τ̂ρ, τ̂π)− e(µ̂∗, τ̂ρ, τ̂π)}+

√
n {e(µ̂∗, τ̂ρ, τ̂π)− e(µ0, τρ0

, τπ0
)}+√

ne(µ0, τρ0
, τπ0

)

− √
nG∗(µ0, τρ0

, τπ0
) +

√
nG∗(µ0, τρ0

, τπ0
)

0 =
[√
n {G∗(µ̂∗, τ̂ρ, τ̂π)− e(µ̂∗, τ̂ρ, τ̂π)} −

√
n {G∗(µ0, τρ0

, τπ0
)− e(µ0, τρ0

, τπ0
)}
]

+
√
n {e(µ̂∗, τ̂ρ, τ̂π)− e(µ0, τρ0

, τπ0
)}+√

nG∗(µ0, τρ0
, τπ0

).

Condition (C1) implies that the first term in right hand side of the third identity equals to op(1).

Using the Mean–Value Theorem, we get

0 = op(1) +
√
n {e(µ̂∗, τ̂ρ, τ̂π)− e(µ0, τρ0

, τπ0
)}+√

nG∗(µ0, τρ0
, τπ0

)

0 = op(1) +
∂e(µ̄, τ̄ρ, τ̄π)

∂µ

√
n(µ̂∗ − µ0) +

∂e>(µ̄, τ̄ρ, τ̄π)
∂τρ

√
n(τ̂ρ − τρ0

)

+
∂e>(µ̄, τ̄ρ, τ̄π)

∂τπ

√
n(τ̂π − τπ0

) +
√
nG∗(µ0, τρ0

, τπ0
), (4.3)

where |µ̄− µ0| ≤ |µ̂∗ − µ0|, |τ̄ρ − τρ0
| ≤ |τ̂ρ − τρ0

| and |τ̄π − τπ0
| ≤ |τ̂π − τπ0

|. It is straightforward
to show that

∂e(µ̄, τ̄ρ, τ̄π)

∂µ
→ −Pr(D1 = 1)Pr(D2 = 1)Pr(D3 = 1) = −θ1θ2θ3,

∂e>(µ̄, τ̄ρ, τ̄π)
∂τρ

→ ∂e>(µ0, τρ0
, τπ0

)

∂τρ
,

∂e>(µ̄, τ̄ρ, τ̄π)
∂τπ

→ ∂e>(µ0, τρ0
, τπ0

)

∂τπ
.

By standard results on the limit distribution of U-statistics (van der Vaart, 2000, Theorem 12.3,

Chap. 12),

√
n {G∗(µ0, τρ0

, τπ0
)− e(µ0, τρ0

, τπ0
)} =

√
nG∗(µ0, τρ0

, τπ0
)

p→ √
nG̃∗(µ0, τρ0

, τπ0
),

where
√
nG̃∗(µ, τρ, τπ) is the projection of Un,∗ onto the set of all statistics of the form

n∑
i=1

Bi(Xi)

is given by

√
nG̃n(µ, τρ, τπ) =

1

2
√
n

n∑

i=1

E

{
Gi`r,∗(µ, τρ, τπ) +Gir`,∗(µ, τρ, τπ)

+G`ir,∗(µ, τρ, τπ) +G`ri,∗(µ, τρ, τπ) +Gri`,∗(µ, τρ, τπ) +Gr`i,∗(µ, τρ, τπ)
∣∣Oi

}
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for ` 6= i and r 6= `, r 6= i, where Oi = (D>
i , Vi, Ti, A

>
i )

>.

Under regularity conditions (R1)–(R5), we get

√
n (τ̂ρ − τρ0

) = −n−1/2


∂E

{
g
τρ
i (τρ)

}

∂τ>ρ

∣∣∣∣∣
τρ=τρ0



−1

n∑

i=1

g
τρ
i (τρ0

) + op(1) (4.4)

and

√
n (τ̂π − τπ0

) = −n−1/2


∂E {gτπi (τπ)}

∂τ>π

∣∣∣∣∣
τπ=τπ0



−1

n∑

i=1

gτπi (τπ0
) + op(1). (4.5)

Applying these results to (4.3) gives

θ1θ2θ3
√
n(µ̂∗ − µ) = op(1)−

1√
n

∂e>(µ0, τρ0
, τπ0

)

∂τρ

[
∂E
{
g
τρ
i (τρ)

}

∂τ>ρ

∣∣∣∣
τρ=τρ0

]−1 n∑

i=1

g
τρ
i (τρ0

)

− 1√
n

∂e>(µ0, τρ0
, τπ0

)

∂τπ

[
∂E {gτπi (τπ)}

∂τ>π

∣∣∣∣
τπ=τπ0

]−1 n∑

i=1

gτπi (τπ0
)

+
1

2
√
n

n∑

i=1

E

{
Gi`r,∗(µ0, τρ0

, τπ0
) +Gir`,∗(µ0, τρ0

, τπ0
) +G`ir,∗(µ0, τρ0

, τπ0
)

+ G`ri,∗(µ0, τρ0
, τπ0

) +Gri`,∗(µ0, τρ0
, τπ0

) +Gr`i,∗(µ0, τρ0
, τπ0

)
∣∣Oi

}

= op(1) +
1√
n

n∑

i=1

[
− ∂e>(µ0, τρ0

, τπ0
)

∂τρ

[
∂E
{
g
τρ
i (τρ)

}

∂τ>ρ

∣∣∣∣
τρ=τρ0

]−1

g
τρ
i (τρ0

)

− ∂e>(µ0, τρ0
, τπ0

)

∂τπ

[
∂E {gτπi (τπ)}

∂τ>π

∣∣∣∣
τπ=τπ0

]−1

gτπi (τπ0
)

+
1

2
E

{
Gi`r,∗(µ0, τρ0

, τπ0
) +Gir`,∗(µ0, τρ0

, τπ0
) +G`ir,∗(µ0, τρ0

, τπ0
)

+ G`ri,∗(µ0, τρ0
, τπ0

) +Gri`,∗(µ0, τρ0
, τπ0

) +Gr`i,∗(µ0, τρ0
, τπ0

)
∣∣Oi

}]

= op(1) +
1√
n

n∑

i=1

Qi,∗(µ0, τρ0
, τπ0

) = op(1) +
1√
n
Q∗(µ0, τρ0

, τπ0
).

Therefore, the asymptotic distribution of
√
n(µ̂∗ − µ0) can be determined by calculating the

asymptotic distribution of 1√
n
Q∗(µ0, τρ0

, τπ0
). Note that if the observed data are i.i.d, then

Qi,∗(µ0, τρ0
, τπ0

) also are i.i.d. By regularity condition (R2), we get E{gτρi (τρ0
)} = E{gτπi (τπ0

)} = 0.

In addition, we easily show that

0 = E

[
E

{
Gi`r,∗(µ0, τρ0

, τπ0
) +Gir`,∗(µ0, τρ0

, τπ0
) +G`ir,∗(µ0, τρ0

, τπ0
) +G`ri,∗(µ0, τρ0

, τπ0
)

+Gri`,∗(µ0, τρ0
, τπ0

) +Gr`i,∗(µ0, τρ0
, τπ0

)
∣∣Oi

}]
.

Therefore, E{Qi,∗(µ0, τρ0
, τπ0

)} = 0, and hence, 1√
n
Q∗(µ0, τρ0

, τπ0
)

d→ N (0,Var {Qi,∗(µ0, τρ0
, τπ0

)})
by the Central Limit Theorem. Hence,

√
n (µ̂∗ − µ0)

d→ N (0,Λ∗), where

Λ∗ =
Var {Qi,∗(µ0, τρ0

, τπ0
)}

θ21θ
2
2θ

2
3

.
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4.1.3 Consistent variance estimator

Under condition (C3), a consistent estimator of Λ∗ can be obtained by

Λ̂∗ =
Var

{
Q̂i,∗(µ̂∗, τ̂ρ, τ̂π)

}

θ̂21,∗θ̂
2
2,∗θ̂

2
3,∗

=

1
n−1

n∑
i=1

Q̂2
i,∗(µ̂∗, τ̂ρ, τ̂π)

θ̂21,∗θ̂
2
2,∗θ̂

2
3,∗

,

where θ̂k,∗ are the proposed estimates of θk, k = 1, 2, 3 (see Section 3.1). Here,

Q̂i,∗(µ̂∗, τ̂ρ, τ̂π)

= −
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For fixed i, we show that
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Therefore,
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τπ=τ̂π

}−1

gτπi (τ̂π)

+
1

(n− 1)(n− 2)
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`=1

` 6=i

n∑

r=1

r 6=i,r 6=`

{
Gi`r,∗(µ̂∗, τ̂ρ, τ̂π) +G`ir,∗(µ̂∗, τ̂ρ, τ̂π) +Gr`i,∗(µ̂∗, τ̂ρ, τ̂π)

}
.

Note that the quantity Q̂i,∗(µ̂∗, τ̂ρ, τ̂π) will not consist of the term of g
τρ
i (τρ) or gτπi (τπ) if the

estimating function Gi`r,∗(µ, τρ, τπ) corresponds to FI and MSI estimators, or to the IPW approach.
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The first derivatives
∂g

τρ
i (τρ)

∂τ>
ρ

∣∣∣∣
τρ=τ̂ρ

and
∂gτπ

i (τπ)

∂τ>
π

∣∣∣∣
τπ=τ̂π

are obtained in (3.15) and (3.16) or

(3.17). The explicit forms of the first partial derivatives of Gi`r,∗(µ, τρ, τπ) with respect to the

nuisance parameter τρ are straightforwardly obtained by using product rule for derivatives and the

expression (3.19). For the first partial derivatives of the estimating function Gi`r,∗(µ, τρ, τπ) with

respect to the nuisance parameter τπ, we need to compute the derivatives of π−1
i . In fact, πi are

obtained by a logistic or probit model, i.e.,

πi =
eU

>

i τπ

1 + eU
>

i τπ
or πi = Φ

(
U>
i τπ

)
.

It is easy to show that

∂

∂τπ
π−1
i = −Ui

1− πi
πi

or
∂

∂τπ
π−1
i = −Ui

φ
(
U>
i τπ

)

Φ2
(
U>
i τπ

) .

Here, φ(·) and Φ(·) are the density function and the cumulative distribution function of the standard

normal random variable, respectively.

4.2 Simulation studies

4.2.1 Correctly specified models

The disease status D is generated by a trinomial random vector (D1, D2, D3), such that Dk is a

Bernoulli random variable with mean θk, k = 1, 2, 3. We set θ1 = 0.4, θ2 = 0.35 and θ3 = 0.25.

The pairs T,A are generated from the following conditional models

T,A|Dk ∼ N2 (µk,Λ) , k = 1, 2, 3,

where µk = k(µT , µA)
>. We consider three values of Λ,

(
1.2 1
1 1

)
,

(
1.75 0.1
0.1 2.5

)
,

(
5.5 3
3 2.5

)
.

The true VUS value is equal to 0.9472 for the first value of Λ and (µT , µA) = (3, 2); is equal to

0.7175 for the second value of Λ and (µT , µA) = (2, 1); is equal to 0.4778 for the third value of Λ

and (µT , µA) = (2, 1). We simulate the verification status V by using the following model

logit {Pr(V = 1|T,A)} = δ0 + δ1T + δ2A.

The parameters (δ0, δ1, δ2) are fixed equal to (1,−2.87, 4.06) when the first value of Λ is considered,

and equal to (1,−2.2, 4) otherwise. These choices give rise to a verification rate of about 0.52.

Under our data–generating setting, the disease process follows a multinomial logistic model. We

consider three sample sizes, i.e., n = 200 n = 500, and n = 1000. Each simulation experiment was

based on 1000 replications.

FI, MSI, IPW and SPE estimates of VUS are computed under correct working models for

both the disease and the verification processes. Table 4.1 shows Monte Carlo means, Monte Carlo

standard deviations (MC.sd), the square roots of the variances estimated via asymptotic results

(Asy.sd) and bootstrap standard deviations (Boot.sd) of µ̂.

We observe that the proposed estimators perform well in almost all cases. In fact, the FI and

MSI approach always have small bias (magnitude < 0.3%), even when the sample size is 200.
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Table 4.1: Simulation results for bias–corrected estimators of VUS w.r.t parametric approaches.

Sample size Estimator Mean Bias(%) MC.sd Asy.sd Boot.sd

Case I:
TRUE = 0.9472

n = 200

FI 0.9471 −0.01 0.0251 0.0219 0.0256
MSI 0.9466 −0.06 0.0252 0.0222 0.0258
IPW 0.9498 0.27 0.0377 0.0261 0.0271
SPE 0.9461 −0.11 0.0323 0.0274 0.0315

n = 500

FI 0.9470 −0.02 0.0144 0.0143 0.0149
MSI 0.9468 −0.04 0.0144 0.0144 0.0150
IPW 0.9480 0.09 0.0244 0.0192 0.0192
SPE 0.9467 −0.05 0.0228 0.0181 0.0224

n = 1000

FI 0.9472 0.00 0.0101 0.0107 0.0115
MSI 0.9473 0.01 0.0101 0.0109 0.0118
IPW 0.9475 0.03 0.0190 0.0182 0.0185
SPE 0.9472 0.00 0.0176 0.0172 0.0175

Case II:
TRUE = 0.7175

n = 200

FI 0.7185 0.14 0.0549 0.0559 0.0566
MSI 0.7165 −0.14 0.0552 0.0571 0.0577
IPW 0.7261 1.20 0.0981 0.1197 0.0754
SPE 0.7155 −0.28 0.1021 0.0981 0.1106

n = 500

FI 0.7183 0.11 0.0357 0.0356 0.0357
MSI 0.7176 0.01 0.0358 0.0360 0.0361
IPW 0.7272 1.35 0.0814 0.0549 0.0564
SPE 0.7184 0.12 0.0813 0.0698 0.0864

n = 1000

FI 0.7178 0.05 0.0259 0.0255 0.0252
MSI 0.7175 0.00 0.0259 0.0257 0.0256
IPW 0.7192 0.24 0.0796 0.0682 0.0667
SPE 0.7178 0.05 0.0723 0.0634 0.0715

Case III:
TRUE = 0.4778

n = 200

FI 0.4788 0.21 0.0575 0.0558 0.0574
MSI 0.4775 −0.06 0.0584 0.0576 0.0589
IPW 0.4760 −0.38 0.1054 0.0767 0.0876
SPE 0.4815 0.77 0.1121 0.1472 0.1418

n = 500

FI 0.4782 0.08 0.0360 0.0350 0.0354
MSI 0.4779 0.02 0.0364 0.0358 0.0361
IPW 0.4804 0.54 0.0792 0.0608 0.0640
SPE 0.4868 1.88 0.0943 0.1101 0.0995

n = 1000

FI 0.4780 0.04 0.0246 0.0241 0.0243
MSI 0.4776 −0.04 0.0253 0.0255 0.0260
IPW 0.4781 0.07 0.0615 0.0587 0.0590
SPE 0.4785 0.14 0.0810 0.0782 0.0796

Meanwhile, a large biases (greater than 1%) occurs for the IPW and SPE estimators in case II

and III, when the sample size is 200 and 500. The Monte Carlo mean of the all bias–corrected

estimators (FI, MSI, IPW and SPE) of VUS become closer to the true value as the sample size

equals 1000, which is not surprising.

Table 4.1 indicates that the asymptotic variance procedure have a good performance in the

sense that the standard deviations obtained by this procedure are comparable with those obtained

from Monte Carlo experiments and bootstrap resampling process. Comparing the four proposed

estimators of the VUS, FI and MSI are generally more efficient than IPW and SPE.
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4.2.2 Model misspecification

In the previous part, the performance of the partially parametric bias–corrected estimators are

investigated in the setting of correct model specification. Here, we study the behaviors of the

proposed approaches in finite samples under incorrect specification of the disease and/or verification

model.

In our simulations, we consider the data generated with respect to the first value of Λ in the

previous section. The bias–corrected estimators of VUS are obtained under the following three

settings for the working models:

(i) Wrong π: The model for verification process is

logit {Pr(V = 1|T,A)} = τπ1
+ τπ2

T 2/3 + τπ3
log |A|.

(ii) Wrong ρ: The disease model is fitted with T and A3 as predictor.

(iii) Wrong π and ρ: Both working models are defined in (i) and (ii).

Table 4.2: Simulation results correspond to model misspecification. The true VUS is 0.9472.

Estimator Monte Carlo Mean Relative Bias (%)
200 500 1000 200 500 1000

Wrong π

FI 0.9471 0.9470 0.9472 −0.01 −0.02 0.00
MSI 0.9466 0.9468 0.9473 −0.06 −0.04 0.01
IPW 0.9699 0.9732 0.9770 2.40 2.75 3.15
SPE 0.9504 0.9482 0.9474 0.33 0.11 0.02

Wrong ρ

FI 0.9629 0.9609 0.9606 1.66 1.45 1.41
MSI 0.9614 0.9600 0.9594 1.50 1.31 1.28
IPW 0.9498 0.9480 0.9475 0.28 0.09 0.03
SPE 0.9504 0.9479 0.9471 0.33 0.07 −0.01

Wrong π and ρ

FI 0.9629 0.9609 0.9606 1.66 1.45 1.41
MSI 0.9614 0.9600 0.9594 1.50 1.31 1.28
IPW 0.9699 0.9732 0.9770 2.40 2.75 3.15
SPE 0.9602 0.9750 0.9795 1.37 2.93 3.41

Table 4.2 shows the Monte Carlo mean across 1000 realizations as well as the relative bias (%)

corresponding to three values of sample size, 200, 500 and 1000. When only the verification model

is incorrect, IPW leads to serious biases (magnitude of relative bias: 2.40%, 2.75%, 3.15%) even if

the sample size is increasing. This is reasonable, because the estimated verification probabilities

are no longer valid. When only the disease model is incorrect, FI and MSI estimators have bias

greater than 1.2% because the estimated disease probabilities are no longer valid.

The simulation results show that the SPE estimators behaves well in all of the first two scenarios

in which either the disease or the verification process were correctly modeled, due to its doubly

robustness property. When both working models were incorrectly specified, SPE leads to biased

results (magnitude of relative bias ranging from 1.37% to 3.41%).
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4.3 Others bias-corrected methods for estimating the VUS

4.3.1 Numerical method

Let Fk(·) be denote cumulative distribution functions of T for subject corresponding to Dk = 1,

with k = 1, 2, 3. The expressions of TCFs can be rewritten as TCF1(c1) = F1(c1), TCF2(c1, c2) =

F2(c2) − F2(c1) and TCF3(c2) = 1 − F3(c2), with c1 < c2. Using these notations, Nakas and

Yiannoutsos (2004); Nakas (2014) wrote the functional form of the ROC surface as

ROCs (TCF1(c1),TCF3(c2)) = F2

(
F−1
3 (1− TCF3(c2))

)
− F2

(
F−1
1 (TCF1(c1))

)
. (4.6)

Visually, it is easy to see that (4.6) is TCF2(c1, c2). Based on (4.6), the VUS is determined by the

following expression ∫ 1

0

∫ 1

0

ROC(p1, p3) dp3 dp1, (4.7)

where p1 = TCF1(c1) and p3 = TCF3(c2). An estimate of (4.7) can be obtained by using Trape-

zoidal rule for a double integral.

For m = 1, . . . ,M , we denote with (c1,m, c2,m) m-th pairs of the cut points such that c1,m and

c2,m are sorted in ascending order. As the computation in Chapter 3, the bias–corrected ROC

surfaces are the 3D plot of

(
T̂CF1,∗(c1,m), T̂CF2,∗(c1,m, c2,m), T̂CF3,∗(c2,m)

)
.

Here, the star ∗ stands for FI, MSI, IPW, SPE and KNN. Let p1,m = T̂CF1,∗(c1,m), p3,m =

T̂CF3,∗(c2,m) and p2,m,l = R̂OCs(p1,m, p3,l) = T̂CF2,∗(c1,m, c2,m). Note that for the cut points

c2,m < c2,m+1, so p3,m > p3,m+1. The trapezoidal rule yields

V̂USTR,∗ =
M−1∑

k=1

(p1,k+1 − p1,k)
M−1∑

l=1

(p3,l − p3,l+1)
p2,k+1,l+1 + p2,k+1,l + p2,k,l+1 + p2,k,l

4
. (4.8)

This estimator comes from numerical estimation, and, therefore, there is a limitation. The

statistical properties of the estimator are unavailable, such as, for example, the closed–form of

variance and the asymptotic distribution. For example, we have to use a bootstrap resampling

method for constructing confidence intervals.

4.3.2 Nearest-neighbor imputation

In the previous section, the partially parametric estimators for correcting verification bias in esti-

mation of the VUS are presented. The methods work well when the parametric models (disease

and/or verification model) are correctly specified. To reduce the effects of model misspecification,

we here employ the nearest-neighbor imputation to make a bias–corrected estimator for VUS.

Recall that ρki = Pr(Dki = 1|Ti = 1, Ai = 1), k = 1, 2, 3, is the probability that the i-th patient

has true disease status belongs to class k given the test results.

Given a finite positive integer K and a suitable distance measure (e.g. Euclidean, Manhattan,

Lagrange and Mahalanobis), a nearest–neighbor imputation estimate of ρki, for a subject with true

disease status not verified, could be defined as

ρ̂ki,K =
1

K

K∑

l=1

Dki(l),
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where
{
(Ti(l), Ai(l), Dki(l)) : Vi(l) = 1, l = 1, . . . ,K

}
is a set ofK observed data pairs and (Ti(l), Ai(l))

denotes the l-th nearest neighbor to (Ti, Ai) among all (T,A)’s corresponding to the verified pa-

tients, i.e., to those Dkh’s with Vh = 1. The disease status Dki could therefore be replaced by

ρ̂ki,K on non–verified units. Specifically, for any i = 1, . . . , n, we define

D̂ki,K = ViDki + (1− Vi)ρ̂ki,K .

The proposed nonparametric verification bias–corrected VUS estimator is

µ̂KNN =

n∑
i=1

n∑
`=1,` 6=i

n∑
r=1

r 6=`,r 6=i

Ii`rD̂1i,KD̂2`,KD̂3r,K

n∑
i=1

n∑
`=1,` 6=i

n∑
r=1

r 6=`,r 6=i

D̂1i,KD̂2`,KD̂3r,K

, K ∈ N. (4.9)

Here, Ii`r is indicator function of Ti, T`, Tr, which defined in Section 2.4.

Following the discussion in Section 3.2.4, the number of neighbors, K, and the distance measure

play a key role in the KNN estimator. The selection of a suitable distance is typically dictated

by features of the data (diagnostic test and covariates) and possible subjective evaluation. Similar

with case of the ROC surface, a value of K around 3 could be adequate in case of low dimension of

(T,A). On the other hand, one can employ the selection rule defined in (3.37) to find out a good

choice for K when the dimension of (T,A) is large.

In order to obtain variance estimates, there are some possible approaches, which among the

most popular method is bootstrap resampling. To apply this procedure for the KNN estimator,

we implement the following steps. From the original observations (D1i, D2i, D3i, Vi, Ti, Ai), with

i = 1, . . . , n, consider B bootstrap samples (D∗b
1i , D

∗b
2i , D

∗b
3i , V

∗b
i , T ∗b

i , A∗b
i ) with b = 1, . . . , B. For

the b-th sample, compute the bootstrap estimates ρ̂∗bki,K , and hence, obtain D̂∗b
ki,K = V ∗b

i D∗b
ki +(1−

V ∗b
i )ρ̂∗bki,K . After that, the bootstrap estimates of the standard deviation of µ̂KNN is

sd(µ̂KNN) =

√√√√ 1

B − 1

B∑

b=1

(
µ̂∗b
KNN − µ̂∗

KNN

)2
,

where µ̂∗
KNN is the mean of the B bootstrap estimates µ̂∗b

KNN,

µ̂∗b
KNN =

n∑
i=1

n∑
`=1,` 6=i

n∑
r=1

r 6=`,r 6=i

I∗bi`rD̂
∗b
1i,KD̂

∗b
2`,KD̂

∗b
3r,K

n∑
i=1

n∑
`=1,` 6=i

n∑
r=1

r 6=`,r 6=i

D̂∗b
1i,KD̂

∗b
2`,KD̂

∗b
3r,K

, K ∈ N.

Here, I∗bi`r is the indicator function of T ∗b
i , T ∗b

` , T ∗b
r , and defined in Section 2.4.

Based on the estimate of the standard deviation of the KNN estimator, a (1 − α) bootstrap

confidence interval could be constructed, where α is a significant level. The simplest is the nor-

mal interval, which is defined as µ̂KNN ± z1−α/2sd(µ̂KNN), where zα denote the α-th quantile of

a standard normal random variable. However, in case of small sample size, use of the normal ap-

proximation for the construction of confidence intervals may be inappropriate. In such situations,

some other ways can be employed, e.g., pivotal interval, studentized pivotal interval or percentile

interval.
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4.4 Real data examples

In this section, we implement the proposed estimators for two real datasets, used also in Section

3.4. For the diagnosis of EOC, we use the same selection process for generating the missing

mechanism. As for the ROC surface, here we use a multinomial logistic model to estimate the

disease probabilities. For the SPE and IPW approaches, results for the correctly specified and

misspecified model for the verification process are given, i.e., threshold and logistic regression

model. We use the Mahalanobis distance and choose K = 1, 3 for the KNN estimator. The results

are summarized in Table 4.3.

Table 4.3: Bias–corrected (and Full) estimated VUS for the marker CA125, assessing the classi-
fication into three classes of EOC: benign disease, early stage (I and II) and late stage (III and
IV).

VUS Estimate Asy.sd Boot.sd 95% C.I. (with Asy.sd)

Full 0.5663
FI 0.5150 0.0404 0.0417 (0.4357, 0.5942)
MSI 0.5183 0.0415 0.0431 (0.4368, 0.5997)
IPW.logit 0.5500 0.0416 0.0471 (0.4685, 0.6314)
SPE.logit 0.5581 0.0443 0.0463 (0.4712, 0.6450)
IPW.thres 0.5353 0.0393 0.0457 (0.4583, 0.6123)
SPE.thres 0.5470 0.0440 0.0438 (0.4608, 0.6331)
1NN 0.5123 —– 0.0471 (0.4199, 0.6046)
3NN 0.5104 —– 0.0466 (0.4190, 0.6018)

In analogy, Table 4.4 shows the bias–corrected VUS estimates, along with the Näıve estimate.

The table also gives the estimated standard deviations (via asymptotic theory), bootstrap standard

deviations and approximated 95% confidence intervals. Despite the limited sample size, the results

show that T has some ability to predict response to therapy for late stage EOC patients.

In two tables (Table 4.3 and 4.4), the bootstrap procedure is performed with 250 replications.

In case of the KNN estimator, the 95% confidence intervals are constructed by using bootstrap

standard deviation estimates.

Table 4.4: Bias–corrected (and Näıve) estimated VUS for the test T predicting the response to
therapy of late stage EOC patients.

VUS Estimate Asy.sd Boot.sd 95% C.I. (with Asy.sd)

Näıve 0.3452
FI 0.3005 0.0512 0.0538 (0.2002, 0.4009)
MSI 0.3197 0.0629 0.0656 (0.1963, 0.4430)
IPW 0.3231 0.0654 0.0755 (0.1949, 0.4512)
SPE 0.3110 0.0675 0.0704 (0.1787, 0.4433)
1NN 0.3230 —– 0.0699 (0.1859, 0.4600)
3NN 0.3052 —– 0.0709 (0.1662, 0.4441)
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4.5 Discussion

In this chapter, we have proposed several methods to correct for verification bias the VUS under

missing at random assumption. By using imputation and re-weighting techniques, we have provided

the FI, MSI, IPW and SPE estimators. These approaches are working well if the disease model or

the verification model is corrected. However, in case of model misspecification, all four estimators

yield biased results, and hence, the KNN estimator could be useful. An alternative way to estimate

VUS in presence of verification bias is the use of numerical method to calculate the volume under

bias–corrected ROC surface.

In real applications, doctors can employ more than one diagnostic test to identify the presence

of a disease. For example, they can consider two diagnostic tests, coded as DT1 and DT2. In such

situation, we will have two different ROC surfaces, and of course, two different VUSs, µ(1) and µ(2)

say. An interesting question is “How to choose the best diagnostic test?”. From a statistical point

of view, a suitable answer comes from testing the significance of the VUS difference µ(1) −µ(2). In

fact, we consider two following hypotheses

(I)

{
H0 : µ(1) − µ(2) = 0
H1 : µ(1) − µ(2) > 0

or (II)

{
H0 : µ(1) − µ(2) = 0
H1 : µ(1) − µ(2) < 0

.

The first hypothesis identifies test DT1 is a best, whereas the second one implies that the diagnostic

test DT2 is to be preferred. To perform the above tests, we can develop simple tests procedures.

Table 4.5: Decision rules for normal test.

The hypothesis t–statistic Wald statistic

(I) 1− Φ

(√
n∆̂µ,∗√

Λ̂′

∗

)
< α Pr

(
χ2 >

n∆̂2

µ,∗

Λ̂′

∗

)
< α

(II) Φ

(√
n∆̂µ,∗√

Λ̂′

∗

)
< α Pr

(
χ2 <

n∆̂2

µ,∗

Λ̂′

∗

)
< α

Let T (1) and T (2) denote test results of two diagnostic tests DT1 and DT2. The VUS difference

is equal to

∆µ = µ(1) − µ(2) =
E

{
I
(D)
ijk D1iD2jD3k

}

E {D1iD2jD3k}
, (4.10)

where I
(D)
ijk = I

(1)
ijk − I

(2)
ijk. If we redefine T =

(
T (1), T (2)

)
and replace Iijk with I

(D)
ijk , then estimation

of ∆µ is formally identical to estimation of a single VUS. As a corollary, the estimate ∆̂µ inherits all

of the properties of µ̂∗, i.e., ∆̂µ is consistent and asymptotically normally distributed. In particular,

we get
√
n
(
∆̂µ,∗ −∆µ

)
d→ N (0, Λ̂

′

∗), where Λ̂
′

∗ is obtained in the same way as Λ̂∗. Under this

result, the hypothesis testing is based on this asymptotic distribution. In such situation, two

popular asymptotic test statistics are t–statistic and Wald statistic, specifically

t∆µ=0 =

√
n∆̂µ,∗√
Λ̂′

∗

, Wald =
(
t∆µ=0

)2
=
n∆̂2

µ,∗
Λ̂′

∗
.

One can verify that t∆µ=0 ∼̇N (0, 1) and Wald =
(
t∆µ=0

)2 ∼̇χ2(1), under the null hypothesis H0.

Choosing a significance level α ∈ (0, 1), we reject H0 if one of the expressions in Table 4.5 is

satisfied.
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Alternatively, one can employ bootstrap hypothesis testing. We implement the following steps:

(i) draw a bootstrap sample of n observations (D∗
1 , D

∗
2 , D

∗
3 , V

∗, T (1)∗, T (2)∗, A∗) with replacement

from the original sample; (ii) calculate the bias–corrected VUS of the T (1) and T (2), say, µ̂
(1)∗
∗ and

µ̂
(2)∗
∗ , and evaluate the difference ∆∗

µ,∗ = µ̂
(1)∗
∗ − µ̂

(2)∗
∗ ; (iii) repeat step (i) and (ii) for B times and

obtain B values of ∆∗
µ,∗. One sided bootstrap p–value for the hypothesis (I) is then estimated as

p− value ≈ #{∆∗,b
µ,∗ > 0}
B

,

with b = 1, . . . , B. We reject H0 if p–value is less then the significance level α. In analogy, we have

the definition of one sided bootstrap p–value for the hypothesis (II). The bootstrap procedure may

require a large B and perform well in case of uncorrelated diagnostic tests (Nakas and Yiannoutsos,

2004).

Also in real applications, the verification status could somehow depends, in addition to the test

T and covariates, also on the true disease status, a possibility not foreseen by the MAR assumption.

In such situations, we face a nonignorable missingness mechanism and the all proposed estimators

can not be applied. This motivates to find the methods to deal with nonignorable verification bias

in estimation of VUS. This work will be presented in next chapter.
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Chapter 5

NI verification bias in estimation

of the VUS

5.1 Model for NI missing data mechanism

5.1.1 Model settings

To deal with NI missing data mechanism, in what follows we extend parametric models adopted in

Liu and Zhou (2010) for the two–class problem to the three–class case. More precisely, with three

disease categories, we fix the model for the verification process as follows

π = Pr(V = 1|D1, D2, T, A) =
exp {h(T,A; τπ) + λ1D1 + λ2D2}

1 + exp {h(T,A; τπ) + λ1D1 + λ2D2}
, (5.1)

where D1 and D2 are defined in the previous section, h(T,A; τπ) is an arbitrary working function,

and τπ is a set of parameters. Here, λ = (λ1, λ2)
> is the non-ignorable parameter: the missing

data mechanism is MAR if λ1 = λ2 = 0; NI, otherwise. As for the disease model, we employ the

multinomial logistic regression for the whole sample, i.e.,

ρk = Pr(Dk = 1|T,A) = exp {f(T,A; τρk
)}

1 + exp {f(T,A; τρ1
)}+ exp {f(T,A; τρ2

)} , (5.2)

where f(T,A; τρk
) is an arbitrary working function, and τρk

is a set of parameters, for k = 1, 2. The

parameters λ, τπ, τρ, with τρ = (τ>ρ1
, τ>ρ2

)>, can be estimated jointly by using a likelihood–based

approach.

It is worth noting that, under (5.1), an application of Bayes’ rule gives that

Pr(D1 = 1|V = 1, T, A)

Pr(D1 = 1|V = 0, T, A)
=

Pr(V = 0|T,A)
Pr(V = 1|T,A) exp {h(T,A; τπ) + λ1} ,

Pr(D2 = 1|V = 1, T, A)

Pr(D2 = 1|V = 0, T, A)
=

Pr(V = 0|T,A)
Pr(V = 1|T,A) exp {h(T,A; τπ) + λ2} ,

Pr(D3 = 1|V = 1, T, A)

Pr(D3 = 1|V = 0, T, A)
=

Pr(V = 0|T,A)
Pr(V = 1|T,A) exp {h(T,A; τπ)} .

Therefore,

Pr(D1 = 1|V = 1, T, A)

Pr(D1 = 1|V = 0, T, A)

/
Pr(D3 = 1|V = 1, T, A)

Pr(D3 = 1|V = 0, T, A)
= exp(λ1), (5.3)

Pr(D2 = 1|V = 1, T, A)

Pr(D2 = 1|V = 0, T, A)

/
Pr(D3 = 1|V = 1, T, A)

Pr(D3 = 1|V = 0, T, A)
= exp(λ2), (5.4)
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so that, according to (5.3) and (5.4), λ1 and λ2 can also be interpreted as log-odds ratios of

belonging to class 1 (instead of class 3) and to class 2 (instead of class 3), respectively, for a

verified subject compared to an unverified subject with the same test result and covariates.

5.1.2 Parameter estimation

As in Liu and Zhou (2010), in our model, for simplicity, we take h(T,A; τπ) = τπ1
+τπ2

T+A>τπ3
and

f(T,A; τρk
) = τρ1k

+ τρ2k
T +A>τρ3k

, which is a natural choice in practice. For fixed T and A, the

observed distribution is fully determined by the three probabilities Pr(D1 = 1, D2 = 0, V = 1|T,A),
Pr(D1 = 0, D2 = 1, V = 1|T,A) and Pr(D1 = 0, D2 = 0, V = 1|T,A). It is easy to show that

Pr(D1 = 1, D2 = 0, V = 1|T,A) = Pr(D1 = 1, D2 = 0|T,A)Pr(V = 1|D1 = 1, D2 = 0, T, A)

= Pr(D1 = 1|T,A)Pr(V = 1|D1 = 1, D2 = 0, T, A)

= ρ1π10.

Similarly, we have that

Pr(D1 = 0, D2 = 1, V = 1|T,A) = ρ2π01,

Pr(D1 = 0, D2 = 0, V = 1|T,A) = (1− ρ1 − ρ2)π00,

with π01 = Pr(V = 1|D1 = 0, D2 = 1, T, A) and π00 = Pr(V = 1|D1 = 0, D2 = 0, T, A). Then,

Pr(V = 1|T,A) = ρ1π10 + ρ2π01 + (1− ρ1 − ρ2)π00,

and Pr(V = 0|T,A) = 1− Pr(V = 1|T,A) = 1− ρ1π10 + ρ2π01 + (1− ρ1 − ρ2)π00. It follows that

the log-likelihood function can be written as:

logL(λ, τπ, τρ)

=

n∑

i=1

{
D1iVi log(ρ1iπ10i) +D2iVi log(ρ2iπ01i) + (1−D1i −D2i)Vi log((1− ρ1i − ρ2i)π00i)

+ (1− Vi) log(1− ρ1iπ10i − ρ2iπ01i − (1− ρ1i − ρ2i)π00i)

}
. (5.5)

The estimates λ̂, τ̂π, and τ̂ρ can be obtained by maximizing logL(λ, τπ, τρ) or by solving the score

equations

0 =

n∑

i=1

{
D1iVi(1− π10i)−

(1− Vi)ρ1iπ10i(1− π10i)

1− ρ1iπ10i − ρ2iπ01i − (1− ρ1i − ρ2i)π00i

}
,

0 =
n∑

i=1

{
D2iVi(1− π01i)−

(1− Vi)ρ2iπ01i(1− π01i)

1− ρ1iπ10i − ρ2iπ01i − (1− ρ1i − ρ2i)π00i

}
,

0 =
n∑

i=1

Ui

{
D1iVi(1− π10i) +D2iVi(1− π01i) + (1−D1i −D2i)Vi(1− π00i)

− (1− Vi)
ρ1iπ10i(1− π10i) + ρ2iπ01i(1− π01i) + (1− ρ1i − ρ2i)π00i(1− π00i)

1− ρ1iπ10i − ρ2iπ01i − (1− ρ1i − ρ2i)π00i

}
,

0 =

n∑

i=1

Ui

{
Vi(D1i − ρ1i)− (1− Vi)

(π10i − π00i)ρ1i(1− ρ1i)− (π01i − π00i)ρ1iρ2i
1− ρ1iπ10i − ρ2iπ01i − (1− ρ1i − ρ2i)π00i

}
,

0 =

n∑

i=1

Ui

{
Vi(D2i − ρ2i)− (1− Vi)

(π01i − π00i)ρ2i(1− ρ2i)− (π10i − π00i)ρ1iρ2i
1− ρ1iπ10i − ρ2iπ01i − (1− ρ1i − ρ2i)π00i

}
,



5.1 Model for NI missing data mechanism 93

where Ui = (1, Ti, A
>
i )

>. The above equations are obtained by using the following results

∂

∂λ1
π10i = π10i(1− π10i),

∂

∂λ2
π01i = π01i(1− π01i),

∂

∂τπ
πd1d2i = Ui(1− πd1d2i)πd1d2i

(here (d1, d2) is a pair in the set {(1, 0), (0, 1), (0, 0)}), and

∂
∂τρ1

ρ1i = Uiρ1i(1− ρ1i);
∂

∂τρ2
ρ1i = −Uiρ1iρ2i;

∂
∂τρ2

ρ2i = Uiρ2i(1− ρ2i);
∂

∂τρ1
ρ2i = −Uiρ1iρ2i.

5.1.3 Identifiability

In this section we verify that the working model based on (5.1), with h(T,A; τπ) = τπ1
+ τπ2

T +

A>τπ3
, and (5.2), with f(T,A; τρk

) = τρ1k
+τρ2k

T+A>τρ3k
, is identifiable. Since the log–likelihood

(5.5) is fully determined by the three probabilities Pr(D1 = 1, D2 = 0, V = 1|T,A), Pr(D1 =

0, D2 = 1, V = 1|T,A) and Pr(D1 = 0, D2 = 0, V = 1|T,A), we have to show that such probabilities

are uniquely determined by the parameters for all possible T and A. For the sake of simplicity, in

the remainder of this section the auxiliary covariates A is omitted (actually, we can always view

A as fixed while varying T ).

Let ξ = (λ1, λ2, τπ1
, τπ2

, τρ11
, τρ21

, τρ12
, τρ22

)> be the set of parameters. For given T = t, we can

write

log(ρ1π10) = (τρ11
+ τρ21

t)− log {1 + exp(τρ11
+ τρ21

t) + exp(τρ12
+ τρ22

t)}+ (τπ1
+ τπ2

t) + λ1

− log {1 + exp(τπ1
+ τπ2

t) exp(λ1)} ,
log(ρ2π01) = (τρ12

+ τρ22
t)− log {1 + exp(τρ11

+ τρ21
t) + exp(τρ12

+ τρ22
t)}+ (τπ1

+ τπ2
t) + λ2

− log {1 + exp(τπ1
+ τπ2

t) exp(λ2)} ,
log(ρ3π00) = − log {1 + exp(τρ11

+ τρ21
t) + exp(τρ12

+ τρ22
t)}+ (τπ1

+ τπ2
t)

− log {1 + exp(τπ1
+ τπ2

t)} .

Let x(t) = τπ1
+ τπ2

t, y(t) = τρ11
+ τρ21

t and z(t) = τρ12
+ τρ22

t, for each t ∈ R. The above

expressions, which refer to the quantities characterizing the log–likelihood function (5.5), can be

rewritten as

log(ρ3π00) = − log {1 + exp(y(t)) + exp(z(t))}+ x(t)− log {1 + exp(x(t))} ,
log(ρ1π10) = y(t)− log {1 + exp(y(t)) + exp(z(t))}+ x(t) + λ1 − log {1 + exp(x(t)) exp(λ1)}

= log(ρ3π00) + log {1 + exp(x(t))}+ y(t) + λ1 − log {1 + exp(x(t)) exp(λ1)}
= log(ρ3π00) + y(t) + log {1 + exp(x(t))} − log {exp(−λ1) + exp(x(t))}

= log(ρ3π00) + y(t) + log

{
1 + exp(x(t))

exp(−λ1) + exp(x(t))

}
,

log(ρ2π01) = z(t)− log {1 + exp(y(t)) + exp(z(t))}+ x(t) + λ2 − log {1 + exp(x(t)) exp(λ2)}

= log(ρ3π00) + z(t) + log

{
1 + exp(x(t))

exp(−λ2) + exp(x(t))

}
.
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Now, assume that there are two distinct points ξ and ξ∗ (ξ 6= ξ∗) in the parameter space, such

that the following equations (with obvious notation) hold:

ρ1π10 = ρ∗1π
∗
10, (5.6)

ρ2π01 = ρ∗2π
∗
01, (5.7)

ρ3π00 = ρ∗3π
∗
00, (5.8)

for all t ∈ R. By using (5.8), the equations (5.6) and (5.7) are equivalent to

y(t)− y∗(t) = log

{
1 + exp(x∗(t))

exp(−λ∗1) + exp(x∗(t))

}
− log

{
1 + exp(x(t))

exp(−λ1) + exp(x(t))

}
, (5.9)

z(t)− z∗(t) = log

{
1 + exp(x∗(t))

exp(−λ∗2) + exp(x∗(t))

}
− log

{
1 + exp(x(t))

exp(−λ2) + exp(x(t))

}
, (5.10)

respectively. In (5.9) and (5.10) the left sides are straight lines. Thus, in order to (5.9) and (5.10)

hold for all t, the right sides must be constants. If these constants were 0 (because λ1 = λ∗1 = λ2 =

λ∗2 = 0), then (5.8) would no longer hold for ξ 6= ξ∗ and all t. Alternatively, the right sides of (5.9)

and (5.10) are non-zero constants if τπ2
= τ∗π2

= 0. Then, as a consequence, (5.8) still is valid, for

ξ 6= ξ∗ and all t, eventually if τρ21
= τ∗ρ21

= 0 and τρ22
= τ∗ρ22

= 0. This allows us to state that: if

Pr(Dk|T ) 6= Pr(Dk), with k = 1, 2, then the considered model (with the particular choice for the

functions h and f) is identifiable, i.e., the joint probabilities Pr(D1 = 1, D2 = 0, V = 1|T = t),

Pr(D1 = 0, D2 = 1, V = 1|T = t) and Pr(D1 = 0, D2 = 0, V = 1|T = t) are determined by a

unique set of parameters. Of course, this claim can be easily extended to handle the presence of a

covariate vector, A.

5.2 The proposal

5.2.1 VUS estimators

Let ρk(v) = Pr(Dk = 1|V = v, T,A), for k = 1, 2 and v = 0, 1. It is easy to see, for instance, that

ρ1(v) =
Pr(V = v,D1 = 1|D2 = 0, T, A)

Pr(V = v|T,A) =
Pr(V = v|D1 = 1, D2 = 0, T, A)Pr(D1 = 1|T,A)

Pr(V = v|T,A) .

Hence, we can get, in particular,

ρ1(0) =
(1− π10)ρ1

(1− π10)ρ1 + (1− π01)ρ2 + (1− π00)ρ3
,

ρ2(0) =
(1− π01)ρ2

(1− π10)ρ1 + (1− π01)ρ2 + (1− π00)ρ3
,

ρ3(0) =
(1− π00)ρ3

(1− π10)ρ1 + (1− π01)ρ2 + (1− π00)ρ3
.

Clearly, we also may consider quantities as

ρ1(1) =
π10ρ1

π10ρ1 + π01ρ2 + π00ρ3
.

Then, we observe that

E(D1iD2`D3rIi`r) = ET,A {Ii`rE(D1iD2`D3r|Ti, Ai, T`, A`, Tr, Ar)} ,
= ET,A {Ii`rE(D1i|Ti, Ai)E(D2`|T`, A`)E(D3r|Tr, Ar)} ,
= ET,A (ρ1iρ2`ρ3rIi`r) .
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Similarly, we have

E(D1iD2`D3r) = ET,A (ρ1iρ2`ρ3r) ,

so that (2.10) can be rewritten as

µ =
ET,A (ρ1iρ2`ρ3rIi`r)

ET,A (ρ1iρ2`ρ3r)
. (5.11)

Equation (5.11) suggests how to build estimators of VUS when some disease labels are missing

in the sample: we can use suitable estimates ρ̂ki to replace the Dki’s in (2.12). Therefore, a FI

estimator of VUS is simply

µ̂FI =

n∑
i=1

n∑
`=1,` 6=i

n∑
r=1

r 6=`,r 6=i

Ii`rρ̂1iρ̂2`ρ̂3r

n∑
i=1

n∑
`=1,` 6=i

n∑
r=1

r 6=`,r 6=i

ρ̂1iρ̂2`ρ̂3r

, (5.12)

where ρ̂ki (k = 1, 2, 3 and i = 1, . . . , n) are the estimated disease probabilities obtained from the

disease model (5.2).

Since E[Viρk(1)i + (1 − Vi)ρk(0)i|T,A] = ρki, an alternative FI estimator of VUS could be

obtained by replacing Dki’s in (2.12) with the estimates D̃ki,FI = Viρ̂k(1)i + (1− Vi)ρ̂k(0)i. Unlike

FI approach, MSI estimator only replace the disease status Dki by the estimate ρ̂k(0)i for unverified

subjects. Define Dki,MSI = ViDki + (1 − Vi)ρk(0)i and let D̃ki,MSI be the estimated version with

ρk(0)i replaced by ρ̂k(0)i, and

ρ̂1(0)i =
(1− π̂10i)ρ̂1i

(1− π̂10i)ρ̂ki + (1− π̂01i)ρ̂2i + (1− π̂00i)ρ̂3i
,

ρ̂2(0)i =
(1− π̂01i)ρ̂2i

(1− π̂10i)ρ̂1i + (1− π̂01i)ρ̂2i + (1− π̂00i)ρ̂3i
,

ρ̂3(0)i =
(1− π̂00i)ρ̂3i

(1− π̂10i)ρ̂1i + (1− π̂01i)ρ̂2i + (1− π̂00i)ρ̂3i
.

Here, π̂10i = P̂r(Vi = 1|D1i = 1, D2i = 0, Ti, Ai), π̂01i = P̂r(Vi = 1|D1i = 0, D2i = 1, Ti, Ai) and

π̂00i = P̂r(Vi = 1|D1i = 0, D2i = 0, Ti, Ai). Such estimates are derived from the verification model

(5.1). Then, the MSI estimator of VUS is

µ̂MSI =

n∑
i=1

n∑
`=1,` 6=i

n∑
r=1

r 6=`,r 6=i

Ii`rD̃1i,MSID̃2`,MSID̃3r,MSI

n∑
i=1

n∑
`=1,` 6=i

n∑
r=1

r 6=`,r 6=i

D̃1i,MSID̃2`,MSID̃3r,MSI

. (5.13)

In the IPW approach, instead, each observation in the subset of verified units is weighted by

the inverse of the probability that the unit was selected for verification. Thus, the IPW estimator

of VUS is

µ̂IPW =

n∑
i=1

n∑
`=1,` 6=i

n∑
r=1

r 6=`,r 6=i

Ii`rViV`VrD1iD2`D3rπ̂
−1
i π̂−1

` π̂−1
r

n∑
i=1

n∑
`=1,` 6=i

n∑
r=1

r 6=`,r 6=i

ViV`VrD1iD2`D3rπ̂
−1
i π̂−1

` π̂−1
r

. (5.14)

Clearly, the estimates π̂i also arise from the selection model (5.1).
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The last estimator is the pseudo doubly robust (PDR) estimator. We define

Dki,PDR =
ViDki

πi
− ρk(0)i(Vi − πi)

πi
.

An estimated version, D̃ki,PDR, is obtained by entering the estimates π̂i and ρ̂k(0)i in the expression

above. Then, the PDR estimator of VUS is

µ̂PDR =

n∑
i=1

n∑
`=1,` 6=i

n∑
r=1

r 6=`,r 6=i

Ii`rD̃1i,PDRD̃2`,PDRD̃3r,PDR

n∑
i=1

n∑
`=1,` 6=i

n∑
r=1

r 6=`,r 6=i

D̃1i,PDRD̃2`,PDRD̃3r,PDR

. (5.15)

The PDR estimator has the same nature as the SPE estimator discussed in Chapter 4 under

MAR assumption. However, under NI missing data mechanism it no longer has the doubly robust

property. In fact, correct specification of both the verification model and the disease model is

required for the PDR estimator to be consistent.

Note that all VUS estimators basically require maximum likelihood estimates of the parameters

λ, τπ and τρ of the working models (5.1) and (5.2).

5.2.2 Asymptotic behavior

Let ξ = (λ>, τ>π , τ
>
ρ )> be the nuisance parameter. Observe that the proposed VUS estimators can

be found as solutions of appropriate estimating equations (solved along with the score equations).

The estimating functions for FI, MSI, IPW and PDR estimators have generic term (corresponding

to a generic triplet of sample units), respectively,

Gi`r,FI(µ, ξ) = ρ1i(τρ)ρ2`(τρ)ρ3r(τρ) (Ii`r − µ) ,

Gi`r,MSI(µ, ξ) = D1i,MSI(ξ)D2`,MSI(ξ)D3r,MSI(ξ) (Ii`r − µ) ,

Gi`r,IPW(µ, ξ) =
ViV`VrD1iD2`D3r

πi(ξ)π`(ξ)πk(ξ)
(Ii`r − µ) ,

Gi`r,PDR(µ, ξ) = D1i,PDR(ξ)D2`,PDR(ξ)D3r,PDR(ξ) (Ii`r − µ) .

In the following, we will use the general notation Gi`r,∗(µ, ξ), where the star stands for FI, MSI,

IPW and PDR. We define the observed data as the set {Oi = (D>
i , Vi, Ti, A

>
i )

>, i = 1, . . . , n}.

Remark 5.2.1. Here, we show that the estimating functions Gi`r,∗ are unbiased under the working

disease and verification models. Recall that ξ = (λ>, τ>π , τ
>
ρ )>.

• FI estimator. We have

E {Gi`r,FI(µ0, ξ0)} = E {ρ1i(τ0ρ)ρ2`(τ0ρ)ρ3r(τ0ρ)(Ii`r − µ)}
= E {ρ1iρ2`ρ3r(Ii`r − µ0)} .

Hence, E {Gi`r,FI(µ0, ξ0)} = 0 from (4.1).
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• MSI estimator. Consider E {Dki,MSI(ξ0)|Ti, Ai}. We have

E {Dki,MSI(ξ0)|Ti, Ai} = E
{
ViDki + (1− Vi)ρk(0)i(ξ0)|Ti, Ai

}

= E
[
E
{
ViDki + (1− Vi)ρk(0)i(ξ0)|Ti, Ai, Vi

}
|Ti, Ai

]

= Pr(Vi = 1|Ti, Ai)E (Dki|Vi = 1, Ti, Ai)

+ Pr(Vi = 0|Ti, Ai)E
(
ρk(0)i(ξ0)|Vi = 0, Ti, Ai

)

= Pr(Vi = 1|Ti, Ai)Pr(Dki = 1|Vi = 1, Ti, Ai)

+ Pr(Vi = 0|Ti, Ai)Pr(Dki = 1|Vi = 0, Ti, Ai)

= Pr(Dki = 1|Ti, Ai) = ρki.

Therefore,

E {Gi`r,MSI(µ0, ξ0)} = E {D1i,MSI(ξ0)D2`,MSI(ξ0)D3r,MSI(ξ0) (Ii`r − µ0)}
= E

[
(Ii`r − µ0)E {D1i,MSI(ξ0)|Ti, Ai}E {D2`,MSI(ξ0)|T`, A`}

× E {D3r,MSI(ξ0)|Tr, Ar}
]

= E {ρ1iρ2`ρ3r(Ii`r − µ0)} .

• IPW estimator. In this case,

E
(
ViDkiπ

−1
i (ξ0)|Ti, Ai

)
= π−1

i (ξ0)E (ViDki|Ti, Ai)

= π−1
i (ξ0)E

{
DkiE (Vi|D1i, D2i, Ti, Ai)

∣∣Ti, Ai

}

= π−1
i E (πiDki|Ti, Ai) = ρki.

Thus,

E {Gi`r,IPW(µ0, ξ0)} = E

{
ViV`VrD1iD2`D3r

πi(ξ0)π`(ξ0)πk(ξ0)
(Ii`r − µ0)

}

= E

{
(Ii`r − µ0)E(ViD1iπ

−1
i (ξ0)|Ti, Ai)E(V`D2`π

−1
` (ξ0)|T`, A`)

× E(VrD3rπ
−1
r (ξ0)|Tr, Ar)

}

= E {ρ1iρ2`ρ3r(Ii`r − µ0)} .

• PDR estimator.

E {Dki,PDR(ξ0)|Ti, Ai} = E

[
E

{
ViDki

πi(ξ0)
− ρk(0)i(ξ0)

(
Vi

πi(ξ0)
− 1

) ∣∣∣∣D1i, D2i, Ti, Ai

} ∣∣∣∣Ti, Ai

]

= E

{
DkiE

(
Vi

πi(ξ0)

∣∣∣∣D1i, D2i, Ti, Ai

)

− ρk(0)i(ξ0)E

(
Vi

πi(ξ0)
− 1

∣∣∣∣D1i, D2i, Ti, Ai

) ∣∣∣∣Ti, Ai

}

= E(Dki|Ti, Ai) = ρki.

Hence,

E {Gi`r,PDR(µ0, ξ0)} = E {D1i,PDR(ξ0)D2`,PDR(ξ0)D3r,PDR(ξ0) (Ii`r − µ0)}
= E

[
(Ii`r − µ0)E {D1i,PDR(ξ0)|Ti, Ai}E {D2`,PDR(ξ0)|T`, A`}

× E {D3r,PDR(ξ0)|Tr, Ar}
]

= E {ρ1iρ2`ρ3r(Ii`r − µ0)} .
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Recall that the nuisance parameters ξ is estimated by maximizing the log–likelihood function

(5.5). Let Si(ξ) is the i–th subject’s contribution to the score function, and I(ξ) = −E ∂
∂ξ>

Si(ξ)

the Fisher information matrix for ξ. To give general theoretical results, we assume standard regu-

larity conditions, which ensure consistency and asymptotic normality of the maximum likelihood

estimator ξ̂.

(R1) the parameter space ξ ≡ λ× τπ × τρ has finite dimension and is compact;

(R2) the true value ξ0 = (λ>0 , τ
>
0π, τ

>
0ρ)

> exists and is interior to the parameter space ξ such that

E {Si(ξ)} 6= 0 if ξ 6= ξ0 and E {Si(ξ0)} = 0;

(R3) the variance of Si(ξ0) exists and is finite;

(R4) E
{
∂Si(ξ)/∂ξ

>|ξ=ξ0

}
exists and is invertible;

(R5) there exists a neighborhood N of ξ0 such that the expected values of sup(ξ)∈N ‖Si(ξ)‖,
sup(ξ)∈N ‖∂Si(ξ)/∂ξ

>‖ and sup(ξ)∈N ‖Si(ξ)Si(ξ)
>‖ are finite, where ‖X‖ ≡∑i

∑
j X

2
ij .

Let µ0 be the true VUS value. We also assume that:

(C1) The U–process

Un,∗(µ, ξ) =
√
n {G∗(µ, ξ)− e∗(µ, ξ)}

is stochastically equicontinuous, where

G∗(µ, ξ) =
1

6n(n− 1)(n− 2)

n∑

i=1

n∑

`=1,` 6=i

n∑

r=1

r 6=`,r 6=i

{
Gi`r,∗(µ, ξ) +Gir`,∗(µ, ξ)

+G`ir,∗(µ, ξ) +G`ri,∗(µ, ξ) +Gri`,∗(µ, ξ) +Gr`i,∗(µ, ξ)

}

and

e∗(µ, ξ) =
1

6
E

{
Gi`r,∗(µ, ξ) +Gir`,∗(µ, ξ) +G`ir,∗(µ, ξ) +G`ri,∗(µ, ξ)

+Gri`,∗(µ, ξ) +Gr`i,∗(µ, ξ)

}
;

(C2) e∗(µ, ξ) is differentiable in (µ, ξ), and ∂e∗(µ,ξ0)
∂µ

∣∣∣∣∣
µ=µ0

6= 0;

(C3) G∗(µ, ξ) and ∂G∗(µ,ξ)
∂ξ converges uniformly (in probability) to e∗(µ, ξ) and ∂e∗(µ,ξ)

∂ξ , respec-

tively.

Then, we prove consistency and asymptotic normality of the proposed estimators.

Theorem 5.2.2 (Consistency). Suppose that conditions (C1)–(C3) hold, along with standard reg-

ularity conditions for the likelihood function (as those given by Newey and McFadden (1994)).

Under the verification model (5.1) and the disease model (5.2), µ̂∗
p→ µ0.

Proof. We shown that E{Gi`r,∗(µ0, ξ0)} = 0. Then e∗(µ0, ξ0) = 0, and, by condition (C2) and an

application of implicit function theorem, there exists a neighborhood of ξ0 in which a continuously

differentiable function, m(ξ), is uniquely defined such that m(ξ0) = µ0 and e∗(m(ξ), ξ) = 0. Since

the maximum likelihood estimator ξ̂ is consistent, i.e., ξ̂
p→ ξ0, we have that µ̃∗ = m(ξ̂)

p→ µ0. On

the other hand, G∗(µ̂∗, ξ̂) = 0 and condition (C3) implies that e∗(µ̂∗, ξ̂)
p→ 0. Thus, µ̂∗

p→ µ̃∗.
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Next we establish the asymptotic normality of the estimators µ̂∗.

Theorem 5.2.3 (Asymptotic normality). Suppose the conditions in Theorem 5.2.2 are satisfied.

If the verification model (5.1) and the disease model (5.2) hold, then

√
n (µ̂∗ − µ0)

d→ N (0,Λ∗),

where the star indicates FI, MSI, IPW, PDR, and Λ∗ is a suitable value.

Proof. We have

0 =
√
nG∗(µ̂∗, ξ̂)

0 =
√
nG∗(µ̂∗, ξ̂) +

√
ne∗(µ̂∗, ξ̂)−

√
ne∗(µ̂∗, ξ̂).

Since e∗(µ0, ξ0) = 0, we get

0 =
√
nG∗(µ̂∗, ξ̂) +

√
ne∗(µ̂∗, ξ̂)−

√
ne∗(µ̂∗, ξ̂) +

√
ne∗(µ0, ξ0)−

√
ne∗(µ0, ξ0)

=
√
n
{
G∗(µ̂∗, ξ̂)− e∗(µ̂∗, ξ̂)

}
+
√
n
{
e∗(µ̂∗, ξ̂)− e∗(µ0, ξ0)

}
+

√
ne∗(µ0, ξ0)

−√
nG∗(µ0, ξ0) +

√
nG∗(µ0, ξ0)

=
[√

n
{
G∗(µ̂∗, ξ̂)− e∗(µ̂∗, ξ̂)

}
−√

n {G∗(µ0, ξ0)− e∗(µ0, ξ0)}
]

+
√
n
{
e∗(µ̂∗, ξ̂)− e∗(µ0, ξ0)

}
+
√
nG∗(µ0, ξ0).

Condition (C1) implies that the first term in the right hand side of the last identity equals to op(1).

Using the Taylor expansion, we have

0 = op(1) +
√
n
{
e∗(µ̂∗, ξ̂)− e∗(µ0, ξ0)

}
+
√
nG∗(µ0, ξ0)

= op(1) +
∂e∗(µ, ξ0)

∂µ

∣∣∣∣∣
µ=µ0

√
n(µ̂∗ − µ0) +

∂e>∗ (µ0, ξ)

∂ξ

∣∣∣∣∣
ξ=ξ0

√
n(ξ̂ − ξ0)

+
√
nG∗(µ0, ξ0). (5.16)

It is straightforward to show that

∂e∗(µ, ξ0)
∂µ

∣∣∣∣∣
µ=µ0

= −Pr(D1 = 1)Pr(D2 = 1)Pr(D3 = 1) = −θ1θ2θ3.

By standard results on the limit distribution of U-statistics (van der Vaart, 2000, Theorem 12.3,

Chap. 12),

√
nUn,∗(µ0, ξ0) =

√
n {G∗(µ0, ξ0)− e∗(µ0, ξ0)} =

√
nG∗(µ0, ξ0)

p→ √
nG̃∗(µ0, ξ0),

where
√
nG̃∗(µ, ξ) is the projection of Un,∗ onto the set of all statistics of the form

n∑
i=1

Bi(Xi),

√
nG̃n(µ, ξ) =

1

2
√
n

n∑

i=1

E

{
Gi`r,∗(µ, ξ) +Gir`,∗(µ, ξ) +G`ir,∗(µ, ξ)

+G`ri,∗(µ, ξ) +Gri`,∗(µ, ξ) +Gr`i,∗(µ, ξ)
∣∣Oi

}

for ` 6= i and r 6= `, r 6= i. For the maximum likelihood estimator ξ̂, we can write

√
n
(
ξ̂ − ξ0

)
=

1√
n


−∂E {Si(ξ)}

∂ξ>

∣∣∣∣∣
ξ=ξ0



−1

n∑

i=1

Si(ξ0) + op(1) =
1√
n
I(ξ)−1

n∑

i=1

Si(ξ0) + op(1).
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Hence, from (5.16),

θ1θ2θ3
√
n(µ̂∗ − µ0) = op(1) +

1√
n

∂e>∗ (µ0, ξ)

∂ξ

∣∣∣∣∣
ξ=ξ0

I(ξ)−1
n∑

i=1

Si(ξ0)

+
1

2
√
n

n∑

i=1

E

{
Gi`r,∗(µ0, ξ0) +Gir`,∗(µ0, ξ0) +G`ir,∗(µ0, ξ0)

+G`ri,∗(µ0, ξ0) +Gri`,∗(µ0, ξ0) +Gr`i,∗(µ0, ξ0)
∣∣Oi

}

= op(1) +
1√
n

n∑

i=1

[
∂e>∗ (µ0, ξ)

∂ξ

∣∣∣∣∣
ξ=ξ0

I(ξ)−1Si(ξ0)

+
1

2
E

{
Gi`r,∗(µ0, ξ0) +Gir`,∗(µ0, ξ0) +G`ir,∗(µ0, ξ0)

+G`ri,∗(µ0, ξ0) +Gri`,∗(µ0, ξ0) +Gr`i,∗(µ0, ξ0)
∣∣Oi

}]
(5.17)

= op(1) +
1√
n

n∑

i=1

Qi,∗(µ0, ξ0) = op(1) +
1√
n
Q∗(µ0, ξ0).

Note that the observed data Oi are i.i.d, then Qi,∗(µ0, ξ0) are also i.i.d.. In addition, we easily

show that

0 = E

[
E

{
Gi`r,∗(µ0, ξ0) +Gir`,∗(µ0, ξ0) +G`ir,∗(µ0, ξ0) +G`ri,∗(µ0, ξ0)

+Gri`,∗(µ0, ξ0) +Gr`i,∗(µ0, ξ0)
∣∣Oi

}]
.

Therefore, E{Qi,∗(µ0, ξ0)} = 0, and 1√
n
Q∗(µ0, ξ0)

d→ N (0,Var {Qi,∗(µ0, ξ0)}) by the Central Limit

Theorem. It follows that
√
n (µ̂∗ − µ0)

d→ N (0,Λ∗) ,

where

Λ∗ =
Var {Qi,∗(µ0, ξ0)}

θ21θ
2
2θ

2
3

.

It is worth noting that the assumed regularity conditions for the likelihood and condition (C1)–

(C3) hold in our working model, which is based on (5.1), with h(T,A; τπ) = τπ1
+ τπ2

T + A>τπ3
,

and (5.2), with f(T,A; τρk
) = τρ1k

+ τρ2k
T +A>τρ3k

.

5.2.3 Variance estimation

Under condition (C3), a consistent estimator of Λ∗ can be obtained as

Λ̂∗ =
Var

{
Q̂i,∗(µ̂∗, ξ̂)

}

θ̂21,∗θ̂
2
2,∗θ̂

2
3,∗

=

1
n−1

n∑
i=1

Q̂2
i,∗(µ̂∗, ξ̂)

θ̂21,∗θ̂
2
2,∗θ̂

2
3,∗

, (5.18)

where θ̂k,∗ are the estimates of the disease prevalence, θk for k = 1, 2, 3. Specifically, θ̂k,FI =

1
n

n∑
i=1

ρ̂ki, θ̂k,MSI =
1
n

n∑
i=1

D̃ki,MSI, θ̂k,IPW =
n∑

i=1

ViDkiπ̂
−1
i /

n∑
i=1

Viπ̂
−1
i and θ̂k,PDR = 1

n

n∑
i=1

D̃ki,PDR.
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According to (5.17), we have that

Q̂i,∗(µ̂∗, ξ̂) =





1

(n− 1)(n− 2)

n∑

i=1

n∑

`=i

` 6=i

n∑

r=1

r 6=`,r 6=i

∂G>
i`r,∗(µ̂∗, ξ)

∂ξ

∣∣∣∣
ξ=ξ̂





{
−

n∑

i=1

∂Si(ξ)

∂ξ>

∣∣∣∣
ξ=ξ̂

}−1

Si(ξ̂)

+
1

2(n− 1)(n− 2)

n∑

`=1

` 6=i

n∑

r=1

r 6=i,r 6=`

{
Gi`r,∗(µ̂∗, ξ̂) +Gir`,∗(µ̂∗, ξ̂) +G`ir,∗(µ̂∗, ξ̂)

+G`ri,∗(µ̂∗, ξ̂) +Gri`,∗(µ̂∗, ξ̂) +Gr`i,∗(µ̂∗, ξ̂)

}
.

In addition, for fixed i, we also have that

n∑

`=1

` 6=i

n∑

r=1

r 6=i,r 6=`

{
Gi`r,∗(µ̂∗, ξ̂) +Gir`,∗(µ̂∗, ξ̂)

}
= 2

n∑

`=1

` 6=i

n∑

r=1

r 6=i,r 6=`

Gi`r,∗(µ̂∗, ξ̂),

n∑

`=1

` 6=i

n∑

r=1

r 6=i,r 6=`

{
G`ir,∗(µ̂∗, ξ̂) +Gri`,∗(µ̂∗, ξ̂)

}
= 2

n∑

`=1

` 6=i

n∑

r=1

r 6=i,r 6=`

G`ir,∗(µ̂∗, ξ̂),

n∑

`=1

` 6=i

n∑

r=1

r 6=i,r 6=`

{
G`ri,∗(µ̂∗, ξ̂) +Gr`i,∗(µ̂∗, ξ̂)

}
= 2

n∑

`=1

` 6=i

n∑

r=1

r 6=i,r 6=`

Gr`i,∗(µ̂∗, ξ̂).

Therefore,

Q̂i,∗(µ̂∗, ξ̂) =





1

(n− 1)(n− 2)

n∑

i=1

n∑

`=i

` 6=i

n∑

r=1

r 6=`,r 6=i

∂G>
i`r,∗(µ̂∗, ξ)

∂ξ

∣∣∣∣
ξ=ξ̂





{
−

n∑

i=1

∂Si(ξ)

∂ξ>

∣∣∣∣
ξ=ξ̂

}−1

Si(ξ̂)

+
1

(n− 1)(n− 2)

n∑

`=1

` 6=i

n∑

r=1

r 6=i,r 6=`

{
Gi`r,∗(µ̂∗, ξ̂) +G`ir,∗(µ̂∗, ξ̂) +Gr`i,∗(µ̂∗, ξ̂)

}
. (5.19)

The quantity
n∑

i=1

∂Si(ξ)
∂ξ>

∣∣∣∣
ξ=ξ̂

could be obtained as the Hessian matrix of the log likelihood function at

ξ̂ . In order to compute
∂Gi`r,∗(µ̂∗,ξ)

∂ξ

∣∣∣∣
ξ=ξ̂

, we have to get the derivatives of ∂
∂ξρki(τ0ρk

), ∂
∂ξρk(0)i(ξ),

∂
∂ξπ

−1
i (λ, τπ),

∂
∂ξπ10i(λ, τπ),

∂
∂ξπ01i(λ, τπ) and

∂
∂ξπ00i(λ, τπ).

In Section 5.1.2, we obtain

∂
∂λ1

π10i(λ, τπ) = π10i(1− π10i);
∂

∂λ2

π10i(λ, τπ) = 0;

∂
∂λ1

π01i(λ, τπ) = 0; ∂
∂λ2

π01i(λ, τπ) = π01i(1− π01i);

∂
∂λ1

π00i(λ, τπ) = 0; ∂
∂λ2

π00i(λ, τπ) = 0.

and
∂

∂τπ
πd1d2i = Ui(1− πd1d2i)πd1d2i,

where (d1, d2) belongs to the set {(1, 0), (0, 1), (0, 0)}. Also, we have

∂
∂τρ1

ρ1i(τρ) = Uiρ1i(1− ρ1i);
∂

∂τρ2
ρ1i(τρ) = −Uiρ1iρ2i;

∂
∂τρ2

ρ2i(τρ) = Uiρ2i(1− ρ2i);
∂

∂τρ1
ρ2i(τρ) = −Uiρ1iρ2i.
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Moreover,
∂

∂λs
π−1
i (λ, τπ) = −Dsi

1− πi
πi

;
∂

∂τπ
π−1
i (λ, τπ) = −Ui

1− πi
πi

,

with s = 1, 2. Then, recall that

ρ1(0)i =
(1− π10i)ρ1i

(1− π10i)ρ1i + (1− π01i)ρ2i + (1− π00i)ρ3i
,

ρ2(0)i =
(1− π01i)ρ2i

(1− π10i)ρ1i + (1− π01i)ρ2i + (1− π00i)ρ3i
,

ρ3(0)i =
(1− π00i)ρ3i

(1− π10i)ρ1i + (1− π01i)ρ2i + (1− π00i)ρ3i
.

After some algebra, we get

∂

∂λ1
ρ1(0)i(ξ) =

1

z2
[−π10i(1− π10i)ρ1i {(1− π01i)ρ2i + (1− π00i)ρ3i}] ,

∂

∂λ2
ρ1(0)i(ξ) =

1

z2
ρ1iρ2iπ01i(1− π01i)(1− π10i),

∂

∂τπ
ρ1(0)i(ξ) = −Ui

z2
ρ1i(1− π10i) {ρ2i(1− π01i)(π10i − π01i) + ρ3i(1− π00i)(π10i − π00i)} ,

∂

∂τρ1

ρ1(0)i(ξ) =
Ui

z2
ρ1i(1− π10i) {ρ2i(1− π01i) + ρ3i(1− π00i)} ,

∂

∂τρ2

ρ1(0)i(ξ) = −Ui

z2
ρ1iρ2i(1− π10i)(1− π01i).

Finally, we set z = (1− π10i)ρ1i + (1− π01i)ρ2i + (1− π00i)ρ3i, and get

∂

∂λ1
ρ2(0)i(ξ) =

1

z2
ρ1iρ2iπ10i(1− π10i)(1− π01i),

∂

∂λ2
ρ2(0)i(ξ) =

1

z2
[−π01i(1− π01i)ρ2i {(1− π10i)ρ1i + (1− π00i)ρ3i}] ,

∂

∂τπ
ρ2(0)i(ξ) = −Ui

z2
ρ2i(1− π01i) {ρ1i(1− π10i)(π01i − π10i) + ρ3i(1− π00i)(π01i − π00i)} ,

∂

∂τρ1

ρ2(0)i(ξ) = −Ui

z2
ρ1iρ2i(1− π10i)(1− π01i),

∂

∂τρ2

ρ2(0)i(ξ) =
Ui

z2
ρ2i(1− π01i) {ρ1i(1− π10i) + ρ3i(1− π00i)} .

The derivative ∂
∂ξρ3(0)i(ξ) can be computed by using the fact that ρ3(0)i = 1− ρ1(0)i − ρ2(0)i.

5.3 Simulation studies

In this section, we provide empirical evidence, through simulation experiments, on the behavior

of the proposed VUS estimators in finite samples. The number of replications in each simulation

experiment is set to be 1000.

In the study, we consider two scenarios which correspond to quite different values of the true

VUS. For both scenarios, we fix three sample sizes: 250, 500 and 1500.

In the first scenario, for each unit, we generate the test result Ti and a covariate Ai from a

bivariate normal distribution,

(Ti, Ai) ∼ N2

((
3.7
1.85

)
,

(
3.71 1.36
1.36 3.13

))
.
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The disease status Di is generated according to model (5.2) with f(T,A; τρ1
) = 4.6−3.3T−6.4A

and f(T,A; τρ2
) = 4− 1.7T − 3.2A. Then, the verification label Vi is obtained according to model

(5.1) with h(T,A; τπ) = 1+1.2T−1.5A and λ1 = −2, λ2 = −1. Under such data generating process,

θ1 = 0.4, θ2 = 0.35, θ3 = 0.25, and the verification rate is roughly 0.57. The true VUS value is

0.791. In the second scenario, we generate the test result and the covariate from independent

normal distributions. Specifically, Ti ∼ N (0.65, 1) and Ai ∼ N (−0.3, 0.64). The disease status

Di is generated according to model (5.2) with f(T,A; τρ1
) = 4.6− 3.3T − 6.4A and f(T,A; τρ2

) =

4− 1.7T − 3.2A. Then, Vi is obtained according to model (5.1) with h(T,A; τπ) = 1+ 1.2T − 1.5A

and λ1 = −2.5, λ2 = −1. Under this setting, θ1 = 0.55, θ2 = 0.32, θ3 = 0.13, and the verification

rate is roughly 0.58. The true VUS value is 0.387.

Table 5.1: Monte Carlo means (MCmean), relative bias (Bias), Monte Carlo standard deviations
(MCds) and estimated standard deviations (Esd) for the proposed VUS estimators, and the SPE
estimator under MAR assumption. CP denotes Monte Carlo coverages for the 95% confidence
intervals, obtained through the normal approximation approach applied to each estimator.

Sample size Estimator Mean Bias(%) MCsd SE CP (%)

Scenario I:
TRUE = 0.791

n = 250

FI 0.772 −2.4 0.056 0.050 89.9
MSI 0.770 −2.7 0.057 0.051 90.6
IPW 0.770 −2.6 0.070 0.061 88.1
PDR 0.766 −3.2 0.085 0.075 90.8
SPE (MAR) 0.771 −2.5 0.073 0.138 93.2

n = 500

FI 0.783 −1.0 0.035 0.032 93.3
MSI 0.782 −1.1 0.036 0.033 93.4
IPW 0.782 −1.2 0.047 0.042 92.2
PDR 0.782 −1.2 0.053 0.058 94.0
SPE (MAR) 0.771 −2.6 0.047 0.040 93.0

n = 1500

FI 0.790 −0.2 0.016 0.016 95.0
MSI 0.789 −0.2 0.016 0.016 95.2
IPW 0.788 −0.3 0.025 0.024 94.4
PDR 0.789 −0.3 0.025 0.024 95.2
SPE (MAR) 0.771 −2.5 0.027 0.025 89.4

Scenario II:
TRUE = 0.387

n = 250

FI 0.368 −5.0 0.064 0.057 87.4
MSI 0.367 −5.2 0.065 0.059 87.9
IPW 0.377 −2.6 0.084 0.074 87.6
PDR 0.369 −4.6 0.086 0.075 89.5
SPE (MAR) 0.346 −10.6 0.063 0.058 84.5

n = 500

FI 0.379 −2.0 0.045 0.041 90.9
MSI 0.379 −2.1 0.046 0.042 91.3
IPW 0.380 −1.8 0.060 0.056 91.2
PDR 0.381 −1.6 0.060 0.053 92.0
SPE (MAR) 0.345 −10.8 0.044 0.042 76.5

n = 1500

FI 0.388 0.2 0.023 0.022 94.2
MSI 0.388 0.2 0.023 0.023 94.3
IPW 0.388 0.3 0.034 0.032 94.9
PDR 0.389 0.4 0.033 0.029 93.2
SPE (MAR) 0.346 −10.7 0.026 0.025 76.5

Table 5.1 contains Monte Carlo means, Monte Carlo standard deviations and estimated stan-

dard deviations for the proposed VUS estimators (FI, MSI, IPW, PDR) in the two considered
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scenarios, at the chosen sample sizes. The table also reports the empirical coverages of the 95%

confidence intervals for the VUS, obtained through the normal approximation approach applied to

each estimator. To make a comparison, Table 5.1 also gives the results for the SPE discussed in

Section 4.1, whose realizations are obtained, in all experiments, under the MAR assumption, i.e.,

by setting λ1 = λ2 = 0 in model (5.1). The comparison allows us to evaluate the possible impact

of an incorrect hypothesis MAR on the most robust estimator among those, FI, MSI, IPW and

SPE, which are built to work under ignorable missing data mechanism.

Overall, simulation results are consistent with our theoretical findings and show the usefulness

of the proposed estimators, which also arises from the comparison with the SPE estimator used

improperly. The results also show a good behavior of the estimated standard deviations, which

are generally close to the corresponding Monte Carlo values. In general, FI and MSI estimators

seem to be more efficient than IPW and PDR estimators. However, for all estimators, acceptable

bias levels and sufficiently accurate associated confidence intervals seem to require a large sample

size (at least 500, and, prudently, even higher).

This issue of poor accuracy has already been noted by several authors, including Liu and Zhou

(2010), in the context of two-class classification problems. In our experience, the trouble appears

to arise because of a bad behavior of the maximum likelihood estimates in the verification and

disease models. If the sample size is not large enough, the data do not contain enough information

to effectively estimate the parameters λ, τπ, τρ1
and τρ2

. It seems particularly difficult to get good

estimates of nonignorable parameters.

Table 5.2: Monte Carlo means (MCmean) for the maximum likelihood estimators of the elements
of nuisance parameters λ, τπ, τρ1

and τρ2
.

Scenario I Scenario II

True Monte Carlo Mean True Monte Carlo Mean
250 500 1500 250 500 1500

λ1 -2.00 -1.01 -1.76 -1.95 -2.50 -2.09 -2.30 -2.50
λ2 -1.00 -0.45 -0.87 -0.98 -1.00 -0.99 -0.96 -0.97
τπ1

2.00 1.25 1.80 1.95 1.00 1.17 1.00 1.00
τπ2

0.50 0.65 0.55 0.51 1.20 1.39 1.28 1.22
τπ3

-1.20 -1.24 -1.22 -1.21 -1.50 -1.25 -1.40 -1.51
τρ11

15.00 15.53 15.28 15.10 4.60 4.44 4.58 4.66
τρ21

-3.30 -3.41 -3.36 -3.32 -3.30 -3.29 -3.33 -3.34
τρ31

-0.70 -0.89 -0.78 -0.72 -6.40 -6.94 -6.70 -6.48
τρ12

9.50 10.03 9.71 9.57 4.00 4.12 4.11 4.05
τρ22

-1.70 -1.79 -1.73 -1.71 -1.70 -1.77 -1.76 -1.73
τρ32

-0.30 -0.40 -0.34 -0.31 -3.20 -3.62 -3.42 -3.25

Table 5.2, giving the Monte Carlo means for the maximum likelihood estimators of the ele-

ments of λ, τπ, τρ1
and τρ2

, for the three considered sample sizes, allows us to look at the bias

of the estimators. More importantly, Figure 5.1 and Figure 5.2 (which refer to scenario I and II,

respectively) graphically depict values of the estimates of λ1, λ2, and τπ1
obtained in the thousand

replications, for each sample size. The plots clearly show the great variability of the maximum

likelihood estimates at lower sample sizes, with many values dramatically different from the cor-

responding target values. With larger sample size, this phenomenon almost completely vanishes,

the maximum likelihood estimators behave pretty well, with a positive impact on the behavior of
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the VUS estimators.
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Figure 5.1: The plot of the MLE of (λ1, λ2, τπ1
) with respect to scenario I.

5.4 Discussion

In this chapter, we have proposed four bias–corrected estimators of VUS under NI missing data

mechanism. The estimators are obtained by a likelihood–based approach, which uses the verifi-

cation model (5.1) together with the disease model (5.2). The identifiability of the joint model is

proved, and hence, the nuisance parameters can be estimated by maximizing the log–likelihood

function or solving the score equations. Consistency and asymptotic normality of the proposed FI,

MSI, IPW and PDR estimators are established, and variance estimation is discussed.

The proposed VUS estimators are pretty easy to implement and require the use of some nu-

merical routine to maximize the log–likelihood function (or to solve the score equations). Our

simulation results show their usefulness, whilst confirming the evidence emerging in the two–class

case, according to which a reasonable large sample size is necessary to make sufficiently accurate

inference. In practice, among FI, MSI, IPW and PDR estimators, we would reccommend FI and

MSI estimators thanks to their greater efficiency.
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Figure 5.2: The plot of the MLE of (λ1, λ2, τπ1
) with respect to scenario II.

The poor accuracy problem seems to be related to an intrinsic difficulty of the maximum

likelihood method in providing accurate estimates of the parameters of the disease and verification

models, in particular of the nonignorable parameters. Overcoming this drawback is a stimulating

challenge and deserves further investigation.



Chapter 6

R package: bcROCsurface

6.1 Introduction

In R, some packages exist for ROC surface analysis under full verification. For example, Di-

agTest3Grp gives some tools for estimating VUS (Luo and Xiong, 2012), ROCS deals with the

high-throughput class-skewed data (Yu, 2012) and HUM provides tools for visualizing the ROC

surface (Novoselova et al., 2014). No package is available at the moment for correcting for verifi-

cation bias estimators of the ROC surface and VUS.

The R package bcROCsurface aims to fill in this gap by providing a significant number of new

functions for bias-corrected ROC surface analysis. More precisely, it implements five bias-corrected

estimators for ROC surface and VUS of a continuous diagnostic test, namely, full imputation (FI),

mean score imputation (MSI), inverse probability weighting (IPW), semiparametric efficient (SPE)

and K nearest-neighbor (KNN) estimators. These methods perform provided that the missing

mechanism is MAR. Beside that, the package also works under full verification.

6.2 Package description

bcROCsurface imports various R packages (e.g., rgl, nnet, boot) and is built on Rcpp (Eddelbuettel,

2013). The package is freely available to download from https://CRAN.R-project.org/package=

bcROCsurface, and provides a consistent set of functions for bias–corrected inference on VUS, for

constructing and plotting 3D-ROC surfaces as well as ellipsoidal confidence regions of true class

fractions at a given cut-point.

Practical use of the package foresees three steps: data preparation, modeling and inference.

Data preparation: In this step, the condition of monotone ordering of the three disease classes

under study (Nakas and Yiannoutsos, 2004) is checked. The condition is mandatory to perform

the subsequent analyses. In words, the condition assumes that subjects from class 3 have higher

test results than subjects in class 2 and the latter have higher test results than subjects in class 1.

Function preDATA() performs such checks, warning users in case monotone ordering is not satisfied.

When satisfied, the function also generates a binary matrix with three columns, corresponding to

the coding of the three classes of the disease status, used as input of the main functions.

Modeling : Correction for verification bias requires estimation of a disease and a verification

model. The function psglm() obtains the verification probabilities specifying a general linear

model for the verification process. In practice, the user can select among a logistic, a probit or a

threshold regression model. Functions rhoMLogit() and rhoKNN() estimate the disease probabili-
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ties based on a multinomial logistic regression. In particular, rhoMLogit() calls the nnet package

for multinomial logistic modeling, whereas rhoKNN() uses K nearest-neighbor regression.

Inference: Two main functions are provided: ROCs for construction and plotting ROC surfaces,

and vus() for estimating VUS values as well as obtaining confidence intervals. Estimation methods

can be flexibly selected by the argument method, among 6 options. i.e., method = "full" if the

full data is available, fi, msi, ipw, spe and knn in presence of verification bias. To plot ROC

surfaces and ellipsoid confidence regions, the function ROCs employs the plotting functions of rgl

package. vus() employs some core functions, written in the C++ language and integrated in R

through the Rcpp and RcppArmadillo package. Confidence intervals of VUS are built based on the

asymptotic distribution or the bootstrap resampling process (supported by the parallel computing).

In addition, this function also performs the statistical test, H0: VUS = 1/6 versus HA: VUS >

1/6.

Besides the functions above described, the package also offers other functions for calculating

asymptotic variances or determine the choice for K with respect to KNN methods.

In addition, we have also developed the Shiny web application (https://cran.r-project.org/

web/packages=shiny) to provide the possibility to deploy bcROCsurface package over the web.

The web interface can be found at https://khanhtoduc.shinyapps.io/bcROCsurface_shiny/.

6.3 Implementation

6.3.1 In R

To illustrate the use of the package, here an example is given. A full guide for use of the

bcROCsurface package can be found in the vignette document.

In the following example, ROCs() is employed to build the bias-corrected ROC surface by SPE

estimator. Data come from the study on epithelial ovarian cancer (EOC). This dataset is available

in the package. As we mentioned above, in the beginning, the application of preDATA() is needed

to ensure that the package can be employed. In second step, the functions rhoMLogit() and

psglm() are called. The SPE estimated ROC surface presented in Figure 3.4(b) is the result of

implementation of ROCs(). In addition, this figure shows a ellipsoidal confidence region (with

green color) of the true class fractions at the cut point (−0.56, 2.31). Here is R code:

> library(bcROCsurface)

# load and attach the dataset

> data(EOC)

# Preparing the missing disease status

> dise <- preDATA(EOC$D, EOC$CA125)

> dise.gpr <- dise$D

> dise.mat <- dise$Dvec

# Estimate the disease probabilities

> rho.out <- rhoMLogit(dise.gpr ~ CA125 + CA153 + Age, data = EOC)

# Estimate the verification probabilites

> pi.out <- psglm(V ~ CA125 + CA153 + Age, data = EOC)

# Build bias-corrected ROC surface

> ROCs("spe", T = EOC$CA125, Dvec = dise.mat, V = EOC$V, rhoEst = rho.out, piEst = pi.out,

ellipsoid = TRUE, cpst = c(-0.56, 2.31))

6.3.2 The web interface

The layout of the bcROCsurface web interface is clean and straightforward (Figure 6.1). It provides

the possibility to load the datasets for the analysis and to access all functions of bcROCsurface
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package. Here, user loads a data file (typically, csv, txt or dat file), selects the suitable option for

“Separator” and “Quote” to read data correctly, then choose the input variables, i.e. diagnostic

test, disease status. If the true disease status is not missing, user follows step 1 and 2 to get the

results. Otherwise, user clicks on the square box and selects the verification status, then follows

step 1, 2 and 3 to implement the bias-corrected ROC surface analysis.

Figure 6.1: Bias-corrected VUS in Shiny application.



110 R package: bcROCsurface



Chapter 7

Conclusions

The ROC surfaces and in particular the VUSs, are widely used to examine the effectiveness of

diagnostic tests. In practice, however, the estimation of ROC surfaces and their volume underneath

may be badly biased (verification bias) due to the missingness of the true disease status of the

subjects. Therefore, the correction for verification bias is a problem of great importance. Here, we

considered bias-corrected estimation of the ROC surface and VUS for a continuous diagnostic test

under MAR and MNAR assumption.

In our approaches, we use the disease probabilities and/or verification probabilities to define

the bias–corrected estimators for the ROC surface and VUS. Under MAR assumption, these prob-

abilites are separately estimated via some parametric models (e.g., multinomial logistic; probit

or logistic) or in a nonparametric framework. On the contrary, these probabilities are estimated

together from likelihood function, under MNAR assumption.

There are still many open questions that deserve further investigation. Here, we mention some

of them, which are closely related to the work presented in the thesis.

1. The consistency and asymptotic normality of the KNN estimator for VUS developed in

Chapter 4 were not present. Therefore, studying the statistical properties of this estimator

is the focus of our current work.

2. The proposed approaches require a specific monotone ordering for the three disease classes

with respect to the test result. In other words, our methods are not applicable when an

umbrella ordering is of interest. In absence of missing data, Nakas and Alonzo (2007) pro-

posed a nonparametric framework for construction of an umbrella ROC graph and estimation

of umbrella volume. Thus, further work is needed to extend our methods to the umbrella

ordering.

3. Beside the ROC surface and VUS, there are several summary measures of diagnostic test

performance and among them is the three-class Youden index (Nakas et al., 2010, 2013).

This measure is frequently used in practice and not only shows the accuracy of a diagnostic

test, but also provides a criterion for choosing an optimal cut point (c∗1, c
∗
2), the cut point for

which the Youden index is maximized. In order to compute the three-class Youden index,

the estimates of TCFs (the true class fractions) are needed, and hence, verification bias could

impact also estimation of this index. The construction of bias–corrected estimators for the

three-class Youden index should be investigated in future studies.

4. The bias–corrected estimators for the ROC surface and VUS in Chapter 3, 4 and 5 just con-
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cern a single continuous diagnostic test. It is worth noting, however, that multiple diagnostic

tests might be available in practice. In such situations, a combination of diagnostic test

results could increase the accuracy. There are some papers discussed about how to choose

the best optimal linear combination of biomarkers to maximize the AUC (Su and Liu, 1993;

Pepe and Thompson, 2000; Pepe et al., 2006; Liu et al., 2011; Huang et al., 2011; Kang et al.,

2016), the VUS (Zhang and Li, 2011; Kang et al., 2013) and the hypervolume under the ROC

manifold (HUM, Hsu and Chen, 2016). However, all existing methods only work in absence

of verification bias. Extensions of the available methods for AUC and VUS in presence of

verification bias are future challenges.

5. In real applications, various covariates or explanatory variables (e.g. age, gender, race,

marital status, etc.) are frequently present, and they may affect the accuracy of diagnostic

tests and also their linear combination. Consequently the ROC curve, AUC, the ROC surface

and VUS will change as a function of these covariate values. Several approaches for modeling

the effect of the covariates on the ROC curve and AUC were proposed in the literature (Pepe,

1998; Schisterman et al., 2004; Zhou et al., 2009; Liu and Zhou, 2011; Fluss et al., 2012).

Thus, further work is needed to propose some methods for the ROC surface and VUS.

6. Sometimes, in practice, the comparison of two or more diagnostic tests is necessary. This

work could be done by comparing the values of AUC (in case of two classes) and of VUS

(in case of three classes). However, Hand (2009, 2010); Hand and Anagnostopoulos (2013)

noticed that the AUC has a well-known deficiency when it is used to compare crossed ROC

curves, in the sense that the AUC could lead to a mistaken belief about the performance

of the diagnostic test as it is actually used with some specific cut points. In addition, the

AUC does not take into account the balance of different kinds of misdiagnoses effectively. To

overcome these disadvantages, the H measure was proposed as a coherent alternative to the

AUC, see Hand (2009, 2010); Hand and Anagnostopoulos (2014). It is worth noting that the

VUS is a generalization of the AUC, and hence, the disadvantages of the AUC also appear in

VUS. Therefore, a new definition of the H measure for the case of three disease status should

be investigated in future work.

In Chapters 3, 4 and 5 of this thesis, the behavior of the proposed estimators were analyzed by

means of simulations. It should be recalled that studies of this kind, although certainly useful, can

only be partial, since they cannot cover all the endless scenarios that reality can manifest. The

results reported by us provide some guidance, but the behavior of the techniques proposed and

analyzed can be very different in contexts other than those considered in studies. For example:

(i) actually, small sample sizes can have a negative impact on all estimators, especially the

nonparametric ones.

(ii) for fixed sample sizes, a large number of covariates in the involved models can produce

inaccurate estimates;

(iii) poor results of the partially parametric approaches and the nonparametric estimator can be

observed when the distributions of diagnostic test and/or covariates are skewed (for example,

gamma distribution) or mixture distributions;

(iv) for small sample sizes, all estimators can yield unsatisfactory performance when the verifica-

tion rate is small or unbalanced with respect to the covariates distribution.
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